Merge branch 'nvme-5.2-rc2' of git://git.infradead.org/nvme into for-linus
[linux-2.6-microblaze.git] / arch / x86 / kernel / cpu / common.c
1 /* cpu_feature_enabled() cannot be used this early */
2 #define USE_EARLY_PGTABLE_L5
3
4 #include <linux/memblock.h>
5 #include <linux/linkage.h>
6 #include <linux/bitops.h>
7 #include <linux/kernel.h>
8 #include <linux/export.h>
9 #include <linux/percpu.h>
10 #include <linux/string.h>
11 #include <linux/ctype.h>
12 #include <linux/delay.h>
13 #include <linux/sched/mm.h>
14 #include <linux/sched/clock.h>
15 #include <linux/sched/task.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/kgdb.h>
19 #include <linux/smp.h>
20 #include <linux/io.h>
21 #include <linux/syscore_ops.h>
22
23 #include <asm/stackprotector.h>
24 #include <asm/perf_event.h>
25 #include <asm/mmu_context.h>
26 #include <asm/archrandom.h>
27 #include <asm/hypervisor.h>
28 #include <asm/processor.h>
29 #include <asm/tlbflush.h>
30 #include <asm/debugreg.h>
31 #include <asm/sections.h>
32 #include <asm/vsyscall.h>
33 #include <linux/topology.h>
34 #include <linux/cpumask.h>
35 #include <asm/pgtable.h>
36 #include <linux/atomic.h>
37 #include <asm/proto.h>
38 #include <asm/setup.h>
39 #include <asm/apic.h>
40 #include <asm/desc.h>
41 #include <asm/fpu/internal.h>
42 #include <asm/mtrr.h>
43 #include <asm/hwcap2.h>
44 #include <linux/numa.h>
45 #include <asm/asm.h>
46 #include <asm/bugs.h>
47 #include <asm/cpu.h>
48 #include <asm/mce.h>
49 #include <asm/msr.h>
50 #include <asm/pat.h>
51 #include <asm/microcode.h>
52 #include <asm/microcode_intel.h>
53 #include <asm/intel-family.h>
54 #include <asm/cpu_device_id.h>
55
56 #ifdef CONFIG_X86_LOCAL_APIC
57 #include <asm/uv/uv.h>
58 #endif
59
60 #include "cpu.h"
61
62 u32 elf_hwcap2 __read_mostly;
63
64 /* all of these masks are initialized in setup_cpu_local_masks() */
65 cpumask_var_t cpu_initialized_mask;
66 cpumask_var_t cpu_callout_mask;
67 cpumask_var_t cpu_callin_mask;
68
69 /* representing cpus for which sibling maps can be computed */
70 cpumask_var_t cpu_sibling_setup_mask;
71
72 /* Number of siblings per CPU package */
73 int smp_num_siblings = 1;
74 EXPORT_SYMBOL(smp_num_siblings);
75
76 /* Last level cache ID of each logical CPU */
77 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
78
79 /* correctly size the local cpu masks */
80 void __init setup_cpu_local_masks(void)
81 {
82         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
83         alloc_bootmem_cpumask_var(&cpu_callin_mask);
84         alloc_bootmem_cpumask_var(&cpu_callout_mask);
85         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
86 }
87
88 static void default_init(struct cpuinfo_x86 *c)
89 {
90 #ifdef CONFIG_X86_64
91         cpu_detect_cache_sizes(c);
92 #else
93         /* Not much we can do here... */
94         /* Check if at least it has cpuid */
95         if (c->cpuid_level == -1) {
96                 /* No cpuid. It must be an ancient CPU */
97                 if (c->x86 == 4)
98                         strcpy(c->x86_model_id, "486");
99                 else if (c->x86 == 3)
100                         strcpy(c->x86_model_id, "386");
101         }
102 #endif
103 }
104
105 static const struct cpu_dev default_cpu = {
106         .c_init         = default_init,
107         .c_vendor       = "Unknown",
108         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
109 };
110
111 static const struct cpu_dev *this_cpu = &default_cpu;
112
113 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
114 #ifdef CONFIG_X86_64
115         /*
116          * We need valid kernel segments for data and code in long mode too
117          * IRET will check the segment types  kkeil 2000/10/28
118          * Also sysret mandates a special GDT layout
119          *
120          * TLS descriptors are currently at a different place compared to i386.
121          * Hopefully nobody expects them at a fixed place (Wine?)
122          */
123         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
124         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
125         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
126         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
127         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
128         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
129 #else
130         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
131         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
132         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
133         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
134         /*
135          * Segments used for calling PnP BIOS have byte granularity.
136          * They code segments and data segments have fixed 64k limits,
137          * the transfer segment sizes are set at run time.
138          */
139         /* 32-bit code */
140         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
141         /* 16-bit code */
142         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
143         /* 16-bit data */
144         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
145         /* 16-bit data */
146         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
147         /* 16-bit data */
148         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
149         /*
150          * The APM segments have byte granularity and their bases
151          * are set at run time.  All have 64k limits.
152          */
153         /* 32-bit code */
154         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
155         /* 16-bit code */
156         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
157         /* data */
158         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
159
160         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
161         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162         GDT_STACK_CANARY_INIT
163 #endif
164 } };
165 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
166
167 static int __init x86_mpx_setup(char *s)
168 {
169         /* require an exact match without trailing characters */
170         if (strlen(s))
171                 return 0;
172
173         /* do not emit a message if the feature is not present */
174         if (!boot_cpu_has(X86_FEATURE_MPX))
175                 return 1;
176
177         setup_clear_cpu_cap(X86_FEATURE_MPX);
178         pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
179         return 1;
180 }
181 __setup("nompx", x86_mpx_setup);
182
183 #ifdef CONFIG_X86_64
184 static int __init x86_nopcid_setup(char *s)
185 {
186         /* nopcid doesn't accept parameters */
187         if (s)
188                 return -EINVAL;
189
190         /* do not emit a message if the feature is not present */
191         if (!boot_cpu_has(X86_FEATURE_PCID))
192                 return 0;
193
194         setup_clear_cpu_cap(X86_FEATURE_PCID);
195         pr_info("nopcid: PCID feature disabled\n");
196         return 0;
197 }
198 early_param("nopcid", x86_nopcid_setup);
199 #endif
200
201 static int __init x86_noinvpcid_setup(char *s)
202 {
203         /* noinvpcid doesn't accept parameters */
204         if (s)
205                 return -EINVAL;
206
207         /* do not emit a message if the feature is not present */
208         if (!boot_cpu_has(X86_FEATURE_INVPCID))
209                 return 0;
210
211         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
212         pr_info("noinvpcid: INVPCID feature disabled\n");
213         return 0;
214 }
215 early_param("noinvpcid", x86_noinvpcid_setup);
216
217 #ifdef CONFIG_X86_32
218 static int cachesize_override = -1;
219 static int disable_x86_serial_nr = 1;
220
221 static int __init cachesize_setup(char *str)
222 {
223         get_option(&str, &cachesize_override);
224         return 1;
225 }
226 __setup("cachesize=", cachesize_setup);
227
228 static int __init x86_sep_setup(char *s)
229 {
230         setup_clear_cpu_cap(X86_FEATURE_SEP);
231         return 1;
232 }
233 __setup("nosep", x86_sep_setup);
234
235 /* Standard macro to see if a specific flag is changeable */
236 static inline int flag_is_changeable_p(u32 flag)
237 {
238         u32 f1, f2;
239
240         /*
241          * Cyrix and IDT cpus allow disabling of CPUID
242          * so the code below may return different results
243          * when it is executed before and after enabling
244          * the CPUID. Add "volatile" to not allow gcc to
245          * optimize the subsequent calls to this function.
246          */
247         asm volatile ("pushfl           \n\t"
248                       "pushfl           \n\t"
249                       "popl %0          \n\t"
250                       "movl %0, %1      \n\t"
251                       "xorl %2, %0      \n\t"
252                       "pushl %0         \n\t"
253                       "popfl            \n\t"
254                       "pushfl           \n\t"
255                       "popl %0          \n\t"
256                       "popfl            \n\t"
257
258                       : "=&r" (f1), "=&r" (f2)
259                       : "ir" (flag));
260
261         return ((f1^f2) & flag) != 0;
262 }
263
264 /* Probe for the CPUID instruction */
265 int have_cpuid_p(void)
266 {
267         return flag_is_changeable_p(X86_EFLAGS_ID);
268 }
269
270 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
271 {
272         unsigned long lo, hi;
273
274         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
275                 return;
276
277         /* Disable processor serial number: */
278
279         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
280         lo |= 0x200000;
281         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
282
283         pr_notice("CPU serial number disabled.\n");
284         clear_cpu_cap(c, X86_FEATURE_PN);
285
286         /* Disabling the serial number may affect the cpuid level */
287         c->cpuid_level = cpuid_eax(0);
288 }
289
290 static int __init x86_serial_nr_setup(char *s)
291 {
292         disable_x86_serial_nr = 0;
293         return 1;
294 }
295 __setup("serialnumber", x86_serial_nr_setup);
296 #else
297 static inline int flag_is_changeable_p(u32 flag)
298 {
299         return 1;
300 }
301 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
302 {
303 }
304 #endif
305
306 static __init int setup_disable_smep(char *arg)
307 {
308         setup_clear_cpu_cap(X86_FEATURE_SMEP);
309         /* Check for things that depend on SMEP being enabled: */
310         check_mpx_erratum(&boot_cpu_data);
311         return 1;
312 }
313 __setup("nosmep", setup_disable_smep);
314
315 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
316 {
317         if (cpu_has(c, X86_FEATURE_SMEP))
318                 cr4_set_bits(X86_CR4_SMEP);
319 }
320
321 static __init int setup_disable_smap(char *arg)
322 {
323         setup_clear_cpu_cap(X86_FEATURE_SMAP);
324         return 1;
325 }
326 __setup("nosmap", setup_disable_smap);
327
328 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
329 {
330         unsigned long eflags = native_save_fl();
331
332         /* This should have been cleared long ago */
333         BUG_ON(eflags & X86_EFLAGS_AC);
334
335         if (cpu_has(c, X86_FEATURE_SMAP)) {
336 #ifdef CONFIG_X86_SMAP
337                 cr4_set_bits(X86_CR4_SMAP);
338 #else
339                 cr4_clear_bits(X86_CR4_SMAP);
340 #endif
341         }
342 }
343
344 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
345 {
346         /* Check the boot processor, plus build option for UMIP. */
347         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
348                 goto out;
349
350         /* Check the current processor's cpuid bits. */
351         if (!cpu_has(c, X86_FEATURE_UMIP))
352                 goto out;
353
354         cr4_set_bits(X86_CR4_UMIP);
355
356         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
357
358         return;
359
360 out:
361         /*
362          * Make sure UMIP is disabled in case it was enabled in a
363          * previous boot (e.g., via kexec).
364          */
365         cr4_clear_bits(X86_CR4_UMIP);
366 }
367
368 /*
369  * Protection Keys are not available in 32-bit mode.
370  */
371 static bool pku_disabled;
372
373 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
374 {
375         struct pkru_state *pk;
376
377         /* check the boot processor, plus compile options for PKU: */
378         if (!cpu_feature_enabled(X86_FEATURE_PKU))
379                 return;
380         /* checks the actual processor's cpuid bits: */
381         if (!cpu_has(c, X86_FEATURE_PKU))
382                 return;
383         if (pku_disabled)
384                 return;
385
386         cr4_set_bits(X86_CR4_PKE);
387         pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
388         if (pk)
389                 pk->pkru = init_pkru_value;
390         /*
391          * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
392          * cpuid bit to be set.  We need to ensure that we
393          * update that bit in this CPU's "cpu_info".
394          */
395         get_cpu_cap(c);
396 }
397
398 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
399 static __init int setup_disable_pku(char *arg)
400 {
401         /*
402          * Do not clear the X86_FEATURE_PKU bit.  All of the
403          * runtime checks are against OSPKE so clearing the
404          * bit does nothing.
405          *
406          * This way, we will see "pku" in cpuinfo, but not
407          * "ospke", which is exactly what we want.  It shows
408          * that the CPU has PKU, but the OS has not enabled it.
409          * This happens to be exactly how a system would look
410          * if we disabled the config option.
411          */
412         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
413         pku_disabled = true;
414         return 1;
415 }
416 __setup("nopku", setup_disable_pku);
417 #endif /* CONFIG_X86_64 */
418
419 /*
420  * Some CPU features depend on higher CPUID levels, which may not always
421  * be available due to CPUID level capping or broken virtualization
422  * software.  Add those features to this table to auto-disable them.
423  */
424 struct cpuid_dependent_feature {
425         u32 feature;
426         u32 level;
427 };
428
429 static const struct cpuid_dependent_feature
430 cpuid_dependent_features[] = {
431         { X86_FEATURE_MWAIT,            0x00000005 },
432         { X86_FEATURE_DCA,              0x00000009 },
433         { X86_FEATURE_XSAVE,            0x0000000d },
434         { 0, 0 }
435 };
436
437 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
438 {
439         const struct cpuid_dependent_feature *df;
440
441         for (df = cpuid_dependent_features; df->feature; df++) {
442
443                 if (!cpu_has(c, df->feature))
444                         continue;
445                 /*
446                  * Note: cpuid_level is set to -1 if unavailable, but
447                  * extended_extended_level is set to 0 if unavailable
448                  * and the legitimate extended levels are all negative
449                  * when signed; hence the weird messing around with
450                  * signs here...
451                  */
452                 if (!((s32)df->level < 0 ?
453                      (u32)df->level > (u32)c->extended_cpuid_level :
454                      (s32)df->level > (s32)c->cpuid_level))
455                         continue;
456
457                 clear_cpu_cap(c, df->feature);
458                 if (!warn)
459                         continue;
460
461                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
462                         x86_cap_flag(df->feature), df->level);
463         }
464 }
465
466 /*
467  * Naming convention should be: <Name> [(<Codename>)]
468  * This table only is used unless init_<vendor>() below doesn't set it;
469  * in particular, if CPUID levels 0x80000002..4 are supported, this
470  * isn't used
471  */
472
473 /* Look up CPU names by table lookup. */
474 static const char *table_lookup_model(struct cpuinfo_x86 *c)
475 {
476 #ifdef CONFIG_X86_32
477         const struct legacy_cpu_model_info *info;
478
479         if (c->x86_model >= 16)
480                 return NULL;    /* Range check */
481
482         if (!this_cpu)
483                 return NULL;
484
485         info = this_cpu->legacy_models;
486
487         while (info->family) {
488                 if (info->family == c->x86)
489                         return info->model_names[c->x86_model];
490                 info++;
491         }
492 #endif
493         return NULL;            /* Not found */
494 }
495
496 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
497 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
498
499 void load_percpu_segment(int cpu)
500 {
501 #ifdef CONFIG_X86_32
502         loadsegment(fs, __KERNEL_PERCPU);
503 #else
504         __loadsegment_simple(gs, 0);
505         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
506 #endif
507         load_stack_canary_segment();
508 }
509
510 #ifdef CONFIG_X86_32
511 /* The 32-bit entry code needs to find cpu_entry_area. */
512 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
513 #endif
514
515 /* Load the original GDT from the per-cpu structure */
516 void load_direct_gdt(int cpu)
517 {
518         struct desc_ptr gdt_descr;
519
520         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
521         gdt_descr.size = GDT_SIZE - 1;
522         load_gdt(&gdt_descr);
523 }
524 EXPORT_SYMBOL_GPL(load_direct_gdt);
525
526 /* Load a fixmap remapping of the per-cpu GDT */
527 void load_fixmap_gdt(int cpu)
528 {
529         struct desc_ptr gdt_descr;
530
531         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
532         gdt_descr.size = GDT_SIZE - 1;
533         load_gdt(&gdt_descr);
534 }
535 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
536
537 /*
538  * Current gdt points %fs at the "master" per-cpu area: after this,
539  * it's on the real one.
540  */
541 void switch_to_new_gdt(int cpu)
542 {
543         /* Load the original GDT */
544         load_direct_gdt(cpu);
545         /* Reload the per-cpu base */
546         load_percpu_segment(cpu);
547 }
548
549 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
550
551 static void get_model_name(struct cpuinfo_x86 *c)
552 {
553         unsigned int *v;
554         char *p, *q, *s;
555
556         if (c->extended_cpuid_level < 0x80000004)
557                 return;
558
559         v = (unsigned int *)c->x86_model_id;
560         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
561         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
562         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
563         c->x86_model_id[48] = 0;
564
565         /* Trim whitespace */
566         p = q = s = &c->x86_model_id[0];
567
568         while (*p == ' ')
569                 p++;
570
571         while (*p) {
572                 /* Note the last non-whitespace index */
573                 if (!isspace(*p))
574                         s = q;
575
576                 *q++ = *p++;
577         }
578
579         *(s + 1) = '\0';
580 }
581
582 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
583 {
584         unsigned int eax, ebx, ecx, edx;
585
586         c->x86_max_cores = 1;
587         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
588                 return;
589
590         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
591         if (eax & 0x1f)
592                 c->x86_max_cores = (eax >> 26) + 1;
593 }
594
595 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
596 {
597         unsigned int n, dummy, ebx, ecx, edx, l2size;
598
599         n = c->extended_cpuid_level;
600
601         if (n >= 0x80000005) {
602                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
603                 c->x86_cache_size = (ecx>>24) + (edx>>24);
604 #ifdef CONFIG_X86_64
605                 /* On K8 L1 TLB is inclusive, so don't count it */
606                 c->x86_tlbsize = 0;
607 #endif
608         }
609
610         if (n < 0x80000006)     /* Some chips just has a large L1. */
611                 return;
612
613         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
614         l2size = ecx >> 16;
615
616 #ifdef CONFIG_X86_64
617         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
618 #else
619         /* do processor-specific cache resizing */
620         if (this_cpu->legacy_cache_size)
621                 l2size = this_cpu->legacy_cache_size(c, l2size);
622
623         /* Allow user to override all this if necessary. */
624         if (cachesize_override != -1)
625                 l2size = cachesize_override;
626
627         if (l2size == 0)
628                 return;         /* Again, no L2 cache is possible */
629 #endif
630
631         c->x86_cache_size = l2size;
632 }
633
634 u16 __read_mostly tlb_lli_4k[NR_INFO];
635 u16 __read_mostly tlb_lli_2m[NR_INFO];
636 u16 __read_mostly tlb_lli_4m[NR_INFO];
637 u16 __read_mostly tlb_lld_4k[NR_INFO];
638 u16 __read_mostly tlb_lld_2m[NR_INFO];
639 u16 __read_mostly tlb_lld_4m[NR_INFO];
640 u16 __read_mostly tlb_lld_1g[NR_INFO];
641
642 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
643 {
644         if (this_cpu->c_detect_tlb)
645                 this_cpu->c_detect_tlb(c);
646
647         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
648                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
649                 tlb_lli_4m[ENTRIES]);
650
651         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
652                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
653                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
654 }
655
656 int detect_ht_early(struct cpuinfo_x86 *c)
657 {
658 #ifdef CONFIG_SMP
659         u32 eax, ebx, ecx, edx;
660
661         if (!cpu_has(c, X86_FEATURE_HT))
662                 return -1;
663
664         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
665                 return -1;
666
667         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
668                 return -1;
669
670         cpuid(1, &eax, &ebx, &ecx, &edx);
671
672         smp_num_siblings = (ebx & 0xff0000) >> 16;
673         if (smp_num_siblings == 1)
674                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
675 #endif
676         return 0;
677 }
678
679 void detect_ht(struct cpuinfo_x86 *c)
680 {
681 #ifdef CONFIG_SMP
682         int index_msb, core_bits;
683
684         if (detect_ht_early(c) < 0)
685                 return;
686
687         index_msb = get_count_order(smp_num_siblings);
688         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
689
690         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
691
692         index_msb = get_count_order(smp_num_siblings);
693
694         core_bits = get_count_order(c->x86_max_cores);
695
696         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
697                                        ((1 << core_bits) - 1);
698 #endif
699 }
700
701 static void get_cpu_vendor(struct cpuinfo_x86 *c)
702 {
703         char *v = c->x86_vendor_id;
704         int i;
705
706         for (i = 0; i < X86_VENDOR_NUM; i++) {
707                 if (!cpu_devs[i])
708                         break;
709
710                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
711                     (cpu_devs[i]->c_ident[1] &&
712                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
713
714                         this_cpu = cpu_devs[i];
715                         c->x86_vendor = this_cpu->c_x86_vendor;
716                         return;
717                 }
718         }
719
720         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
721                     "CPU: Your system may be unstable.\n", v);
722
723         c->x86_vendor = X86_VENDOR_UNKNOWN;
724         this_cpu = &default_cpu;
725 }
726
727 void cpu_detect(struct cpuinfo_x86 *c)
728 {
729         /* Get vendor name */
730         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
731               (unsigned int *)&c->x86_vendor_id[0],
732               (unsigned int *)&c->x86_vendor_id[8],
733               (unsigned int *)&c->x86_vendor_id[4]);
734
735         c->x86 = 4;
736         /* Intel-defined flags: level 0x00000001 */
737         if (c->cpuid_level >= 0x00000001) {
738                 u32 junk, tfms, cap0, misc;
739
740                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
741                 c->x86          = x86_family(tfms);
742                 c->x86_model    = x86_model(tfms);
743                 c->x86_stepping = x86_stepping(tfms);
744
745                 if (cap0 & (1<<19)) {
746                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
747                         c->x86_cache_alignment = c->x86_clflush_size;
748                 }
749         }
750 }
751
752 static void apply_forced_caps(struct cpuinfo_x86 *c)
753 {
754         int i;
755
756         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
757                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
758                 c->x86_capability[i] |= cpu_caps_set[i];
759         }
760 }
761
762 static void init_speculation_control(struct cpuinfo_x86 *c)
763 {
764         /*
765          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
766          * and they also have a different bit for STIBP support. Also,
767          * a hypervisor might have set the individual AMD bits even on
768          * Intel CPUs, for finer-grained selection of what's available.
769          */
770         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
771                 set_cpu_cap(c, X86_FEATURE_IBRS);
772                 set_cpu_cap(c, X86_FEATURE_IBPB);
773                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
774         }
775
776         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
777                 set_cpu_cap(c, X86_FEATURE_STIBP);
778
779         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
780             cpu_has(c, X86_FEATURE_VIRT_SSBD))
781                 set_cpu_cap(c, X86_FEATURE_SSBD);
782
783         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
784                 set_cpu_cap(c, X86_FEATURE_IBRS);
785                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
786         }
787
788         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
789                 set_cpu_cap(c, X86_FEATURE_IBPB);
790
791         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
792                 set_cpu_cap(c, X86_FEATURE_STIBP);
793                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
794         }
795
796         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
797                 set_cpu_cap(c, X86_FEATURE_SSBD);
798                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
799                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
800         }
801 }
802
803 void get_cpu_cap(struct cpuinfo_x86 *c)
804 {
805         u32 eax, ebx, ecx, edx;
806
807         /* Intel-defined flags: level 0x00000001 */
808         if (c->cpuid_level >= 0x00000001) {
809                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
810
811                 c->x86_capability[CPUID_1_ECX] = ecx;
812                 c->x86_capability[CPUID_1_EDX] = edx;
813         }
814
815         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
816         if (c->cpuid_level >= 0x00000006)
817                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
818
819         /* Additional Intel-defined flags: level 0x00000007 */
820         if (c->cpuid_level >= 0x00000007) {
821                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
822                 c->x86_capability[CPUID_7_0_EBX] = ebx;
823                 c->x86_capability[CPUID_7_ECX] = ecx;
824                 c->x86_capability[CPUID_7_EDX] = edx;
825         }
826
827         /* Extended state features: level 0x0000000d */
828         if (c->cpuid_level >= 0x0000000d) {
829                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
830
831                 c->x86_capability[CPUID_D_1_EAX] = eax;
832         }
833
834         /* Additional Intel-defined flags: level 0x0000000F */
835         if (c->cpuid_level >= 0x0000000F) {
836
837                 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
838                 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
839                 c->x86_capability[CPUID_F_0_EDX] = edx;
840
841                 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
842                         /* will be overridden if occupancy monitoring exists */
843                         c->x86_cache_max_rmid = ebx;
844
845                         /* QoS sub-leaf, EAX=0Fh, ECX=1 */
846                         cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
847                         c->x86_capability[CPUID_F_1_EDX] = edx;
848
849                         if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
850                               ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
851                                (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
852                                 c->x86_cache_max_rmid = ecx;
853                                 c->x86_cache_occ_scale = ebx;
854                         }
855                 } else {
856                         c->x86_cache_max_rmid = -1;
857                         c->x86_cache_occ_scale = -1;
858                 }
859         }
860
861         /* AMD-defined flags: level 0x80000001 */
862         eax = cpuid_eax(0x80000000);
863         c->extended_cpuid_level = eax;
864
865         if ((eax & 0xffff0000) == 0x80000000) {
866                 if (eax >= 0x80000001) {
867                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
868
869                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
870                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
871                 }
872         }
873
874         if (c->extended_cpuid_level >= 0x80000007) {
875                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
876
877                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
878                 c->x86_power = edx;
879         }
880
881         if (c->extended_cpuid_level >= 0x80000008) {
882                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
883                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
884         }
885
886         if (c->extended_cpuid_level >= 0x8000000a)
887                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
888
889         init_scattered_cpuid_features(c);
890         init_speculation_control(c);
891
892         /*
893          * Clear/Set all flags overridden by options, after probe.
894          * This needs to happen each time we re-probe, which may happen
895          * several times during CPU initialization.
896          */
897         apply_forced_caps(c);
898 }
899
900 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
901 {
902         u32 eax, ebx, ecx, edx;
903
904         if (c->extended_cpuid_level >= 0x80000008) {
905                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
906
907                 c->x86_virt_bits = (eax >> 8) & 0xff;
908                 c->x86_phys_bits = eax & 0xff;
909         }
910 #ifdef CONFIG_X86_32
911         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
912                 c->x86_phys_bits = 36;
913 #endif
914         c->x86_cache_bits = c->x86_phys_bits;
915 }
916
917 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
918 {
919 #ifdef CONFIG_X86_32
920         int i;
921
922         /*
923          * First of all, decide if this is a 486 or higher
924          * It's a 486 if we can modify the AC flag
925          */
926         if (flag_is_changeable_p(X86_EFLAGS_AC))
927                 c->x86 = 4;
928         else
929                 c->x86 = 3;
930
931         for (i = 0; i < X86_VENDOR_NUM; i++)
932                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
933                         c->x86_vendor_id[0] = 0;
934                         cpu_devs[i]->c_identify(c);
935                         if (c->x86_vendor_id[0]) {
936                                 get_cpu_vendor(c);
937                                 break;
938                         }
939                 }
940 #endif
941 }
942
943 #define NO_SPECULATION  BIT(0)
944 #define NO_MELTDOWN     BIT(1)
945 #define NO_SSB          BIT(2)
946 #define NO_L1TF         BIT(3)
947 #define NO_MDS          BIT(4)
948 #define MSBDS_ONLY      BIT(5)
949
950 #define VULNWL(_vendor, _family, _model, _whitelist)    \
951         { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
952
953 #define VULNWL_INTEL(model, whitelist)          \
954         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
955
956 #define VULNWL_AMD(family, whitelist)           \
957         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
958
959 #define VULNWL_HYGON(family, whitelist)         \
960         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
961
962 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
963         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
964         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
965         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
966         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
967
968         /* Intel Family 6 */
969         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION),
970         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION),
971         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION),
972         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION),
973         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION),
974
975         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY),
976         VULNWL_INTEL(ATOM_SILVERMONT_X,         NO_SSB | NO_L1TF | MSBDS_ONLY),
977         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY),
978         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY),
979         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY),
980         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY),
981
982         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
983
984         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY),
985
986         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF),
987         VULNWL_INTEL(ATOM_GOLDMONT_X,           NO_MDS | NO_L1TF),
988         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF),
989
990         /* AMD Family 0xf - 0x12 */
991         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
992         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
993         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
994         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
995
996         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
997         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS),
998         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS),
999         {}
1000 };
1001
1002 static bool __init cpu_matches(unsigned long which)
1003 {
1004         const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
1005
1006         return m && !!(m->driver_data & which);
1007 }
1008
1009 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1010 {
1011         u64 ia32_cap = 0;
1012
1013         if (cpu_matches(NO_SPECULATION))
1014                 return;
1015
1016         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1017         setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1018
1019         if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
1020                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1021
1022         if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
1023            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1024                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1025
1026         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1027                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1028
1029         if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1030                 setup_force_cpu_bug(X86_BUG_MDS);
1031                 if (cpu_matches(MSBDS_ONLY))
1032                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1033         }
1034
1035         if (cpu_matches(NO_MELTDOWN))
1036                 return;
1037
1038         /* Rogue Data Cache Load? No! */
1039         if (ia32_cap & ARCH_CAP_RDCL_NO)
1040                 return;
1041
1042         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1043
1044         if (cpu_matches(NO_L1TF))
1045                 return;
1046
1047         setup_force_cpu_bug(X86_BUG_L1TF);
1048 }
1049
1050 /*
1051  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1052  * unfortunately, that's not true in practice because of early VIA
1053  * chips and (more importantly) broken virtualizers that are not easy
1054  * to detect. In the latter case it doesn't even *fail* reliably, so
1055  * probing for it doesn't even work. Disable it completely on 32-bit
1056  * unless we can find a reliable way to detect all the broken cases.
1057  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1058  */
1059 static void detect_nopl(void)
1060 {
1061 #ifdef CONFIG_X86_32
1062         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1063 #else
1064         setup_force_cpu_cap(X86_FEATURE_NOPL);
1065 #endif
1066 }
1067
1068 /*
1069  * Do minimum CPU detection early.
1070  * Fields really needed: vendor, cpuid_level, family, model, mask,
1071  * cache alignment.
1072  * The others are not touched to avoid unwanted side effects.
1073  *
1074  * WARNING: this function is only called on the boot CPU.  Don't add code
1075  * here that is supposed to run on all CPUs.
1076  */
1077 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1078 {
1079 #ifdef CONFIG_X86_64
1080         c->x86_clflush_size = 64;
1081         c->x86_phys_bits = 36;
1082         c->x86_virt_bits = 48;
1083 #else
1084         c->x86_clflush_size = 32;
1085         c->x86_phys_bits = 32;
1086         c->x86_virt_bits = 32;
1087 #endif
1088         c->x86_cache_alignment = c->x86_clflush_size;
1089
1090         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1091         c->extended_cpuid_level = 0;
1092
1093         if (!have_cpuid_p())
1094                 identify_cpu_without_cpuid(c);
1095
1096         /* cyrix could have cpuid enabled via c_identify()*/
1097         if (have_cpuid_p()) {
1098                 cpu_detect(c);
1099                 get_cpu_vendor(c);
1100                 get_cpu_cap(c);
1101                 get_cpu_address_sizes(c);
1102                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1103
1104                 if (this_cpu->c_early_init)
1105                         this_cpu->c_early_init(c);
1106
1107                 c->cpu_index = 0;
1108                 filter_cpuid_features(c, false);
1109
1110                 if (this_cpu->c_bsp_init)
1111                         this_cpu->c_bsp_init(c);
1112         } else {
1113                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1114         }
1115
1116         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1117
1118         cpu_set_bug_bits(c);
1119
1120         fpu__init_system(c);
1121
1122 #ifdef CONFIG_X86_32
1123         /*
1124          * Regardless of whether PCID is enumerated, the SDM says
1125          * that it can't be enabled in 32-bit mode.
1126          */
1127         setup_clear_cpu_cap(X86_FEATURE_PCID);
1128 #endif
1129
1130         /*
1131          * Later in the boot process pgtable_l5_enabled() relies on
1132          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1133          * enabled by this point we need to clear the feature bit to avoid
1134          * false-positives at the later stage.
1135          *
1136          * pgtable_l5_enabled() can be false here for several reasons:
1137          *  - 5-level paging is disabled compile-time;
1138          *  - it's 32-bit kernel;
1139          *  - machine doesn't support 5-level paging;
1140          *  - user specified 'no5lvl' in kernel command line.
1141          */
1142         if (!pgtable_l5_enabled())
1143                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1144
1145         detect_nopl();
1146 }
1147
1148 void __init early_cpu_init(void)
1149 {
1150         const struct cpu_dev *const *cdev;
1151         int count = 0;
1152
1153 #ifdef CONFIG_PROCESSOR_SELECT
1154         pr_info("KERNEL supported cpus:\n");
1155 #endif
1156
1157         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1158                 const struct cpu_dev *cpudev = *cdev;
1159
1160                 if (count >= X86_VENDOR_NUM)
1161                         break;
1162                 cpu_devs[count] = cpudev;
1163                 count++;
1164
1165 #ifdef CONFIG_PROCESSOR_SELECT
1166                 {
1167                         unsigned int j;
1168
1169                         for (j = 0; j < 2; j++) {
1170                                 if (!cpudev->c_ident[j])
1171                                         continue;
1172                                 pr_info("  %s %s\n", cpudev->c_vendor,
1173                                         cpudev->c_ident[j]);
1174                         }
1175                 }
1176 #endif
1177         }
1178         early_identify_cpu(&boot_cpu_data);
1179 }
1180
1181 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1182 {
1183 #ifdef CONFIG_X86_64
1184         /*
1185          * Empirically, writing zero to a segment selector on AMD does
1186          * not clear the base, whereas writing zero to a segment
1187          * selector on Intel does clear the base.  Intel's behavior
1188          * allows slightly faster context switches in the common case
1189          * where GS is unused by the prev and next threads.
1190          *
1191          * Since neither vendor documents this anywhere that I can see,
1192          * detect it directly instead of hardcoding the choice by
1193          * vendor.
1194          *
1195          * I've designated AMD's behavior as the "bug" because it's
1196          * counterintuitive and less friendly.
1197          */
1198
1199         unsigned long old_base, tmp;
1200         rdmsrl(MSR_FS_BASE, old_base);
1201         wrmsrl(MSR_FS_BASE, 1);
1202         loadsegment(fs, 0);
1203         rdmsrl(MSR_FS_BASE, tmp);
1204         if (tmp != 0)
1205                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1206         wrmsrl(MSR_FS_BASE, old_base);
1207 #endif
1208 }
1209
1210 static void generic_identify(struct cpuinfo_x86 *c)
1211 {
1212         c->extended_cpuid_level = 0;
1213
1214         if (!have_cpuid_p())
1215                 identify_cpu_without_cpuid(c);
1216
1217         /* cyrix could have cpuid enabled via c_identify()*/
1218         if (!have_cpuid_p())
1219                 return;
1220
1221         cpu_detect(c);
1222
1223         get_cpu_vendor(c);
1224
1225         get_cpu_cap(c);
1226
1227         get_cpu_address_sizes(c);
1228
1229         if (c->cpuid_level >= 0x00000001) {
1230                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1231 #ifdef CONFIG_X86_32
1232 # ifdef CONFIG_SMP
1233                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1234 # else
1235                 c->apicid = c->initial_apicid;
1236 # endif
1237 #endif
1238                 c->phys_proc_id = c->initial_apicid;
1239         }
1240
1241         get_model_name(c); /* Default name */
1242
1243         detect_null_seg_behavior(c);
1244
1245         /*
1246          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1247          * systems that run Linux at CPL > 0 may or may not have the
1248          * issue, but, even if they have the issue, there's absolutely
1249          * nothing we can do about it because we can't use the real IRET
1250          * instruction.
1251          *
1252          * NB: For the time being, only 32-bit kernels support
1253          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1254          * whether to apply espfix using paravirt hooks.  If any
1255          * non-paravirt system ever shows up that does *not* have the
1256          * ESPFIX issue, we can change this.
1257          */
1258 #ifdef CONFIG_X86_32
1259 # ifdef CONFIG_PARAVIRT_XXL
1260         do {
1261                 extern void native_iret(void);
1262                 if (pv_ops.cpu.iret == native_iret)
1263                         set_cpu_bug(c, X86_BUG_ESPFIX);
1264         } while (0);
1265 # else
1266         set_cpu_bug(c, X86_BUG_ESPFIX);
1267 # endif
1268 #endif
1269 }
1270
1271 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1272 {
1273         /*
1274          * The heavy lifting of max_rmid and cache_occ_scale are handled
1275          * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1276          * in case CQM bits really aren't there in this CPU.
1277          */
1278         if (c != &boot_cpu_data) {
1279                 boot_cpu_data.x86_cache_max_rmid =
1280                         min(boot_cpu_data.x86_cache_max_rmid,
1281                             c->x86_cache_max_rmid);
1282         }
1283 }
1284
1285 /*
1286  * Validate that ACPI/mptables have the same information about the
1287  * effective APIC id and update the package map.
1288  */
1289 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1290 {
1291 #ifdef CONFIG_SMP
1292         unsigned int apicid, cpu = smp_processor_id();
1293
1294         apicid = apic->cpu_present_to_apicid(cpu);
1295
1296         if (apicid != c->apicid) {
1297                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1298                        cpu, apicid, c->initial_apicid);
1299         }
1300         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1301 #else
1302         c->logical_proc_id = 0;
1303 #endif
1304 }
1305
1306 /*
1307  * This does the hard work of actually picking apart the CPU stuff...
1308  */
1309 static void identify_cpu(struct cpuinfo_x86 *c)
1310 {
1311         int i;
1312
1313         c->loops_per_jiffy = loops_per_jiffy;
1314         c->x86_cache_size = 0;
1315         c->x86_vendor = X86_VENDOR_UNKNOWN;
1316         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1317         c->x86_vendor_id[0] = '\0'; /* Unset */
1318         c->x86_model_id[0] = '\0';  /* Unset */
1319         c->x86_max_cores = 1;
1320         c->x86_coreid_bits = 0;
1321         c->cu_id = 0xff;
1322 #ifdef CONFIG_X86_64
1323         c->x86_clflush_size = 64;
1324         c->x86_phys_bits = 36;
1325         c->x86_virt_bits = 48;
1326 #else
1327         c->cpuid_level = -1;    /* CPUID not detected */
1328         c->x86_clflush_size = 32;
1329         c->x86_phys_bits = 32;
1330         c->x86_virt_bits = 32;
1331 #endif
1332         c->x86_cache_alignment = c->x86_clflush_size;
1333         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1334
1335         generic_identify(c);
1336
1337         if (this_cpu->c_identify)
1338                 this_cpu->c_identify(c);
1339
1340         /* Clear/Set all flags overridden by options, after probe */
1341         apply_forced_caps(c);
1342
1343 #ifdef CONFIG_X86_64
1344         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1345 #endif
1346
1347         /*
1348          * Vendor-specific initialization.  In this section we
1349          * canonicalize the feature flags, meaning if there are
1350          * features a certain CPU supports which CPUID doesn't
1351          * tell us, CPUID claiming incorrect flags, or other bugs,
1352          * we handle them here.
1353          *
1354          * At the end of this section, c->x86_capability better
1355          * indicate the features this CPU genuinely supports!
1356          */
1357         if (this_cpu->c_init)
1358                 this_cpu->c_init(c);
1359
1360         /* Disable the PN if appropriate */
1361         squash_the_stupid_serial_number(c);
1362
1363         /* Set up SMEP/SMAP/UMIP */
1364         setup_smep(c);
1365         setup_smap(c);
1366         setup_umip(c);
1367
1368         /*
1369          * The vendor-specific functions might have changed features.
1370          * Now we do "generic changes."
1371          */
1372
1373         /* Filter out anything that depends on CPUID levels we don't have */
1374         filter_cpuid_features(c, true);
1375
1376         /* If the model name is still unset, do table lookup. */
1377         if (!c->x86_model_id[0]) {
1378                 const char *p;
1379                 p = table_lookup_model(c);
1380                 if (p)
1381                         strcpy(c->x86_model_id, p);
1382                 else
1383                         /* Last resort... */
1384                         sprintf(c->x86_model_id, "%02x/%02x",
1385                                 c->x86, c->x86_model);
1386         }
1387
1388 #ifdef CONFIG_X86_64
1389         detect_ht(c);
1390 #endif
1391
1392         x86_init_rdrand(c);
1393         x86_init_cache_qos(c);
1394         setup_pku(c);
1395
1396         /*
1397          * Clear/Set all flags overridden by options, need do it
1398          * before following smp all cpus cap AND.
1399          */
1400         apply_forced_caps(c);
1401
1402         /*
1403          * On SMP, boot_cpu_data holds the common feature set between
1404          * all CPUs; so make sure that we indicate which features are
1405          * common between the CPUs.  The first time this routine gets
1406          * executed, c == &boot_cpu_data.
1407          */
1408         if (c != &boot_cpu_data) {
1409                 /* AND the already accumulated flags with these */
1410                 for (i = 0; i < NCAPINTS; i++)
1411                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1412
1413                 /* OR, i.e. replicate the bug flags */
1414                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1415                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1416         }
1417
1418         /* Init Machine Check Exception if available. */
1419         mcheck_cpu_init(c);
1420
1421         select_idle_routine(c);
1422
1423 #ifdef CONFIG_NUMA
1424         numa_add_cpu(smp_processor_id());
1425 #endif
1426 }
1427
1428 /*
1429  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1430  * on 32-bit kernels:
1431  */
1432 #ifdef CONFIG_X86_32
1433 void enable_sep_cpu(void)
1434 {
1435         struct tss_struct *tss;
1436         int cpu;
1437
1438         if (!boot_cpu_has(X86_FEATURE_SEP))
1439                 return;
1440
1441         cpu = get_cpu();
1442         tss = &per_cpu(cpu_tss_rw, cpu);
1443
1444         /*
1445          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1446          * see the big comment in struct x86_hw_tss's definition.
1447          */
1448
1449         tss->x86_tss.ss1 = __KERNEL_CS;
1450         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1451         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1452         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1453
1454         put_cpu();
1455 }
1456 #endif
1457
1458 void __init identify_boot_cpu(void)
1459 {
1460         identify_cpu(&boot_cpu_data);
1461 #ifdef CONFIG_X86_32
1462         sysenter_setup();
1463         enable_sep_cpu();
1464 #endif
1465         cpu_detect_tlb(&boot_cpu_data);
1466 }
1467
1468 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1469 {
1470         BUG_ON(c == &boot_cpu_data);
1471         identify_cpu(c);
1472 #ifdef CONFIG_X86_32
1473         enable_sep_cpu();
1474 #endif
1475         mtrr_ap_init();
1476         validate_apic_and_package_id(c);
1477         x86_spec_ctrl_setup_ap();
1478 }
1479
1480 static __init int setup_noclflush(char *arg)
1481 {
1482         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1483         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1484         return 1;
1485 }
1486 __setup("noclflush", setup_noclflush);
1487
1488 void print_cpu_info(struct cpuinfo_x86 *c)
1489 {
1490         const char *vendor = NULL;
1491
1492         if (c->x86_vendor < X86_VENDOR_NUM) {
1493                 vendor = this_cpu->c_vendor;
1494         } else {
1495                 if (c->cpuid_level >= 0)
1496                         vendor = c->x86_vendor_id;
1497         }
1498
1499         if (vendor && !strstr(c->x86_model_id, vendor))
1500                 pr_cont("%s ", vendor);
1501
1502         if (c->x86_model_id[0])
1503                 pr_cont("%s", c->x86_model_id);
1504         else
1505                 pr_cont("%d86", c->x86);
1506
1507         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1508
1509         if (c->x86_stepping || c->cpuid_level >= 0)
1510                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1511         else
1512                 pr_cont(")\n");
1513 }
1514
1515 /*
1516  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1517  * But we need to keep a dummy __setup around otherwise it would
1518  * show up as an environment variable for init.
1519  */
1520 static __init int setup_clearcpuid(char *arg)
1521 {
1522         return 1;
1523 }
1524 __setup("clearcpuid=", setup_clearcpuid);
1525
1526 #ifdef CONFIG_X86_64
1527 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1528                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1529 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1530
1531 /*
1532  * The following percpu variables are hot.  Align current_task to
1533  * cacheline size such that they fall in the same cacheline.
1534  */
1535 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1536         &init_task;
1537 EXPORT_PER_CPU_SYMBOL(current_task);
1538
1539 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1540 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1541
1542 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1543 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1544
1545 /* May not be marked __init: used by software suspend */
1546 void syscall_init(void)
1547 {
1548         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1549         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1550
1551 #ifdef CONFIG_IA32_EMULATION
1552         wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1553         /*
1554          * This only works on Intel CPUs.
1555          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1556          * This does not cause SYSENTER to jump to the wrong location, because
1557          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1558          */
1559         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1560         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1561                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1562         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1563 #else
1564         wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1565         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1566         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1567         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1568 #endif
1569
1570         /* Flags to clear on syscall */
1571         wrmsrl(MSR_SYSCALL_MASK,
1572                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1573                X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1574 }
1575
1576 DEFINE_PER_CPU(int, debug_stack_usage);
1577 DEFINE_PER_CPU(u32, debug_idt_ctr);
1578
1579 void debug_stack_set_zero(void)
1580 {
1581         this_cpu_inc(debug_idt_ctr);
1582         load_current_idt();
1583 }
1584 NOKPROBE_SYMBOL(debug_stack_set_zero);
1585
1586 void debug_stack_reset(void)
1587 {
1588         if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1589                 return;
1590         if (this_cpu_dec_return(debug_idt_ctr) == 0)
1591                 load_current_idt();
1592 }
1593 NOKPROBE_SYMBOL(debug_stack_reset);
1594
1595 #else   /* CONFIG_X86_64 */
1596
1597 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1598 EXPORT_PER_CPU_SYMBOL(current_task);
1599 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1600 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1601
1602 /*
1603  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1604  * the top of the kernel stack.  Use an extra percpu variable to track the
1605  * top of the kernel stack directly.
1606  */
1607 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1608         (unsigned long)&init_thread_union + THREAD_SIZE;
1609 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1610
1611 #ifdef CONFIG_STACKPROTECTOR
1612 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1613 #endif
1614
1615 #endif  /* CONFIG_X86_64 */
1616
1617 /*
1618  * Clear all 6 debug registers:
1619  */
1620 static void clear_all_debug_regs(void)
1621 {
1622         int i;
1623
1624         for (i = 0; i < 8; i++) {
1625                 /* Ignore db4, db5 */
1626                 if ((i == 4) || (i == 5))
1627                         continue;
1628
1629                 set_debugreg(0, i);
1630         }
1631 }
1632
1633 #ifdef CONFIG_KGDB
1634 /*
1635  * Restore debug regs if using kgdbwait and you have a kernel debugger
1636  * connection established.
1637  */
1638 static void dbg_restore_debug_regs(void)
1639 {
1640         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1641                 arch_kgdb_ops.correct_hw_break();
1642 }
1643 #else /* ! CONFIG_KGDB */
1644 #define dbg_restore_debug_regs()
1645 #endif /* ! CONFIG_KGDB */
1646
1647 static void wait_for_master_cpu(int cpu)
1648 {
1649 #ifdef CONFIG_SMP
1650         /*
1651          * wait for ACK from master CPU before continuing
1652          * with AP initialization
1653          */
1654         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1655         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1656                 cpu_relax();
1657 #endif
1658 }
1659
1660 #ifdef CONFIG_X86_64
1661 static void setup_getcpu(int cpu)
1662 {
1663         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1664         struct desc_struct d = { };
1665
1666         if (boot_cpu_has(X86_FEATURE_RDTSCP))
1667                 write_rdtscp_aux(cpudata);
1668
1669         /* Store CPU and node number in limit. */
1670         d.limit0 = cpudata;
1671         d.limit1 = cpudata >> 16;
1672
1673         d.type = 5;             /* RO data, expand down, accessed */
1674         d.dpl = 3;              /* Visible to user code */
1675         d.s = 1;                /* Not a system segment */
1676         d.p = 1;                /* Present */
1677         d.d = 1;                /* 32-bit */
1678
1679         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1680 }
1681 #endif
1682
1683 /*
1684  * cpu_init() initializes state that is per-CPU. Some data is already
1685  * initialized (naturally) in the bootstrap process, such as the GDT
1686  * and IDT. We reload them nevertheless, this function acts as a
1687  * 'CPU state barrier', nothing should get across.
1688  */
1689 #ifdef CONFIG_X86_64
1690
1691 void cpu_init(void)
1692 {
1693         int cpu = raw_smp_processor_id();
1694         struct task_struct *me;
1695         struct tss_struct *t;
1696         int i;
1697
1698         wait_for_master_cpu(cpu);
1699
1700         /*
1701          * Initialize the CR4 shadow before doing anything that could
1702          * try to read it.
1703          */
1704         cr4_init_shadow();
1705
1706         if (cpu)
1707                 load_ucode_ap();
1708
1709         t = &per_cpu(cpu_tss_rw, cpu);
1710
1711 #ifdef CONFIG_NUMA
1712         if (this_cpu_read(numa_node) == 0 &&
1713             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1714                 set_numa_node(early_cpu_to_node(cpu));
1715 #endif
1716         setup_getcpu(cpu);
1717
1718         me = current;
1719
1720         pr_debug("Initializing CPU#%d\n", cpu);
1721
1722         cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1723
1724         /*
1725          * Initialize the per-CPU GDT with the boot GDT,
1726          * and set up the GDT descriptor:
1727          */
1728
1729         switch_to_new_gdt(cpu);
1730         loadsegment(fs, 0);
1731
1732         load_current_idt();
1733
1734         memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1735         syscall_init();
1736
1737         wrmsrl(MSR_FS_BASE, 0);
1738         wrmsrl(MSR_KERNEL_GS_BASE, 0);
1739         barrier();
1740
1741         x86_configure_nx();
1742         x2apic_setup();
1743
1744         /*
1745          * set up and load the per-CPU TSS
1746          */
1747         if (!t->x86_tss.ist[0]) {
1748                 t->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1749                 t->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1750                 t->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1751                 t->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1752         }
1753
1754         t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1755
1756         /*
1757          * <= is required because the CPU will access up to
1758          * 8 bits beyond the end of the IO permission bitmap.
1759          */
1760         for (i = 0; i <= IO_BITMAP_LONGS; i++)
1761                 t->io_bitmap[i] = ~0UL;
1762
1763         mmgrab(&init_mm);
1764         me->active_mm = &init_mm;
1765         BUG_ON(me->mm);
1766         initialize_tlbstate_and_flush();
1767         enter_lazy_tlb(&init_mm, me);
1768
1769         /*
1770          * Initialize the TSS.  sp0 points to the entry trampoline stack
1771          * regardless of what task is running.
1772          */
1773         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1774         load_TR_desc();
1775         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1776
1777         load_mm_ldt(&init_mm);
1778
1779         clear_all_debug_regs();
1780         dbg_restore_debug_regs();
1781
1782         fpu__init_cpu();
1783
1784         if (is_uv_system())
1785                 uv_cpu_init();
1786
1787         load_fixmap_gdt(cpu);
1788 }
1789
1790 #else
1791
1792 void cpu_init(void)
1793 {
1794         int cpu = smp_processor_id();
1795         struct task_struct *curr = current;
1796         struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1797
1798         wait_for_master_cpu(cpu);
1799
1800         /*
1801          * Initialize the CR4 shadow before doing anything that could
1802          * try to read it.
1803          */
1804         cr4_init_shadow();
1805
1806         show_ucode_info_early();
1807
1808         pr_info("Initializing CPU#%d\n", cpu);
1809
1810         if (cpu_feature_enabled(X86_FEATURE_VME) ||
1811             boot_cpu_has(X86_FEATURE_TSC) ||
1812             boot_cpu_has(X86_FEATURE_DE))
1813                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1814
1815         load_current_idt();
1816         switch_to_new_gdt(cpu);
1817
1818         /*
1819          * Set up and load the per-CPU TSS and LDT
1820          */
1821         mmgrab(&init_mm);
1822         curr->active_mm = &init_mm;
1823         BUG_ON(curr->mm);
1824         initialize_tlbstate_and_flush();
1825         enter_lazy_tlb(&init_mm, curr);
1826
1827         /*
1828          * Initialize the TSS.  sp0 points to the entry trampoline stack
1829          * regardless of what task is running.
1830          */
1831         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1832         load_TR_desc();
1833         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1834
1835         load_mm_ldt(&init_mm);
1836
1837         t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1838
1839 #ifdef CONFIG_DOUBLEFAULT
1840         /* Set up doublefault TSS pointer in the GDT */
1841         __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1842 #endif
1843
1844         clear_all_debug_regs();
1845         dbg_restore_debug_regs();
1846
1847         fpu__init_cpu();
1848
1849         load_fixmap_gdt(cpu);
1850 }
1851 #endif
1852
1853 /*
1854  * The microcode loader calls this upon late microcode load to recheck features,
1855  * only when microcode has been updated. Caller holds microcode_mutex and CPU
1856  * hotplug lock.
1857  */
1858 void microcode_check(void)
1859 {
1860         struct cpuinfo_x86 info;
1861
1862         perf_check_microcode();
1863
1864         /* Reload CPUID max function as it might've changed. */
1865         info.cpuid_level = cpuid_eax(0);
1866
1867         /*
1868          * Copy all capability leafs to pick up the synthetic ones so that
1869          * memcmp() below doesn't fail on that. The ones coming from CPUID will
1870          * get overwritten in get_cpu_cap().
1871          */
1872         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1873
1874         get_cpu_cap(&info);
1875
1876         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1877                 return;
1878
1879         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1880         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1881 }