net: cdns,macb: use correct xlnx prefix for Xilinx
[linux-2.6-microblaze.git] / arch / x86 / events / intel / lbr.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/perf_event.h>
3 #include <linux/types.h>
4
5 #include <asm/perf_event.h>
6 #include <asm/msr.h>
7 #include <asm/insn.h>
8
9 #include "../perf_event.h"
10
11 /*
12  * Intel LBR_SELECT bits
13  * Intel Vol3a, April 2011, Section 16.7 Table 16-10
14  *
15  * Hardware branch filter (not available on all CPUs)
16  */
17 #define LBR_KERNEL_BIT          0 /* do not capture at ring0 */
18 #define LBR_USER_BIT            1 /* do not capture at ring > 0 */
19 #define LBR_JCC_BIT             2 /* do not capture conditional branches */
20 #define LBR_REL_CALL_BIT        3 /* do not capture relative calls */
21 #define LBR_IND_CALL_BIT        4 /* do not capture indirect calls */
22 #define LBR_RETURN_BIT          5 /* do not capture near returns */
23 #define LBR_IND_JMP_BIT         6 /* do not capture indirect jumps */
24 #define LBR_REL_JMP_BIT         7 /* do not capture relative jumps */
25 #define LBR_FAR_BIT             8 /* do not capture far branches */
26 #define LBR_CALL_STACK_BIT      9 /* enable call stack */
27
28 /*
29  * Following bit only exists in Linux; we mask it out before writing it to
30  * the actual MSR. But it helps the constraint perf code to understand
31  * that this is a separate configuration.
32  */
33 #define LBR_NO_INFO_BIT        63 /* don't read LBR_INFO. */
34
35 #define LBR_KERNEL      (1 << LBR_KERNEL_BIT)
36 #define LBR_USER        (1 << LBR_USER_BIT)
37 #define LBR_JCC         (1 << LBR_JCC_BIT)
38 #define LBR_REL_CALL    (1 << LBR_REL_CALL_BIT)
39 #define LBR_IND_CALL    (1 << LBR_IND_CALL_BIT)
40 #define LBR_RETURN      (1 << LBR_RETURN_BIT)
41 #define LBR_REL_JMP     (1 << LBR_REL_JMP_BIT)
42 #define LBR_IND_JMP     (1 << LBR_IND_JMP_BIT)
43 #define LBR_FAR         (1 << LBR_FAR_BIT)
44 #define LBR_CALL_STACK  (1 << LBR_CALL_STACK_BIT)
45 #define LBR_NO_INFO     (1ULL << LBR_NO_INFO_BIT)
46
47 #define LBR_PLM (LBR_KERNEL | LBR_USER)
48
49 #define LBR_SEL_MASK    0x3ff   /* valid bits in LBR_SELECT */
50 #define LBR_NOT_SUPP    -1      /* LBR filter not supported */
51 #define LBR_IGN         0       /* ignored */
52
53 #define LBR_ANY          \
54         (LBR_JCC        |\
55          LBR_REL_CALL   |\
56          LBR_IND_CALL   |\
57          LBR_RETURN     |\
58          LBR_REL_JMP    |\
59          LBR_IND_JMP    |\
60          LBR_FAR)
61
62 #define LBR_FROM_FLAG_MISPRED   BIT_ULL(63)
63 #define LBR_FROM_FLAG_IN_TX     BIT_ULL(62)
64 #define LBR_FROM_FLAG_ABORT     BIT_ULL(61)
65
66 #define LBR_FROM_SIGNEXT_2MSB   (BIT_ULL(60) | BIT_ULL(59))
67
68 /*
69  * x86control flow change classification
70  * x86control flow changes include branches, interrupts, traps, faults
71  */
72 enum {
73         X86_BR_NONE             = 0,      /* unknown */
74
75         X86_BR_USER             = 1 << 0, /* branch target is user */
76         X86_BR_KERNEL           = 1 << 1, /* branch target is kernel */
77
78         X86_BR_CALL             = 1 << 2, /* call */
79         X86_BR_RET              = 1 << 3, /* return */
80         X86_BR_SYSCALL          = 1 << 4, /* syscall */
81         X86_BR_SYSRET           = 1 << 5, /* syscall return */
82         X86_BR_INT              = 1 << 6, /* sw interrupt */
83         X86_BR_IRET             = 1 << 7, /* return from interrupt */
84         X86_BR_JCC              = 1 << 8, /* conditional */
85         X86_BR_JMP              = 1 << 9, /* jump */
86         X86_BR_IRQ              = 1 << 10,/* hw interrupt or trap or fault */
87         X86_BR_IND_CALL         = 1 << 11,/* indirect calls */
88         X86_BR_ABORT            = 1 << 12,/* transaction abort */
89         X86_BR_IN_TX            = 1 << 13,/* in transaction */
90         X86_BR_NO_TX            = 1 << 14,/* not in transaction */
91         X86_BR_ZERO_CALL        = 1 << 15,/* zero length call */
92         X86_BR_CALL_STACK       = 1 << 16,/* call stack */
93         X86_BR_IND_JMP          = 1 << 17,/* indirect jump */
94
95         X86_BR_TYPE_SAVE        = 1 << 18,/* indicate to save branch type */
96
97 };
98
99 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
100 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
101
102 #define X86_BR_ANY       \
103         (X86_BR_CALL    |\
104          X86_BR_RET     |\
105          X86_BR_SYSCALL |\
106          X86_BR_SYSRET  |\
107          X86_BR_INT     |\
108          X86_BR_IRET    |\
109          X86_BR_JCC     |\
110          X86_BR_JMP      |\
111          X86_BR_IRQ      |\
112          X86_BR_ABORT    |\
113          X86_BR_IND_CALL |\
114          X86_BR_IND_JMP  |\
115          X86_BR_ZERO_CALL)
116
117 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
118
119 #define X86_BR_ANY_CALL          \
120         (X86_BR_CALL            |\
121          X86_BR_IND_CALL        |\
122          X86_BR_ZERO_CALL       |\
123          X86_BR_SYSCALL         |\
124          X86_BR_IRQ             |\
125          X86_BR_INT)
126
127 /*
128  * Intel LBR_CTL bits
129  *
130  * Hardware branch filter for Arch LBR
131  */
132 #define ARCH_LBR_KERNEL_BIT             1  /* capture at ring0 */
133 #define ARCH_LBR_USER_BIT               2  /* capture at ring > 0 */
134 #define ARCH_LBR_CALL_STACK_BIT         3  /* enable call stack */
135 #define ARCH_LBR_JCC_BIT                16 /* capture conditional branches */
136 #define ARCH_LBR_REL_JMP_BIT            17 /* capture relative jumps */
137 #define ARCH_LBR_IND_JMP_BIT            18 /* capture indirect jumps */
138 #define ARCH_LBR_REL_CALL_BIT           19 /* capture relative calls */
139 #define ARCH_LBR_IND_CALL_BIT           20 /* capture indirect calls */
140 #define ARCH_LBR_RETURN_BIT             21 /* capture near returns */
141 #define ARCH_LBR_OTHER_BRANCH_BIT       22 /* capture other branches */
142
143 #define ARCH_LBR_KERNEL                 (1ULL << ARCH_LBR_KERNEL_BIT)
144 #define ARCH_LBR_USER                   (1ULL << ARCH_LBR_USER_BIT)
145 #define ARCH_LBR_CALL_STACK             (1ULL << ARCH_LBR_CALL_STACK_BIT)
146 #define ARCH_LBR_JCC                    (1ULL << ARCH_LBR_JCC_BIT)
147 #define ARCH_LBR_REL_JMP                (1ULL << ARCH_LBR_REL_JMP_BIT)
148 #define ARCH_LBR_IND_JMP                (1ULL << ARCH_LBR_IND_JMP_BIT)
149 #define ARCH_LBR_REL_CALL               (1ULL << ARCH_LBR_REL_CALL_BIT)
150 #define ARCH_LBR_IND_CALL               (1ULL << ARCH_LBR_IND_CALL_BIT)
151 #define ARCH_LBR_RETURN                 (1ULL << ARCH_LBR_RETURN_BIT)
152 #define ARCH_LBR_OTHER_BRANCH           (1ULL << ARCH_LBR_OTHER_BRANCH_BIT)
153
154 #define ARCH_LBR_ANY                     \
155         (ARCH_LBR_JCC                   |\
156          ARCH_LBR_REL_JMP               |\
157          ARCH_LBR_IND_JMP               |\
158          ARCH_LBR_REL_CALL              |\
159          ARCH_LBR_IND_CALL              |\
160          ARCH_LBR_RETURN                |\
161          ARCH_LBR_OTHER_BRANCH)
162
163 #define ARCH_LBR_CTL_MASK                       0x7f000e
164
165 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
166
167 static __always_inline bool is_lbr_call_stack_bit_set(u64 config)
168 {
169         if (static_cpu_has(X86_FEATURE_ARCH_LBR))
170                 return !!(config & ARCH_LBR_CALL_STACK);
171
172         return !!(config & LBR_CALL_STACK);
173 }
174
175 /*
176  * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
177  * otherwise it becomes near impossible to get a reliable stack.
178  */
179
180 static void __intel_pmu_lbr_enable(bool pmi)
181 {
182         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
183         u64 debugctl, lbr_select = 0, orig_debugctl;
184
185         /*
186          * No need to unfreeze manually, as v4 can do that as part
187          * of the GLOBAL_STATUS ack.
188          */
189         if (pmi && x86_pmu.version >= 4)
190                 return;
191
192         /*
193          * No need to reprogram LBR_SELECT in a PMI, as it
194          * did not change.
195          */
196         if (cpuc->lbr_sel)
197                 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
198         if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && !pmi && cpuc->lbr_sel)
199                 wrmsrl(MSR_LBR_SELECT, lbr_select);
200
201         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
202         orig_debugctl = debugctl;
203
204         if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
205                 debugctl |= DEBUGCTLMSR_LBR;
206         /*
207          * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
208          * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
209          * may cause superfluous increase/decrease of LBR_TOS.
210          */
211         if (is_lbr_call_stack_bit_set(lbr_select))
212                 debugctl &= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
213         else
214                 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
215
216         if (orig_debugctl != debugctl)
217                 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
218
219         if (static_cpu_has(X86_FEATURE_ARCH_LBR))
220                 wrmsrl(MSR_ARCH_LBR_CTL, lbr_select | ARCH_LBR_CTL_LBREN);
221 }
222
223 void intel_pmu_lbr_reset_32(void)
224 {
225         int i;
226
227         for (i = 0; i < x86_pmu.lbr_nr; i++)
228                 wrmsrl(x86_pmu.lbr_from + i, 0);
229 }
230
231 void intel_pmu_lbr_reset_64(void)
232 {
233         int i;
234
235         for (i = 0; i < x86_pmu.lbr_nr; i++) {
236                 wrmsrl(x86_pmu.lbr_from + i, 0);
237                 wrmsrl(x86_pmu.lbr_to   + i, 0);
238                 if (x86_pmu.lbr_has_info)
239                         wrmsrl(x86_pmu.lbr_info + i, 0);
240         }
241 }
242
243 static void intel_pmu_arch_lbr_reset(void)
244 {
245         /* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */
246         wrmsrl(MSR_ARCH_LBR_DEPTH, x86_pmu.lbr_nr);
247 }
248
249 void intel_pmu_lbr_reset(void)
250 {
251         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
252
253         if (!x86_pmu.lbr_nr)
254                 return;
255
256         x86_pmu.lbr_reset();
257
258         cpuc->last_task_ctx = NULL;
259         cpuc->last_log_id = 0;
260         if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && cpuc->lbr_select)
261                 wrmsrl(MSR_LBR_SELECT, 0);
262 }
263
264 /*
265  * TOS = most recently recorded branch
266  */
267 static inline u64 intel_pmu_lbr_tos(void)
268 {
269         u64 tos;
270
271         rdmsrl(x86_pmu.lbr_tos, tos);
272         return tos;
273 }
274
275 enum {
276         LBR_NONE,
277         LBR_VALID,
278 };
279
280 /*
281  * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
282  * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
283  * TSX is not supported they have no consistent behavior:
284  *
285  *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
286  *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
287  *     part of the sign extension.
288  *
289  * Therefore, if:
290  *
291  *   1) LBR has TSX format
292  *   2) CPU has no TSX support enabled
293  *
294  * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
295  * value from rdmsr() must be converted to have a 61 bits sign extension,
296  * ignoring the TSX flags.
297  */
298 static inline bool lbr_from_signext_quirk_needed(void)
299 {
300         bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
301                            boot_cpu_has(X86_FEATURE_RTM);
302
303         return !tsx_support && x86_pmu.lbr_has_tsx;
304 }
305
306 static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
307
308 /* If quirk is enabled, ensure sign extension is 63 bits: */
309 inline u64 lbr_from_signext_quirk_wr(u64 val)
310 {
311         if (static_branch_unlikely(&lbr_from_quirk_key)) {
312                 /*
313                  * Sign extend into bits 61:62 while preserving bit 63.
314                  *
315                  * Quirk is enabled when TSX is disabled. Therefore TSX bits
316                  * in val are always OFF and must be changed to be sign
317                  * extension bits. Since bits 59:60 are guaranteed to be
318                  * part of the sign extension bits, we can just copy them
319                  * to 61:62.
320                  */
321                 val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
322         }
323         return val;
324 }
325
326 /*
327  * If quirk is needed, ensure sign extension is 61 bits:
328  */
329 static u64 lbr_from_signext_quirk_rd(u64 val)
330 {
331         if (static_branch_unlikely(&lbr_from_quirk_key)) {
332                 /*
333                  * Quirk is on when TSX is not enabled. Therefore TSX
334                  * flags must be read as OFF.
335                  */
336                 val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
337         }
338         return val;
339 }
340
341 static __always_inline void wrlbr_from(unsigned int idx, u64 val)
342 {
343         val = lbr_from_signext_quirk_wr(val);
344         wrmsrl(x86_pmu.lbr_from + idx, val);
345 }
346
347 static __always_inline void wrlbr_to(unsigned int idx, u64 val)
348 {
349         wrmsrl(x86_pmu.lbr_to + idx, val);
350 }
351
352 static __always_inline void wrlbr_info(unsigned int idx, u64 val)
353 {
354         wrmsrl(x86_pmu.lbr_info + idx, val);
355 }
356
357 static __always_inline u64 rdlbr_from(unsigned int idx, struct lbr_entry *lbr)
358 {
359         u64 val;
360
361         if (lbr)
362                 return lbr->from;
363
364         rdmsrl(x86_pmu.lbr_from + idx, val);
365
366         return lbr_from_signext_quirk_rd(val);
367 }
368
369 static __always_inline u64 rdlbr_to(unsigned int idx, struct lbr_entry *lbr)
370 {
371         u64 val;
372
373         if (lbr)
374                 return lbr->to;
375
376         rdmsrl(x86_pmu.lbr_to + idx, val);
377
378         return val;
379 }
380
381 static __always_inline u64 rdlbr_info(unsigned int idx, struct lbr_entry *lbr)
382 {
383         u64 val;
384
385         if (lbr)
386                 return lbr->info;
387
388         rdmsrl(x86_pmu.lbr_info + idx, val);
389
390         return val;
391 }
392
393 static inline void
394 wrlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
395 {
396         wrlbr_from(idx, lbr->from);
397         wrlbr_to(idx, lbr->to);
398         if (need_info)
399                 wrlbr_info(idx, lbr->info);
400 }
401
402 static inline bool
403 rdlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
404 {
405         u64 from = rdlbr_from(idx, NULL);
406
407         /* Don't read invalid entry */
408         if (!from)
409                 return false;
410
411         lbr->from = from;
412         lbr->to = rdlbr_to(idx, NULL);
413         if (need_info)
414                 lbr->info = rdlbr_info(idx, NULL);
415
416         return true;
417 }
418
419 void intel_pmu_lbr_restore(void *ctx)
420 {
421         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
422         struct x86_perf_task_context *task_ctx = ctx;
423         bool need_info = x86_pmu.lbr_has_info;
424         u64 tos = task_ctx->tos;
425         unsigned lbr_idx, mask;
426         int i;
427
428         mask = x86_pmu.lbr_nr - 1;
429         for (i = 0; i < task_ctx->valid_lbrs; i++) {
430                 lbr_idx = (tos - i) & mask;
431                 wrlbr_all(&task_ctx->lbr[i], lbr_idx, need_info);
432         }
433
434         for (; i < x86_pmu.lbr_nr; i++) {
435                 lbr_idx = (tos - i) & mask;
436                 wrlbr_from(lbr_idx, 0);
437                 wrlbr_to(lbr_idx, 0);
438                 if (need_info)
439                         wrlbr_info(lbr_idx, 0);
440         }
441
442         wrmsrl(x86_pmu.lbr_tos, tos);
443
444         if (cpuc->lbr_select)
445                 wrmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
446 }
447
448 static void intel_pmu_arch_lbr_restore(void *ctx)
449 {
450         struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
451         struct lbr_entry *entries = task_ctx->entries;
452         int i;
453
454         /* Fast reset the LBRs before restore if the call stack is not full. */
455         if (!entries[x86_pmu.lbr_nr - 1].from)
456                 intel_pmu_arch_lbr_reset();
457
458         for (i = 0; i < x86_pmu.lbr_nr; i++) {
459                 if (!entries[i].from)
460                         break;
461                 wrlbr_all(&entries[i], i, true);
462         }
463 }
464
465 /*
466  * Restore the Architecture LBR state from the xsave area in the perf
467  * context data for the task via the XRSTORS instruction.
468  */
469 static void intel_pmu_arch_lbr_xrstors(void *ctx)
470 {
471         struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
472
473         xrstors(&task_ctx->xsave, XFEATURE_MASK_LBR);
474 }
475
476 static __always_inline bool lbr_is_reset_in_cstate(void *ctx)
477 {
478         if (static_cpu_has(X86_FEATURE_ARCH_LBR))
479                 return x86_pmu.lbr_deep_c_reset && !rdlbr_from(0, NULL);
480
481         return !rdlbr_from(((struct x86_perf_task_context *)ctx)->tos, NULL);
482 }
483
484 static void __intel_pmu_lbr_restore(void *ctx)
485 {
486         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
487
488         if (task_context_opt(ctx)->lbr_callstack_users == 0 ||
489             task_context_opt(ctx)->lbr_stack_state == LBR_NONE) {
490                 intel_pmu_lbr_reset();
491                 return;
492         }
493
494         /*
495          * Does not restore the LBR registers, if
496          * - No one else touched them, and
497          * - Was not cleared in Cstate
498          */
499         if ((ctx == cpuc->last_task_ctx) &&
500             (task_context_opt(ctx)->log_id == cpuc->last_log_id) &&
501             !lbr_is_reset_in_cstate(ctx)) {
502                 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
503                 return;
504         }
505
506         x86_pmu.lbr_restore(ctx);
507
508         task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
509 }
510
511 void intel_pmu_lbr_save(void *ctx)
512 {
513         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
514         struct x86_perf_task_context *task_ctx = ctx;
515         bool need_info = x86_pmu.lbr_has_info;
516         unsigned lbr_idx, mask;
517         u64 tos;
518         int i;
519
520         mask = x86_pmu.lbr_nr - 1;
521         tos = intel_pmu_lbr_tos();
522         for (i = 0; i < x86_pmu.lbr_nr; i++) {
523                 lbr_idx = (tos - i) & mask;
524                 if (!rdlbr_all(&task_ctx->lbr[i], lbr_idx, need_info))
525                         break;
526         }
527         task_ctx->valid_lbrs = i;
528         task_ctx->tos = tos;
529
530         if (cpuc->lbr_select)
531                 rdmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
532 }
533
534 static void intel_pmu_arch_lbr_save(void *ctx)
535 {
536         struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
537         struct lbr_entry *entries = task_ctx->entries;
538         int i;
539
540         for (i = 0; i < x86_pmu.lbr_nr; i++) {
541                 if (!rdlbr_all(&entries[i], i, true))
542                         break;
543         }
544
545         /* LBR call stack is not full. Reset is required in restore. */
546         if (i < x86_pmu.lbr_nr)
547                 entries[x86_pmu.lbr_nr - 1].from = 0;
548 }
549
550 /*
551  * Save the Architecture LBR state to the xsave area in the perf
552  * context data for the task via the XSAVES instruction.
553  */
554 static void intel_pmu_arch_lbr_xsaves(void *ctx)
555 {
556         struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
557
558         xsaves(&task_ctx->xsave, XFEATURE_MASK_LBR);
559 }
560
561 static void __intel_pmu_lbr_save(void *ctx)
562 {
563         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
564
565         if (task_context_opt(ctx)->lbr_callstack_users == 0) {
566                 task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
567                 return;
568         }
569
570         x86_pmu.lbr_save(ctx);
571
572         task_context_opt(ctx)->lbr_stack_state = LBR_VALID;
573
574         cpuc->last_task_ctx = ctx;
575         cpuc->last_log_id = ++task_context_opt(ctx)->log_id;
576 }
577
578 void intel_pmu_lbr_swap_task_ctx(struct perf_event_context *prev,
579                                  struct perf_event_context *next)
580 {
581         void *prev_ctx_data, *next_ctx_data;
582
583         swap(prev->task_ctx_data, next->task_ctx_data);
584
585         /*
586          * Architecture specific synchronization makes sense in
587          * case both prev->task_ctx_data and next->task_ctx_data
588          * pointers are allocated.
589          */
590
591         prev_ctx_data = next->task_ctx_data;
592         next_ctx_data = prev->task_ctx_data;
593
594         if (!prev_ctx_data || !next_ctx_data)
595                 return;
596
597         swap(task_context_opt(prev_ctx_data)->lbr_callstack_users,
598              task_context_opt(next_ctx_data)->lbr_callstack_users);
599 }
600
601 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
602 {
603         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
604         void *task_ctx;
605
606         if (!cpuc->lbr_users)
607                 return;
608
609         /*
610          * If LBR callstack feature is enabled and the stack was saved when
611          * the task was scheduled out, restore the stack. Otherwise flush
612          * the LBR stack.
613          */
614         task_ctx = ctx ? ctx->task_ctx_data : NULL;
615         if (task_ctx) {
616                 if (sched_in)
617                         __intel_pmu_lbr_restore(task_ctx);
618                 else
619                         __intel_pmu_lbr_save(task_ctx);
620                 return;
621         }
622
623         /*
624          * Since a context switch can flip the address space and LBR entries
625          * are not tagged with an identifier, we need to wipe the LBR, even for
626          * per-cpu events. You simply cannot resolve the branches from the old
627          * address space.
628          */
629         if (sched_in)
630                 intel_pmu_lbr_reset();
631 }
632
633 static inline bool branch_user_callstack(unsigned br_sel)
634 {
635         return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
636 }
637
638 void intel_pmu_lbr_add(struct perf_event *event)
639 {
640         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
641
642         if (!x86_pmu.lbr_nr)
643                 return;
644
645         if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
646                 cpuc->lbr_select = 1;
647
648         cpuc->br_sel = event->hw.branch_reg.reg;
649
650         if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data)
651                 task_context_opt(event->ctx->task_ctx_data)->lbr_callstack_users++;
652
653         /*
654          * Request pmu::sched_task() callback, which will fire inside the
655          * regular perf event scheduling, so that call will:
656          *
657          *  - restore or wipe; when LBR-callstack,
658          *  - wipe; otherwise,
659          *
660          * when this is from __perf_event_task_sched_in().
661          *
662          * However, if this is from perf_install_in_context(), no such callback
663          * will follow and we'll need to reset the LBR here if this is the
664          * first LBR event.
665          *
666          * The problem is, we cannot tell these cases apart... but we can
667          * exclude the biggest chunk of cases by looking at
668          * event->total_time_running. An event that has accrued runtime cannot
669          * be 'new'. Conversely, a new event can get installed through the
670          * context switch path for the first time.
671          */
672         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
673                 cpuc->lbr_pebs_users++;
674         perf_sched_cb_inc(event->ctx->pmu);
675         if (!cpuc->lbr_users++ && !event->total_time_running)
676                 intel_pmu_lbr_reset();
677 }
678
679 void release_lbr_buffers(void)
680 {
681         struct kmem_cache *kmem_cache;
682         struct cpu_hw_events *cpuc;
683         int cpu;
684
685         if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
686                 return;
687
688         for_each_possible_cpu(cpu) {
689                 cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
690                 kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
691                 if (kmem_cache && cpuc->lbr_xsave) {
692                         kmem_cache_free(kmem_cache, cpuc->lbr_xsave);
693                         cpuc->lbr_xsave = NULL;
694                 }
695         }
696 }
697
698 void reserve_lbr_buffers(void)
699 {
700         struct kmem_cache *kmem_cache;
701         struct cpu_hw_events *cpuc;
702         int cpu;
703
704         if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
705                 return;
706
707         for_each_possible_cpu(cpu) {
708                 cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
709                 kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
710                 if (!kmem_cache || cpuc->lbr_xsave)
711                         continue;
712
713                 cpuc->lbr_xsave = kmem_cache_alloc_node(kmem_cache,
714                                                         GFP_KERNEL | __GFP_ZERO,
715                                                         cpu_to_node(cpu));
716         }
717 }
718
719 void intel_pmu_lbr_del(struct perf_event *event)
720 {
721         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
722
723         if (!x86_pmu.lbr_nr)
724                 return;
725
726         if (branch_user_callstack(cpuc->br_sel) &&
727             event->ctx->task_ctx_data)
728                 task_context_opt(event->ctx->task_ctx_data)->lbr_callstack_users--;
729
730         if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
731                 cpuc->lbr_select = 0;
732
733         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
734                 cpuc->lbr_pebs_users--;
735         cpuc->lbr_users--;
736         WARN_ON_ONCE(cpuc->lbr_users < 0);
737         WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
738         perf_sched_cb_dec(event->ctx->pmu);
739 }
740
741 static inline bool vlbr_exclude_host(void)
742 {
743         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
744
745         return test_bit(INTEL_PMC_IDX_FIXED_VLBR,
746                 (unsigned long *)&cpuc->intel_ctrl_guest_mask);
747 }
748
749 void intel_pmu_lbr_enable_all(bool pmi)
750 {
751         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
752
753         if (cpuc->lbr_users && !vlbr_exclude_host())
754                 __intel_pmu_lbr_enable(pmi);
755 }
756
757 void intel_pmu_lbr_disable_all(void)
758 {
759         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
760
761         if (cpuc->lbr_users && !vlbr_exclude_host()) {
762                 if (static_cpu_has(X86_FEATURE_ARCH_LBR))
763                         return __intel_pmu_arch_lbr_disable();
764
765                 __intel_pmu_lbr_disable();
766         }
767 }
768
769 void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
770 {
771         unsigned long mask = x86_pmu.lbr_nr - 1;
772         struct perf_branch_entry *br = cpuc->lbr_entries;
773         u64 tos = intel_pmu_lbr_tos();
774         int i;
775
776         for (i = 0; i < x86_pmu.lbr_nr; i++) {
777                 unsigned long lbr_idx = (tos - i) & mask;
778                 union {
779                         struct {
780                                 u32 from;
781                                 u32 to;
782                         };
783                         u64     lbr;
784                 } msr_lastbranch;
785
786                 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
787
788                 perf_clear_branch_entry_bitfields(br);
789
790                 br->from        = msr_lastbranch.from;
791                 br->to          = msr_lastbranch.to;
792                 br++;
793         }
794         cpuc->lbr_stack.nr = i;
795         cpuc->lbr_stack.hw_idx = tos;
796 }
797
798 /*
799  * Due to lack of segmentation in Linux the effective address (offset)
800  * is the same as the linear address, allowing us to merge the LIP and EIP
801  * LBR formats.
802  */
803 void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
804 {
805         bool need_info = false, call_stack = false;
806         unsigned long mask = x86_pmu.lbr_nr - 1;
807         struct perf_branch_entry *br = cpuc->lbr_entries;
808         u64 tos = intel_pmu_lbr_tos();
809         int i;
810         int out = 0;
811         int num = x86_pmu.lbr_nr;
812
813         if (cpuc->lbr_sel) {
814                 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
815                 if (cpuc->lbr_sel->config & LBR_CALL_STACK)
816                         call_stack = true;
817         }
818
819         for (i = 0; i < num; i++) {
820                 unsigned long lbr_idx = (tos - i) & mask;
821                 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
822                 u16 cycles = 0;
823
824                 from = rdlbr_from(lbr_idx, NULL);
825                 to   = rdlbr_to(lbr_idx, NULL);
826
827                 /*
828                  * Read LBR call stack entries
829                  * until invalid entry (0s) is detected.
830                  */
831                 if (call_stack && !from)
832                         break;
833
834                 if (x86_pmu.lbr_has_info) {
835                         if (need_info) {
836                                 u64 info;
837
838                                 info = rdlbr_info(lbr_idx, NULL);
839                                 mis = !!(info & LBR_INFO_MISPRED);
840                                 pred = !mis;
841                                 cycles = (info & LBR_INFO_CYCLES);
842                                 if (x86_pmu.lbr_has_tsx) {
843                                         in_tx = !!(info & LBR_INFO_IN_TX);
844                                         abort = !!(info & LBR_INFO_ABORT);
845                                 }
846                         }
847                 } else {
848                         int skip = 0;
849
850                         if (x86_pmu.lbr_from_flags) {
851                                 mis = !!(from & LBR_FROM_FLAG_MISPRED);
852                                 pred = !mis;
853                                 skip = 1;
854                         }
855                         if (x86_pmu.lbr_has_tsx) {
856                                 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
857                                 abort = !!(from & LBR_FROM_FLAG_ABORT);
858                                 skip = 3;
859                         }
860                         from = (u64)((((s64)from) << skip) >> skip);
861
862                         if (x86_pmu.lbr_to_cycles) {
863                                 cycles = ((to >> 48) & LBR_INFO_CYCLES);
864                                 to = (u64)((((s64)to) << 16) >> 16);
865                         }
866                 }
867
868                 /*
869                  * Some CPUs report duplicated abort records,
870                  * with the second entry not having an abort bit set.
871                  * Skip them here. This loop runs backwards,
872                  * so we need to undo the previous record.
873                  * If the abort just happened outside the window
874                  * the extra entry cannot be removed.
875                  */
876                 if (abort && x86_pmu.lbr_double_abort && out > 0)
877                         out--;
878
879                 perf_clear_branch_entry_bitfields(br+out);
880                 br[out].from     = from;
881                 br[out].to       = to;
882                 br[out].mispred  = mis;
883                 br[out].predicted = pred;
884                 br[out].in_tx    = in_tx;
885                 br[out].abort    = abort;
886                 br[out].cycles   = cycles;
887                 out++;
888         }
889         cpuc->lbr_stack.nr = out;
890         cpuc->lbr_stack.hw_idx = tos;
891 }
892
893 static DEFINE_STATIC_KEY_FALSE(x86_lbr_mispred);
894 static DEFINE_STATIC_KEY_FALSE(x86_lbr_cycles);
895 static DEFINE_STATIC_KEY_FALSE(x86_lbr_type);
896
897 static __always_inline int get_lbr_br_type(u64 info)
898 {
899         int type = 0;
900
901         if (static_branch_likely(&x86_lbr_type))
902                 type = (info & LBR_INFO_BR_TYPE) >> LBR_INFO_BR_TYPE_OFFSET;
903
904         return type;
905 }
906
907 static __always_inline bool get_lbr_mispred(u64 info)
908 {
909         bool mispred = 0;
910
911         if (static_branch_likely(&x86_lbr_mispred))
912                 mispred = !!(info & LBR_INFO_MISPRED);
913
914         return mispred;
915 }
916
917 static __always_inline u16 get_lbr_cycles(u64 info)
918 {
919         u16 cycles = info & LBR_INFO_CYCLES;
920
921         if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
922             (!static_branch_likely(&x86_lbr_cycles) ||
923              !(info & LBR_INFO_CYC_CNT_VALID)))
924                 cycles = 0;
925
926         return cycles;
927 }
928
929 static void intel_pmu_store_lbr(struct cpu_hw_events *cpuc,
930                                 struct lbr_entry *entries)
931 {
932         struct perf_branch_entry *e;
933         struct lbr_entry *lbr;
934         u64 from, to, info;
935         int i;
936
937         for (i = 0; i < x86_pmu.lbr_nr; i++) {
938                 lbr = entries ? &entries[i] : NULL;
939                 e = &cpuc->lbr_entries[i];
940
941                 from = rdlbr_from(i, lbr);
942                 /*
943                  * Read LBR entries until invalid entry (0s) is detected.
944                  */
945                 if (!from)
946                         break;
947
948                 to = rdlbr_to(i, lbr);
949                 info = rdlbr_info(i, lbr);
950
951                 perf_clear_branch_entry_bitfields(e);
952
953                 e->from         = from;
954                 e->to           = to;
955                 e->mispred      = get_lbr_mispred(info);
956                 e->predicted    = !e->mispred;
957                 e->in_tx        = !!(info & LBR_INFO_IN_TX);
958                 e->abort        = !!(info & LBR_INFO_ABORT);
959                 e->cycles       = get_lbr_cycles(info);
960                 e->type         = get_lbr_br_type(info);
961         }
962
963         cpuc->lbr_stack.nr = i;
964 }
965
966 static void intel_pmu_arch_lbr_read(struct cpu_hw_events *cpuc)
967 {
968         intel_pmu_store_lbr(cpuc, NULL);
969 }
970
971 static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events *cpuc)
972 {
973         struct x86_perf_task_context_arch_lbr_xsave *xsave = cpuc->lbr_xsave;
974
975         if (!xsave) {
976                 intel_pmu_store_lbr(cpuc, NULL);
977                 return;
978         }
979         xsaves(&xsave->xsave, XFEATURE_MASK_LBR);
980
981         intel_pmu_store_lbr(cpuc, xsave->lbr.entries);
982 }
983
984 void intel_pmu_lbr_read(void)
985 {
986         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
987
988         /*
989          * Don't read when all LBRs users are using adaptive PEBS.
990          *
991          * This could be smarter and actually check the event,
992          * but this simple approach seems to work for now.
993          */
994         if (!cpuc->lbr_users || vlbr_exclude_host() ||
995             cpuc->lbr_users == cpuc->lbr_pebs_users)
996                 return;
997
998         x86_pmu.lbr_read(cpuc);
999
1000         intel_pmu_lbr_filter(cpuc);
1001 }
1002
1003 /*
1004  * SW filter is used:
1005  * - in case there is no HW filter
1006  * - in case the HW filter has errata or limitations
1007  */
1008 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
1009 {
1010         u64 br_type = event->attr.branch_sample_type;
1011         int mask = 0;
1012
1013         if (br_type & PERF_SAMPLE_BRANCH_USER)
1014                 mask |= X86_BR_USER;
1015
1016         if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
1017                 mask |= X86_BR_KERNEL;
1018
1019         /* we ignore BRANCH_HV here */
1020
1021         if (br_type & PERF_SAMPLE_BRANCH_ANY)
1022                 mask |= X86_BR_ANY;
1023
1024         if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
1025                 mask |= X86_BR_ANY_CALL;
1026
1027         if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
1028                 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
1029
1030         if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
1031                 mask |= X86_BR_IND_CALL;
1032
1033         if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
1034                 mask |= X86_BR_ABORT;
1035
1036         if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
1037                 mask |= X86_BR_IN_TX;
1038
1039         if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
1040                 mask |= X86_BR_NO_TX;
1041
1042         if (br_type & PERF_SAMPLE_BRANCH_COND)
1043                 mask |= X86_BR_JCC;
1044
1045         if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
1046                 if (!x86_pmu_has_lbr_callstack())
1047                         return -EOPNOTSUPP;
1048                 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
1049                         return -EINVAL;
1050                 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
1051                         X86_BR_CALL_STACK;
1052         }
1053
1054         if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
1055                 mask |= X86_BR_IND_JMP;
1056
1057         if (br_type & PERF_SAMPLE_BRANCH_CALL)
1058                 mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
1059
1060         if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
1061                 mask |= X86_BR_TYPE_SAVE;
1062
1063         /*
1064          * stash actual user request into reg, it may
1065          * be used by fixup code for some CPU
1066          */
1067         event->hw.branch_reg.reg = mask;
1068         return 0;
1069 }
1070
1071 /*
1072  * setup the HW LBR filter
1073  * Used only when available, may not be enough to disambiguate
1074  * all branches, may need the help of the SW filter
1075  */
1076 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
1077 {
1078         struct hw_perf_event_extra *reg;
1079         u64 br_type = event->attr.branch_sample_type;
1080         u64 mask = 0, v;
1081         int i;
1082
1083         for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
1084                 if (!(br_type & (1ULL << i)))
1085                         continue;
1086
1087                 v = x86_pmu.lbr_sel_map[i];
1088                 if (v == LBR_NOT_SUPP)
1089                         return -EOPNOTSUPP;
1090
1091                 if (v != LBR_IGN)
1092                         mask |= v;
1093         }
1094
1095         reg = &event->hw.branch_reg;
1096         reg->idx = EXTRA_REG_LBR;
1097
1098         if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
1099                 reg->config = mask;
1100                 return 0;
1101         }
1102
1103         /*
1104          * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
1105          * in suppress mode. So LBR_SELECT should be set to
1106          * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
1107          * But the 10th bit LBR_CALL_STACK does not operate
1108          * in suppress mode.
1109          */
1110         reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
1111
1112         if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
1113             (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
1114             x86_pmu.lbr_has_info)
1115                 reg->config |= LBR_NO_INFO;
1116
1117         return 0;
1118 }
1119
1120 int intel_pmu_setup_lbr_filter(struct perf_event *event)
1121 {
1122         int ret = 0;
1123
1124         /*
1125          * no LBR on this PMU
1126          */
1127         if (!x86_pmu.lbr_nr)
1128                 return -EOPNOTSUPP;
1129
1130         /*
1131          * setup SW LBR filter
1132          */
1133         ret = intel_pmu_setup_sw_lbr_filter(event);
1134         if (ret)
1135                 return ret;
1136
1137         /*
1138          * setup HW LBR filter, if any
1139          */
1140         if (x86_pmu.lbr_sel_map)
1141                 ret = intel_pmu_setup_hw_lbr_filter(event);
1142
1143         return ret;
1144 }
1145
1146 /*
1147  * return the type of control flow change at address "from"
1148  * instruction is not necessarily a branch (in case of interrupt).
1149  *
1150  * The branch type returned also includes the priv level of the
1151  * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
1152  *
1153  * If a branch type is unknown OR the instruction cannot be
1154  * decoded (e.g., text page not present), then X86_BR_NONE is
1155  * returned.
1156  */
1157 static int branch_type(unsigned long from, unsigned long to, int abort)
1158 {
1159         struct insn insn;
1160         void *addr;
1161         int bytes_read, bytes_left;
1162         int ret = X86_BR_NONE;
1163         int ext, to_plm, from_plm;
1164         u8 buf[MAX_INSN_SIZE];
1165         int is64 = 0;
1166
1167         to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
1168         from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
1169
1170         /*
1171          * maybe zero if lbr did not fill up after a reset by the time
1172          * we get a PMU interrupt
1173          */
1174         if (from == 0 || to == 0)
1175                 return X86_BR_NONE;
1176
1177         if (abort)
1178                 return X86_BR_ABORT | to_plm;
1179
1180         if (from_plm == X86_BR_USER) {
1181                 /*
1182                  * can happen if measuring at the user level only
1183                  * and we interrupt in a kernel thread, e.g., idle.
1184                  */
1185                 if (!current->mm)
1186                         return X86_BR_NONE;
1187
1188                 /* may fail if text not present */
1189                 bytes_left = copy_from_user_nmi(buf, (void __user *)from,
1190                                                 MAX_INSN_SIZE);
1191                 bytes_read = MAX_INSN_SIZE - bytes_left;
1192                 if (!bytes_read)
1193                         return X86_BR_NONE;
1194
1195                 addr = buf;
1196         } else {
1197                 /*
1198                  * The LBR logs any address in the IP, even if the IP just
1199                  * faulted. This means userspace can control the from address.
1200                  * Ensure we don't blindly read any address by validating it is
1201                  * a known text address.
1202                  */
1203                 if (kernel_text_address(from)) {
1204                         addr = (void *)from;
1205                         /*
1206                          * Assume we can get the maximum possible size
1207                          * when grabbing kernel data.  This is not
1208                          * _strictly_ true since we could possibly be
1209                          * executing up next to a memory hole, but
1210                          * it is very unlikely to be a problem.
1211                          */
1212                         bytes_read = MAX_INSN_SIZE;
1213                 } else {
1214                         return X86_BR_NONE;
1215                 }
1216         }
1217
1218         /*
1219          * decoder needs to know the ABI especially
1220          * on 64-bit systems running 32-bit apps
1221          */
1222 #ifdef CONFIG_X86_64
1223         is64 = kernel_ip((unsigned long)addr) || any_64bit_mode(current_pt_regs());
1224 #endif
1225         insn_init(&insn, addr, bytes_read, is64);
1226         if (insn_get_opcode(&insn))
1227                 return X86_BR_ABORT;
1228
1229         switch (insn.opcode.bytes[0]) {
1230         case 0xf:
1231                 switch (insn.opcode.bytes[1]) {
1232                 case 0x05: /* syscall */
1233                 case 0x34: /* sysenter */
1234                         ret = X86_BR_SYSCALL;
1235                         break;
1236                 case 0x07: /* sysret */
1237                 case 0x35: /* sysexit */
1238                         ret = X86_BR_SYSRET;
1239                         break;
1240                 case 0x80 ... 0x8f: /* conditional */
1241                         ret = X86_BR_JCC;
1242                         break;
1243                 default:
1244                         ret = X86_BR_NONE;
1245                 }
1246                 break;
1247         case 0x70 ... 0x7f: /* conditional */
1248                 ret = X86_BR_JCC;
1249                 break;
1250         case 0xc2: /* near ret */
1251         case 0xc3: /* near ret */
1252         case 0xca: /* far ret */
1253         case 0xcb: /* far ret */
1254                 ret = X86_BR_RET;
1255                 break;
1256         case 0xcf: /* iret */
1257                 ret = X86_BR_IRET;
1258                 break;
1259         case 0xcc ... 0xce: /* int */
1260                 ret = X86_BR_INT;
1261                 break;
1262         case 0xe8: /* call near rel */
1263                 if (insn_get_immediate(&insn) || insn.immediate1.value == 0) {
1264                         /* zero length call */
1265                         ret = X86_BR_ZERO_CALL;
1266                         break;
1267                 }
1268                 fallthrough;
1269         case 0x9a: /* call far absolute */
1270                 ret = X86_BR_CALL;
1271                 break;
1272         case 0xe0 ... 0xe3: /* loop jmp */
1273                 ret = X86_BR_JCC;
1274                 break;
1275         case 0xe9 ... 0xeb: /* jmp */
1276                 ret = X86_BR_JMP;
1277                 break;
1278         case 0xff: /* call near absolute, call far absolute ind */
1279                 if (insn_get_modrm(&insn))
1280                         return X86_BR_ABORT;
1281
1282                 ext = (insn.modrm.bytes[0] >> 3) & 0x7;
1283                 switch (ext) {
1284                 case 2: /* near ind call */
1285                 case 3: /* far ind call */
1286                         ret = X86_BR_IND_CALL;
1287                         break;
1288                 case 4:
1289                 case 5:
1290                         ret = X86_BR_IND_JMP;
1291                         break;
1292                 }
1293                 break;
1294         default:
1295                 ret = X86_BR_NONE;
1296         }
1297         /*
1298          * interrupts, traps, faults (and thus ring transition) may
1299          * occur on any instructions. Thus, to classify them correctly,
1300          * we need to first look at the from and to priv levels. If they
1301          * are different and to is in the kernel, then it indicates
1302          * a ring transition. If the from instruction is not a ring
1303          * transition instr (syscall, systenter, int), then it means
1304          * it was a irq, trap or fault.
1305          *
1306          * we have no way of detecting kernel to kernel faults.
1307          */
1308         if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
1309             && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
1310                 ret = X86_BR_IRQ;
1311
1312         /*
1313          * branch priv level determined by target as
1314          * is done by HW when LBR_SELECT is implemented
1315          */
1316         if (ret != X86_BR_NONE)
1317                 ret |= to_plm;
1318
1319         return ret;
1320 }
1321
1322 #define X86_BR_TYPE_MAP_MAX     16
1323
1324 static int branch_map[X86_BR_TYPE_MAP_MAX] = {
1325         PERF_BR_CALL,           /* X86_BR_CALL */
1326         PERF_BR_RET,            /* X86_BR_RET */
1327         PERF_BR_SYSCALL,        /* X86_BR_SYSCALL */
1328         PERF_BR_SYSRET,         /* X86_BR_SYSRET */
1329         PERF_BR_UNKNOWN,        /* X86_BR_INT */
1330         PERF_BR_ERET,           /* X86_BR_IRET */
1331         PERF_BR_COND,           /* X86_BR_JCC */
1332         PERF_BR_UNCOND,         /* X86_BR_JMP */
1333         PERF_BR_IRQ,            /* X86_BR_IRQ */
1334         PERF_BR_IND_CALL,       /* X86_BR_IND_CALL */
1335         PERF_BR_UNKNOWN,        /* X86_BR_ABORT */
1336         PERF_BR_UNKNOWN,        /* X86_BR_IN_TX */
1337         PERF_BR_UNKNOWN,        /* X86_BR_NO_TX */
1338         PERF_BR_CALL,           /* X86_BR_ZERO_CALL */
1339         PERF_BR_UNKNOWN,        /* X86_BR_CALL_STACK */
1340         PERF_BR_IND,            /* X86_BR_IND_JMP */
1341 };
1342
1343 static int
1344 common_branch_type(int type)
1345 {
1346         int i;
1347
1348         type >>= 2; /* skip X86_BR_USER and X86_BR_KERNEL */
1349
1350         if (type) {
1351                 i = __ffs(type);
1352                 if (i < X86_BR_TYPE_MAP_MAX)
1353                         return branch_map[i];
1354         }
1355
1356         return PERF_BR_UNKNOWN;
1357 }
1358
1359 enum {
1360         ARCH_LBR_BR_TYPE_JCC                    = 0,
1361         ARCH_LBR_BR_TYPE_NEAR_IND_JMP           = 1,
1362         ARCH_LBR_BR_TYPE_NEAR_REL_JMP           = 2,
1363         ARCH_LBR_BR_TYPE_NEAR_IND_CALL          = 3,
1364         ARCH_LBR_BR_TYPE_NEAR_REL_CALL          = 4,
1365         ARCH_LBR_BR_TYPE_NEAR_RET               = 5,
1366         ARCH_LBR_BR_TYPE_KNOWN_MAX              = ARCH_LBR_BR_TYPE_NEAR_RET,
1367
1368         ARCH_LBR_BR_TYPE_MAP_MAX                = 16,
1369 };
1370
1371 static const int arch_lbr_br_type_map[ARCH_LBR_BR_TYPE_MAP_MAX] = {
1372         [ARCH_LBR_BR_TYPE_JCC]                  = X86_BR_JCC,
1373         [ARCH_LBR_BR_TYPE_NEAR_IND_JMP]         = X86_BR_IND_JMP,
1374         [ARCH_LBR_BR_TYPE_NEAR_REL_JMP]         = X86_BR_JMP,
1375         [ARCH_LBR_BR_TYPE_NEAR_IND_CALL]        = X86_BR_IND_CALL,
1376         [ARCH_LBR_BR_TYPE_NEAR_REL_CALL]        = X86_BR_CALL,
1377         [ARCH_LBR_BR_TYPE_NEAR_RET]             = X86_BR_RET,
1378 };
1379
1380 /*
1381  * implement actual branch filter based on user demand.
1382  * Hardware may not exactly satisfy that request, thus
1383  * we need to inspect opcodes. Mismatched branches are
1384  * discarded. Therefore, the number of branches returned
1385  * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1386  */
1387 static void
1388 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
1389 {
1390         u64 from, to;
1391         int br_sel = cpuc->br_sel;
1392         int i, j, type, to_plm;
1393         bool compress = false;
1394
1395         /* if sampling all branches, then nothing to filter */
1396         if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
1397             ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1398                 return;
1399
1400         for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1401
1402                 from = cpuc->lbr_entries[i].from;
1403                 to = cpuc->lbr_entries[i].to;
1404                 type = cpuc->lbr_entries[i].type;
1405
1406                 /*
1407                  * Parse the branch type recorded in LBR_x_INFO MSR.
1408                  * Doesn't support OTHER_BRANCH decoding for now.
1409                  * OTHER_BRANCH branch type still rely on software decoding.
1410                  */
1411                 if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
1412                     type <= ARCH_LBR_BR_TYPE_KNOWN_MAX) {
1413                         to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
1414                         type = arch_lbr_br_type_map[type] | to_plm;
1415                 } else
1416                         type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1417                 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1418                         if (cpuc->lbr_entries[i].in_tx)
1419                                 type |= X86_BR_IN_TX;
1420                         else
1421                                 type |= X86_BR_NO_TX;
1422                 }
1423
1424                 /* if type does not correspond, then discard */
1425                 if (type == X86_BR_NONE || (br_sel & type) != type) {
1426                         cpuc->lbr_entries[i].from = 0;
1427                         compress = true;
1428                 }
1429
1430                 if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1431                         cpuc->lbr_entries[i].type = common_branch_type(type);
1432         }
1433
1434         if (!compress)
1435                 return;
1436
1437         /* remove all entries with from=0 */
1438         for (i = 0; i < cpuc->lbr_stack.nr; ) {
1439                 if (!cpuc->lbr_entries[i].from) {
1440                         j = i;
1441                         while (++j < cpuc->lbr_stack.nr)
1442                                 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1443                         cpuc->lbr_stack.nr--;
1444                         if (!cpuc->lbr_entries[i].from)
1445                                 continue;
1446                 }
1447                 i++;
1448         }
1449 }
1450
1451 void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr)
1452 {
1453         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1454
1455         /* Cannot get TOS for large PEBS and Arch LBR */
1456         if (static_cpu_has(X86_FEATURE_ARCH_LBR) ||
1457             (cpuc->n_pebs == cpuc->n_large_pebs))
1458                 cpuc->lbr_stack.hw_idx = -1ULL;
1459         else
1460                 cpuc->lbr_stack.hw_idx = intel_pmu_lbr_tos();
1461
1462         intel_pmu_store_lbr(cpuc, lbr);
1463         intel_pmu_lbr_filter(cpuc);
1464 }
1465
1466 /*
1467  * Map interface branch filters onto LBR filters
1468  */
1469 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1470         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = LBR_ANY,
1471         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = LBR_USER,
1472         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = LBR_KERNEL,
1473         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1474         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = LBR_RETURN | LBR_REL_JMP
1475                                                 | LBR_IND_JMP | LBR_FAR,
1476         /*
1477          * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1478          */
1479         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1480          LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1481         /*
1482          * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1483          */
1484         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1485         [PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1486         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1487 };
1488
1489 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1490         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = LBR_ANY,
1491         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = LBR_USER,
1492         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = LBR_KERNEL,
1493         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1494         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = LBR_RETURN | LBR_FAR,
1495         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = LBR_REL_CALL | LBR_IND_CALL
1496                                                 | LBR_FAR,
1497         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = LBR_IND_CALL,
1498         [PERF_SAMPLE_BRANCH_COND_SHIFT]         = LBR_JCC,
1499         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]     = LBR_IND_JMP,
1500         [PERF_SAMPLE_BRANCH_CALL_SHIFT]         = LBR_REL_CALL,
1501 };
1502
1503 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1504         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = LBR_ANY,
1505         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = LBR_USER,
1506         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = LBR_KERNEL,
1507         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1508         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = LBR_RETURN | LBR_FAR,
1509         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = LBR_REL_CALL | LBR_IND_CALL
1510                                                 | LBR_FAR,
1511         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = LBR_IND_CALL,
1512         [PERF_SAMPLE_BRANCH_COND_SHIFT]         = LBR_JCC,
1513         [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]   = LBR_REL_CALL | LBR_IND_CALL
1514                                                 | LBR_RETURN | LBR_CALL_STACK,
1515         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]     = LBR_IND_JMP,
1516         [PERF_SAMPLE_BRANCH_CALL_SHIFT]         = LBR_REL_CALL,
1517 };
1518
1519 static int arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1520         [PERF_SAMPLE_BRANCH_ANY_SHIFT]          = ARCH_LBR_ANY,
1521         [PERF_SAMPLE_BRANCH_USER_SHIFT]         = ARCH_LBR_USER,
1522         [PERF_SAMPLE_BRANCH_KERNEL_SHIFT]       = ARCH_LBR_KERNEL,
1523         [PERF_SAMPLE_BRANCH_HV_SHIFT]           = LBR_IGN,
1524         [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]   = ARCH_LBR_RETURN |
1525                                                   ARCH_LBR_OTHER_BRANCH,
1526         [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = ARCH_LBR_REL_CALL |
1527                                                   ARCH_LBR_IND_CALL |
1528                                                   ARCH_LBR_OTHER_BRANCH,
1529         [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = ARCH_LBR_IND_CALL,
1530         [PERF_SAMPLE_BRANCH_COND_SHIFT]         = ARCH_LBR_JCC,
1531         [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]   = ARCH_LBR_REL_CALL |
1532                                                   ARCH_LBR_IND_CALL |
1533                                                   ARCH_LBR_RETURN |
1534                                                   ARCH_LBR_CALL_STACK,
1535         [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]     = ARCH_LBR_IND_JMP,
1536         [PERF_SAMPLE_BRANCH_CALL_SHIFT]         = ARCH_LBR_REL_CALL,
1537 };
1538
1539 /* core */
1540 void __init intel_pmu_lbr_init_core(void)
1541 {
1542         x86_pmu.lbr_nr     = 4;
1543         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1544         x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1545         x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1546
1547         /*
1548          * SW branch filter usage:
1549          * - compensate for lack of HW filter
1550          */
1551 }
1552
1553 /* nehalem/westmere */
1554 void __init intel_pmu_lbr_init_nhm(void)
1555 {
1556         x86_pmu.lbr_nr     = 16;
1557         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1558         x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1559         x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1560
1561         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1562         x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1563
1564         /*
1565          * SW branch filter usage:
1566          * - workaround LBR_SEL errata (see above)
1567          * - support syscall, sysret capture.
1568          *   That requires LBR_FAR but that means far
1569          *   jmp need to be filtered out
1570          */
1571 }
1572
1573 /* sandy bridge */
1574 void __init intel_pmu_lbr_init_snb(void)
1575 {
1576         x86_pmu.lbr_nr   = 16;
1577         x86_pmu.lbr_tos  = MSR_LBR_TOS;
1578         x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1579         x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1580
1581         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1582         x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1583
1584         /*
1585          * SW branch filter usage:
1586          * - support syscall, sysret capture.
1587          *   That requires LBR_FAR but that means far
1588          *   jmp need to be filtered out
1589          */
1590 }
1591
1592 static inline struct kmem_cache *
1593 create_lbr_kmem_cache(size_t size, size_t align)
1594 {
1595         return kmem_cache_create("x86_lbr", size, align, 0, NULL);
1596 }
1597
1598 /* haswell */
1599 void intel_pmu_lbr_init_hsw(void)
1600 {
1601         size_t size = sizeof(struct x86_perf_task_context);
1602
1603         x86_pmu.lbr_nr   = 16;
1604         x86_pmu.lbr_tos  = MSR_LBR_TOS;
1605         x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1606         x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1607
1608         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1609         x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1610
1611         x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1612
1613         if (lbr_from_signext_quirk_needed())
1614                 static_branch_enable(&lbr_from_quirk_key);
1615 }
1616
1617 /* skylake */
1618 __init void intel_pmu_lbr_init_skl(void)
1619 {
1620         size_t size = sizeof(struct x86_perf_task_context);
1621
1622         x86_pmu.lbr_nr   = 32;
1623         x86_pmu.lbr_tos  = MSR_LBR_TOS;
1624         x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1625         x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1626         x86_pmu.lbr_info = MSR_LBR_INFO_0;
1627
1628         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1629         x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1630
1631         x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1632
1633         /*
1634          * SW branch filter usage:
1635          * - support syscall, sysret capture.
1636          *   That requires LBR_FAR but that means far
1637          *   jmp need to be filtered out
1638          */
1639 }
1640
1641 /* atom */
1642 void __init intel_pmu_lbr_init_atom(void)
1643 {
1644         /*
1645          * only models starting at stepping 10 seems
1646          * to have an operational LBR which can freeze
1647          * on PMU interrupt
1648          */
1649         if (boot_cpu_data.x86_model == 28
1650             && boot_cpu_data.x86_stepping < 10) {
1651                 pr_cont("LBR disabled due to erratum");
1652                 return;
1653         }
1654
1655         x86_pmu.lbr_nr     = 8;
1656         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1657         x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1658         x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1659
1660         /*
1661          * SW branch filter usage:
1662          * - compensate for lack of HW filter
1663          */
1664 }
1665
1666 /* slm */
1667 void __init intel_pmu_lbr_init_slm(void)
1668 {
1669         x86_pmu.lbr_nr     = 8;
1670         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1671         x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1672         x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1673
1674         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1675         x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1676
1677         /*
1678          * SW branch filter usage:
1679          * - compensate for lack of HW filter
1680          */
1681         pr_cont("8-deep LBR, ");
1682 }
1683
1684 /* Knights Landing */
1685 void intel_pmu_lbr_init_knl(void)
1686 {
1687         x86_pmu.lbr_nr     = 8;
1688         x86_pmu.lbr_tos    = MSR_LBR_TOS;
1689         x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1690         x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1691
1692         x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1693         x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1694
1695         /* Knights Landing does have MISPREDICT bit */
1696         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
1697                 x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
1698 }
1699
1700 void intel_pmu_lbr_init(void)
1701 {
1702         switch (x86_pmu.intel_cap.lbr_format) {
1703         case LBR_FORMAT_EIP_FLAGS2:
1704                 x86_pmu.lbr_has_tsx = 1;
1705                 fallthrough;
1706         case LBR_FORMAT_EIP_FLAGS:
1707                 x86_pmu.lbr_from_flags = 1;
1708                 break;
1709
1710         case LBR_FORMAT_INFO:
1711                 x86_pmu.lbr_has_tsx = 1;
1712                 fallthrough;
1713         case LBR_FORMAT_INFO2:
1714                 x86_pmu.lbr_has_info = 1;
1715                 break;
1716
1717         case LBR_FORMAT_TIME:
1718                 x86_pmu.lbr_from_flags = 1;
1719                 x86_pmu.lbr_to_cycles = 1;
1720                 break;
1721         }
1722
1723         if (x86_pmu.lbr_has_info) {
1724                 /*
1725                  * Only used in combination with baseline pebs.
1726                  */
1727                 static_branch_enable(&x86_lbr_mispred);
1728                 static_branch_enable(&x86_lbr_cycles);
1729         }
1730 }
1731
1732 /*
1733  * LBR state size is variable based on the max number of registers.
1734  * This calculates the expected state size, which should match
1735  * what the hardware enumerates for the size of XFEATURE_LBR.
1736  */
1737 static inline unsigned int get_lbr_state_size(void)
1738 {
1739         return sizeof(struct arch_lbr_state) +
1740                x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1741 }
1742
1743 static bool is_arch_lbr_xsave_available(void)
1744 {
1745         if (!boot_cpu_has(X86_FEATURE_XSAVES))
1746                 return false;
1747
1748         /*
1749          * Check the LBR state with the corresponding software structure.
1750          * Disable LBR XSAVES support if the size doesn't match.
1751          */
1752         if (xfeature_size(XFEATURE_LBR) == 0)
1753                 return false;
1754
1755         if (WARN_ON(xfeature_size(XFEATURE_LBR) != get_lbr_state_size()))
1756                 return false;
1757
1758         return true;
1759 }
1760
1761 void __init intel_pmu_arch_lbr_init(void)
1762 {
1763         struct pmu *pmu = x86_get_pmu(smp_processor_id());
1764         union cpuid28_eax eax;
1765         union cpuid28_ebx ebx;
1766         union cpuid28_ecx ecx;
1767         unsigned int unused_edx;
1768         bool arch_lbr_xsave;
1769         size_t size;
1770         u64 lbr_nr;
1771
1772         /* Arch LBR Capabilities */
1773         cpuid(28, &eax.full, &ebx.full, &ecx.full, &unused_edx);
1774
1775         lbr_nr = fls(eax.split.lbr_depth_mask) * 8;
1776         if (!lbr_nr)
1777                 goto clear_arch_lbr;
1778
1779         /* Apply the max depth of Arch LBR */
1780         if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH, lbr_nr))
1781                 goto clear_arch_lbr;
1782
1783         x86_pmu.lbr_depth_mask = eax.split.lbr_depth_mask;
1784         x86_pmu.lbr_deep_c_reset = eax.split.lbr_deep_c_reset;
1785         x86_pmu.lbr_lip = eax.split.lbr_lip;
1786         x86_pmu.lbr_cpl = ebx.split.lbr_cpl;
1787         x86_pmu.lbr_filter = ebx.split.lbr_filter;
1788         x86_pmu.lbr_call_stack = ebx.split.lbr_call_stack;
1789         x86_pmu.lbr_mispred = ecx.split.lbr_mispred;
1790         x86_pmu.lbr_timed_lbr = ecx.split.lbr_timed_lbr;
1791         x86_pmu.lbr_br_type = ecx.split.lbr_br_type;
1792         x86_pmu.lbr_nr = lbr_nr;
1793
1794         if (x86_pmu.lbr_mispred)
1795                 static_branch_enable(&x86_lbr_mispred);
1796         if (x86_pmu.lbr_timed_lbr)
1797                 static_branch_enable(&x86_lbr_cycles);
1798         if (x86_pmu.lbr_br_type)
1799                 static_branch_enable(&x86_lbr_type);
1800
1801         arch_lbr_xsave = is_arch_lbr_xsave_available();
1802         if (arch_lbr_xsave) {
1803                 size = sizeof(struct x86_perf_task_context_arch_lbr_xsave) +
1804                        get_lbr_state_size();
1805                 pmu->task_ctx_cache = create_lbr_kmem_cache(size,
1806                                                             XSAVE_ALIGNMENT);
1807         }
1808
1809         if (!pmu->task_ctx_cache) {
1810                 arch_lbr_xsave = false;
1811
1812                 size = sizeof(struct x86_perf_task_context_arch_lbr) +
1813                        lbr_nr * sizeof(struct lbr_entry);
1814                 pmu->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1815         }
1816
1817         x86_pmu.lbr_from = MSR_ARCH_LBR_FROM_0;
1818         x86_pmu.lbr_to = MSR_ARCH_LBR_TO_0;
1819         x86_pmu.lbr_info = MSR_ARCH_LBR_INFO_0;
1820
1821         /* LBR callstack requires both CPL and Branch Filtering support */
1822         if (!x86_pmu.lbr_cpl ||
1823             !x86_pmu.lbr_filter ||
1824             !x86_pmu.lbr_call_stack)
1825                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_NOT_SUPP;
1826
1827         if (!x86_pmu.lbr_cpl) {
1828                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_NOT_SUPP;
1829                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_NOT_SUPP;
1830         } else if (!x86_pmu.lbr_filter) {
1831                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_NOT_SUPP;
1832                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_NOT_SUPP;
1833                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_NOT_SUPP;
1834                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_NOT_SUPP;
1835                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_NOT_SUPP;
1836                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_NOT_SUPP;
1837                 arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_NOT_SUPP;
1838         }
1839
1840         x86_pmu.lbr_ctl_mask = ARCH_LBR_CTL_MASK;
1841         x86_pmu.lbr_ctl_map  = arch_lbr_ctl_map;
1842
1843         if (!x86_pmu.lbr_cpl && !x86_pmu.lbr_filter)
1844                 x86_pmu.lbr_ctl_map = NULL;
1845
1846         x86_pmu.lbr_reset = intel_pmu_arch_lbr_reset;
1847         if (arch_lbr_xsave) {
1848                 x86_pmu.lbr_save = intel_pmu_arch_lbr_xsaves;
1849                 x86_pmu.lbr_restore = intel_pmu_arch_lbr_xrstors;
1850                 x86_pmu.lbr_read = intel_pmu_arch_lbr_read_xsave;
1851                 pr_cont("XSAVE ");
1852         } else {
1853                 x86_pmu.lbr_save = intel_pmu_arch_lbr_save;
1854                 x86_pmu.lbr_restore = intel_pmu_arch_lbr_restore;
1855                 x86_pmu.lbr_read = intel_pmu_arch_lbr_read;
1856         }
1857
1858         pr_cont("Architectural LBR, ");
1859
1860         return;
1861
1862 clear_arch_lbr:
1863         clear_cpu_cap(&boot_cpu_data, X86_FEATURE_ARCH_LBR);
1864 }
1865
1866 /**
1867  * x86_perf_get_lbr - get the LBR records information
1868  *
1869  * @lbr: the caller's memory to store the LBR records information
1870  *
1871  * Returns: 0 indicates the LBR info has been successfully obtained
1872  */
1873 int x86_perf_get_lbr(struct x86_pmu_lbr *lbr)
1874 {
1875         int lbr_fmt = x86_pmu.intel_cap.lbr_format;
1876
1877         lbr->nr = x86_pmu.lbr_nr;
1878         lbr->from = x86_pmu.lbr_from;
1879         lbr->to = x86_pmu.lbr_to;
1880         lbr->info = (lbr_fmt == LBR_FORMAT_INFO) ? x86_pmu.lbr_info : 0;
1881
1882         return 0;
1883 }
1884 EXPORT_SYMBOL_GPL(x86_perf_get_lbr);
1885
1886 struct event_constraint vlbr_constraint =
1887         __EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT, (1ULL << INTEL_PMC_IDX_FIXED_VLBR),
1888                           FIXED_EVENT_FLAGS, 1, 0, PERF_X86_EVENT_LBR_SELECT);