Merge tag 'lkdtm-next' of https://git.kernel.org/pub/scm/linux/kernel/git/kees/linux...
[linux-2.6-microblaze.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/api.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61 #include <asm/sigframe.h>
62 #include <asm/traps.h>
63
64 #include "cpu.h"
65
66 u32 elf_hwcap2 __read_mostly;
67
68 /* all of these masks are initialized in setup_cpu_local_masks() */
69 cpumask_var_t cpu_initialized_mask;
70 cpumask_var_t cpu_callout_mask;
71 cpumask_var_t cpu_callin_mask;
72
73 /* representing cpus for which sibling maps can be computed */
74 cpumask_var_t cpu_sibling_setup_mask;
75
76 /* Number of siblings per CPU package */
77 int smp_num_siblings = 1;
78 EXPORT_SYMBOL(smp_num_siblings);
79
80 /* Last level cache ID of each logical CPU */
81 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
82
83 u16 get_llc_id(unsigned int cpu)
84 {
85         return per_cpu(cpu_llc_id, cpu);
86 }
87 EXPORT_SYMBOL_GPL(get_llc_id);
88
89 /* L2 cache ID of each logical CPU */
90 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
91
92 static struct ppin_info {
93         int     feature;
94         int     msr_ppin_ctl;
95         int     msr_ppin;
96 } ppin_info[] = {
97         [X86_VENDOR_INTEL] = {
98                 .feature = X86_FEATURE_INTEL_PPIN,
99                 .msr_ppin_ctl = MSR_PPIN_CTL,
100                 .msr_ppin = MSR_PPIN
101         },
102         [X86_VENDOR_AMD] = {
103                 .feature = X86_FEATURE_AMD_PPIN,
104                 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
105                 .msr_ppin = MSR_AMD_PPIN
106         },
107 };
108
109 static const struct x86_cpu_id ppin_cpuids[] = {
110         X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
111         X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
112
113         /* Legacy models without CPUID enumeration */
114         X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
115         X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
116         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
117         X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
118         X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
119         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
120         X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
121         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
122         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
123         X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
124
125         {}
126 };
127
128 static void ppin_init(struct cpuinfo_x86 *c)
129 {
130         const struct x86_cpu_id *id;
131         unsigned long long val;
132         struct ppin_info *info;
133
134         id = x86_match_cpu(ppin_cpuids);
135         if (!id)
136                 return;
137
138         /*
139          * Testing the presence of the MSR is not enough. Need to check
140          * that the PPIN_CTL allows reading of the PPIN.
141          */
142         info = (struct ppin_info *)id->driver_data;
143
144         if (rdmsrl_safe(info->msr_ppin_ctl, &val))
145                 goto clear_ppin;
146
147         if ((val & 3UL) == 1UL) {
148                 /* PPIN locked in disabled mode */
149                 goto clear_ppin;
150         }
151
152         /* If PPIN is disabled, try to enable */
153         if (!(val & 2UL)) {
154                 wrmsrl_safe(info->msr_ppin_ctl,  val | 2UL);
155                 rdmsrl_safe(info->msr_ppin_ctl, &val);
156         }
157
158         /* Is the enable bit set? */
159         if (val & 2UL) {
160                 c->ppin = __rdmsr(info->msr_ppin);
161                 set_cpu_cap(c, info->feature);
162                 return;
163         }
164
165 clear_ppin:
166         clear_cpu_cap(c, info->feature);
167 }
168
169 /* correctly size the local cpu masks */
170 void __init setup_cpu_local_masks(void)
171 {
172         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
173         alloc_bootmem_cpumask_var(&cpu_callin_mask);
174         alloc_bootmem_cpumask_var(&cpu_callout_mask);
175         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
176 }
177
178 static void default_init(struct cpuinfo_x86 *c)
179 {
180 #ifdef CONFIG_X86_64
181         cpu_detect_cache_sizes(c);
182 #else
183         /* Not much we can do here... */
184         /* Check if at least it has cpuid */
185         if (c->cpuid_level == -1) {
186                 /* No cpuid. It must be an ancient CPU */
187                 if (c->x86 == 4)
188                         strcpy(c->x86_model_id, "486");
189                 else if (c->x86 == 3)
190                         strcpy(c->x86_model_id, "386");
191         }
192 #endif
193 }
194
195 static const struct cpu_dev default_cpu = {
196         .c_init         = default_init,
197         .c_vendor       = "Unknown",
198         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
199 };
200
201 static const struct cpu_dev *this_cpu = &default_cpu;
202
203 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
204 #ifdef CONFIG_X86_64
205         /*
206          * We need valid kernel segments for data and code in long mode too
207          * IRET will check the segment types  kkeil 2000/10/28
208          * Also sysret mandates a special GDT layout
209          *
210          * TLS descriptors are currently at a different place compared to i386.
211          * Hopefully nobody expects them at a fixed place (Wine?)
212          */
213         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
214         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
215         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
216         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
217         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
218         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
219 #else
220         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
221         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
222         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
223         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
224         /*
225          * Segments used for calling PnP BIOS have byte granularity.
226          * They code segments and data segments have fixed 64k limits,
227          * the transfer segment sizes are set at run time.
228          */
229         /* 32-bit code */
230         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
231         /* 16-bit code */
232         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
233         /* 16-bit data */
234         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
235         /* 16-bit data */
236         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
237         /* 16-bit data */
238         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
239         /*
240          * The APM segments have byte granularity and their bases
241          * are set at run time.  All have 64k limits.
242          */
243         /* 32-bit code */
244         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
245         /* 16-bit code */
246         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
247         /* data */
248         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
249
250         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
251         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
252 #endif
253 } };
254 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
255
256 #ifdef CONFIG_X86_64
257 static int __init x86_nopcid_setup(char *s)
258 {
259         /* nopcid doesn't accept parameters */
260         if (s)
261                 return -EINVAL;
262
263         /* do not emit a message if the feature is not present */
264         if (!boot_cpu_has(X86_FEATURE_PCID))
265                 return 0;
266
267         setup_clear_cpu_cap(X86_FEATURE_PCID);
268         pr_info("nopcid: PCID feature disabled\n");
269         return 0;
270 }
271 early_param("nopcid", x86_nopcid_setup);
272 #endif
273
274 static int __init x86_noinvpcid_setup(char *s)
275 {
276         /* noinvpcid doesn't accept parameters */
277         if (s)
278                 return -EINVAL;
279
280         /* do not emit a message if the feature is not present */
281         if (!boot_cpu_has(X86_FEATURE_INVPCID))
282                 return 0;
283
284         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
285         pr_info("noinvpcid: INVPCID feature disabled\n");
286         return 0;
287 }
288 early_param("noinvpcid", x86_noinvpcid_setup);
289
290 #ifdef CONFIG_X86_32
291 static int cachesize_override = -1;
292 static int disable_x86_serial_nr = 1;
293
294 static int __init cachesize_setup(char *str)
295 {
296         get_option(&str, &cachesize_override);
297         return 1;
298 }
299 __setup("cachesize=", cachesize_setup);
300
301 static int __init x86_sep_setup(char *s)
302 {
303         setup_clear_cpu_cap(X86_FEATURE_SEP);
304         return 1;
305 }
306 __setup("nosep", x86_sep_setup);
307
308 /* Standard macro to see if a specific flag is changeable */
309 static inline int flag_is_changeable_p(u32 flag)
310 {
311         u32 f1, f2;
312
313         /*
314          * Cyrix and IDT cpus allow disabling of CPUID
315          * so the code below may return different results
316          * when it is executed before and after enabling
317          * the CPUID. Add "volatile" to not allow gcc to
318          * optimize the subsequent calls to this function.
319          */
320         asm volatile ("pushfl           \n\t"
321                       "pushfl           \n\t"
322                       "popl %0          \n\t"
323                       "movl %0, %1      \n\t"
324                       "xorl %2, %0      \n\t"
325                       "pushl %0         \n\t"
326                       "popfl            \n\t"
327                       "pushfl           \n\t"
328                       "popl %0          \n\t"
329                       "popfl            \n\t"
330
331                       : "=&r" (f1), "=&r" (f2)
332                       : "ir" (flag));
333
334         return ((f1^f2) & flag) != 0;
335 }
336
337 /* Probe for the CPUID instruction */
338 int have_cpuid_p(void)
339 {
340         return flag_is_changeable_p(X86_EFLAGS_ID);
341 }
342
343 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
344 {
345         unsigned long lo, hi;
346
347         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
348                 return;
349
350         /* Disable processor serial number: */
351
352         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
353         lo |= 0x200000;
354         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
355
356         pr_notice("CPU serial number disabled.\n");
357         clear_cpu_cap(c, X86_FEATURE_PN);
358
359         /* Disabling the serial number may affect the cpuid level */
360         c->cpuid_level = cpuid_eax(0);
361 }
362
363 static int __init x86_serial_nr_setup(char *s)
364 {
365         disable_x86_serial_nr = 0;
366         return 1;
367 }
368 __setup("serialnumber", x86_serial_nr_setup);
369 #else
370 static inline int flag_is_changeable_p(u32 flag)
371 {
372         return 1;
373 }
374 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
375 {
376 }
377 #endif
378
379 static __init int setup_disable_smep(char *arg)
380 {
381         setup_clear_cpu_cap(X86_FEATURE_SMEP);
382         return 1;
383 }
384 __setup("nosmep", setup_disable_smep);
385
386 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
387 {
388         if (cpu_has(c, X86_FEATURE_SMEP))
389                 cr4_set_bits(X86_CR4_SMEP);
390 }
391
392 static __init int setup_disable_smap(char *arg)
393 {
394         setup_clear_cpu_cap(X86_FEATURE_SMAP);
395         return 1;
396 }
397 __setup("nosmap", setup_disable_smap);
398
399 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
400 {
401         unsigned long eflags = native_save_fl();
402
403         /* This should have been cleared long ago */
404         BUG_ON(eflags & X86_EFLAGS_AC);
405
406         if (cpu_has(c, X86_FEATURE_SMAP)) {
407 #ifdef CONFIG_X86_SMAP
408                 cr4_set_bits(X86_CR4_SMAP);
409 #else
410                 clear_cpu_cap(c, X86_FEATURE_SMAP);
411                 cr4_clear_bits(X86_CR4_SMAP);
412 #endif
413         }
414 }
415
416 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
417 {
418         /* Check the boot processor, plus build option for UMIP. */
419         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
420                 goto out;
421
422         /* Check the current processor's cpuid bits. */
423         if (!cpu_has(c, X86_FEATURE_UMIP))
424                 goto out;
425
426         cr4_set_bits(X86_CR4_UMIP);
427
428         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
429
430         return;
431
432 out:
433         /*
434          * Make sure UMIP is disabled in case it was enabled in a
435          * previous boot (e.g., via kexec).
436          */
437         cr4_clear_bits(X86_CR4_UMIP);
438 }
439
440 /* These bits should not change their value after CPU init is finished. */
441 static const unsigned long cr4_pinned_mask =
442         X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
443         X86_CR4_FSGSBASE | X86_CR4_CET;
444 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
445 static unsigned long cr4_pinned_bits __ro_after_init;
446
447 void native_write_cr0(unsigned long val)
448 {
449         unsigned long bits_missing = 0;
450
451 set_register:
452         asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
453
454         if (static_branch_likely(&cr_pinning)) {
455                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
456                         bits_missing = X86_CR0_WP;
457                         val |= bits_missing;
458                         goto set_register;
459                 }
460                 /* Warn after we've set the missing bits. */
461                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
462         }
463 }
464 EXPORT_SYMBOL(native_write_cr0);
465
466 void __no_profile native_write_cr4(unsigned long val)
467 {
468         unsigned long bits_changed = 0;
469
470 set_register:
471         asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
472
473         if (static_branch_likely(&cr_pinning)) {
474                 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
475                         bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
476                         val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
477                         goto set_register;
478                 }
479                 /* Warn after we've corrected the changed bits. */
480                 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
481                           bits_changed);
482         }
483 }
484 #if IS_MODULE(CONFIG_LKDTM)
485 EXPORT_SYMBOL_GPL(native_write_cr4);
486 #endif
487
488 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
489 {
490         unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
491
492         lockdep_assert_irqs_disabled();
493
494         newval = (cr4 & ~clear) | set;
495         if (newval != cr4) {
496                 this_cpu_write(cpu_tlbstate.cr4, newval);
497                 __write_cr4(newval);
498         }
499 }
500 EXPORT_SYMBOL(cr4_update_irqsoff);
501
502 /* Read the CR4 shadow. */
503 unsigned long cr4_read_shadow(void)
504 {
505         return this_cpu_read(cpu_tlbstate.cr4);
506 }
507 EXPORT_SYMBOL_GPL(cr4_read_shadow);
508
509 void cr4_init(void)
510 {
511         unsigned long cr4 = __read_cr4();
512
513         if (boot_cpu_has(X86_FEATURE_PCID))
514                 cr4 |= X86_CR4_PCIDE;
515         if (static_branch_likely(&cr_pinning))
516                 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
517
518         __write_cr4(cr4);
519
520         /* Initialize cr4 shadow for this CPU. */
521         this_cpu_write(cpu_tlbstate.cr4, cr4);
522 }
523
524 /*
525  * Once CPU feature detection is finished (and boot params have been
526  * parsed), record any of the sensitive CR bits that are set, and
527  * enable CR pinning.
528  */
529 static void __init setup_cr_pinning(void)
530 {
531         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
532         static_key_enable(&cr_pinning.key);
533 }
534
535 static __init int x86_nofsgsbase_setup(char *arg)
536 {
537         /* Require an exact match without trailing characters. */
538         if (strlen(arg))
539                 return 0;
540
541         /* Do not emit a message if the feature is not present. */
542         if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
543                 return 1;
544
545         setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
546         pr_info("FSGSBASE disabled via kernel command line\n");
547         return 1;
548 }
549 __setup("nofsgsbase", x86_nofsgsbase_setup);
550
551 /*
552  * Protection Keys are not available in 32-bit mode.
553  */
554 static bool pku_disabled;
555
556 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
557 {
558         if (c == &boot_cpu_data) {
559                 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
560                         return;
561                 /*
562                  * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
563                  * bit to be set.  Enforce it.
564                  */
565                 setup_force_cpu_cap(X86_FEATURE_OSPKE);
566
567         } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
568                 return;
569         }
570
571         cr4_set_bits(X86_CR4_PKE);
572         /* Load the default PKRU value */
573         pkru_write_default();
574 }
575
576 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
577 static __init int setup_disable_pku(char *arg)
578 {
579         /*
580          * Do not clear the X86_FEATURE_PKU bit.  All of the
581          * runtime checks are against OSPKE so clearing the
582          * bit does nothing.
583          *
584          * This way, we will see "pku" in cpuinfo, but not
585          * "ospke", which is exactly what we want.  It shows
586          * that the CPU has PKU, but the OS has not enabled it.
587          * This happens to be exactly how a system would look
588          * if we disabled the config option.
589          */
590         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
591         pku_disabled = true;
592         return 1;
593 }
594 __setup("nopku", setup_disable_pku);
595 #endif /* CONFIG_X86_64 */
596
597 #ifdef CONFIG_X86_KERNEL_IBT
598
599 __noendbr u64 ibt_save(void)
600 {
601         u64 msr = 0;
602
603         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
604                 rdmsrl(MSR_IA32_S_CET, msr);
605                 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
606         }
607
608         return msr;
609 }
610
611 __noendbr void ibt_restore(u64 save)
612 {
613         u64 msr;
614
615         if (cpu_feature_enabled(X86_FEATURE_IBT)) {
616                 rdmsrl(MSR_IA32_S_CET, msr);
617                 msr &= ~CET_ENDBR_EN;
618                 msr |= (save & CET_ENDBR_EN);
619                 wrmsrl(MSR_IA32_S_CET, msr);
620         }
621 }
622
623 #endif
624
625 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
626 {
627         u64 msr = CET_ENDBR_EN;
628
629         if (!HAS_KERNEL_IBT ||
630             !cpu_feature_enabled(X86_FEATURE_IBT))
631                 return;
632
633         wrmsrl(MSR_IA32_S_CET, msr);
634         cr4_set_bits(X86_CR4_CET);
635
636         if (!ibt_selftest()) {
637                 pr_err("IBT selftest: Failed!\n");
638                 setup_clear_cpu_cap(X86_FEATURE_IBT);
639                 return;
640         }
641 }
642
643 __noendbr void cet_disable(void)
644 {
645         if (cpu_feature_enabled(X86_FEATURE_IBT))
646                 wrmsrl(MSR_IA32_S_CET, 0);
647 }
648
649 /*
650  * Some CPU features depend on higher CPUID levels, which may not always
651  * be available due to CPUID level capping or broken virtualization
652  * software.  Add those features to this table to auto-disable them.
653  */
654 struct cpuid_dependent_feature {
655         u32 feature;
656         u32 level;
657 };
658
659 static const struct cpuid_dependent_feature
660 cpuid_dependent_features[] = {
661         { X86_FEATURE_MWAIT,            0x00000005 },
662         { X86_FEATURE_DCA,              0x00000009 },
663         { X86_FEATURE_XSAVE,            0x0000000d },
664         { 0, 0 }
665 };
666
667 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
668 {
669         const struct cpuid_dependent_feature *df;
670
671         for (df = cpuid_dependent_features; df->feature; df++) {
672
673                 if (!cpu_has(c, df->feature))
674                         continue;
675                 /*
676                  * Note: cpuid_level is set to -1 if unavailable, but
677                  * extended_extended_level is set to 0 if unavailable
678                  * and the legitimate extended levels are all negative
679                  * when signed; hence the weird messing around with
680                  * signs here...
681                  */
682                 if (!((s32)df->level < 0 ?
683                      (u32)df->level > (u32)c->extended_cpuid_level :
684                      (s32)df->level > (s32)c->cpuid_level))
685                         continue;
686
687                 clear_cpu_cap(c, df->feature);
688                 if (!warn)
689                         continue;
690
691                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
692                         x86_cap_flag(df->feature), df->level);
693         }
694 }
695
696 /*
697  * Naming convention should be: <Name> [(<Codename>)]
698  * This table only is used unless init_<vendor>() below doesn't set it;
699  * in particular, if CPUID levels 0x80000002..4 are supported, this
700  * isn't used
701  */
702
703 /* Look up CPU names by table lookup. */
704 static const char *table_lookup_model(struct cpuinfo_x86 *c)
705 {
706 #ifdef CONFIG_X86_32
707         const struct legacy_cpu_model_info *info;
708
709         if (c->x86_model >= 16)
710                 return NULL;    /* Range check */
711
712         if (!this_cpu)
713                 return NULL;
714
715         info = this_cpu->legacy_models;
716
717         while (info->family) {
718                 if (info->family == c->x86)
719                         return info->model_names[c->x86_model];
720                 info++;
721         }
722 #endif
723         return NULL;            /* Not found */
724 }
725
726 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
727 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
728 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
729
730 void load_percpu_segment(int cpu)
731 {
732 #ifdef CONFIG_X86_32
733         loadsegment(fs, __KERNEL_PERCPU);
734 #else
735         __loadsegment_simple(gs, 0);
736         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
737 #endif
738 }
739
740 #ifdef CONFIG_X86_32
741 /* The 32-bit entry code needs to find cpu_entry_area. */
742 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
743 #endif
744
745 /* Load the original GDT from the per-cpu structure */
746 void load_direct_gdt(int cpu)
747 {
748         struct desc_ptr gdt_descr;
749
750         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
751         gdt_descr.size = GDT_SIZE - 1;
752         load_gdt(&gdt_descr);
753 }
754 EXPORT_SYMBOL_GPL(load_direct_gdt);
755
756 /* Load a fixmap remapping of the per-cpu GDT */
757 void load_fixmap_gdt(int cpu)
758 {
759         struct desc_ptr gdt_descr;
760
761         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
762         gdt_descr.size = GDT_SIZE - 1;
763         load_gdt(&gdt_descr);
764 }
765 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
766
767 /*
768  * Current gdt points %fs at the "master" per-cpu area: after this,
769  * it's on the real one.
770  */
771 void switch_to_new_gdt(int cpu)
772 {
773         /* Load the original GDT */
774         load_direct_gdt(cpu);
775         /* Reload the per-cpu base */
776         load_percpu_segment(cpu);
777 }
778
779 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
780
781 static void get_model_name(struct cpuinfo_x86 *c)
782 {
783         unsigned int *v;
784         char *p, *q, *s;
785
786         if (c->extended_cpuid_level < 0x80000004)
787                 return;
788
789         v = (unsigned int *)c->x86_model_id;
790         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
791         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
792         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
793         c->x86_model_id[48] = 0;
794
795         /* Trim whitespace */
796         p = q = s = &c->x86_model_id[0];
797
798         while (*p == ' ')
799                 p++;
800
801         while (*p) {
802                 /* Note the last non-whitespace index */
803                 if (!isspace(*p))
804                         s = q;
805
806                 *q++ = *p++;
807         }
808
809         *(s + 1) = '\0';
810 }
811
812 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
813 {
814         unsigned int eax, ebx, ecx, edx;
815
816         c->x86_max_cores = 1;
817         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
818                 return;
819
820         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
821         if (eax & 0x1f)
822                 c->x86_max_cores = (eax >> 26) + 1;
823 }
824
825 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
826 {
827         unsigned int n, dummy, ebx, ecx, edx, l2size;
828
829         n = c->extended_cpuid_level;
830
831         if (n >= 0x80000005) {
832                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
833                 c->x86_cache_size = (ecx>>24) + (edx>>24);
834 #ifdef CONFIG_X86_64
835                 /* On K8 L1 TLB is inclusive, so don't count it */
836                 c->x86_tlbsize = 0;
837 #endif
838         }
839
840         if (n < 0x80000006)     /* Some chips just has a large L1. */
841                 return;
842
843         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
844         l2size = ecx >> 16;
845
846 #ifdef CONFIG_X86_64
847         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
848 #else
849         /* do processor-specific cache resizing */
850         if (this_cpu->legacy_cache_size)
851                 l2size = this_cpu->legacy_cache_size(c, l2size);
852
853         /* Allow user to override all this if necessary. */
854         if (cachesize_override != -1)
855                 l2size = cachesize_override;
856
857         if (l2size == 0)
858                 return;         /* Again, no L2 cache is possible */
859 #endif
860
861         c->x86_cache_size = l2size;
862 }
863
864 u16 __read_mostly tlb_lli_4k[NR_INFO];
865 u16 __read_mostly tlb_lli_2m[NR_INFO];
866 u16 __read_mostly tlb_lli_4m[NR_INFO];
867 u16 __read_mostly tlb_lld_4k[NR_INFO];
868 u16 __read_mostly tlb_lld_2m[NR_INFO];
869 u16 __read_mostly tlb_lld_4m[NR_INFO];
870 u16 __read_mostly tlb_lld_1g[NR_INFO];
871
872 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
873 {
874         if (this_cpu->c_detect_tlb)
875                 this_cpu->c_detect_tlb(c);
876
877         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
878                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
879                 tlb_lli_4m[ENTRIES]);
880
881         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
882                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
883                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
884 }
885
886 int detect_ht_early(struct cpuinfo_x86 *c)
887 {
888 #ifdef CONFIG_SMP
889         u32 eax, ebx, ecx, edx;
890
891         if (!cpu_has(c, X86_FEATURE_HT))
892                 return -1;
893
894         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
895                 return -1;
896
897         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
898                 return -1;
899
900         cpuid(1, &eax, &ebx, &ecx, &edx);
901
902         smp_num_siblings = (ebx & 0xff0000) >> 16;
903         if (smp_num_siblings == 1)
904                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
905 #endif
906         return 0;
907 }
908
909 void detect_ht(struct cpuinfo_x86 *c)
910 {
911 #ifdef CONFIG_SMP
912         int index_msb, core_bits;
913
914         if (detect_ht_early(c) < 0)
915                 return;
916
917         index_msb = get_count_order(smp_num_siblings);
918         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
919
920         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
921
922         index_msb = get_count_order(smp_num_siblings);
923
924         core_bits = get_count_order(c->x86_max_cores);
925
926         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
927                                        ((1 << core_bits) - 1);
928 #endif
929 }
930
931 static void get_cpu_vendor(struct cpuinfo_x86 *c)
932 {
933         char *v = c->x86_vendor_id;
934         int i;
935
936         for (i = 0; i < X86_VENDOR_NUM; i++) {
937                 if (!cpu_devs[i])
938                         break;
939
940                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
941                     (cpu_devs[i]->c_ident[1] &&
942                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
943
944                         this_cpu = cpu_devs[i];
945                         c->x86_vendor = this_cpu->c_x86_vendor;
946                         return;
947                 }
948         }
949
950         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
951                     "CPU: Your system may be unstable.\n", v);
952
953         c->x86_vendor = X86_VENDOR_UNKNOWN;
954         this_cpu = &default_cpu;
955 }
956
957 void cpu_detect(struct cpuinfo_x86 *c)
958 {
959         /* Get vendor name */
960         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
961               (unsigned int *)&c->x86_vendor_id[0],
962               (unsigned int *)&c->x86_vendor_id[8],
963               (unsigned int *)&c->x86_vendor_id[4]);
964
965         c->x86 = 4;
966         /* Intel-defined flags: level 0x00000001 */
967         if (c->cpuid_level >= 0x00000001) {
968                 u32 junk, tfms, cap0, misc;
969
970                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
971                 c->x86          = x86_family(tfms);
972                 c->x86_model    = x86_model(tfms);
973                 c->x86_stepping = x86_stepping(tfms);
974
975                 if (cap0 & (1<<19)) {
976                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
977                         c->x86_cache_alignment = c->x86_clflush_size;
978                 }
979         }
980 }
981
982 static void apply_forced_caps(struct cpuinfo_x86 *c)
983 {
984         int i;
985
986         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
987                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
988                 c->x86_capability[i] |= cpu_caps_set[i];
989         }
990 }
991
992 static void init_speculation_control(struct cpuinfo_x86 *c)
993 {
994         /*
995          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
996          * and they also have a different bit for STIBP support. Also,
997          * a hypervisor might have set the individual AMD bits even on
998          * Intel CPUs, for finer-grained selection of what's available.
999          */
1000         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
1001                 set_cpu_cap(c, X86_FEATURE_IBRS);
1002                 set_cpu_cap(c, X86_FEATURE_IBPB);
1003                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1004         }
1005
1006         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
1007                 set_cpu_cap(c, X86_FEATURE_STIBP);
1008
1009         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
1010             cpu_has(c, X86_FEATURE_VIRT_SSBD))
1011                 set_cpu_cap(c, X86_FEATURE_SSBD);
1012
1013         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
1014                 set_cpu_cap(c, X86_FEATURE_IBRS);
1015                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1016         }
1017
1018         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1019                 set_cpu_cap(c, X86_FEATURE_IBPB);
1020
1021         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1022                 set_cpu_cap(c, X86_FEATURE_STIBP);
1023                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1024         }
1025
1026         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1027                 set_cpu_cap(c, X86_FEATURE_SSBD);
1028                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1029                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1030         }
1031 }
1032
1033 void get_cpu_cap(struct cpuinfo_x86 *c)
1034 {
1035         u32 eax, ebx, ecx, edx;
1036
1037         /* Intel-defined flags: level 0x00000001 */
1038         if (c->cpuid_level >= 0x00000001) {
1039                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1040
1041                 c->x86_capability[CPUID_1_ECX] = ecx;
1042                 c->x86_capability[CPUID_1_EDX] = edx;
1043         }
1044
1045         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1046         if (c->cpuid_level >= 0x00000006)
1047                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1048
1049         /* Additional Intel-defined flags: level 0x00000007 */
1050         if (c->cpuid_level >= 0x00000007) {
1051                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1052                 c->x86_capability[CPUID_7_0_EBX] = ebx;
1053                 c->x86_capability[CPUID_7_ECX] = ecx;
1054                 c->x86_capability[CPUID_7_EDX] = edx;
1055
1056                 /* Check valid sub-leaf index before accessing it */
1057                 if (eax >= 1) {
1058                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1059                         c->x86_capability[CPUID_7_1_EAX] = eax;
1060                 }
1061         }
1062
1063         /* Extended state features: level 0x0000000d */
1064         if (c->cpuid_level >= 0x0000000d) {
1065                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1066
1067                 c->x86_capability[CPUID_D_1_EAX] = eax;
1068         }
1069
1070         /* AMD-defined flags: level 0x80000001 */
1071         eax = cpuid_eax(0x80000000);
1072         c->extended_cpuid_level = eax;
1073
1074         if ((eax & 0xffff0000) == 0x80000000) {
1075                 if (eax >= 0x80000001) {
1076                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1077
1078                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1079                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
1080                 }
1081         }
1082
1083         if (c->extended_cpuid_level >= 0x80000007) {
1084                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1085
1086                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1087                 c->x86_power = edx;
1088         }
1089
1090         if (c->extended_cpuid_level >= 0x80000008) {
1091                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1092                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1093         }
1094
1095         if (c->extended_cpuid_level >= 0x8000000a)
1096                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1097
1098         if (c->extended_cpuid_level >= 0x8000001f)
1099                 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1100
1101         init_scattered_cpuid_features(c);
1102         init_speculation_control(c);
1103
1104         /*
1105          * Clear/Set all flags overridden by options, after probe.
1106          * This needs to happen each time we re-probe, which may happen
1107          * several times during CPU initialization.
1108          */
1109         apply_forced_caps(c);
1110 }
1111
1112 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1113 {
1114         u32 eax, ebx, ecx, edx;
1115
1116         if (c->extended_cpuid_level >= 0x80000008) {
1117                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1118
1119                 c->x86_virt_bits = (eax >> 8) & 0xff;
1120                 c->x86_phys_bits = eax & 0xff;
1121         }
1122 #ifdef CONFIG_X86_32
1123         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1124                 c->x86_phys_bits = 36;
1125 #endif
1126         c->x86_cache_bits = c->x86_phys_bits;
1127 }
1128
1129 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1130 {
1131 #ifdef CONFIG_X86_32
1132         int i;
1133
1134         /*
1135          * First of all, decide if this is a 486 or higher
1136          * It's a 486 if we can modify the AC flag
1137          */
1138         if (flag_is_changeable_p(X86_EFLAGS_AC))
1139                 c->x86 = 4;
1140         else
1141                 c->x86 = 3;
1142
1143         for (i = 0; i < X86_VENDOR_NUM; i++)
1144                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1145                         c->x86_vendor_id[0] = 0;
1146                         cpu_devs[i]->c_identify(c);
1147                         if (c->x86_vendor_id[0]) {
1148                                 get_cpu_vendor(c);
1149                                 break;
1150                         }
1151                 }
1152 #endif
1153 }
1154
1155 #define NO_SPECULATION          BIT(0)
1156 #define NO_MELTDOWN             BIT(1)
1157 #define NO_SSB                  BIT(2)
1158 #define NO_L1TF                 BIT(3)
1159 #define NO_MDS                  BIT(4)
1160 #define MSBDS_ONLY              BIT(5)
1161 #define NO_SWAPGS               BIT(6)
1162 #define NO_ITLB_MULTIHIT        BIT(7)
1163 #define NO_SPECTRE_V2           BIT(8)
1164
1165 #define VULNWL(vendor, family, model, whitelist)        \
1166         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1167
1168 #define VULNWL_INTEL(model, whitelist)          \
1169         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1170
1171 #define VULNWL_AMD(family, whitelist)           \
1172         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1173
1174 #define VULNWL_HYGON(family, whitelist)         \
1175         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1176
1177 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1178         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1179         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1180         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1181         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1182         VULNWL(VORTEX,  5, X86_MODEL_ANY,       NO_SPECULATION),
1183         VULNWL(VORTEX,  6, X86_MODEL_ANY,       NO_SPECULATION),
1184
1185         /* Intel Family 6 */
1186         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1187         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1188         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1189         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1190         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1191
1192         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1193         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1194         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1195         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1196         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1197         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1198
1199         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1200
1201         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1202         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1203
1204         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1205         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1206         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1207
1208         /*
1209          * Technically, swapgs isn't serializing on AMD (despite it previously
1210          * being documented as such in the APM).  But according to AMD, %gs is
1211          * updated non-speculatively, and the issuing of %gs-relative memory
1212          * operands will be blocked until the %gs update completes, which is
1213          * good enough for our purposes.
1214          */
1215
1216         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT),
1217
1218         /* AMD Family 0xf - 0x12 */
1219         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1220         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1221         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1222         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1223
1224         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1225         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1226         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1227
1228         /* Zhaoxin Family 7 */
1229         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1230         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1231         {}
1232 };
1233
1234 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1235         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1236                                             INTEL_FAM6_##model, steppings, \
1237                                             X86_FEATURE_ANY, issues)
1238
1239 #define SRBDS           BIT(0)
1240
1241 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1242         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1243         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1244         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1245         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1246         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1247         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1248         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS),
1249         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS),
1250         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPINGS(0x0, 0xC),        SRBDS),
1251         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPINGS(0x0, 0xD),        SRBDS),
1252         {}
1253 };
1254
1255 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1256 {
1257         const struct x86_cpu_id *m = x86_match_cpu(table);
1258
1259         return m && !!(m->driver_data & which);
1260 }
1261
1262 u64 x86_read_arch_cap_msr(void)
1263 {
1264         u64 ia32_cap = 0;
1265
1266         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1267                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1268
1269         return ia32_cap;
1270 }
1271
1272 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1273 {
1274         u64 ia32_cap = x86_read_arch_cap_msr();
1275
1276         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1277         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1278             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1279                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1280
1281         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1282                 return;
1283
1284         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1285
1286         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1287                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1288
1289         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1290             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1291            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1292                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1293
1294         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1295                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1296
1297         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1298             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1299                 setup_force_cpu_bug(X86_BUG_MDS);
1300                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1301                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1302         }
1303
1304         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1305                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1306
1307         /*
1308          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1309          *      - TSX is supported or
1310          *      - TSX_CTRL is present
1311          *
1312          * TSX_CTRL check is needed for cases when TSX could be disabled before
1313          * the kernel boot e.g. kexec.
1314          * TSX_CTRL check alone is not sufficient for cases when the microcode
1315          * update is not present or running as guest that don't get TSX_CTRL.
1316          */
1317         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1318             (cpu_has(c, X86_FEATURE_RTM) ||
1319              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1320                 setup_force_cpu_bug(X86_BUG_TAA);
1321
1322         /*
1323          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1324          * in the vulnerability blacklist.
1325          */
1326         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1327              cpu_has(c, X86_FEATURE_RDSEED)) &&
1328             cpu_matches(cpu_vuln_blacklist, SRBDS))
1329                     setup_force_cpu_bug(X86_BUG_SRBDS);
1330
1331         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1332                 return;
1333
1334         /* Rogue Data Cache Load? No! */
1335         if (ia32_cap & ARCH_CAP_RDCL_NO)
1336                 return;
1337
1338         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1339
1340         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1341                 return;
1342
1343         setup_force_cpu_bug(X86_BUG_L1TF);
1344 }
1345
1346 /*
1347  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1348  * unfortunately, that's not true in practice because of early VIA
1349  * chips and (more importantly) broken virtualizers that are not easy
1350  * to detect. In the latter case it doesn't even *fail* reliably, so
1351  * probing for it doesn't even work. Disable it completely on 32-bit
1352  * unless we can find a reliable way to detect all the broken cases.
1353  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1354  */
1355 static void detect_nopl(void)
1356 {
1357 #ifdef CONFIG_X86_32
1358         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1359 #else
1360         setup_force_cpu_cap(X86_FEATURE_NOPL);
1361 #endif
1362 }
1363
1364 /*
1365  * We parse cpu parameters early because fpu__init_system() is executed
1366  * before parse_early_param().
1367  */
1368 static void __init cpu_parse_early_param(void)
1369 {
1370         char arg[128];
1371         char *argptr = arg;
1372         int arglen, res, bit;
1373
1374 #ifdef CONFIG_X86_32
1375         if (cmdline_find_option_bool(boot_command_line, "no387"))
1376 #ifdef CONFIG_MATH_EMULATION
1377                 setup_clear_cpu_cap(X86_FEATURE_FPU);
1378 #else
1379                 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1380 #endif
1381
1382         if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1383                 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1384 #endif
1385
1386         if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1387                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1388
1389         if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1390                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1391
1392         if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1393                 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1394
1395         arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1396         if (arglen <= 0)
1397                 return;
1398
1399         pr_info("Clearing CPUID bits:");
1400         do {
1401                 res = get_option(&argptr, &bit);
1402                 if (res == 0 || res == 3)
1403                         break;
1404
1405                 /* If the argument was too long, the last bit may be cut off */
1406                 if (res == 1 && arglen >= sizeof(arg))
1407                         break;
1408
1409                 if (bit >= 0 && bit < NCAPINTS * 32) {
1410                         pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1411                         setup_clear_cpu_cap(bit);
1412                 }
1413         } while (res == 2);
1414         pr_cont("\n");
1415 }
1416
1417 /*
1418  * Do minimum CPU detection early.
1419  * Fields really needed: vendor, cpuid_level, family, model, mask,
1420  * cache alignment.
1421  * The others are not touched to avoid unwanted side effects.
1422  *
1423  * WARNING: this function is only called on the boot CPU.  Don't add code
1424  * here that is supposed to run on all CPUs.
1425  */
1426 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1427 {
1428 #ifdef CONFIG_X86_64
1429         c->x86_clflush_size = 64;
1430         c->x86_phys_bits = 36;
1431         c->x86_virt_bits = 48;
1432 #else
1433         c->x86_clflush_size = 32;
1434         c->x86_phys_bits = 32;
1435         c->x86_virt_bits = 32;
1436 #endif
1437         c->x86_cache_alignment = c->x86_clflush_size;
1438
1439         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1440         c->extended_cpuid_level = 0;
1441
1442         if (!have_cpuid_p())
1443                 identify_cpu_without_cpuid(c);
1444
1445         /* cyrix could have cpuid enabled via c_identify()*/
1446         if (have_cpuid_p()) {
1447                 cpu_detect(c);
1448                 get_cpu_vendor(c);
1449                 get_cpu_cap(c);
1450                 get_cpu_address_sizes(c);
1451                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1452                 cpu_parse_early_param();
1453
1454                 if (this_cpu->c_early_init)
1455                         this_cpu->c_early_init(c);
1456
1457                 c->cpu_index = 0;
1458                 filter_cpuid_features(c, false);
1459
1460                 if (this_cpu->c_bsp_init)
1461                         this_cpu->c_bsp_init(c);
1462         } else {
1463                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1464         }
1465
1466         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1467
1468         cpu_set_bug_bits(c);
1469
1470         sld_setup(c);
1471
1472         fpu__init_system(c);
1473
1474         init_sigframe_size();
1475
1476 #ifdef CONFIG_X86_32
1477         /*
1478          * Regardless of whether PCID is enumerated, the SDM says
1479          * that it can't be enabled in 32-bit mode.
1480          */
1481         setup_clear_cpu_cap(X86_FEATURE_PCID);
1482 #endif
1483
1484         /*
1485          * Later in the boot process pgtable_l5_enabled() relies on
1486          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1487          * enabled by this point we need to clear the feature bit to avoid
1488          * false-positives at the later stage.
1489          *
1490          * pgtable_l5_enabled() can be false here for several reasons:
1491          *  - 5-level paging is disabled compile-time;
1492          *  - it's 32-bit kernel;
1493          *  - machine doesn't support 5-level paging;
1494          *  - user specified 'no5lvl' in kernel command line.
1495          */
1496         if (!pgtable_l5_enabled())
1497                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1498
1499         detect_nopl();
1500 }
1501
1502 void __init early_cpu_init(void)
1503 {
1504         const struct cpu_dev *const *cdev;
1505         int count = 0;
1506
1507 #ifdef CONFIG_PROCESSOR_SELECT
1508         pr_info("KERNEL supported cpus:\n");
1509 #endif
1510
1511         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1512                 const struct cpu_dev *cpudev = *cdev;
1513
1514                 if (count >= X86_VENDOR_NUM)
1515                         break;
1516                 cpu_devs[count] = cpudev;
1517                 count++;
1518
1519 #ifdef CONFIG_PROCESSOR_SELECT
1520                 {
1521                         unsigned int j;
1522
1523                         for (j = 0; j < 2; j++) {
1524                                 if (!cpudev->c_ident[j])
1525                                         continue;
1526                                 pr_info("  %s %s\n", cpudev->c_vendor,
1527                                         cpudev->c_ident[j]);
1528                         }
1529                 }
1530 #endif
1531         }
1532         early_identify_cpu(&boot_cpu_data);
1533 }
1534
1535 static bool detect_null_seg_behavior(void)
1536 {
1537         /*
1538          * Empirically, writing zero to a segment selector on AMD does
1539          * not clear the base, whereas writing zero to a segment
1540          * selector on Intel does clear the base.  Intel's behavior
1541          * allows slightly faster context switches in the common case
1542          * where GS is unused by the prev and next threads.
1543          *
1544          * Since neither vendor documents this anywhere that I can see,
1545          * detect it directly instead of hard-coding the choice by
1546          * vendor.
1547          *
1548          * I've designated AMD's behavior as the "bug" because it's
1549          * counterintuitive and less friendly.
1550          */
1551
1552         unsigned long old_base, tmp;
1553         rdmsrl(MSR_FS_BASE, old_base);
1554         wrmsrl(MSR_FS_BASE, 1);
1555         loadsegment(fs, 0);
1556         rdmsrl(MSR_FS_BASE, tmp);
1557         wrmsrl(MSR_FS_BASE, old_base);
1558         return tmp == 0;
1559 }
1560
1561 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1562 {
1563         /* BUG_NULL_SEG is only relevant with 64bit userspace */
1564         if (!IS_ENABLED(CONFIG_X86_64))
1565                 return;
1566
1567         /* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1568         if (c->extended_cpuid_level >= 0x80000021 &&
1569             cpuid_eax(0x80000021) & BIT(6))
1570                 return;
1571
1572         /*
1573          * CPUID bit above wasn't set. If this kernel is still running
1574          * as a HV guest, then the HV has decided not to advertize
1575          * that CPUID bit for whatever reason.  For example, one
1576          * member of the migration pool might be vulnerable.  Which
1577          * means, the bug is present: set the BUG flag and return.
1578          */
1579         if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1580                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1581                 return;
1582         }
1583
1584         /*
1585          * Zen2 CPUs also have this behaviour, but no CPUID bit.
1586          * 0x18 is the respective family for Hygon.
1587          */
1588         if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1589             detect_null_seg_behavior())
1590                 return;
1591
1592         /* All the remaining ones are affected */
1593         set_cpu_bug(c, X86_BUG_NULL_SEG);
1594 }
1595
1596 static void generic_identify(struct cpuinfo_x86 *c)
1597 {
1598         c->extended_cpuid_level = 0;
1599
1600         if (!have_cpuid_p())
1601                 identify_cpu_without_cpuid(c);
1602
1603         /* cyrix could have cpuid enabled via c_identify()*/
1604         if (!have_cpuid_p())
1605                 return;
1606
1607         cpu_detect(c);
1608
1609         get_cpu_vendor(c);
1610
1611         get_cpu_cap(c);
1612
1613         get_cpu_address_sizes(c);
1614
1615         if (c->cpuid_level >= 0x00000001) {
1616                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1617 #ifdef CONFIG_X86_32
1618 # ifdef CONFIG_SMP
1619                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1620 # else
1621                 c->apicid = c->initial_apicid;
1622 # endif
1623 #endif
1624                 c->phys_proc_id = c->initial_apicid;
1625         }
1626
1627         get_model_name(c); /* Default name */
1628
1629         /*
1630          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1631          * systems that run Linux at CPL > 0 may or may not have the
1632          * issue, but, even if they have the issue, there's absolutely
1633          * nothing we can do about it because we can't use the real IRET
1634          * instruction.
1635          *
1636          * NB: For the time being, only 32-bit kernels support
1637          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1638          * whether to apply espfix using paravirt hooks.  If any
1639          * non-paravirt system ever shows up that does *not* have the
1640          * ESPFIX issue, we can change this.
1641          */
1642 #ifdef CONFIG_X86_32
1643         set_cpu_bug(c, X86_BUG_ESPFIX);
1644 #endif
1645 }
1646
1647 /*
1648  * Validate that ACPI/mptables have the same information about the
1649  * effective APIC id and update the package map.
1650  */
1651 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1652 {
1653 #ifdef CONFIG_SMP
1654         unsigned int apicid, cpu = smp_processor_id();
1655
1656         apicid = apic->cpu_present_to_apicid(cpu);
1657
1658         if (apicid != c->apicid) {
1659                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1660                        cpu, apicid, c->initial_apicid);
1661         }
1662         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1663         BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1664 #else
1665         c->logical_proc_id = 0;
1666 #endif
1667 }
1668
1669 /*
1670  * This does the hard work of actually picking apart the CPU stuff...
1671  */
1672 static void identify_cpu(struct cpuinfo_x86 *c)
1673 {
1674         int i;
1675
1676         c->loops_per_jiffy = loops_per_jiffy;
1677         c->x86_cache_size = 0;
1678         c->x86_vendor = X86_VENDOR_UNKNOWN;
1679         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1680         c->x86_vendor_id[0] = '\0'; /* Unset */
1681         c->x86_model_id[0] = '\0';  /* Unset */
1682         c->x86_max_cores = 1;
1683         c->x86_coreid_bits = 0;
1684         c->cu_id = 0xff;
1685 #ifdef CONFIG_X86_64
1686         c->x86_clflush_size = 64;
1687         c->x86_phys_bits = 36;
1688         c->x86_virt_bits = 48;
1689 #else
1690         c->cpuid_level = -1;    /* CPUID not detected */
1691         c->x86_clflush_size = 32;
1692         c->x86_phys_bits = 32;
1693         c->x86_virt_bits = 32;
1694 #endif
1695         c->x86_cache_alignment = c->x86_clflush_size;
1696         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1697 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1698         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1699 #endif
1700
1701         generic_identify(c);
1702
1703         if (this_cpu->c_identify)
1704                 this_cpu->c_identify(c);
1705
1706         /* Clear/Set all flags overridden by options, after probe */
1707         apply_forced_caps(c);
1708
1709 #ifdef CONFIG_X86_64
1710         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1711 #endif
1712
1713         /*
1714          * Vendor-specific initialization.  In this section we
1715          * canonicalize the feature flags, meaning if there are
1716          * features a certain CPU supports which CPUID doesn't
1717          * tell us, CPUID claiming incorrect flags, or other bugs,
1718          * we handle them here.
1719          *
1720          * At the end of this section, c->x86_capability better
1721          * indicate the features this CPU genuinely supports!
1722          */
1723         if (this_cpu->c_init)
1724                 this_cpu->c_init(c);
1725
1726         /* Disable the PN if appropriate */
1727         squash_the_stupid_serial_number(c);
1728
1729         /* Set up SMEP/SMAP/UMIP */
1730         setup_smep(c);
1731         setup_smap(c);
1732         setup_umip(c);
1733
1734         /* Enable FSGSBASE instructions if available. */
1735         if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1736                 cr4_set_bits(X86_CR4_FSGSBASE);
1737                 elf_hwcap2 |= HWCAP2_FSGSBASE;
1738         }
1739
1740         /*
1741          * The vendor-specific functions might have changed features.
1742          * Now we do "generic changes."
1743          */
1744
1745         /* Filter out anything that depends on CPUID levels we don't have */
1746         filter_cpuid_features(c, true);
1747
1748         /* If the model name is still unset, do table lookup. */
1749         if (!c->x86_model_id[0]) {
1750                 const char *p;
1751                 p = table_lookup_model(c);
1752                 if (p)
1753                         strcpy(c->x86_model_id, p);
1754                 else
1755                         /* Last resort... */
1756                         sprintf(c->x86_model_id, "%02x/%02x",
1757                                 c->x86, c->x86_model);
1758         }
1759
1760 #ifdef CONFIG_X86_64
1761         detect_ht(c);
1762 #endif
1763
1764         x86_init_rdrand(c);
1765         setup_pku(c);
1766         setup_cet(c);
1767
1768         /*
1769          * Clear/Set all flags overridden by options, need do it
1770          * before following smp all cpus cap AND.
1771          */
1772         apply_forced_caps(c);
1773
1774         /*
1775          * On SMP, boot_cpu_data holds the common feature set between
1776          * all CPUs; so make sure that we indicate which features are
1777          * common between the CPUs.  The first time this routine gets
1778          * executed, c == &boot_cpu_data.
1779          */
1780         if (c != &boot_cpu_data) {
1781                 /* AND the already accumulated flags with these */
1782                 for (i = 0; i < NCAPINTS; i++)
1783                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1784
1785                 /* OR, i.e. replicate the bug flags */
1786                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1787                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1788         }
1789
1790         ppin_init(c);
1791
1792         /* Init Machine Check Exception if available. */
1793         mcheck_cpu_init(c);
1794
1795         select_idle_routine(c);
1796
1797 #ifdef CONFIG_NUMA
1798         numa_add_cpu(smp_processor_id());
1799 #endif
1800 }
1801
1802 /*
1803  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1804  * on 32-bit kernels:
1805  */
1806 #ifdef CONFIG_X86_32
1807 void enable_sep_cpu(void)
1808 {
1809         struct tss_struct *tss;
1810         int cpu;
1811
1812         if (!boot_cpu_has(X86_FEATURE_SEP))
1813                 return;
1814
1815         cpu = get_cpu();
1816         tss = &per_cpu(cpu_tss_rw, cpu);
1817
1818         /*
1819          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1820          * see the big comment in struct x86_hw_tss's definition.
1821          */
1822
1823         tss->x86_tss.ss1 = __KERNEL_CS;
1824         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1825         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1826         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1827
1828         put_cpu();
1829 }
1830 #endif
1831
1832 void __init identify_boot_cpu(void)
1833 {
1834         identify_cpu(&boot_cpu_data);
1835         if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1836                 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1837 #ifdef CONFIG_X86_32
1838         sysenter_setup();
1839         enable_sep_cpu();
1840 #endif
1841         cpu_detect_tlb(&boot_cpu_data);
1842         setup_cr_pinning();
1843
1844         tsx_init();
1845 }
1846
1847 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1848 {
1849         BUG_ON(c == &boot_cpu_data);
1850         identify_cpu(c);
1851 #ifdef CONFIG_X86_32
1852         enable_sep_cpu();
1853 #endif
1854         mtrr_ap_init();
1855         validate_apic_and_package_id(c);
1856         x86_spec_ctrl_setup_ap();
1857         update_srbds_msr();
1858
1859         tsx_ap_init();
1860 }
1861
1862 static __init int setup_noclflush(char *arg)
1863 {
1864         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1865         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1866         return 1;
1867 }
1868 __setup("noclflush", setup_noclflush);
1869
1870 void print_cpu_info(struct cpuinfo_x86 *c)
1871 {
1872         const char *vendor = NULL;
1873
1874         if (c->x86_vendor < X86_VENDOR_NUM) {
1875                 vendor = this_cpu->c_vendor;
1876         } else {
1877                 if (c->cpuid_level >= 0)
1878                         vendor = c->x86_vendor_id;
1879         }
1880
1881         if (vendor && !strstr(c->x86_model_id, vendor))
1882                 pr_cont("%s ", vendor);
1883
1884         if (c->x86_model_id[0])
1885                 pr_cont("%s", c->x86_model_id);
1886         else
1887                 pr_cont("%d86", c->x86);
1888
1889         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1890
1891         if (c->x86_stepping || c->cpuid_level >= 0)
1892                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1893         else
1894                 pr_cont(")\n");
1895 }
1896
1897 /*
1898  * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1899  * function prevents it from becoming an environment variable for init.
1900  */
1901 static __init int setup_clearcpuid(char *arg)
1902 {
1903         return 1;
1904 }
1905 __setup("clearcpuid=", setup_clearcpuid);
1906
1907 #ifdef CONFIG_X86_64
1908 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1909                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1910 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1911
1912 /*
1913  * The following percpu variables are hot.  Align current_task to
1914  * cacheline size such that they fall in the same cacheline.
1915  */
1916 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1917         &init_task;
1918 EXPORT_PER_CPU_SYMBOL(current_task);
1919
1920 DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1921 DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1922
1923 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1924 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1925
1926 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1927
1928 static void wrmsrl_cstar(unsigned long val)
1929 {
1930         /*
1931          * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
1932          * is so far ignored by the CPU, but raises a #VE trap in a TDX
1933          * guest. Avoid the pointless write on all Intel CPUs.
1934          */
1935         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1936                 wrmsrl(MSR_CSTAR, val);
1937 }
1938
1939 /* May not be marked __init: used by software suspend */
1940 void syscall_init(void)
1941 {
1942         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1943         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1944
1945 #ifdef CONFIG_IA32_EMULATION
1946         wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
1947         /*
1948          * This only works on Intel CPUs.
1949          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1950          * This does not cause SYSENTER to jump to the wrong location, because
1951          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1952          */
1953         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1954         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1955                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1956         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1957 #else
1958         wrmsrl_cstar((unsigned long)ignore_sysret);
1959         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1960         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1961         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1962 #endif
1963
1964         /*
1965          * Flags to clear on syscall; clear as much as possible
1966          * to minimize user space-kernel interference.
1967          */
1968         wrmsrl(MSR_SYSCALL_MASK,
1969                X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1970                X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1971                X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1972                X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1973                X86_EFLAGS_AC|X86_EFLAGS_ID);
1974 }
1975
1976 #else   /* CONFIG_X86_64 */
1977
1978 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1979 EXPORT_PER_CPU_SYMBOL(current_task);
1980 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1981 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1982
1983 /*
1984  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1985  * the top of the kernel stack.  Use an extra percpu variable to track the
1986  * top of the kernel stack directly.
1987  */
1988 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1989         (unsigned long)&init_thread_union + THREAD_SIZE;
1990 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1991
1992 #ifdef CONFIG_STACKPROTECTOR
1993 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1994 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1995 #endif
1996
1997 #endif  /* CONFIG_X86_64 */
1998
1999 /*
2000  * Clear all 6 debug registers:
2001  */
2002 static void clear_all_debug_regs(void)
2003 {
2004         int i;
2005
2006         for (i = 0; i < 8; i++) {
2007                 /* Ignore db4, db5 */
2008                 if ((i == 4) || (i == 5))
2009                         continue;
2010
2011                 set_debugreg(0, i);
2012         }
2013 }
2014
2015 #ifdef CONFIG_KGDB
2016 /*
2017  * Restore debug regs if using kgdbwait and you have a kernel debugger
2018  * connection established.
2019  */
2020 static void dbg_restore_debug_regs(void)
2021 {
2022         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2023                 arch_kgdb_ops.correct_hw_break();
2024 }
2025 #else /* ! CONFIG_KGDB */
2026 #define dbg_restore_debug_regs()
2027 #endif /* ! CONFIG_KGDB */
2028
2029 static void wait_for_master_cpu(int cpu)
2030 {
2031 #ifdef CONFIG_SMP
2032         /*
2033          * wait for ACK from master CPU before continuing
2034          * with AP initialization
2035          */
2036         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
2037         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
2038                 cpu_relax();
2039 #endif
2040 }
2041
2042 #ifdef CONFIG_X86_64
2043 static inline void setup_getcpu(int cpu)
2044 {
2045         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2046         struct desc_struct d = { };
2047
2048         if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2049                 wrmsr(MSR_TSC_AUX, cpudata, 0);
2050
2051         /* Store CPU and node number in limit. */
2052         d.limit0 = cpudata;
2053         d.limit1 = cpudata >> 16;
2054
2055         d.type = 5;             /* RO data, expand down, accessed */
2056         d.dpl = 3;              /* Visible to user code */
2057         d.s = 1;                /* Not a system segment */
2058         d.p = 1;                /* Present */
2059         d.d = 1;                /* 32-bit */
2060
2061         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2062 }
2063
2064 static inline void ucode_cpu_init(int cpu)
2065 {
2066         if (cpu)
2067                 load_ucode_ap();
2068 }
2069
2070 static inline void tss_setup_ist(struct tss_struct *tss)
2071 {
2072         /* Set up the per-CPU TSS IST stacks */
2073         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2074         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2075         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2076         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2077         /* Only mapped when SEV-ES is active */
2078         tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2079 }
2080
2081 #else /* CONFIG_X86_64 */
2082
2083 static inline void setup_getcpu(int cpu) { }
2084
2085 static inline void ucode_cpu_init(int cpu)
2086 {
2087         show_ucode_info_early();
2088 }
2089
2090 static inline void tss_setup_ist(struct tss_struct *tss) { }
2091
2092 #endif /* !CONFIG_X86_64 */
2093
2094 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2095 {
2096         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2097
2098 #ifdef CONFIG_X86_IOPL_IOPERM
2099         tss->io_bitmap.prev_max = 0;
2100         tss->io_bitmap.prev_sequence = 0;
2101         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2102         /*
2103          * Invalidate the extra array entry past the end of the all
2104          * permission bitmap as required by the hardware.
2105          */
2106         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2107 #endif
2108 }
2109
2110 /*
2111  * Setup everything needed to handle exceptions from the IDT, including the IST
2112  * exceptions which use paranoid_entry().
2113  */
2114 void cpu_init_exception_handling(void)
2115 {
2116         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2117         int cpu = raw_smp_processor_id();
2118
2119         /* paranoid_entry() gets the CPU number from the GDT */
2120         setup_getcpu(cpu);
2121
2122         /* IST vectors need TSS to be set up. */
2123         tss_setup_ist(tss);
2124         tss_setup_io_bitmap(tss);
2125         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2126
2127         load_TR_desc();
2128
2129         /* Finally load the IDT */
2130         load_current_idt();
2131 }
2132
2133 /*
2134  * cpu_init() initializes state that is per-CPU. Some data is already
2135  * initialized (naturally) in the bootstrap process, such as the GDT.  We
2136  * reload it nevertheless, this function acts as a 'CPU state barrier',
2137  * nothing should get across.
2138  */
2139 void cpu_init(void)
2140 {
2141         struct task_struct *cur = current;
2142         int cpu = raw_smp_processor_id();
2143
2144         wait_for_master_cpu(cpu);
2145
2146         ucode_cpu_init(cpu);
2147
2148 #ifdef CONFIG_NUMA
2149         if (this_cpu_read(numa_node) == 0 &&
2150             early_cpu_to_node(cpu) != NUMA_NO_NODE)
2151                 set_numa_node(early_cpu_to_node(cpu));
2152 #endif
2153         pr_debug("Initializing CPU#%d\n", cpu);
2154
2155         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2156             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2157                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2158
2159         /*
2160          * Initialize the per-CPU GDT with the boot GDT,
2161          * and set up the GDT descriptor:
2162          */
2163         switch_to_new_gdt(cpu);
2164
2165         if (IS_ENABLED(CONFIG_X86_64)) {
2166                 loadsegment(fs, 0);
2167                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2168                 syscall_init();
2169
2170                 wrmsrl(MSR_FS_BASE, 0);
2171                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2172                 barrier();
2173
2174                 x2apic_setup();
2175         }
2176
2177         mmgrab(&init_mm);
2178         cur->active_mm = &init_mm;
2179         BUG_ON(cur->mm);
2180         initialize_tlbstate_and_flush();
2181         enter_lazy_tlb(&init_mm, cur);
2182
2183         /*
2184          * sp0 points to the entry trampoline stack regardless of what task
2185          * is running.
2186          */
2187         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2188
2189         load_mm_ldt(&init_mm);
2190
2191         clear_all_debug_regs();
2192         dbg_restore_debug_regs();
2193
2194         doublefault_init_cpu_tss();
2195
2196         fpu__init_cpu();
2197
2198         if (is_uv_system())
2199                 uv_cpu_init();
2200
2201         load_fixmap_gdt(cpu);
2202 }
2203
2204 #ifdef CONFIG_SMP
2205 void cpu_init_secondary(void)
2206 {
2207         /*
2208          * Relies on the BP having set-up the IDT tables, which are loaded
2209          * on this CPU in cpu_init_exception_handling().
2210          */
2211         cpu_init_exception_handling();
2212         cpu_init();
2213 }
2214 #endif
2215
2216 /*
2217  * The microcode loader calls this upon late microcode load to recheck features,
2218  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2219  * hotplug lock.
2220  */
2221 void microcode_check(void)
2222 {
2223         struct cpuinfo_x86 info;
2224
2225         perf_check_microcode();
2226
2227         /* Reload CPUID max function as it might've changed. */
2228         info.cpuid_level = cpuid_eax(0);
2229
2230         /*
2231          * Copy all capability leafs to pick up the synthetic ones so that
2232          * memcmp() below doesn't fail on that. The ones coming from CPUID will
2233          * get overwritten in get_cpu_cap().
2234          */
2235         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2236
2237         get_cpu_cap(&info);
2238
2239         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2240                 return;
2241
2242         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2243         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2244 }
2245
2246 /*
2247  * Invoked from core CPU hotplug code after hotplug operations
2248  */
2249 void arch_smt_update(void)
2250 {
2251         /* Handle the speculative execution misfeatures */
2252         cpu_bugs_smt_update();
2253         /* Check whether IPI broadcasting can be enabled */
2254         apic_smt_update();
2255 }