Merge tag 'asoc-v5.19' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-2.6-microblaze.git] / arch / x86 / events / intel / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24
25 #include "../perf_event.h"
26
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
33         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
34         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
35         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
36         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
37         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
38         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
39         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
40 };
41
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50         EVENT_CONSTRAINT_END
51 };
52
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68         EVENT_CONSTRAINT_END
69 };
70
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84         EVENT_CONSTRAINT_END
85 };
86
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92         EVENT_EXTRA_END
93 };
94
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104         EVENT_CONSTRAINT_END
105 };
106
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121
122         /*
123          * When HT is off these events can only run on the bottom 4 counters
124          * When HT is on, they are impacted by the HT bug and require EXCL access
125          */
126         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130
131         EVENT_CONSTRAINT_END
132 };
133
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
141         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149
150         /*
151          * When HT is off these events can only run on the bottom 4 counters
152          * When HT is on, they are impacted by the HT bug and require EXCL access
153          */
154         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158
159         EVENT_CONSTRAINT_END
160 };
161
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168         EVENT_EXTRA_END
169 };
170
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173         EVENT_CONSTRAINT_END
174 };
175
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181         EVENT_CONSTRAINT_END
182 };
183
184 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
185 {
186         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
189         FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
190         FIXED_EVENT_CONSTRAINT(0x0500, 4),
191         FIXED_EVENT_CONSTRAINT(0x0600, 5),
192         FIXED_EVENT_CONSTRAINT(0x0700, 6),
193         FIXED_EVENT_CONSTRAINT(0x0800, 7),
194         FIXED_EVENT_CONSTRAINT(0x0900, 8),
195         FIXED_EVENT_CONSTRAINT(0x0a00, 9),
196         FIXED_EVENT_CONSTRAINT(0x0b00, 10),
197         FIXED_EVENT_CONSTRAINT(0x0c00, 11),
198         FIXED_EVENT_CONSTRAINT(0x0d00, 12),
199         FIXED_EVENT_CONSTRAINT(0x0e00, 13),
200         FIXED_EVENT_CONSTRAINT(0x0f00, 14),
201         FIXED_EVENT_CONSTRAINT(0x1000, 15),
202         EVENT_CONSTRAINT_END
203 };
204
205 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
206 {
207         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
208         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
209         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
210         EVENT_CONSTRAINT_END
211 };
212
213 static struct event_constraint intel_skl_event_constraints[] = {
214         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
215         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
216         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
217         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
218
219         /*
220          * when HT is off, these can only run on the bottom 4 counters
221          */
222         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
223         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
224         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
225         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
226         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
227
228         EVENT_CONSTRAINT_END
229 };
230
231 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
232         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
233         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
234         EVENT_EXTRA_END
235 };
236
237 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
238         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
239         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
240         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
241         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
242         EVENT_EXTRA_END
243 };
244
245 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
246         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
247         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
248         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
249         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
250         EVENT_EXTRA_END
251 };
252
253 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
254         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
255         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
256         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
257         /*
258          * Note the low 8 bits eventsel code is not a continuous field, containing
259          * some #GPing bits. These are masked out.
260          */
261         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
262         EVENT_EXTRA_END
263 };
264
265 static struct event_constraint intel_icl_event_constraints[] = {
266         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
267         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* old INST_RETIRED.PREC_DIST */
268         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
269         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
270         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
271         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
272         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
273         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
274         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
275         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
276         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
277         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
278         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
279         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
280         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
281         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
282         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
283         INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
284         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
285         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
286         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
287         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
288         INTEL_EVENT_CONSTRAINT(0xef, 0xf),
289         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
290         EVENT_CONSTRAINT_END
291 };
292
293 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
294         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
295         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
296         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
297         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
298         EVENT_EXTRA_END
299 };
300
301 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
302         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
303         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
304         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
305         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
306         INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
307         INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
308         EVENT_EXTRA_END
309 };
310
311 static struct event_constraint intel_spr_event_constraints[] = {
312         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
313         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
314         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
315         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
316         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
317         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
318         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
319         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
320         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
321         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
322         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
323         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
324         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
325
326         INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
327         INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
328         /*
329          * Generally event codes < 0x90 are restricted to counters 0-3.
330          * The 0x2E and 0x3C are exception, which has no restriction.
331          */
332         INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
333
334         INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
335         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
336         INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
337         INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
338         INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
339         INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
340         INTEL_EVENT_CONSTRAINT(0xce, 0x1),
341         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
342         /*
343          * Generally event codes >= 0x90 are likely to have no restrictions.
344          * The exception are defined as above.
345          */
346         INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
347
348         EVENT_CONSTRAINT_END
349 };
350
351
352 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
353 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
354 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
355
356 static struct attribute *nhm_mem_events_attrs[] = {
357         EVENT_PTR(mem_ld_nhm),
358         NULL,
359 };
360
361 /*
362  * topdown events for Intel Core CPUs.
363  *
364  * The events are all in slots, which is a free slot in a 4 wide
365  * pipeline. Some events are already reported in slots, for cycle
366  * events we multiply by the pipeline width (4).
367  *
368  * With Hyper Threading on, topdown metrics are either summed or averaged
369  * between the threads of a core: (count_t0 + count_t1).
370  *
371  * For the average case the metric is always scaled to pipeline width,
372  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
373  */
374
375 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
376         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
377         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
378 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
379 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
380         "event=0xe,umask=0x1");                 /* uops_issued.any */
381 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
382         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
383 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
384         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
385 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
386         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
387         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
388 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
389         "4", "2");
390
391 EVENT_ATTR_STR(slots,                   slots,                  "event=0x00,umask=0x4");
392 EVENT_ATTR_STR(topdown-retiring,        td_retiring,            "event=0x00,umask=0x80");
393 EVENT_ATTR_STR(topdown-bad-spec,        td_bad_spec,            "event=0x00,umask=0x81");
394 EVENT_ATTR_STR(topdown-fe-bound,        td_fe_bound,            "event=0x00,umask=0x82");
395 EVENT_ATTR_STR(topdown-be-bound,        td_be_bound,            "event=0x00,umask=0x83");
396 EVENT_ATTR_STR(topdown-heavy-ops,       td_heavy_ops,           "event=0x00,umask=0x84");
397 EVENT_ATTR_STR(topdown-br-mispredict,   td_br_mispredict,       "event=0x00,umask=0x85");
398 EVENT_ATTR_STR(topdown-fetch-lat,       td_fetch_lat,           "event=0x00,umask=0x86");
399 EVENT_ATTR_STR(topdown-mem-bound,       td_mem_bound,           "event=0x00,umask=0x87");
400
401 static struct attribute *snb_events_attrs[] = {
402         EVENT_PTR(td_slots_issued),
403         EVENT_PTR(td_slots_retired),
404         EVENT_PTR(td_fetch_bubbles),
405         EVENT_PTR(td_total_slots),
406         EVENT_PTR(td_total_slots_scale),
407         EVENT_PTR(td_recovery_bubbles),
408         EVENT_PTR(td_recovery_bubbles_scale),
409         NULL,
410 };
411
412 static struct attribute *snb_mem_events_attrs[] = {
413         EVENT_PTR(mem_ld_snb),
414         EVENT_PTR(mem_st_snb),
415         NULL,
416 };
417
418 static struct event_constraint intel_hsw_event_constraints[] = {
419         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
420         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
421         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
422         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
423         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
424         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
425         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
426         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
427         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
428         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
429         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
430         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
431
432         /*
433          * When HT is off these events can only run on the bottom 4 counters
434          * When HT is on, they are impacted by the HT bug and require EXCL access
435          */
436         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
437         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
438         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
439         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
440
441         EVENT_CONSTRAINT_END
442 };
443
444 static struct event_constraint intel_bdw_event_constraints[] = {
445         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
446         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
447         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
448         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
449         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
450         /*
451          * when HT is off, these can only run on the bottom 4 counters
452          */
453         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
454         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
455         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
456         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
457         EVENT_CONSTRAINT_END
458 };
459
460 static u64 intel_pmu_event_map(int hw_event)
461 {
462         return intel_perfmon_event_map[hw_event];
463 }
464
465 static __initconst const u64 spr_hw_cache_event_ids
466                                 [PERF_COUNT_HW_CACHE_MAX]
467                                 [PERF_COUNT_HW_CACHE_OP_MAX]
468                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
469 {
470  [ C(L1D ) ] = {
471         [ C(OP_READ) ] = {
472                 [ C(RESULT_ACCESS) ] = 0x81d0,
473                 [ C(RESULT_MISS)   ] = 0xe124,
474         },
475         [ C(OP_WRITE) ] = {
476                 [ C(RESULT_ACCESS) ] = 0x82d0,
477         },
478  },
479  [ C(L1I ) ] = {
480         [ C(OP_READ) ] = {
481                 [ C(RESULT_MISS)   ] = 0xe424,
482         },
483         [ C(OP_WRITE) ] = {
484                 [ C(RESULT_ACCESS) ] = -1,
485                 [ C(RESULT_MISS)   ] = -1,
486         },
487  },
488  [ C(LL  ) ] = {
489         [ C(OP_READ) ] = {
490                 [ C(RESULT_ACCESS) ] = 0x12a,
491                 [ C(RESULT_MISS)   ] = 0x12a,
492         },
493         [ C(OP_WRITE) ] = {
494                 [ C(RESULT_ACCESS) ] = 0x12a,
495                 [ C(RESULT_MISS)   ] = 0x12a,
496         },
497  },
498  [ C(DTLB) ] = {
499         [ C(OP_READ) ] = {
500                 [ C(RESULT_ACCESS) ] = 0x81d0,
501                 [ C(RESULT_MISS)   ] = 0xe12,
502         },
503         [ C(OP_WRITE) ] = {
504                 [ C(RESULT_ACCESS) ] = 0x82d0,
505                 [ C(RESULT_MISS)   ] = 0xe13,
506         },
507  },
508  [ C(ITLB) ] = {
509         [ C(OP_READ) ] = {
510                 [ C(RESULT_ACCESS) ] = -1,
511                 [ C(RESULT_MISS)   ] = 0xe11,
512         },
513         [ C(OP_WRITE) ] = {
514                 [ C(RESULT_ACCESS) ] = -1,
515                 [ C(RESULT_MISS)   ] = -1,
516         },
517         [ C(OP_PREFETCH) ] = {
518                 [ C(RESULT_ACCESS) ] = -1,
519                 [ C(RESULT_MISS)   ] = -1,
520         },
521  },
522  [ C(BPU ) ] = {
523         [ C(OP_READ) ] = {
524                 [ C(RESULT_ACCESS) ] = 0x4c4,
525                 [ C(RESULT_MISS)   ] = 0x4c5,
526         },
527         [ C(OP_WRITE) ] = {
528                 [ C(RESULT_ACCESS) ] = -1,
529                 [ C(RESULT_MISS)   ] = -1,
530         },
531         [ C(OP_PREFETCH) ] = {
532                 [ C(RESULT_ACCESS) ] = -1,
533                 [ C(RESULT_MISS)   ] = -1,
534         },
535  },
536  [ C(NODE) ] = {
537         [ C(OP_READ) ] = {
538                 [ C(RESULT_ACCESS) ] = 0x12a,
539                 [ C(RESULT_MISS)   ] = 0x12a,
540         },
541  },
542 };
543
544 static __initconst const u64 spr_hw_cache_extra_regs
545                                 [PERF_COUNT_HW_CACHE_MAX]
546                                 [PERF_COUNT_HW_CACHE_OP_MAX]
547                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
548 {
549  [ C(LL  ) ] = {
550         [ C(OP_READ) ] = {
551                 [ C(RESULT_ACCESS) ] = 0x10001,
552                 [ C(RESULT_MISS)   ] = 0x3fbfc00001,
553         },
554         [ C(OP_WRITE) ] = {
555                 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
556                 [ C(RESULT_MISS)   ] = 0x3f3fc00002,
557         },
558  },
559  [ C(NODE) ] = {
560         [ C(OP_READ) ] = {
561                 [ C(RESULT_ACCESS) ] = 0x10c000001,
562                 [ C(RESULT_MISS)   ] = 0x3fb3000001,
563         },
564  },
565 };
566
567 /*
568  * Notes on the events:
569  * - data reads do not include code reads (comparable to earlier tables)
570  * - data counts include speculative execution (except L1 write, dtlb, bpu)
571  * - remote node access includes remote memory, remote cache, remote mmio.
572  * - prefetches are not included in the counts.
573  * - icache miss does not include decoded icache
574  */
575
576 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
577 #define SKL_DEMAND_RFO                  BIT_ULL(1)
578 #define SKL_ANY_RESPONSE                BIT_ULL(16)
579 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
580 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
581 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
582 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
583 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
584 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
585                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
586                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
587                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
588 #define SKL_SPL_HIT                     BIT_ULL(30)
589 #define SKL_SNOOP_NONE                  BIT_ULL(31)
590 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
591 #define SKL_SNOOP_MISS                  BIT_ULL(33)
592 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
593 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
594 #define SKL_SNOOP_HITM                  BIT_ULL(36)
595 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
596 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
597                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
598                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
599                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
600 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
601 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
602                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
603                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
604                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
605 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
606 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
607 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
608                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
609                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
610
611 static __initconst const u64 skl_hw_cache_event_ids
612                                 [PERF_COUNT_HW_CACHE_MAX]
613                                 [PERF_COUNT_HW_CACHE_OP_MAX]
614                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
615 {
616  [ C(L1D ) ] = {
617         [ C(OP_READ) ] = {
618                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
619                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
620         },
621         [ C(OP_WRITE) ] = {
622                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
623                 [ C(RESULT_MISS)   ] = 0x0,
624         },
625         [ C(OP_PREFETCH) ] = {
626                 [ C(RESULT_ACCESS) ] = 0x0,
627                 [ C(RESULT_MISS)   ] = 0x0,
628         },
629  },
630  [ C(L1I ) ] = {
631         [ C(OP_READ) ] = {
632                 [ C(RESULT_ACCESS) ] = 0x0,
633                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
634         },
635         [ C(OP_WRITE) ] = {
636                 [ C(RESULT_ACCESS) ] = -1,
637                 [ C(RESULT_MISS)   ] = -1,
638         },
639         [ C(OP_PREFETCH) ] = {
640                 [ C(RESULT_ACCESS) ] = 0x0,
641                 [ C(RESULT_MISS)   ] = 0x0,
642         },
643  },
644  [ C(LL  ) ] = {
645         [ C(OP_READ) ] = {
646                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
647                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
648         },
649         [ C(OP_WRITE) ] = {
650                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
651                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
652         },
653         [ C(OP_PREFETCH) ] = {
654                 [ C(RESULT_ACCESS) ] = 0x0,
655                 [ C(RESULT_MISS)   ] = 0x0,
656         },
657  },
658  [ C(DTLB) ] = {
659         [ C(OP_READ) ] = {
660                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
661                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
662         },
663         [ C(OP_WRITE) ] = {
664                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
665                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
666         },
667         [ C(OP_PREFETCH) ] = {
668                 [ C(RESULT_ACCESS) ] = 0x0,
669                 [ C(RESULT_MISS)   ] = 0x0,
670         },
671  },
672  [ C(ITLB) ] = {
673         [ C(OP_READ) ] = {
674                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
675                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
676         },
677         [ C(OP_WRITE) ] = {
678                 [ C(RESULT_ACCESS) ] = -1,
679                 [ C(RESULT_MISS)   ] = -1,
680         },
681         [ C(OP_PREFETCH) ] = {
682                 [ C(RESULT_ACCESS) ] = -1,
683                 [ C(RESULT_MISS)   ] = -1,
684         },
685  },
686  [ C(BPU ) ] = {
687         [ C(OP_READ) ] = {
688                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
689                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
690         },
691         [ C(OP_WRITE) ] = {
692                 [ C(RESULT_ACCESS) ] = -1,
693                 [ C(RESULT_MISS)   ] = -1,
694         },
695         [ C(OP_PREFETCH) ] = {
696                 [ C(RESULT_ACCESS) ] = -1,
697                 [ C(RESULT_MISS)   ] = -1,
698         },
699  },
700  [ C(NODE) ] = {
701         [ C(OP_READ) ] = {
702                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
703                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
704         },
705         [ C(OP_WRITE) ] = {
706                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
707                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
708         },
709         [ C(OP_PREFETCH) ] = {
710                 [ C(RESULT_ACCESS) ] = 0x0,
711                 [ C(RESULT_MISS)   ] = 0x0,
712         },
713  },
714 };
715
716 static __initconst const u64 skl_hw_cache_extra_regs
717                                 [PERF_COUNT_HW_CACHE_MAX]
718                                 [PERF_COUNT_HW_CACHE_OP_MAX]
719                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
720 {
721  [ C(LL  ) ] = {
722         [ C(OP_READ) ] = {
723                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
724                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
725                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
726                                        SKL_L3_MISS|SKL_ANY_SNOOP|
727                                        SKL_SUPPLIER_NONE,
728         },
729         [ C(OP_WRITE) ] = {
730                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
731                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
732                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
733                                        SKL_L3_MISS|SKL_ANY_SNOOP|
734                                        SKL_SUPPLIER_NONE,
735         },
736         [ C(OP_PREFETCH) ] = {
737                 [ C(RESULT_ACCESS) ] = 0x0,
738                 [ C(RESULT_MISS)   ] = 0x0,
739         },
740  },
741  [ C(NODE) ] = {
742         [ C(OP_READ) ] = {
743                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
744                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
745                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
746                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
747         },
748         [ C(OP_WRITE) ] = {
749                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
750                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
751                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
752                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
753         },
754         [ C(OP_PREFETCH) ] = {
755                 [ C(RESULT_ACCESS) ] = 0x0,
756                 [ C(RESULT_MISS)   ] = 0x0,
757         },
758  },
759 };
760
761 #define SNB_DMND_DATA_RD        (1ULL << 0)
762 #define SNB_DMND_RFO            (1ULL << 1)
763 #define SNB_DMND_IFETCH         (1ULL << 2)
764 #define SNB_DMND_WB             (1ULL << 3)
765 #define SNB_PF_DATA_RD          (1ULL << 4)
766 #define SNB_PF_RFO              (1ULL << 5)
767 #define SNB_PF_IFETCH           (1ULL << 6)
768 #define SNB_LLC_DATA_RD         (1ULL << 7)
769 #define SNB_LLC_RFO             (1ULL << 8)
770 #define SNB_LLC_IFETCH          (1ULL << 9)
771 #define SNB_BUS_LOCKS           (1ULL << 10)
772 #define SNB_STRM_ST             (1ULL << 11)
773 #define SNB_OTHER               (1ULL << 15)
774 #define SNB_RESP_ANY            (1ULL << 16)
775 #define SNB_NO_SUPP             (1ULL << 17)
776 #define SNB_LLC_HITM            (1ULL << 18)
777 #define SNB_LLC_HITE            (1ULL << 19)
778 #define SNB_LLC_HITS            (1ULL << 20)
779 #define SNB_LLC_HITF            (1ULL << 21)
780 #define SNB_LOCAL               (1ULL << 22)
781 #define SNB_REMOTE              (0xffULL << 23)
782 #define SNB_SNP_NONE            (1ULL << 31)
783 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
784 #define SNB_SNP_MISS            (1ULL << 33)
785 #define SNB_NO_FWD              (1ULL << 34)
786 #define SNB_SNP_FWD             (1ULL << 35)
787 #define SNB_HITM                (1ULL << 36)
788 #define SNB_NON_DRAM            (1ULL << 37)
789
790 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
791 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
792 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
793
794 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
795                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
796                                  SNB_HITM)
797
798 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
799 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
800
801 #define SNB_L3_ACCESS           SNB_RESP_ANY
802 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
803
804 static __initconst const u64 snb_hw_cache_extra_regs
805                                 [PERF_COUNT_HW_CACHE_MAX]
806                                 [PERF_COUNT_HW_CACHE_OP_MAX]
807                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
808 {
809  [ C(LL  ) ] = {
810         [ C(OP_READ) ] = {
811                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
812                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
813         },
814         [ C(OP_WRITE) ] = {
815                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
816                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
817         },
818         [ C(OP_PREFETCH) ] = {
819                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
820                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
821         },
822  },
823  [ C(NODE) ] = {
824         [ C(OP_READ) ] = {
825                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
826                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
827         },
828         [ C(OP_WRITE) ] = {
829                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
830                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
831         },
832         [ C(OP_PREFETCH) ] = {
833                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
834                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
835         },
836  },
837 };
838
839 static __initconst const u64 snb_hw_cache_event_ids
840                                 [PERF_COUNT_HW_CACHE_MAX]
841                                 [PERF_COUNT_HW_CACHE_OP_MAX]
842                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
843 {
844  [ C(L1D) ] = {
845         [ C(OP_READ) ] = {
846                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
847                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
848         },
849         [ C(OP_WRITE) ] = {
850                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
851                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
852         },
853         [ C(OP_PREFETCH) ] = {
854                 [ C(RESULT_ACCESS) ] = 0x0,
855                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
856         },
857  },
858  [ C(L1I ) ] = {
859         [ C(OP_READ) ] = {
860                 [ C(RESULT_ACCESS) ] = 0x0,
861                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
862         },
863         [ C(OP_WRITE) ] = {
864                 [ C(RESULT_ACCESS) ] = -1,
865                 [ C(RESULT_MISS)   ] = -1,
866         },
867         [ C(OP_PREFETCH) ] = {
868                 [ C(RESULT_ACCESS) ] = 0x0,
869                 [ C(RESULT_MISS)   ] = 0x0,
870         },
871  },
872  [ C(LL  ) ] = {
873         [ C(OP_READ) ] = {
874                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
875                 [ C(RESULT_ACCESS) ] = 0x01b7,
876                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
877                 [ C(RESULT_MISS)   ] = 0x01b7,
878         },
879         [ C(OP_WRITE) ] = {
880                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
881                 [ C(RESULT_ACCESS) ] = 0x01b7,
882                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
883                 [ C(RESULT_MISS)   ] = 0x01b7,
884         },
885         [ C(OP_PREFETCH) ] = {
886                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
887                 [ C(RESULT_ACCESS) ] = 0x01b7,
888                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
889                 [ C(RESULT_MISS)   ] = 0x01b7,
890         },
891  },
892  [ C(DTLB) ] = {
893         [ C(OP_READ) ] = {
894                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
895                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
896         },
897         [ C(OP_WRITE) ] = {
898                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
899                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
900         },
901         [ C(OP_PREFETCH) ] = {
902                 [ C(RESULT_ACCESS) ] = 0x0,
903                 [ C(RESULT_MISS)   ] = 0x0,
904         },
905  },
906  [ C(ITLB) ] = {
907         [ C(OP_READ) ] = {
908                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
909                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
910         },
911         [ C(OP_WRITE) ] = {
912                 [ C(RESULT_ACCESS) ] = -1,
913                 [ C(RESULT_MISS)   ] = -1,
914         },
915         [ C(OP_PREFETCH) ] = {
916                 [ C(RESULT_ACCESS) ] = -1,
917                 [ C(RESULT_MISS)   ] = -1,
918         },
919  },
920  [ C(BPU ) ] = {
921         [ C(OP_READ) ] = {
922                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
923                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
924         },
925         [ C(OP_WRITE) ] = {
926                 [ C(RESULT_ACCESS) ] = -1,
927                 [ C(RESULT_MISS)   ] = -1,
928         },
929         [ C(OP_PREFETCH) ] = {
930                 [ C(RESULT_ACCESS) ] = -1,
931                 [ C(RESULT_MISS)   ] = -1,
932         },
933  },
934  [ C(NODE) ] = {
935         [ C(OP_READ) ] = {
936                 [ C(RESULT_ACCESS) ] = 0x01b7,
937                 [ C(RESULT_MISS)   ] = 0x01b7,
938         },
939         [ C(OP_WRITE) ] = {
940                 [ C(RESULT_ACCESS) ] = 0x01b7,
941                 [ C(RESULT_MISS)   ] = 0x01b7,
942         },
943         [ C(OP_PREFETCH) ] = {
944                 [ C(RESULT_ACCESS) ] = 0x01b7,
945                 [ C(RESULT_MISS)   ] = 0x01b7,
946         },
947  },
948
949 };
950
951 /*
952  * Notes on the events:
953  * - data reads do not include code reads (comparable to earlier tables)
954  * - data counts include speculative execution (except L1 write, dtlb, bpu)
955  * - remote node access includes remote memory, remote cache, remote mmio.
956  * - prefetches are not included in the counts because they are not
957  *   reliably counted.
958  */
959
960 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
961 #define HSW_DEMAND_RFO                  BIT_ULL(1)
962 #define HSW_ANY_RESPONSE                BIT_ULL(16)
963 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
964 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
965 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
966 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
967 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
968 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
969                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
970                                          HSW_L3_MISS_REMOTE_HOP2P)
971 #define HSW_SNOOP_NONE                  BIT_ULL(31)
972 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
973 #define HSW_SNOOP_MISS                  BIT_ULL(33)
974 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
975 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
976 #define HSW_SNOOP_HITM                  BIT_ULL(36)
977 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
978 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
979                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
980                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
981                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
982 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
983 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
984 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
985 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
986                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
987 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
988
989 #define BDW_L3_MISS_LOCAL               BIT(26)
990 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
991                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
992                                          HSW_L3_MISS_REMOTE_HOP2P)
993
994
995 static __initconst const u64 hsw_hw_cache_event_ids
996                                 [PERF_COUNT_HW_CACHE_MAX]
997                                 [PERF_COUNT_HW_CACHE_OP_MAX]
998                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
999 {
1000  [ C(L1D ) ] = {
1001         [ C(OP_READ) ] = {
1002                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1003                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
1004         },
1005         [ C(OP_WRITE) ] = {
1006                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1007                 [ C(RESULT_MISS)   ] = 0x0,
1008         },
1009         [ C(OP_PREFETCH) ] = {
1010                 [ C(RESULT_ACCESS) ] = 0x0,
1011                 [ C(RESULT_MISS)   ] = 0x0,
1012         },
1013  },
1014  [ C(L1I ) ] = {
1015         [ C(OP_READ) ] = {
1016                 [ C(RESULT_ACCESS) ] = 0x0,
1017                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
1018         },
1019         [ C(OP_WRITE) ] = {
1020                 [ C(RESULT_ACCESS) ] = -1,
1021                 [ C(RESULT_MISS)   ] = -1,
1022         },
1023         [ C(OP_PREFETCH) ] = {
1024                 [ C(RESULT_ACCESS) ] = 0x0,
1025                 [ C(RESULT_MISS)   ] = 0x0,
1026         },
1027  },
1028  [ C(LL  ) ] = {
1029         [ C(OP_READ) ] = {
1030                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1031                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1032         },
1033         [ C(OP_WRITE) ] = {
1034                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1035                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1036         },
1037         [ C(OP_PREFETCH) ] = {
1038                 [ C(RESULT_ACCESS) ] = 0x0,
1039                 [ C(RESULT_MISS)   ] = 0x0,
1040         },
1041  },
1042  [ C(DTLB) ] = {
1043         [ C(OP_READ) ] = {
1044                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1045                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1046         },
1047         [ C(OP_WRITE) ] = {
1048                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1049                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1050         },
1051         [ C(OP_PREFETCH) ] = {
1052                 [ C(RESULT_ACCESS) ] = 0x0,
1053                 [ C(RESULT_MISS)   ] = 0x0,
1054         },
1055  },
1056  [ C(ITLB) ] = {
1057         [ C(OP_READ) ] = {
1058                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
1059                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1060         },
1061         [ C(OP_WRITE) ] = {
1062                 [ C(RESULT_ACCESS) ] = -1,
1063                 [ C(RESULT_MISS)   ] = -1,
1064         },
1065         [ C(OP_PREFETCH) ] = {
1066                 [ C(RESULT_ACCESS) ] = -1,
1067                 [ C(RESULT_MISS)   ] = -1,
1068         },
1069  },
1070  [ C(BPU ) ] = {
1071         [ C(OP_READ) ] = {
1072                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
1073                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
1074         },
1075         [ C(OP_WRITE) ] = {
1076                 [ C(RESULT_ACCESS) ] = -1,
1077                 [ C(RESULT_MISS)   ] = -1,
1078         },
1079         [ C(OP_PREFETCH) ] = {
1080                 [ C(RESULT_ACCESS) ] = -1,
1081                 [ C(RESULT_MISS)   ] = -1,
1082         },
1083  },
1084  [ C(NODE) ] = {
1085         [ C(OP_READ) ] = {
1086                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1087                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1088         },
1089         [ C(OP_WRITE) ] = {
1090                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1091                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1092         },
1093         [ C(OP_PREFETCH) ] = {
1094                 [ C(RESULT_ACCESS) ] = 0x0,
1095                 [ C(RESULT_MISS)   ] = 0x0,
1096         },
1097  },
1098 };
1099
1100 static __initconst const u64 hsw_hw_cache_extra_regs
1101                                 [PERF_COUNT_HW_CACHE_MAX]
1102                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1103                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1104 {
1105  [ C(LL  ) ] = {
1106         [ C(OP_READ) ] = {
1107                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1108                                        HSW_LLC_ACCESS,
1109                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1110                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1111         },
1112         [ C(OP_WRITE) ] = {
1113                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1114                                        HSW_LLC_ACCESS,
1115                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1116                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1117         },
1118         [ C(OP_PREFETCH) ] = {
1119                 [ C(RESULT_ACCESS) ] = 0x0,
1120                 [ C(RESULT_MISS)   ] = 0x0,
1121         },
1122  },
1123  [ C(NODE) ] = {
1124         [ C(OP_READ) ] = {
1125                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1126                                        HSW_L3_MISS_LOCAL_DRAM|
1127                                        HSW_SNOOP_DRAM,
1128                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1129                                        HSW_L3_MISS_REMOTE|
1130                                        HSW_SNOOP_DRAM,
1131         },
1132         [ C(OP_WRITE) ] = {
1133                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1134                                        HSW_L3_MISS_LOCAL_DRAM|
1135                                        HSW_SNOOP_DRAM,
1136                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1137                                        HSW_L3_MISS_REMOTE|
1138                                        HSW_SNOOP_DRAM,
1139         },
1140         [ C(OP_PREFETCH) ] = {
1141                 [ C(RESULT_ACCESS) ] = 0x0,
1142                 [ C(RESULT_MISS)   ] = 0x0,
1143         },
1144  },
1145 };
1146
1147 static __initconst const u64 westmere_hw_cache_event_ids
1148                                 [PERF_COUNT_HW_CACHE_MAX]
1149                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1150                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1151 {
1152  [ C(L1D) ] = {
1153         [ C(OP_READ) ] = {
1154                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1155                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1156         },
1157         [ C(OP_WRITE) ] = {
1158                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1159                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1160         },
1161         [ C(OP_PREFETCH) ] = {
1162                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1163                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1164         },
1165  },
1166  [ C(L1I ) ] = {
1167         [ C(OP_READ) ] = {
1168                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1169                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1170         },
1171         [ C(OP_WRITE) ] = {
1172                 [ C(RESULT_ACCESS) ] = -1,
1173                 [ C(RESULT_MISS)   ] = -1,
1174         },
1175         [ C(OP_PREFETCH) ] = {
1176                 [ C(RESULT_ACCESS) ] = 0x0,
1177                 [ C(RESULT_MISS)   ] = 0x0,
1178         },
1179  },
1180  [ C(LL  ) ] = {
1181         [ C(OP_READ) ] = {
1182                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1183                 [ C(RESULT_ACCESS) ] = 0x01b7,
1184                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1185                 [ C(RESULT_MISS)   ] = 0x01b7,
1186         },
1187         /*
1188          * Use RFO, not WRITEBACK, because a write miss would typically occur
1189          * on RFO.
1190          */
1191         [ C(OP_WRITE) ] = {
1192                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1193                 [ C(RESULT_ACCESS) ] = 0x01b7,
1194                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1195                 [ C(RESULT_MISS)   ] = 0x01b7,
1196         },
1197         [ C(OP_PREFETCH) ] = {
1198                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1199                 [ C(RESULT_ACCESS) ] = 0x01b7,
1200                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1201                 [ C(RESULT_MISS)   ] = 0x01b7,
1202         },
1203  },
1204  [ C(DTLB) ] = {
1205         [ C(OP_READ) ] = {
1206                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1207                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1208         },
1209         [ C(OP_WRITE) ] = {
1210                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1211                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1212         },
1213         [ C(OP_PREFETCH) ] = {
1214                 [ C(RESULT_ACCESS) ] = 0x0,
1215                 [ C(RESULT_MISS)   ] = 0x0,
1216         },
1217  },
1218  [ C(ITLB) ] = {
1219         [ C(OP_READ) ] = {
1220                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1221                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1222         },
1223         [ C(OP_WRITE) ] = {
1224                 [ C(RESULT_ACCESS) ] = -1,
1225                 [ C(RESULT_MISS)   ] = -1,
1226         },
1227         [ C(OP_PREFETCH) ] = {
1228                 [ C(RESULT_ACCESS) ] = -1,
1229                 [ C(RESULT_MISS)   ] = -1,
1230         },
1231  },
1232  [ C(BPU ) ] = {
1233         [ C(OP_READ) ] = {
1234                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1235                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1236         },
1237         [ C(OP_WRITE) ] = {
1238                 [ C(RESULT_ACCESS) ] = -1,
1239                 [ C(RESULT_MISS)   ] = -1,
1240         },
1241         [ C(OP_PREFETCH) ] = {
1242                 [ C(RESULT_ACCESS) ] = -1,
1243                 [ C(RESULT_MISS)   ] = -1,
1244         },
1245  },
1246  [ C(NODE) ] = {
1247         [ C(OP_READ) ] = {
1248                 [ C(RESULT_ACCESS) ] = 0x01b7,
1249                 [ C(RESULT_MISS)   ] = 0x01b7,
1250         },
1251         [ C(OP_WRITE) ] = {
1252                 [ C(RESULT_ACCESS) ] = 0x01b7,
1253                 [ C(RESULT_MISS)   ] = 0x01b7,
1254         },
1255         [ C(OP_PREFETCH) ] = {
1256                 [ C(RESULT_ACCESS) ] = 0x01b7,
1257                 [ C(RESULT_MISS)   ] = 0x01b7,
1258         },
1259  },
1260 };
1261
1262 /*
1263  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1264  * See IA32 SDM Vol 3B 30.6.1.3
1265  */
1266
1267 #define NHM_DMND_DATA_RD        (1 << 0)
1268 #define NHM_DMND_RFO            (1 << 1)
1269 #define NHM_DMND_IFETCH         (1 << 2)
1270 #define NHM_DMND_WB             (1 << 3)
1271 #define NHM_PF_DATA_RD          (1 << 4)
1272 #define NHM_PF_DATA_RFO         (1 << 5)
1273 #define NHM_PF_IFETCH           (1 << 6)
1274 #define NHM_OFFCORE_OTHER       (1 << 7)
1275 #define NHM_UNCORE_HIT          (1 << 8)
1276 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1277 #define NHM_OTHER_CORE_HITM     (1 << 10)
1278                                 /* reserved */
1279 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1280 #define NHM_REMOTE_DRAM         (1 << 13)
1281 #define NHM_LOCAL_DRAM          (1 << 14)
1282 #define NHM_NON_DRAM            (1 << 15)
1283
1284 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1285 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1286
1287 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1288 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1289 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1290
1291 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1292 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1293 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1294
1295 static __initconst const u64 nehalem_hw_cache_extra_regs
1296                                 [PERF_COUNT_HW_CACHE_MAX]
1297                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1298                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1299 {
1300  [ C(LL  ) ] = {
1301         [ C(OP_READ) ] = {
1302                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1303                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1304         },
1305         [ C(OP_WRITE) ] = {
1306                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1307                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1308         },
1309         [ C(OP_PREFETCH) ] = {
1310                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1311                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1312         },
1313  },
1314  [ C(NODE) ] = {
1315         [ C(OP_READ) ] = {
1316                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1317                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1318         },
1319         [ C(OP_WRITE) ] = {
1320                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1321                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1322         },
1323         [ C(OP_PREFETCH) ] = {
1324                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1325                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1326         },
1327  },
1328 };
1329
1330 static __initconst const u64 nehalem_hw_cache_event_ids
1331                                 [PERF_COUNT_HW_CACHE_MAX]
1332                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1333                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1334 {
1335  [ C(L1D) ] = {
1336         [ C(OP_READ) ] = {
1337                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1338                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1339         },
1340         [ C(OP_WRITE) ] = {
1341                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1342                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1343         },
1344         [ C(OP_PREFETCH) ] = {
1345                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1346                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1347         },
1348  },
1349  [ C(L1I ) ] = {
1350         [ C(OP_READ) ] = {
1351                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1352                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1353         },
1354         [ C(OP_WRITE) ] = {
1355                 [ C(RESULT_ACCESS) ] = -1,
1356                 [ C(RESULT_MISS)   ] = -1,
1357         },
1358         [ C(OP_PREFETCH) ] = {
1359                 [ C(RESULT_ACCESS) ] = 0x0,
1360                 [ C(RESULT_MISS)   ] = 0x0,
1361         },
1362  },
1363  [ C(LL  ) ] = {
1364         [ C(OP_READ) ] = {
1365                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1366                 [ C(RESULT_ACCESS) ] = 0x01b7,
1367                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1368                 [ C(RESULT_MISS)   ] = 0x01b7,
1369         },
1370         /*
1371          * Use RFO, not WRITEBACK, because a write miss would typically occur
1372          * on RFO.
1373          */
1374         [ C(OP_WRITE) ] = {
1375                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1376                 [ C(RESULT_ACCESS) ] = 0x01b7,
1377                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1378                 [ C(RESULT_MISS)   ] = 0x01b7,
1379         },
1380         [ C(OP_PREFETCH) ] = {
1381                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1382                 [ C(RESULT_ACCESS) ] = 0x01b7,
1383                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1384                 [ C(RESULT_MISS)   ] = 0x01b7,
1385         },
1386  },
1387  [ C(DTLB) ] = {
1388         [ C(OP_READ) ] = {
1389                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1390                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1391         },
1392         [ C(OP_WRITE) ] = {
1393                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1394                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1395         },
1396         [ C(OP_PREFETCH) ] = {
1397                 [ C(RESULT_ACCESS) ] = 0x0,
1398                 [ C(RESULT_MISS)   ] = 0x0,
1399         },
1400  },
1401  [ C(ITLB) ] = {
1402         [ C(OP_READ) ] = {
1403                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1404                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1405         },
1406         [ C(OP_WRITE) ] = {
1407                 [ C(RESULT_ACCESS) ] = -1,
1408                 [ C(RESULT_MISS)   ] = -1,
1409         },
1410         [ C(OP_PREFETCH) ] = {
1411                 [ C(RESULT_ACCESS) ] = -1,
1412                 [ C(RESULT_MISS)   ] = -1,
1413         },
1414  },
1415  [ C(BPU ) ] = {
1416         [ C(OP_READ) ] = {
1417                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1418                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1419         },
1420         [ C(OP_WRITE) ] = {
1421                 [ C(RESULT_ACCESS) ] = -1,
1422                 [ C(RESULT_MISS)   ] = -1,
1423         },
1424         [ C(OP_PREFETCH) ] = {
1425                 [ C(RESULT_ACCESS) ] = -1,
1426                 [ C(RESULT_MISS)   ] = -1,
1427         },
1428  },
1429  [ C(NODE) ] = {
1430         [ C(OP_READ) ] = {
1431                 [ C(RESULT_ACCESS) ] = 0x01b7,
1432                 [ C(RESULT_MISS)   ] = 0x01b7,
1433         },
1434         [ C(OP_WRITE) ] = {
1435                 [ C(RESULT_ACCESS) ] = 0x01b7,
1436                 [ C(RESULT_MISS)   ] = 0x01b7,
1437         },
1438         [ C(OP_PREFETCH) ] = {
1439                 [ C(RESULT_ACCESS) ] = 0x01b7,
1440                 [ C(RESULT_MISS)   ] = 0x01b7,
1441         },
1442  },
1443 };
1444
1445 static __initconst const u64 core2_hw_cache_event_ids
1446                                 [PERF_COUNT_HW_CACHE_MAX]
1447                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1448                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1449 {
1450  [ C(L1D) ] = {
1451         [ C(OP_READ) ] = {
1452                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1453                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1454         },
1455         [ C(OP_WRITE) ] = {
1456                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1457                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1458         },
1459         [ C(OP_PREFETCH) ] = {
1460                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1461                 [ C(RESULT_MISS)   ] = 0,
1462         },
1463  },
1464  [ C(L1I ) ] = {
1465         [ C(OP_READ) ] = {
1466                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1467                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1468         },
1469         [ C(OP_WRITE) ] = {
1470                 [ C(RESULT_ACCESS) ] = -1,
1471                 [ C(RESULT_MISS)   ] = -1,
1472         },
1473         [ C(OP_PREFETCH) ] = {
1474                 [ C(RESULT_ACCESS) ] = 0,
1475                 [ C(RESULT_MISS)   ] = 0,
1476         },
1477  },
1478  [ C(LL  ) ] = {
1479         [ C(OP_READ) ] = {
1480                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1481                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1482         },
1483         [ C(OP_WRITE) ] = {
1484                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1485                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1486         },
1487         [ C(OP_PREFETCH) ] = {
1488                 [ C(RESULT_ACCESS) ] = 0,
1489                 [ C(RESULT_MISS)   ] = 0,
1490         },
1491  },
1492  [ C(DTLB) ] = {
1493         [ C(OP_READ) ] = {
1494                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1495                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1496         },
1497         [ C(OP_WRITE) ] = {
1498                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1499                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1500         },
1501         [ C(OP_PREFETCH) ] = {
1502                 [ C(RESULT_ACCESS) ] = 0,
1503                 [ C(RESULT_MISS)   ] = 0,
1504         },
1505  },
1506  [ C(ITLB) ] = {
1507         [ C(OP_READ) ] = {
1508                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1509                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1510         },
1511         [ C(OP_WRITE) ] = {
1512                 [ C(RESULT_ACCESS) ] = -1,
1513                 [ C(RESULT_MISS)   ] = -1,
1514         },
1515         [ C(OP_PREFETCH) ] = {
1516                 [ C(RESULT_ACCESS) ] = -1,
1517                 [ C(RESULT_MISS)   ] = -1,
1518         },
1519  },
1520  [ C(BPU ) ] = {
1521         [ C(OP_READ) ] = {
1522                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1523                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1524         },
1525         [ C(OP_WRITE) ] = {
1526                 [ C(RESULT_ACCESS) ] = -1,
1527                 [ C(RESULT_MISS)   ] = -1,
1528         },
1529         [ C(OP_PREFETCH) ] = {
1530                 [ C(RESULT_ACCESS) ] = -1,
1531                 [ C(RESULT_MISS)   ] = -1,
1532         },
1533  },
1534 };
1535
1536 static __initconst const u64 atom_hw_cache_event_ids
1537                                 [PERF_COUNT_HW_CACHE_MAX]
1538                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1539                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1540 {
1541  [ C(L1D) ] = {
1542         [ C(OP_READ) ] = {
1543                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1544                 [ C(RESULT_MISS)   ] = 0,
1545         },
1546         [ C(OP_WRITE) ] = {
1547                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1548                 [ C(RESULT_MISS)   ] = 0,
1549         },
1550         [ C(OP_PREFETCH) ] = {
1551                 [ C(RESULT_ACCESS) ] = 0x0,
1552                 [ C(RESULT_MISS)   ] = 0,
1553         },
1554  },
1555  [ C(L1I ) ] = {
1556         [ C(OP_READ) ] = {
1557                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1558                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1559         },
1560         [ C(OP_WRITE) ] = {
1561                 [ C(RESULT_ACCESS) ] = -1,
1562                 [ C(RESULT_MISS)   ] = -1,
1563         },
1564         [ C(OP_PREFETCH) ] = {
1565                 [ C(RESULT_ACCESS) ] = 0,
1566                 [ C(RESULT_MISS)   ] = 0,
1567         },
1568  },
1569  [ C(LL  ) ] = {
1570         [ C(OP_READ) ] = {
1571                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1572                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1573         },
1574         [ C(OP_WRITE) ] = {
1575                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1576                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1577         },
1578         [ C(OP_PREFETCH) ] = {
1579                 [ C(RESULT_ACCESS) ] = 0,
1580                 [ C(RESULT_MISS)   ] = 0,
1581         },
1582  },
1583  [ C(DTLB) ] = {
1584         [ C(OP_READ) ] = {
1585                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1586                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1587         },
1588         [ C(OP_WRITE) ] = {
1589                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1590                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1591         },
1592         [ C(OP_PREFETCH) ] = {
1593                 [ C(RESULT_ACCESS) ] = 0,
1594                 [ C(RESULT_MISS)   ] = 0,
1595         },
1596  },
1597  [ C(ITLB) ] = {
1598         [ C(OP_READ) ] = {
1599                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1600                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1601         },
1602         [ C(OP_WRITE) ] = {
1603                 [ C(RESULT_ACCESS) ] = -1,
1604                 [ C(RESULT_MISS)   ] = -1,
1605         },
1606         [ C(OP_PREFETCH) ] = {
1607                 [ C(RESULT_ACCESS) ] = -1,
1608                 [ C(RESULT_MISS)   ] = -1,
1609         },
1610  },
1611  [ C(BPU ) ] = {
1612         [ C(OP_READ) ] = {
1613                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1614                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1615         },
1616         [ C(OP_WRITE) ] = {
1617                 [ C(RESULT_ACCESS) ] = -1,
1618                 [ C(RESULT_MISS)   ] = -1,
1619         },
1620         [ C(OP_PREFETCH) ] = {
1621                 [ C(RESULT_ACCESS) ] = -1,
1622                 [ C(RESULT_MISS)   ] = -1,
1623         },
1624  },
1625 };
1626
1627 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1628 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1629 /* no_alloc_cycles.not_delivered */
1630 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1631                "event=0xca,umask=0x50");
1632 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1633 /* uops_retired.all */
1634 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1635                "event=0xc2,umask=0x10");
1636 /* uops_retired.all */
1637 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1638                "event=0xc2,umask=0x10");
1639
1640 static struct attribute *slm_events_attrs[] = {
1641         EVENT_PTR(td_total_slots_slm),
1642         EVENT_PTR(td_total_slots_scale_slm),
1643         EVENT_PTR(td_fetch_bubbles_slm),
1644         EVENT_PTR(td_fetch_bubbles_scale_slm),
1645         EVENT_PTR(td_slots_issued_slm),
1646         EVENT_PTR(td_slots_retired_slm),
1647         NULL
1648 };
1649
1650 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1651 {
1652         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1653         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1654         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1655         EVENT_EXTRA_END
1656 };
1657
1658 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1659 #define SLM_DMND_WRITE          SNB_DMND_RFO
1660 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1661
1662 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1663 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1664 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1665
1666 static __initconst const u64 slm_hw_cache_extra_regs
1667                                 [PERF_COUNT_HW_CACHE_MAX]
1668                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1669                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1670 {
1671  [ C(LL  ) ] = {
1672         [ C(OP_READ) ] = {
1673                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1674                 [ C(RESULT_MISS)   ] = 0,
1675         },
1676         [ C(OP_WRITE) ] = {
1677                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1678                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1679         },
1680         [ C(OP_PREFETCH) ] = {
1681                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1682                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1683         },
1684  },
1685 };
1686
1687 static __initconst const u64 slm_hw_cache_event_ids
1688                                 [PERF_COUNT_HW_CACHE_MAX]
1689                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1690                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1691 {
1692  [ C(L1D) ] = {
1693         [ C(OP_READ) ] = {
1694                 [ C(RESULT_ACCESS) ] = 0,
1695                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1696         },
1697         [ C(OP_WRITE) ] = {
1698                 [ C(RESULT_ACCESS) ] = 0,
1699                 [ C(RESULT_MISS)   ] = 0,
1700         },
1701         [ C(OP_PREFETCH) ] = {
1702                 [ C(RESULT_ACCESS) ] = 0,
1703                 [ C(RESULT_MISS)   ] = 0,
1704         },
1705  },
1706  [ C(L1I ) ] = {
1707         [ C(OP_READ) ] = {
1708                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1709                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1710         },
1711         [ C(OP_WRITE) ] = {
1712                 [ C(RESULT_ACCESS) ] = -1,
1713                 [ C(RESULT_MISS)   ] = -1,
1714         },
1715         [ C(OP_PREFETCH) ] = {
1716                 [ C(RESULT_ACCESS) ] = 0,
1717                 [ C(RESULT_MISS)   ] = 0,
1718         },
1719  },
1720  [ C(LL  ) ] = {
1721         [ C(OP_READ) ] = {
1722                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1723                 [ C(RESULT_ACCESS) ] = 0x01b7,
1724                 [ C(RESULT_MISS)   ] = 0,
1725         },
1726         [ C(OP_WRITE) ] = {
1727                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1728                 [ C(RESULT_ACCESS) ] = 0x01b7,
1729                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1730                 [ C(RESULT_MISS)   ] = 0x01b7,
1731         },
1732         [ C(OP_PREFETCH) ] = {
1733                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1734                 [ C(RESULT_ACCESS) ] = 0x01b7,
1735                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1736                 [ C(RESULT_MISS)   ] = 0x01b7,
1737         },
1738  },
1739  [ C(DTLB) ] = {
1740         [ C(OP_READ) ] = {
1741                 [ C(RESULT_ACCESS) ] = 0,
1742                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1743         },
1744         [ C(OP_WRITE) ] = {
1745                 [ C(RESULT_ACCESS) ] = 0,
1746                 [ C(RESULT_MISS)   ] = 0,
1747         },
1748         [ C(OP_PREFETCH) ] = {
1749                 [ C(RESULT_ACCESS) ] = 0,
1750                 [ C(RESULT_MISS)   ] = 0,
1751         },
1752  },
1753  [ C(ITLB) ] = {
1754         [ C(OP_READ) ] = {
1755                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1756                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1757         },
1758         [ C(OP_WRITE) ] = {
1759                 [ C(RESULT_ACCESS) ] = -1,
1760                 [ C(RESULT_MISS)   ] = -1,
1761         },
1762         [ C(OP_PREFETCH) ] = {
1763                 [ C(RESULT_ACCESS) ] = -1,
1764                 [ C(RESULT_MISS)   ] = -1,
1765         },
1766  },
1767  [ C(BPU ) ] = {
1768         [ C(OP_READ) ] = {
1769                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1770                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1771         },
1772         [ C(OP_WRITE) ] = {
1773                 [ C(RESULT_ACCESS) ] = -1,
1774                 [ C(RESULT_MISS)   ] = -1,
1775         },
1776         [ C(OP_PREFETCH) ] = {
1777                 [ C(RESULT_ACCESS) ] = -1,
1778                 [ C(RESULT_MISS)   ] = -1,
1779         },
1780  },
1781 };
1782
1783 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1784 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1785 /* UOPS_NOT_DELIVERED.ANY */
1786 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1787 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1788 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1789 /* UOPS_RETIRED.ANY */
1790 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1791 /* UOPS_ISSUED.ANY */
1792 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1793
1794 static struct attribute *glm_events_attrs[] = {
1795         EVENT_PTR(td_total_slots_glm),
1796         EVENT_PTR(td_total_slots_scale_glm),
1797         EVENT_PTR(td_fetch_bubbles_glm),
1798         EVENT_PTR(td_recovery_bubbles_glm),
1799         EVENT_PTR(td_slots_issued_glm),
1800         EVENT_PTR(td_slots_retired_glm),
1801         NULL
1802 };
1803
1804 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1805         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1806         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1807         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1808         EVENT_EXTRA_END
1809 };
1810
1811 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1812 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1813 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1814 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1815 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1816 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1817 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1818 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1819 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1820 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1821
1822 static __initconst const u64 glm_hw_cache_event_ids
1823                                 [PERF_COUNT_HW_CACHE_MAX]
1824                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1825                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1826         [C(L1D)] = {
1827                 [C(OP_READ)] = {
1828                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1829                         [C(RESULT_MISS)]        = 0x0,
1830                 },
1831                 [C(OP_WRITE)] = {
1832                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1833                         [C(RESULT_MISS)]        = 0x0,
1834                 },
1835                 [C(OP_PREFETCH)] = {
1836                         [C(RESULT_ACCESS)]      = 0x0,
1837                         [C(RESULT_MISS)]        = 0x0,
1838                 },
1839         },
1840         [C(L1I)] = {
1841                 [C(OP_READ)] = {
1842                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1843                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1844                 },
1845                 [C(OP_WRITE)] = {
1846                         [C(RESULT_ACCESS)]      = -1,
1847                         [C(RESULT_MISS)]        = -1,
1848                 },
1849                 [C(OP_PREFETCH)] = {
1850                         [C(RESULT_ACCESS)]      = 0x0,
1851                         [C(RESULT_MISS)]        = 0x0,
1852                 },
1853         },
1854         [C(LL)] = {
1855                 [C(OP_READ)] = {
1856                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1857                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1858                 },
1859                 [C(OP_WRITE)] = {
1860                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1861                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1862                 },
1863                 [C(OP_PREFETCH)] = {
1864                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1865                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1866                 },
1867         },
1868         [C(DTLB)] = {
1869                 [C(OP_READ)] = {
1870                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1871                         [C(RESULT_MISS)]        = 0x0,
1872                 },
1873                 [C(OP_WRITE)] = {
1874                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1875                         [C(RESULT_MISS)]        = 0x0,
1876                 },
1877                 [C(OP_PREFETCH)] = {
1878                         [C(RESULT_ACCESS)]      = 0x0,
1879                         [C(RESULT_MISS)]        = 0x0,
1880                 },
1881         },
1882         [C(ITLB)] = {
1883                 [C(OP_READ)] = {
1884                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1885                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1886                 },
1887                 [C(OP_WRITE)] = {
1888                         [C(RESULT_ACCESS)]      = -1,
1889                         [C(RESULT_MISS)]        = -1,
1890                 },
1891                 [C(OP_PREFETCH)] = {
1892                         [C(RESULT_ACCESS)]      = -1,
1893                         [C(RESULT_MISS)]        = -1,
1894                 },
1895         },
1896         [C(BPU)] = {
1897                 [C(OP_READ)] = {
1898                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1899                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1900                 },
1901                 [C(OP_WRITE)] = {
1902                         [C(RESULT_ACCESS)]      = -1,
1903                         [C(RESULT_MISS)]        = -1,
1904                 },
1905                 [C(OP_PREFETCH)] = {
1906                         [C(RESULT_ACCESS)]      = -1,
1907                         [C(RESULT_MISS)]        = -1,
1908                 },
1909         },
1910 };
1911
1912 static __initconst const u64 glm_hw_cache_extra_regs
1913                                 [PERF_COUNT_HW_CACHE_MAX]
1914                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1915                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1916         [C(LL)] = {
1917                 [C(OP_READ)] = {
1918                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1919                                                   GLM_LLC_ACCESS,
1920                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1921                                                   GLM_LLC_MISS,
1922                 },
1923                 [C(OP_WRITE)] = {
1924                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1925                                                   GLM_LLC_ACCESS,
1926                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1927                                                   GLM_LLC_MISS,
1928                 },
1929                 [C(OP_PREFETCH)] = {
1930                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1931                                                   GLM_LLC_ACCESS,
1932                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1933                                                   GLM_LLC_MISS,
1934                 },
1935         },
1936 };
1937
1938 static __initconst const u64 glp_hw_cache_event_ids
1939                                 [PERF_COUNT_HW_CACHE_MAX]
1940                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1941                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1942         [C(L1D)] = {
1943                 [C(OP_READ)] = {
1944                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1945                         [C(RESULT_MISS)]        = 0x0,
1946                 },
1947                 [C(OP_WRITE)] = {
1948                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1949                         [C(RESULT_MISS)]        = 0x0,
1950                 },
1951                 [C(OP_PREFETCH)] = {
1952                         [C(RESULT_ACCESS)]      = 0x0,
1953                         [C(RESULT_MISS)]        = 0x0,
1954                 },
1955         },
1956         [C(L1I)] = {
1957                 [C(OP_READ)] = {
1958                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1959                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1960                 },
1961                 [C(OP_WRITE)] = {
1962                         [C(RESULT_ACCESS)]      = -1,
1963                         [C(RESULT_MISS)]        = -1,
1964                 },
1965                 [C(OP_PREFETCH)] = {
1966                         [C(RESULT_ACCESS)]      = 0x0,
1967                         [C(RESULT_MISS)]        = 0x0,
1968                 },
1969         },
1970         [C(LL)] = {
1971                 [C(OP_READ)] = {
1972                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1973                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1974                 },
1975                 [C(OP_WRITE)] = {
1976                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1977                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1978                 },
1979                 [C(OP_PREFETCH)] = {
1980                         [C(RESULT_ACCESS)]      = 0x0,
1981                         [C(RESULT_MISS)]        = 0x0,
1982                 },
1983         },
1984         [C(DTLB)] = {
1985                 [C(OP_READ)] = {
1986                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1987                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1988                 },
1989                 [C(OP_WRITE)] = {
1990                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1991                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1992                 },
1993                 [C(OP_PREFETCH)] = {
1994                         [C(RESULT_ACCESS)]      = 0x0,
1995                         [C(RESULT_MISS)]        = 0x0,
1996                 },
1997         },
1998         [C(ITLB)] = {
1999                 [C(OP_READ)] = {
2000                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
2001                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
2002                 },
2003                 [C(OP_WRITE)] = {
2004                         [C(RESULT_ACCESS)]      = -1,
2005                         [C(RESULT_MISS)]        = -1,
2006                 },
2007                 [C(OP_PREFETCH)] = {
2008                         [C(RESULT_ACCESS)]      = -1,
2009                         [C(RESULT_MISS)]        = -1,
2010                 },
2011         },
2012         [C(BPU)] = {
2013                 [C(OP_READ)] = {
2014                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
2015                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
2016                 },
2017                 [C(OP_WRITE)] = {
2018                         [C(RESULT_ACCESS)]      = -1,
2019                         [C(RESULT_MISS)]        = -1,
2020                 },
2021                 [C(OP_PREFETCH)] = {
2022                         [C(RESULT_ACCESS)]      = -1,
2023                         [C(RESULT_MISS)]        = -1,
2024                 },
2025         },
2026 };
2027
2028 static __initconst const u64 glp_hw_cache_extra_regs
2029                                 [PERF_COUNT_HW_CACHE_MAX]
2030                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2031                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2032         [C(LL)] = {
2033                 [C(OP_READ)] = {
2034                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
2035                                                   GLM_LLC_ACCESS,
2036                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
2037                                                   GLM_LLC_MISS,
2038                 },
2039                 [C(OP_WRITE)] = {
2040                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
2041                                                   GLM_LLC_ACCESS,
2042                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
2043                                                   GLM_LLC_MISS,
2044                 },
2045                 [C(OP_PREFETCH)] = {
2046                         [C(RESULT_ACCESS)]      = 0x0,
2047                         [C(RESULT_MISS)]        = 0x0,
2048                 },
2049         },
2050 };
2051
2052 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
2053 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
2054 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
2055 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
2056 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2057                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2058 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2059
2060 static __initconst const u64 tnt_hw_cache_extra_regs
2061                                 [PERF_COUNT_HW_CACHE_MAX]
2062                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2063                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2064         [C(LL)] = {
2065                 [C(OP_READ)] = {
2066                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
2067                                                   TNT_LLC_ACCESS,
2068                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
2069                                                   TNT_LLC_MISS,
2070                 },
2071                 [C(OP_WRITE)] = {
2072                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
2073                                                   TNT_LLC_ACCESS,
2074                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
2075                                                   TNT_LLC_MISS,
2076                 },
2077                 [C(OP_PREFETCH)] = {
2078                         [C(RESULT_ACCESS)]      = 0x0,
2079                         [C(RESULT_MISS)]        = 0x0,
2080                 },
2081         },
2082 };
2083
2084 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2085 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2086 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2087 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2088
2089 static struct attribute *tnt_events_attrs[] = {
2090         EVENT_PTR(td_fe_bound_tnt),
2091         EVENT_PTR(td_retiring_tnt),
2092         EVENT_PTR(td_bad_spec_tnt),
2093         EVENT_PTR(td_be_bound_tnt),
2094         NULL,
2095 };
2096
2097 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2098         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2099         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2100         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2101         EVENT_EXTRA_END
2102 };
2103
2104 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2105         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2106         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2107         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2108         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2109         EVENT_EXTRA_END
2110 };
2111
2112 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
2113 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
2114 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
2115 #define KNL_MCDRAM_FAR          BIT_ULL(22)
2116 #define KNL_DDR_LOCAL           BIT_ULL(23)
2117 #define KNL_DDR_FAR             BIT_ULL(24)
2118 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2119                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
2120 #define KNL_L2_READ             SLM_DMND_READ
2121 #define KNL_L2_WRITE            SLM_DMND_WRITE
2122 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
2123 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
2124 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2125                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
2126                                                   SNB_NON_DRAM)
2127
2128 static __initconst const u64 knl_hw_cache_extra_regs
2129                                 [PERF_COUNT_HW_CACHE_MAX]
2130                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2131                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2132         [C(LL)] = {
2133                 [C(OP_READ)] = {
2134                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2135                         [C(RESULT_MISS)]   = 0,
2136                 },
2137                 [C(OP_WRITE)] = {
2138                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2139                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2140                 },
2141                 [C(OP_PREFETCH)] = {
2142                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2143                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2144                 },
2145         },
2146 };
2147
2148 /*
2149  * Used from PMIs where the LBRs are already disabled.
2150  *
2151  * This function could be called consecutively. It is required to remain in
2152  * disabled state if called consecutively.
2153  *
2154  * During consecutive calls, the same disable value will be written to related
2155  * registers, so the PMU state remains unchanged.
2156  *
2157  * intel_bts events don't coexist with intel PMU's BTS events because of
2158  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2159  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2160  *
2161  * Avoid PEBS_ENABLE MSR access in PMIs.
2162  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2163  * It doesn't matter if the PEBS is enabled or not.
2164  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2165  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2166  * However, there are some cases which may change PEBS status, e.g. PMI
2167  * throttle. The PEBS_ENABLE should be updated where the status changes.
2168  */
2169 static __always_inline void __intel_pmu_disable_all(bool bts)
2170 {
2171         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2172
2173         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2174
2175         if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2176                 intel_pmu_disable_bts();
2177 }
2178
2179 static __always_inline void intel_pmu_disable_all(void)
2180 {
2181         __intel_pmu_disable_all(true);
2182         intel_pmu_pebs_disable_all();
2183         intel_pmu_lbr_disable_all();
2184 }
2185
2186 static void __intel_pmu_enable_all(int added, bool pmi)
2187 {
2188         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2189         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2190
2191         intel_pmu_lbr_enable_all(pmi);
2192         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2193                intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2194
2195         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2196                 struct perf_event *event =
2197                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2198
2199                 if (WARN_ON_ONCE(!event))
2200                         return;
2201
2202                 intel_pmu_enable_bts(event->hw.config);
2203         }
2204 }
2205
2206 static void intel_pmu_enable_all(int added)
2207 {
2208         intel_pmu_pebs_enable_all();
2209         __intel_pmu_enable_all(added, false);
2210 }
2211
2212 static noinline int
2213 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2214                                   unsigned int cnt, unsigned long flags)
2215 {
2216         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2217
2218         intel_pmu_lbr_read();
2219         cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2220
2221         memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2222         intel_pmu_enable_all(0);
2223         local_irq_restore(flags);
2224         return cnt;
2225 }
2226
2227 static int
2228 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2229 {
2230         unsigned long flags;
2231
2232         /* must not have branches... */
2233         local_irq_save(flags);
2234         __intel_pmu_disable_all(false); /* we don't care about BTS */
2235         __intel_pmu_lbr_disable();
2236         /*            ... until here */
2237         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2238 }
2239
2240 static int
2241 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2242 {
2243         unsigned long flags;
2244
2245         /* must not have branches... */
2246         local_irq_save(flags);
2247         __intel_pmu_disable_all(false); /* we don't care about BTS */
2248         __intel_pmu_arch_lbr_disable();
2249         /*            ... until here */
2250         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2251 }
2252
2253 /*
2254  * Workaround for:
2255  *   Intel Errata AAK100 (model 26)
2256  *   Intel Errata AAP53  (model 30)
2257  *   Intel Errata BD53   (model 44)
2258  *
2259  * The official story:
2260  *   These chips need to be 'reset' when adding counters by programming the
2261  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2262  *   in sequence on the same PMC or on different PMCs.
2263  *
2264  * In practice it appears some of these events do in fact count, and
2265  * we need to program all 4 events.
2266  */
2267 static void intel_pmu_nhm_workaround(void)
2268 {
2269         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2270         static const unsigned long nhm_magic[4] = {
2271                 0x4300B5,
2272                 0x4300D2,
2273                 0x4300B1,
2274                 0x4300B1
2275         };
2276         struct perf_event *event;
2277         int i;
2278
2279         /*
2280          * The Errata requires below steps:
2281          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2282          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2283          *    the corresponding PMCx;
2284          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2285          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2286          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2287          */
2288
2289         /*
2290          * The real steps we choose are a little different from above.
2291          * A) To reduce MSR operations, we don't run step 1) as they
2292          *    are already cleared before this function is called;
2293          * B) Call x86_perf_event_update to save PMCx before configuring
2294          *    PERFEVTSELx with magic number;
2295          * C) With step 5), we do clear only when the PERFEVTSELx is
2296          *    not used currently.
2297          * D) Call x86_perf_event_set_period to restore PMCx;
2298          */
2299
2300         /* We always operate 4 pairs of PERF Counters */
2301         for (i = 0; i < 4; i++) {
2302                 event = cpuc->events[i];
2303                 if (event)
2304                         x86_perf_event_update(event);
2305         }
2306
2307         for (i = 0; i < 4; i++) {
2308                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2309                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2310         }
2311
2312         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2313         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2314
2315         for (i = 0; i < 4; i++) {
2316                 event = cpuc->events[i];
2317
2318                 if (event) {
2319                         x86_perf_event_set_period(event);
2320                         __x86_pmu_enable_event(&event->hw,
2321                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2322                 } else
2323                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2324         }
2325 }
2326
2327 static void intel_pmu_nhm_enable_all(int added)
2328 {
2329         if (added)
2330                 intel_pmu_nhm_workaround();
2331         intel_pmu_enable_all(added);
2332 }
2333
2334 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2335 {
2336         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2337
2338         if (cpuc->tfa_shadow != val) {
2339                 cpuc->tfa_shadow = val;
2340                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2341         }
2342 }
2343
2344 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2345 {
2346         /*
2347          * We're going to use PMC3, make sure TFA is set before we touch it.
2348          */
2349         if (cntr == 3)
2350                 intel_set_tfa(cpuc, true);
2351 }
2352
2353 static void intel_tfa_pmu_enable_all(int added)
2354 {
2355         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2356
2357         /*
2358          * If we find PMC3 is no longer used when we enable the PMU, we can
2359          * clear TFA.
2360          */
2361         if (!test_bit(3, cpuc->active_mask))
2362                 intel_set_tfa(cpuc, false);
2363
2364         intel_pmu_enable_all(added);
2365 }
2366
2367 static inline u64 intel_pmu_get_status(void)
2368 {
2369         u64 status;
2370
2371         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2372
2373         return status;
2374 }
2375
2376 static inline void intel_pmu_ack_status(u64 ack)
2377 {
2378         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2379 }
2380
2381 static inline bool event_is_checkpointed(struct perf_event *event)
2382 {
2383         return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2384 }
2385
2386 static inline void intel_set_masks(struct perf_event *event, int idx)
2387 {
2388         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2389
2390         if (event->attr.exclude_host)
2391                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2392         if (event->attr.exclude_guest)
2393                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2394         if (event_is_checkpointed(event))
2395                 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2396 }
2397
2398 static inline void intel_clear_masks(struct perf_event *event, int idx)
2399 {
2400         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2401
2402         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2403         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2404         __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2405 }
2406
2407 static void intel_pmu_disable_fixed(struct perf_event *event)
2408 {
2409         struct hw_perf_event *hwc = &event->hw;
2410         u64 ctrl_val, mask;
2411         int idx = hwc->idx;
2412
2413         if (is_topdown_idx(idx)) {
2414                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2415
2416                 /*
2417                  * When there are other active TopDown events,
2418                  * don't disable the fixed counter 3.
2419                  */
2420                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2421                         return;
2422                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2423         }
2424
2425         intel_clear_masks(event, idx);
2426
2427         mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2428         rdmsrl(hwc->config_base, ctrl_val);
2429         ctrl_val &= ~mask;
2430         wrmsrl(hwc->config_base, ctrl_val);
2431 }
2432
2433 static void intel_pmu_disable_event(struct perf_event *event)
2434 {
2435         struct hw_perf_event *hwc = &event->hw;
2436         int idx = hwc->idx;
2437
2438         switch (idx) {
2439         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2440                 intel_clear_masks(event, idx);
2441                 x86_pmu_disable_event(event);
2442                 break;
2443         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2444         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2445                 intel_pmu_disable_fixed(event);
2446                 break;
2447         case INTEL_PMC_IDX_FIXED_BTS:
2448                 intel_pmu_disable_bts();
2449                 intel_pmu_drain_bts_buffer();
2450                 return;
2451         case INTEL_PMC_IDX_FIXED_VLBR:
2452                 intel_clear_masks(event, idx);
2453                 break;
2454         default:
2455                 intel_clear_masks(event, idx);
2456                 pr_warn("Failed to disable the event with invalid index %d\n",
2457                         idx);
2458                 return;
2459         }
2460
2461         /*
2462          * Needs to be called after x86_pmu_disable_event,
2463          * so we don't trigger the event without PEBS bit set.
2464          */
2465         if (unlikely(event->attr.precise_ip))
2466                 intel_pmu_pebs_disable(event);
2467 }
2468
2469 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2470 {
2471         if (is_pebs_pt(event))
2472                 perf_report_aux_output_id(event, idx);
2473 }
2474
2475 static void intel_pmu_del_event(struct perf_event *event)
2476 {
2477         if (needs_branch_stack(event))
2478                 intel_pmu_lbr_del(event);
2479         if (event->attr.precise_ip)
2480                 intel_pmu_pebs_del(event);
2481 }
2482
2483 static int icl_set_topdown_event_period(struct perf_event *event)
2484 {
2485         struct hw_perf_event *hwc = &event->hw;
2486         s64 left = local64_read(&hwc->period_left);
2487
2488         /*
2489          * The values in PERF_METRICS MSR are derived from fixed counter 3.
2490          * Software should start both registers, PERF_METRICS and fixed
2491          * counter 3, from zero.
2492          * Clear PERF_METRICS and Fixed counter 3 in initialization.
2493          * After that, both MSRs will be cleared for each read.
2494          * Don't need to clear them again.
2495          */
2496         if (left == x86_pmu.max_period) {
2497                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2498                 wrmsrl(MSR_PERF_METRICS, 0);
2499                 hwc->saved_slots = 0;
2500                 hwc->saved_metric = 0;
2501         }
2502
2503         if ((hwc->saved_slots) && is_slots_event(event)) {
2504                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2505                 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2506         }
2507
2508         perf_event_update_userpage(event);
2509
2510         return 0;
2511 }
2512
2513 static int adl_set_topdown_event_period(struct perf_event *event)
2514 {
2515         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2516
2517         if (pmu->cpu_type != hybrid_big)
2518                 return 0;
2519
2520         return icl_set_topdown_event_period(event);
2521 }
2522
2523 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2524 {
2525         u32 val;
2526
2527         /*
2528          * The metric is reported as an 8bit integer fraction
2529          * summing up to 0xff.
2530          * slots-in-metric = (Metric / 0xff) * slots
2531          */
2532         val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2533         return  mul_u64_u32_div(slots, val, 0xff);
2534 }
2535
2536 static u64 icl_get_topdown_value(struct perf_event *event,
2537                                        u64 slots, u64 metrics)
2538 {
2539         int idx = event->hw.idx;
2540         u64 delta;
2541
2542         if (is_metric_idx(idx))
2543                 delta = icl_get_metrics_event_value(metrics, slots, idx);
2544         else
2545                 delta = slots;
2546
2547         return delta;
2548 }
2549
2550 static void __icl_update_topdown_event(struct perf_event *event,
2551                                        u64 slots, u64 metrics,
2552                                        u64 last_slots, u64 last_metrics)
2553 {
2554         u64 delta, last = 0;
2555
2556         delta = icl_get_topdown_value(event, slots, metrics);
2557         if (last_slots)
2558                 last = icl_get_topdown_value(event, last_slots, last_metrics);
2559
2560         /*
2561          * The 8bit integer fraction of metric may be not accurate,
2562          * especially when the changes is very small.
2563          * For example, if only a few bad_spec happens, the fraction
2564          * may be reduced from 1 to 0. If so, the bad_spec event value
2565          * will be 0 which is definitely less than the last value.
2566          * Avoid update event->count for this case.
2567          */
2568         if (delta > last) {
2569                 delta -= last;
2570                 local64_add(delta, &event->count);
2571         }
2572 }
2573
2574 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2575                                       u64 metrics, int metric_end)
2576 {
2577         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2578         struct perf_event *other;
2579         int idx;
2580
2581         event->hw.saved_slots = slots;
2582         event->hw.saved_metric = metrics;
2583
2584         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2585                 if (!is_topdown_idx(idx))
2586                         continue;
2587                 other = cpuc->events[idx];
2588                 other->hw.saved_slots = slots;
2589                 other->hw.saved_metric = metrics;
2590         }
2591 }
2592
2593 /*
2594  * Update all active Topdown events.
2595  *
2596  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2597  * modify by a NMI. PMU has to be disabled before calling this function.
2598  */
2599
2600 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2601 {
2602         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2603         struct perf_event *other;
2604         u64 slots, metrics;
2605         bool reset = true;
2606         int idx;
2607
2608         /* read Fixed counter 3 */
2609         rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2610         if (!slots)
2611                 return 0;
2612
2613         /* read PERF_METRICS */
2614         rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2615
2616         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2617                 if (!is_topdown_idx(idx))
2618                         continue;
2619                 other = cpuc->events[idx];
2620                 __icl_update_topdown_event(other, slots, metrics,
2621                                            event ? event->hw.saved_slots : 0,
2622                                            event ? event->hw.saved_metric : 0);
2623         }
2624
2625         /*
2626          * Check and update this event, which may have been cleared
2627          * in active_mask e.g. x86_pmu_stop()
2628          */
2629         if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2630                 __icl_update_topdown_event(event, slots, metrics,
2631                                            event->hw.saved_slots,
2632                                            event->hw.saved_metric);
2633
2634                 /*
2635                  * In x86_pmu_stop(), the event is cleared in active_mask first,
2636                  * then drain the delta, which indicates context switch for
2637                  * counting.
2638                  * Save metric and slots for context switch.
2639                  * Don't need to reset the PERF_METRICS and Fixed counter 3.
2640                  * Because the values will be restored in next schedule in.
2641                  */
2642                 update_saved_topdown_regs(event, slots, metrics, metric_end);
2643                 reset = false;
2644         }
2645
2646         if (reset) {
2647                 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2648                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2649                 wrmsrl(MSR_PERF_METRICS, 0);
2650                 if (event)
2651                         update_saved_topdown_regs(event, 0, 0, metric_end);
2652         }
2653
2654         return slots;
2655 }
2656
2657 static u64 icl_update_topdown_event(struct perf_event *event)
2658 {
2659         return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2660                                                  x86_pmu.num_topdown_events - 1);
2661 }
2662
2663 static u64 adl_update_topdown_event(struct perf_event *event)
2664 {
2665         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2666
2667         if (pmu->cpu_type != hybrid_big)
2668                 return 0;
2669
2670         return icl_update_topdown_event(event);
2671 }
2672
2673
2674 static void intel_pmu_read_topdown_event(struct perf_event *event)
2675 {
2676         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2677
2678         /* Only need to call update_topdown_event() once for group read. */
2679         if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2680             !is_slots_event(event))
2681                 return;
2682
2683         perf_pmu_disable(event->pmu);
2684         x86_pmu.update_topdown_event(event);
2685         perf_pmu_enable(event->pmu);
2686 }
2687
2688 static void intel_pmu_read_event(struct perf_event *event)
2689 {
2690         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2691                 intel_pmu_auto_reload_read(event);
2692         else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2693                 intel_pmu_read_topdown_event(event);
2694         else
2695                 x86_perf_event_update(event);
2696 }
2697
2698 static void intel_pmu_enable_fixed(struct perf_event *event)
2699 {
2700         struct hw_perf_event *hwc = &event->hw;
2701         u64 ctrl_val, mask, bits = 0;
2702         int idx = hwc->idx;
2703
2704         if (is_topdown_idx(idx)) {
2705                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2706                 /*
2707                  * When there are other active TopDown events,
2708                  * don't enable the fixed counter 3 again.
2709                  */
2710                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2711                         return;
2712
2713                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2714         }
2715
2716         intel_set_masks(event, idx);
2717
2718         /*
2719          * Enable IRQ generation (0x8), if not PEBS,
2720          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2721          * if requested:
2722          */
2723         if (!event->attr.precise_ip)
2724                 bits |= 0x8;
2725         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2726                 bits |= 0x2;
2727         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2728                 bits |= 0x1;
2729
2730         /*
2731          * ANY bit is supported in v3 and up
2732          */
2733         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2734                 bits |= 0x4;
2735
2736         idx -= INTEL_PMC_IDX_FIXED;
2737         bits <<= (idx * 4);
2738         mask = 0xfULL << (idx * 4);
2739
2740         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2741                 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2742                 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2743         }
2744
2745         rdmsrl(hwc->config_base, ctrl_val);
2746         ctrl_val &= ~mask;
2747         ctrl_val |= bits;
2748         wrmsrl(hwc->config_base, ctrl_val);
2749 }
2750
2751 static void intel_pmu_enable_event(struct perf_event *event)
2752 {
2753         struct hw_perf_event *hwc = &event->hw;
2754         int idx = hwc->idx;
2755
2756         if (unlikely(event->attr.precise_ip))
2757                 intel_pmu_pebs_enable(event);
2758
2759         switch (idx) {
2760         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2761                 intel_set_masks(event, idx);
2762                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2763                 break;
2764         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2765         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2766                 intel_pmu_enable_fixed(event);
2767                 break;
2768         case INTEL_PMC_IDX_FIXED_BTS:
2769                 if (!__this_cpu_read(cpu_hw_events.enabled))
2770                         return;
2771                 intel_pmu_enable_bts(hwc->config);
2772                 break;
2773         case INTEL_PMC_IDX_FIXED_VLBR:
2774                 intel_set_masks(event, idx);
2775                 break;
2776         default:
2777                 pr_warn("Failed to enable the event with invalid index %d\n",
2778                         idx);
2779         }
2780 }
2781
2782 static void intel_pmu_add_event(struct perf_event *event)
2783 {
2784         if (event->attr.precise_ip)
2785                 intel_pmu_pebs_add(event);
2786         if (needs_branch_stack(event))
2787                 intel_pmu_lbr_add(event);
2788 }
2789
2790 /*
2791  * Save and restart an expired event. Called by NMI contexts,
2792  * so it has to be careful about preempting normal event ops:
2793  */
2794 int intel_pmu_save_and_restart(struct perf_event *event)
2795 {
2796         x86_perf_event_update(event);
2797         /*
2798          * For a checkpointed counter always reset back to 0.  This
2799          * avoids a situation where the counter overflows, aborts the
2800          * transaction and is then set back to shortly before the
2801          * overflow, and overflows and aborts again.
2802          */
2803         if (unlikely(event_is_checkpointed(event))) {
2804                 /* No race with NMIs because the counter should not be armed */
2805                 wrmsrl(event->hw.event_base, 0);
2806                 local64_set(&event->hw.prev_count, 0);
2807         }
2808         return x86_perf_event_set_period(event);
2809 }
2810
2811 static void intel_pmu_reset(void)
2812 {
2813         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2814         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2815         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2816         int num_counters = hybrid(cpuc->pmu, num_counters);
2817         unsigned long flags;
2818         int idx;
2819
2820         if (!num_counters)
2821                 return;
2822
2823         local_irq_save(flags);
2824
2825         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2826
2827         for (idx = 0; idx < num_counters; idx++) {
2828                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2829                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2830         }
2831         for (idx = 0; idx < num_counters_fixed; idx++) {
2832                 if (fixed_counter_disabled(idx, cpuc->pmu))
2833                         continue;
2834                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2835         }
2836
2837         if (ds)
2838                 ds->bts_index = ds->bts_buffer_base;
2839
2840         /* Ack all overflows and disable fixed counters */
2841         if (x86_pmu.version >= 2) {
2842                 intel_pmu_ack_status(intel_pmu_get_status());
2843                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2844         }
2845
2846         /* Reset LBRs and LBR freezing */
2847         if (x86_pmu.lbr_nr) {
2848                 update_debugctlmsr(get_debugctlmsr() &
2849                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2850         }
2851
2852         local_irq_restore(flags);
2853 }
2854
2855 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2856 {
2857         struct perf_sample_data data;
2858         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2859         int bit;
2860         int handled = 0;
2861         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2862
2863         inc_irq_stat(apic_perf_irqs);
2864
2865         /*
2866          * Ignore a range of extra bits in status that do not indicate
2867          * overflow by themselves.
2868          */
2869         status &= ~(GLOBAL_STATUS_COND_CHG |
2870                     GLOBAL_STATUS_ASIF |
2871                     GLOBAL_STATUS_LBRS_FROZEN);
2872         if (!status)
2873                 return 0;
2874         /*
2875          * In case multiple PEBS events are sampled at the same time,
2876          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2877          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2878          * having their bits set in the status register. This is a sign
2879          * that there was at least one PEBS record pending at the time
2880          * of the PMU interrupt. PEBS counters must only be processed
2881          * via the drain_pebs() calls and not via the regular sample
2882          * processing loop coming after that the function, otherwise
2883          * phony regular samples may be generated in the sampling buffer
2884          * not marked with the EXACT tag. Another possibility is to have
2885          * one PEBS event and at least one non-PEBS event which overflows
2886          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2887          * not be set, yet the overflow status bit for the PEBS counter will
2888          * be on Skylake.
2889          *
2890          * To avoid this problem, we systematically ignore the PEBS-enabled
2891          * counters from the GLOBAL_STATUS mask and we always process PEBS
2892          * events via drain_pebs().
2893          */
2894         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2895                 status &= ~cpuc->pebs_enabled;
2896         else
2897                 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2898
2899         /*
2900          * PEBS overflow sets bit 62 in the global status register
2901          */
2902         if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2903                 u64 pebs_enabled = cpuc->pebs_enabled;
2904
2905                 handled++;
2906                 x86_pmu.drain_pebs(regs, &data);
2907                 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2908
2909                 /*
2910                  * PMI throttle may be triggered, which stops the PEBS event.
2911                  * Although cpuc->pebs_enabled is updated accordingly, the
2912                  * MSR_IA32_PEBS_ENABLE is not updated. Because the
2913                  * cpuc->enabled has been forced to 0 in PMI.
2914                  * Update the MSR if pebs_enabled is changed.
2915                  */
2916                 if (pebs_enabled != cpuc->pebs_enabled)
2917                         wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2918         }
2919
2920         /*
2921          * Intel PT
2922          */
2923         if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2924                 handled++;
2925                 if (!perf_guest_handle_intel_pt_intr())
2926                         intel_pt_interrupt();
2927         }
2928
2929         /*
2930          * Intel Perf metrics
2931          */
2932         if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2933                 handled++;
2934                 if (x86_pmu.update_topdown_event)
2935                         x86_pmu.update_topdown_event(NULL);
2936         }
2937
2938         /*
2939          * Checkpointed counters can lead to 'spurious' PMIs because the
2940          * rollback caused by the PMI will have cleared the overflow status
2941          * bit. Therefore always force probe these counters.
2942          */
2943         status |= cpuc->intel_cp_status;
2944
2945         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2946                 struct perf_event *event = cpuc->events[bit];
2947
2948                 handled++;
2949
2950                 if (!test_bit(bit, cpuc->active_mask))
2951                         continue;
2952
2953                 if (!intel_pmu_save_and_restart(event))
2954                         continue;
2955
2956                 perf_sample_data_init(&data, 0, event->hw.last_period);
2957
2958                 if (has_branch_stack(event))
2959                         data.br_stack = &cpuc->lbr_stack;
2960
2961                 if (perf_event_overflow(event, &data, regs))
2962                         x86_pmu_stop(event, 0);
2963         }
2964
2965         return handled;
2966 }
2967
2968 /*
2969  * This handler is triggered by the local APIC, so the APIC IRQ handling
2970  * rules apply:
2971  */
2972 static int intel_pmu_handle_irq(struct pt_regs *regs)
2973 {
2974         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2975         bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
2976         bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
2977         int loops;
2978         u64 status;
2979         int handled;
2980         int pmu_enabled;
2981
2982         /*
2983          * Save the PMU state.
2984          * It needs to be restored when leaving the handler.
2985          */
2986         pmu_enabled = cpuc->enabled;
2987         /*
2988          * In general, the early ACK is only applied for old platforms.
2989          * For the big core starts from Haswell, the late ACK should be
2990          * applied.
2991          * For the small core after Tremont, we have to do the ACK right
2992          * before re-enabling counters, which is in the middle of the
2993          * NMI handler.
2994          */
2995         if (!late_ack && !mid_ack)
2996                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2997         intel_bts_disable_local();
2998         cpuc->enabled = 0;
2999         __intel_pmu_disable_all(true);
3000         handled = intel_pmu_drain_bts_buffer();
3001         handled += intel_bts_interrupt();
3002         status = intel_pmu_get_status();
3003         if (!status)
3004                 goto done;
3005
3006         loops = 0;
3007 again:
3008         intel_pmu_lbr_read();
3009         intel_pmu_ack_status(status);
3010         if (++loops > 100) {
3011                 static bool warned;
3012
3013                 if (!warned) {
3014                         WARN(1, "perfevents: irq loop stuck!\n");
3015                         perf_event_print_debug();
3016                         warned = true;
3017                 }
3018                 intel_pmu_reset();
3019                 goto done;
3020         }
3021
3022         handled += handle_pmi_common(regs, status);
3023
3024         /*
3025          * Repeat if there is more work to be done:
3026          */
3027         status = intel_pmu_get_status();
3028         if (status)
3029                 goto again;
3030
3031 done:
3032         if (mid_ack)
3033                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3034         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3035         cpuc->enabled = pmu_enabled;
3036         if (pmu_enabled)
3037                 __intel_pmu_enable_all(0, true);
3038         intel_bts_enable_local();
3039
3040         /*
3041          * Only unmask the NMI after the overflow counters
3042          * have been reset. This avoids spurious NMIs on
3043          * Haswell CPUs.
3044          */
3045         if (late_ack)
3046                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3047         return handled;
3048 }
3049
3050 static struct event_constraint *
3051 intel_bts_constraints(struct perf_event *event)
3052 {
3053         if (unlikely(intel_pmu_has_bts(event)))
3054                 return &bts_constraint;
3055
3056         return NULL;
3057 }
3058
3059 /*
3060  * Note: matches a fake event, like Fixed2.
3061  */
3062 static struct event_constraint *
3063 intel_vlbr_constraints(struct perf_event *event)
3064 {
3065         struct event_constraint *c = &vlbr_constraint;
3066
3067         if (unlikely(constraint_match(c, event->hw.config))) {
3068                 event->hw.flags |= c->flags;
3069                 return c;
3070         }
3071
3072         return NULL;
3073 }
3074
3075 static int intel_alt_er(struct cpu_hw_events *cpuc,
3076                         int idx, u64 config)
3077 {
3078         struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3079         int alt_idx = idx;
3080
3081         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3082                 return idx;
3083
3084         if (idx == EXTRA_REG_RSP_0)
3085                 alt_idx = EXTRA_REG_RSP_1;
3086
3087         if (idx == EXTRA_REG_RSP_1)
3088                 alt_idx = EXTRA_REG_RSP_0;
3089
3090         if (config & ~extra_regs[alt_idx].valid_mask)
3091                 return idx;
3092
3093         return alt_idx;
3094 }
3095
3096 static void intel_fixup_er(struct perf_event *event, int idx)
3097 {
3098         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3099         event->hw.extra_reg.idx = idx;
3100
3101         if (idx == EXTRA_REG_RSP_0) {
3102                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3103                 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3104                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3105         } else if (idx == EXTRA_REG_RSP_1) {
3106                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3107                 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3108                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3109         }
3110 }
3111
3112 /*
3113  * manage allocation of shared extra msr for certain events
3114  *
3115  * sharing can be:
3116  * per-cpu: to be shared between the various events on a single PMU
3117  * per-core: per-cpu + shared by HT threads
3118  */
3119 static struct event_constraint *
3120 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3121                                    struct perf_event *event,
3122                                    struct hw_perf_event_extra *reg)
3123 {
3124         struct event_constraint *c = &emptyconstraint;
3125         struct er_account *era;
3126         unsigned long flags;
3127         int idx = reg->idx;
3128
3129         /*
3130          * reg->alloc can be set due to existing state, so for fake cpuc we
3131          * need to ignore this, otherwise we might fail to allocate proper fake
3132          * state for this extra reg constraint. Also see the comment below.
3133          */
3134         if (reg->alloc && !cpuc->is_fake)
3135                 return NULL; /* call x86_get_event_constraint() */
3136
3137 again:
3138         era = &cpuc->shared_regs->regs[idx];
3139         /*
3140          * we use spin_lock_irqsave() to avoid lockdep issues when
3141          * passing a fake cpuc
3142          */
3143         raw_spin_lock_irqsave(&era->lock, flags);
3144
3145         if (!atomic_read(&era->ref) || era->config == reg->config) {
3146
3147                 /*
3148                  * If its a fake cpuc -- as per validate_{group,event}() we
3149                  * shouldn't touch event state and we can avoid doing so
3150                  * since both will only call get_event_constraints() once
3151                  * on each event, this avoids the need for reg->alloc.
3152                  *
3153                  * Not doing the ER fixup will only result in era->reg being
3154                  * wrong, but since we won't actually try and program hardware
3155                  * this isn't a problem either.
3156                  */
3157                 if (!cpuc->is_fake) {
3158                         if (idx != reg->idx)
3159                                 intel_fixup_er(event, idx);
3160
3161                         /*
3162                          * x86_schedule_events() can call get_event_constraints()
3163                          * multiple times on events in the case of incremental
3164                          * scheduling(). reg->alloc ensures we only do the ER
3165                          * allocation once.
3166                          */
3167                         reg->alloc = 1;
3168                 }
3169
3170                 /* lock in msr value */
3171                 era->config = reg->config;
3172                 era->reg = reg->reg;
3173
3174                 /* one more user */
3175                 atomic_inc(&era->ref);
3176
3177                 /*
3178                  * need to call x86_get_event_constraint()
3179                  * to check if associated event has constraints
3180                  */
3181                 c = NULL;
3182         } else {
3183                 idx = intel_alt_er(cpuc, idx, reg->config);
3184                 if (idx != reg->idx) {
3185                         raw_spin_unlock_irqrestore(&era->lock, flags);
3186                         goto again;
3187                 }
3188         }
3189         raw_spin_unlock_irqrestore(&era->lock, flags);
3190
3191         return c;
3192 }
3193
3194 static void
3195 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3196                                    struct hw_perf_event_extra *reg)
3197 {
3198         struct er_account *era;
3199
3200         /*
3201          * Only put constraint if extra reg was actually allocated. Also takes
3202          * care of event which do not use an extra shared reg.
3203          *
3204          * Also, if this is a fake cpuc we shouldn't touch any event state
3205          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3206          * either since it'll be thrown out.
3207          */
3208         if (!reg->alloc || cpuc->is_fake)
3209                 return;
3210
3211         era = &cpuc->shared_regs->regs[reg->idx];
3212
3213         /* one fewer user */
3214         atomic_dec(&era->ref);
3215
3216         /* allocate again next time */
3217         reg->alloc = 0;
3218 }
3219
3220 static struct event_constraint *
3221 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3222                               struct perf_event *event)
3223 {
3224         struct event_constraint *c = NULL, *d;
3225         struct hw_perf_event_extra *xreg, *breg;
3226
3227         xreg = &event->hw.extra_reg;
3228         if (xreg->idx != EXTRA_REG_NONE) {
3229                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3230                 if (c == &emptyconstraint)
3231                         return c;
3232         }
3233         breg = &event->hw.branch_reg;
3234         if (breg->idx != EXTRA_REG_NONE) {
3235                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3236                 if (d == &emptyconstraint) {
3237                         __intel_shared_reg_put_constraints(cpuc, xreg);
3238                         c = d;
3239                 }
3240         }
3241         return c;
3242 }
3243
3244 struct event_constraint *
3245 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3246                           struct perf_event *event)
3247 {
3248         struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3249         struct event_constraint *c;
3250
3251         if (event_constraints) {
3252                 for_each_event_constraint(c, event_constraints) {
3253                         if (constraint_match(c, event->hw.config)) {
3254                                 event->hw.flags |= c->flags;
3255                                 return c;
3256                         }
3257                 }
3258         }
3259
3260         return &hybrid_var(cpuc->pmu, unconstrained);
3261 }
3262
3263 static struct event_constraint *
3264 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3265                             struct perf_event *event)
3266 {
3267         struct event_constraint *c;
3268
3269         c = intel_vlbr_constraints(event);
3270         if (c)
3271                 return c;
3272
3273         c = intel_bts_constraints(event);
3274         if (c)
3275                 return c;
3276
3277         c = intel_shared_regs_constraints(cpuc, event);
3278         if (c)
3279                 return c;
3280
3281         c = intel_pebs_constraints(event);
3282         if (c)
3283                 return c;
3284
3285         return x86_get_event_constraints(cpuc, idx, event);
3286 }
3287
3288 static void
3289 intel_start_scheduling(struct cpu_hw_events *cpuc)
3290 {
3291         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3292         struct intel_excl_states *xl;
3293         int tid = cpuc->excl_thread_id;
3294
3295         /*
3296          * nothing needed if in group validation mode
3297          */
3298         if (cpuc->is_fake || !is_ht_workaround_enabled())
3299                 return;
3300
3301         /*
3302          * no exclusion needed
3303          */
3304         if (WARN_ON_ONCE(!excl_cntrs))
3305                 return;
3306
3307         xl = &excl_cntrs->states[tid];
3308
3309         xl->sched_started = true;
3310         /*
3311          * lock shared state until we are done scheduling
3312          * in stop_event_scheduling()
3313          * makes scheduling appear as a transaction
3314          */
3315         raw_spin_lock(&excl_cntrs->lock);
3316 }
3317
3318 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3319 {
3320         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3321         struct event_constraint *c = cpuc->event_constraint[idx];
3322         struct intel_excl_states *xl;
3323         int tid = cpuc->excl_thread_id;
3324
3325         if (cpuc->is_fake || !is_ht_workaround_enabled())
3326                 return;
3327
3328         if (WARN_ON_ONCE(!excl_cntrs))
3329                 return;
3330
3331         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3332                 return;
3333
3334         xl = &excl_cntrs->states[tid];
3335
3336         lockdep_assert_held(&excl_cntrs->lock);
3337
3338         if (c->flags & PERF_X86_EVENT_EXCL)
3339                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3340         else
3341                 xl->state[cntr] = INTEL_EXCL_SHARED;
3342 }
3343
3344 static void
3345 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3346 {
3347         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3348         struct intel_excl_states *xl;
3349         int tid = cpuc->excl_thread_id;
3350
3351         /*
3352          * nothing needed if in group validation mode
3353          */
3354         if (cpuc->is_fake || !is_ht_workaround_enabled())
3355                 return;
3356         /*
3357          * no exclusion needed
3358          */
3359         if (WARN_ON_ONCE(!excl_cntrs))
3360                 return;
3361
3362         xl = &excl_cntrs->states[tid];
3363
3364         xl->sched_started = false;
3365         /*
3366          * release shared state lock (acquired in intel_start_scheduling())
3367          */
3368         raw_spin_unlock(&excl_cntrs->lock);
3369 }
3370
3371 static struct event_constraint *
3372 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3373 {
3374         WARN_ON_ONCE(!cpuc->constraint_list);
3375
3376         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3377                 struct event_constraint *cx;
3378
3379                 /*
3380                  * grab pre-allocated constraint entry
3381                  */
3382                 cx = &cpuc->constraint_list[idx];
3383
3384                 /*
3385                  * initialize dynamic constraint
3386                  * with static constraint
3387                  */
3388                 *cx = *c;
3389
3390                 /*
3391                  * mark constraint as dynamic
3392                  */
3393                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3394                 c = cx;
3395         }
3396
3397         return c;
3398 }
3399
3400 static struct event_constraint *
3401 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3402                            int idx, struct event_constraint *c)
3403 {
3404         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3405         struct intel_excl_states *xlo;
3406         int tid = cpuc->excl_thread_id;
3407         int is_excl, i, w;
3408
3409         /*
3410          * validating a group does not require
3411          * enforcing cross-thread  exclusion
3412          */
3413         if (cpuc->is_fake || !is_ht_workaround_enabled())
3414                 return c;
3415
3416         /*
3417          * no exclusion needed
3418          */
3419         if (WARN_ON_ONCE(!excl_cntrs))
3420                 return c;
3421
3422         /*
3423          * because we modify the constraint, we need
3424          * to make a copy. Static constraints come
3425          * from static const tables.
3426          *
3427          * only needed when constraint has not yet
3428          * been cloned (marked dynamic)
3429          */
3430         c = dyn_constraint(cpuc, c, idx);
3431
3432         /*
3433          * From here on, the constraint is dynamic.
3434          * Either it was just allocated above, or it
3435          * was allocated during a earlier invocation
3436          * of this function
3437          */
3438
3439         /*
3440          * state of sibling HT
3441          */
3442         xlo = &excl_cntrs->states[tid ^ 1];
3443
3444         /*
3445          * event requires exclusive counter access
3446          * across HT threads
3447          */
3448         is_excl = c->flags & PERF_X86_EVENT_EXCL;
3449         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3450                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3451                 if (!cpuc->n_excl++)
3452                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3453         }
3454
3455         /*
3456          * Modify static constraint with current dynamic
3457          * state of thread
3458          *
3459          * EXCLUSIVE: sibling counter measuring exclusive event
3460          * SHARED   : sibling counter measuring non-exclusive event
3461          * UNUSED   : sibling counter unused
3462          */
3463         w = c->weight;
3464         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3465                 /*
3466                  * exclusive event in sibling counter
3467                  * our corresponding counter cannot be used
3468                  * regardless of our event
3469                  */
3470                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3471                         __clear_bit(i, c->idxmsk);
3472                         w--;
3473                         continue;
3474                 }
3475                 /*
3476                  * if measuring an exclusive event, sibling
3477                  * measuring non-exclusive, then counter cannot
3478                  * be used
3479                  */
3480                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3481                         __clear_bit(i, c->idxmsk);
3482                         w--;
3483                         continue;
3484                 }
3485         }
3486
3487         /*
3488          * if we return an empty mask, then switch
3489          * back to static empty constraint to avoid
3490          * the cost of freeing later on
3491          */
3492         if (!w)
3493                 c = &emptyconstraint;
3494
3495         c->weight = w;
3496
3497         return c;
3498 }
3499
3500 static struct event_constraint *
3501 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3502                             struct perf_event *event)
3503 {
3504         struct event_constraint *c1, *c2;
3505
3506         c1 = cpuc->event_constraint[idx];
3507
3508         /*
3509          * first time only
3510          * - static constraint: no change across incremental scheduling calls
3511          * - dynamic constraint: handled by intel_get_excl_constraints()
3512          */
3513         c2 = __intel_get_event_constraints(cpuc, idx, event);
3514         if (c1) {
3515                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3516                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3517                 c1->weight = c2->weight;
3518                 c2 = c1;
3519         }
3520
3521         if (cpuc->excl_cntrs)
3522                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3523
3524         return c2;
3525 }
3526
3527 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3528                 struct perf_event *event)
3529 {
3530         struct hw_perf_event *hwc = &event->hw;
3531         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3532         int tid = cpuc->excl_thread_id;
3533         struct intel_excl_states *xl;
3534
3535         /*
3536          * nothing needed if in group validation mode
3537          */
3538         if (cpuc->is_fake)
3539                 return;
3540
3541         if (WARN_ON_ONCE(!excl_cntrs))
3542                 return;
3543
3544         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3545                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3546                 if (!--cpuc->n_excl)
3547                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3548         }
3549
3550         /*
3551          * If event was actually assigned, then mark the counter state as
3552          * unused now.
3553          */
3554         if (hwc->idx >= 0) {
3555                 xl = &excl_cntrs->states[tid];
3556
3557                 /*
3558                  * put_constraint may be called from x86_schedule_events()
3559                  * which already has the lock held so here make locking
3560                  * conditional.
3561                  */
3562                 if (!xl->sched_started)
3563                         raw_spin_lock(&excl_cntrs->lock);
3564
3565                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3566
3567                 if (!xl->sched_started)
3568                         raw_spin_unlock(&excl_cntrs->lock);
3569         }
3570 }
3571
3572 static void
3573 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3574                                         struct perf_event *event)
3575 {
3576         struct hw_perf_event_extra *reg;
3577
3578         reg = &event->hw.extra_reg;
3579         if (reg->idx != EXTRA_REG_NONE)
3580                 __intel_shared_reg_put_constraints(cpuc, reg);
3581
3582         reg = &event->hw.branch_reg;
3583         if (reg->idx != EXTRA_REG_NONE)
3584                 __intel_shared_reg_put_constraints(cpuc, reg);
3585 }
3586
3587 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3588                                         struct perf_event *event)
3589 {
3590         intel_put_shared_regs_event_constraints(cpuc, event);
3591
3592         /*
3593          * is PMU has exclusive counter restrictions, then
3594          * all events are subject to and must call the
3595          * put_excl_constraints() routine
3596          */
3597         if (cpuc->excl_cntrs)
3598                 intel_put_excl_constraints(cpuc, event);
3599 }
3600
3601 static void intel_pebs_aliases_core2(struct perf_event *event)
3602 {
3603         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3604                 /*
3605                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3606                  * (0x003c) so that we can use it with PEBS.
3607                  *
3608                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3609                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3610                  * (0x00c0), which is a PEBS capable event, to get the same
3611                  * count.
3612                  *
3613                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3614                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3615                  * larger than the maximum number of instructions that can be
3616                  * retired per cycle (4) and then inverting the condition, we
3617                  * count all cycles that retire 16 or less instructions, which
3618                  * is every cycle.
3619                  *
3620                  * Thereby we gain a PEBS capable cycle counter.
3621                  */
3622                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3623
3624                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3625                 event->hw.config = alt_config;
3626         }
3627 }
3628
3629 static void intel_pebs_aliases_snb(struct perf_event *event)
3630 {
3631         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3632                 /*
3633                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3634                  * (0x003c) so that we can use it with PEBS.
3635                  *
3636                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3637                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3638                  * (0x01c2), which is a PEBS capable event, to get the same
3639                  * count.
3640                  *
3641                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3642                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3643                  * larger than the maximum number of micro-ops that can be
3644                  * retired per cycle (4) and then inverting the condition, we
3645                  * count all cycles that retire 16 or less micro-ops, which
3646                  * is every cycle.
3647                  *
3648                  * Thereby we gain a PEBS capable cycle counter.
3649                  */
3650                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3651
3652                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3653                 event->hw.config = alt_config;
3654         }
3655 }
3656
3657 static void intel_pebs_aliases_precdist(struct perf_event *event)
3658 {
3659         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3660                 /*
3661                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3662                  * (0x003c) so that we can use it with PEBS.
3663                  *
3664                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3665                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3666                  * (0x01c0), which is a PEBS capable event, to get the same
3667                  * count.
3668                  *
3669                  * The PREC_DIST event has special support to minimize sample
3670                  * shadowing effects. One drawback is that it can be
3671                  * only programmed on counter 1, but that seems like an
3672                  * acceptable trade off.
3673                  */
3674                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3675
3676                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3677                 event->hw.config = alt_config;
3678         }
3679 }
3680
3681 static void intel_pebs_aliases_ivb(struct perf_event *event)
3682 {
3683         if (event->attr.precise_ip < 3)
3684                 return intel_pebs_aliases_snb(event);
3685         return intel_pebs_aliases_precdist(event);
3686 }
3687
3688 static void intel_pebs_aliases_skl(struct perf_event *event)
3689 {
3690         if (event->attr.precise_ip < 3)
3691                 return intel_pebs_aliases_core2(event);
3692         return intel_pebs_aliases_precdist(event);
3693 }
3694
3695 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3696 {
3697         unsigned long flags = x86_pmu.large_pebs_flags;
3698
3699         if (event->attr.use_clockid)
3700                 flags &= ~PERF_SAMPLE_TIME;
3701         if (!event->attr.exclude_kernel)
3702                 flags &= ~PERF_SAMPLE_REGS_USER;
3703         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3704                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3705         return flags;
3706 }
3707
3708 static int intel_pmu_bts_config(struct perf_event *event)
3709 {
3710         struct perf_event_attr *attr = &event->attr;
3711
3712         if (unlikely(intel_pmu_has_bts(event))) {
3713                 /* BTS is not supported by this architecture. */
3714                 if (!x86_pmu.bts_active)
3715                         return -EOPNOTSUPP;
3716
3717                 /* BTS is currently only allowed for user-mode. */
3718                 if (!attr->exclude_kernel)
3719                         return -EOPNOTSUPP;
3720
3721                 /* BTS is not allowed for precise events. */
3722                 if (attr->precise_ip)
3723                         return -EOPNOTSUPP;
3724
3725                 /* disallow bts if conflicting events are present */
3726                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3727                         return -EBUSY;
3728
3729                 event->destroy = hw_perf_lbr_event_destroy;
3730         }
3731
3732         return 0;
3733 }
3734
3735 static int core_pmu_hw_config(struct perf_event *event)
3736 {
3737         int ret = x86_pmu_hw_config(event);
3738
3739         if (ret)
3740                 return ret;
3741
3742         return intel_pmu_bts_config(event);
3743 }
3744
3745 #define INTEL_TD_METRIC_AVAILABLE_MAX   (INTEL_TD_METRIC_RETIRING + \
3746                                          ((x86_pmu.num_topdown_events - 1) << 8))
3747
3748 static bool is_available_metric_event(struct perf_event *event)
3749 {
3750         return is_metric_event(event) &&
3751                 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3752 }
3753
3754 static inline bool is_mem_loads_event(struct perf_event *event)
3755 {
3756         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3757 }
3758
3759 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3760 {
3761         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3762 }
3763
3764 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3765 {
3766         if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3767                 return false;
3768
3769         if (is_hybrid())
3770                 return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3771
3772         return true;
3773 }
3774
3775 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3776 {
3777         union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3778
3779         return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3780 }
3781
3782 static int intel_pmu_hw_config(struct perf_event *event)
3783 {
3784         int ret = x86_pmu_hw_config(event);
3785
3786         if (ret)
3787                 return ret;
3788
3789         ret = intel_pmu_bts_config(event);
3790         if (ret)
3791                 return ret;
3792
3793         if (event->attr.precise_ip) {
3794                 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3795                         return -EINVAL;
3796
3797                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3798                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3799                         if (!(event->attr.sample_type &
3800                               ~intel_pmu_large_pebs_flags(event))) {
3801                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3802                                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3803                         }
3804                 }
3805                 if (x86_pmu.pebs_aliases)
3806                         x86_pmu.pebs_aliases(event);
3807
3808                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3809                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3810         }
3811
3812         if (needs_branch_stack(event)) {
3813                 ret = intel_pmu_setup_lbr_filter(event);
3814                 if (ret)
3815                         return ret;
3816                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3817
3818                 /*
3819                  * BTS is set up earlier in this path, so don't account twice
3820                  */
3821                 if (!unlikely(intel_pmu_has_bts(event))) {
3822                         /* disallow lbr if conflicting events are present */
3823                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3824                                 return -EBUSY;
3825
3826                         event->destroy = hw_perf_lbr_event_destroy;
3827                 }
3828         }
3829
3830         if (event->attr.aux_output) {
3831                 if (!event->attr.precise_ip)
3832                         return -EINVAL;
3833
3834                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3835         }
3836
3837         if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3838             (event->attr.type == PERF_TYPE_HW_CACHE))
3839                 return 0;
3840
3841         /*
3842          * Config Topdown slots and metric events
3843          *
3844          * The slots event on Fixed Counter 3 can support sampling,
3845          * which will be handled normally in x86_perf_event_update().
3846          *
3847          * Metric events don't support sampling and require being paired
3848          * with a slots event as group leader. When the slots event
3849          * is used in a metrics group, it too cannot support sampling.
3850          */
3851         if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3852                 if (event->attr.config1 || event->attr.config2)
3853                         return -EINVAL;
3854
3855                 /*
3856                  * The TopDown metrics events and slots event don't
3857                  * support any filters.
3858                  */
3859                 if (event->attr.config & X86_ALL_EVENT_FLAGS)
3860                         return -EINVAL;
3861
3862                 if (is_available_metric_event(event)) {
3863                         struct perf_event *leader = event->group_leader;
3864
3865                         /* The metric events don't support sampling. */
3866                         if (is_sampling_event(event))
3867                                 return -EINVAL;
3868
3869                         /* The metric events require a slots group leader. */
3870                         if (!is_slots_event(leader))
3871                                 return -EINVAL;
3872
3873                         /*
3874                          * The leader/SLOTS must not be a sampling event for
3875                          * metric use; hardware requires it starts at 0 when used
3876                          * in conjunction with MSR_PERF_METRICS.
3877                          */
3878                         if (is_sampling_event(leader))
3879                                 return -EINVAL;
3880
3881                         event->event_caps |= PERF_EV_CAP_SIBLING;
3882                         /*
3883                          * Only once we have a METRICs sibling do we
3884                          * need TopDown magic.
3885                          */
3886                         leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3887                         event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3888                 }
3889         }
3890
3891         /*
3892          * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3893          * doesn't function quite right. As a work-around it needs to always be
3894          * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3895          * The actual count of this second event is irrelevant it just needs
3896          * to be active to make the first event function correctly.
3897          *
3898          * In a group, the auxiliary event must be in front of the load latency
3899          * event. The rule is to simplify the implementation of the check.
3900          * That's because perf cannot have a complete group at the moment.
3901          */
3902         if (require_mem_loads_aux_event(event) &&
3903             (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3904             is_mem_loads_event(event)) {
3905                 struct perf_event *leader = event->group_leader;
3906                 struct perf_event *sibling = NULL;
3907
3908                 if (!is_mem_loads_aux_event(leader)) {
3909                         for_each_sibling_event(sibling, leader) {
3910                                 if (is_mem_loads_aux_event(sibling))
3911                                         break;
3912                         }
3913                         if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3914                                 return -ENODATA;
3915                 }
3916         }
3917
3918         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3919                 return 0;
3920
3921         if (x86_pmu.version < 3)
3922                 return -EINVAL;
3923
3924         ret = perf_allow_cpu(&event->attr);
3925         if (ret)
3926                 return ret;
3927
3928         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3929
3930         return 0;
3931 }
3932
3933 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3934 {
3935         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3936         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3937         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3938
3939         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3940         arr[0].host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3941         arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3942         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3943                 arr[0].guest &= ~cpuc->pebs_enabled;
3944         else
3945                 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3946         *nr = 1;
3947
3948         if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3949                 /*
3950                  * If PMU counter has PEBS enabled it is not enough to
3951                  * disable counter on a guest entry since PEBS memory
3952                  * write can overshoot guest entry and corrupt guest
3953                  * memory. Disabling PEBS solves the problem.
3954                  *
3955                  * Don't do this if the CPU already enforces it.
3956                  */
3957                 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3958                 arr[1].host = cpuc->pebs_enabled;
3959                 arr[1].guest = 0;
3960                 *nr = 2;
3961         }
3962
3963         return arr;
3964 }
3965
3966 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3967 {
3968         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3969         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3970         int idx;
3971
3972         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3973                 struct perf_event *event = cpuc->events[idx];
3974
3975                 arr[idx].msr = x86_pmu_config_addr(idx);
3976                 arr[idx].host = arr[idx].guest = 0;
3977
3978                 if (!test_bit(idx, cpuc->active_mask))
3979                         continue;
3980
3981                 arr[idx].host = arr[idx].guest =
3982                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3983
3984                 if (event->attr.exclude_host)
3985                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3986                 else if (event->attr.exclude_guest)
3987                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3988         }
3989
3990         *nr = x86_pmu.num_counters;
3991         return arr;
3992 }
3993
3994 static void core_pmu_enable_event(struct perf_event *event)
3995 {
3996         if (!event->attr.exclude_host)
3997                 x86_pmu_enable_event(event);
3998 }
3999
4000 static void core_pmu_enable_all(int added)
4001 {
4002         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4003         int idx;
4004
4005         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4006                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4007
4008                 if (!test_bit(idx, cpuc->active_mask) ||
4009                                 cpuc->events[idx]->attr.exclude_host)
4010                         continue;
4011
4012                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4013         }
4014 }
4015
4016 static int hsw_hw_config(struct perf_event *event)
4017 {
4018         int ret = intel_pmu_hw_config(event);
4019
4020         if (ret)
4021                 return ret;
4022         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4023                 return 0;
4024         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4025
4026         /*
4027          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4028          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4029          * this combination.
4030          */
4031         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4032              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4033               event->attr.precise_ip > 0))
4034                 return -EOPNOTSUPP;
4035
4036         if (event_is_checkpointed(event)) {
4037                 /*
4038                  * Sampling of checkpointed events can cause situations where
4039                  * the CPU constantly aborts because of a overflow, which is
4040                  * then checkpointed back and ignored. Forbid checkpointing
4041                  * for sampling.
4042                  *
4043                  * But still allow a long sampling period, so that perf stat
4044                  * from KVM works.
4045                  */
4046                 if (event->attr.sample_period > 0 &&
4047                     event->attr.sample_period < 0x7fffffff)
4048                         return -EOPNOTSUPP;
4049         }
4050         return 0;
4051 }
4052
4053 static struct event_constraint counter0_constraint =
4054                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4055
4056 static struct event_constraint counter2_constraint =
4057                         EVENT_CONSTRAINT(0, 0x4, 0);
4058
4059 static struct event_constraint fixed0_constraint =
4060                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4061
4062 static struct event_constraint fixed0_counter0_constraint =
4063                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4064
4065 static struct event_constraint *
4066 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4067                           struct perf_event *event)
4068 {
4069         struct event_constraint *c;
4070
4071         c = intel_get_event_constraints(cpuc, idx, event);
4072
4073         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4074         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4075                 if (c->idxmsk64 & (1U << 2))
4076                         return &counter2_constraint;
4077                 return &emptyconstraint;
4078         }
4079
4080         return c;
4081 }
4082
4083 static struct event_constraint *
4084 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4085                           struct perf_event *event)
4086 {
4087         /*
4088          * Fixed counter 0 has less skid.
4089          * Force instruction:ppp in Fixed counter 0
4090          */
4091         if ((event->attr.precise_ip == 3) &&
4092             constraint_match(&fixed0_constraint, event->hw.config))
4093                 return &fixed0_constraint;
4094
4095         return hsw_get_event_constraints(cpuc, idx, event);
4096 }
4097
4098 static struct event_constraint *
4099 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4100                           struct perf_event *event)
4101 {
4102         struct event_constraint *c;
4103
4104         c = icl_get_event_constraints(cpuc, idx, event);
4105
4106         /*
4107          * The :ppp indicates the Precise Distribution (PDist) facility, which
4108          * is only supported on the GP counter 0. If a :ppp event which is not
4109          * available on the GP counter 0, error out.
4110          * Exception: Instruction PDIR is only available on the fixed counter 0.
4111          */
4112         if ((event->attr.precise_ip == 3) &&
4113             !constraint_match(&fixed0_constraint, event->hw.config)) {
4114                 if (c->idxmsk64 & BIT_ULL(0))
4115                         return &counter0_constraint;
4116
4117                 return &emptyconstraint;
4118         }
4119
4120         return c;
4121 }
4122
4123 static struct event_constraint *
4124 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4125                           struct perf_event *event)
4126 {
4127         struct event_constraint *c;
4128
4129         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4130         if (event->attr.precise_ip == 3)
4131                 return &counter0_constraint;
4132
4133         c = intel_get_event_constraints(cpuc, idx, event);
4134
4135         return c;
4136 }
4137
4138 static struct event_constraint *
4139 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4140                           struct perf_event *event)
4141 {
4142         struct event_constraint *c;
4143
4144         /*
4145          * :ppp means to do reduced skid PEBS,
4146          * which is available on PMC0 and fixed counter 0.
4147          */
4148         if (event->attr.precise_ip == 3) {
4149                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4150                 if (constraint_match(&fixed0_constraint, event->hw.config))
4151                         return &fixed0_counter0_constraint;
4152
4153                 return &counter0_constraint;
4154         }
4155
4156         c = intel_get_event_constraints(cpuc, idx, event);
4157
4158         return c;
4159 }
4160
4161 static bool allow_tsx_force_abort = true;
4162
4163 static struct event_constraint *
4164 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4165                           struct perf_event *event)
4166 {
4167         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4168
4169         /*
4170          * Without TFA we must not use PMC3.
4171          */
4172         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4173                 c = dyn_constraint(cpuc, c, idx);
4174                 c->idxmsk64 &= ~(1ULL << 3);
4175                 c->weight--;
4176         }
4177
4178         return c;
4179 }
4180
4181 static struct event_constraint *
4182 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4183                           struct perf_event *event)
4184 {
4185         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4186
4187         if (pmu->cpu_type == hybrid_big)
4188                 return spr_get_event_constraints(cpuc, idx, event);
4189         else if (pmu->cpu_type == hybrid_small)
4190                 return tnt_get_event_constraints(cpuc, idx, event);
4191
4192         WARN_ON(1);
4193         return &emptyconstraint;
4194 }
4195
4196 static int adl_hw_config(struct perf_event *event)
4197 {
4198         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4199
4200         if (pmu->cpu_type == hybrid_big)
4201                 return hsw_hw_config(event);
4202         else if (pmu->cpu_type == hybrid_small)
4203                 return intel_pmu_hw_config(event);
4204
4205         WARN_ON(1);
4206         return -EOPNOTSUPP;
4207 }
4208
4209 static u8 adl_get_hybrid_cpu_type(void)
4210 {
4211         return hybrid_big;
4212 }
4213
4214 /*
4215  * Broadwell:
4216  *
4217  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4218  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4219  * the two to enforce a minimum period of 128 (the smallest value that has bits
4220  * 0-5 cleared and >= 100).
4221  *
4222  * Because of how the code in x86_perf_event_set_period() works, the truncation
4223  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4224  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4225  *
4226  * Therefore the effective (average) period matches the requested period,
4227  * despite coarser hardware granularity.
4228  */
4229 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4230 {
4231         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4232                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
4233                 if (left < 128)
4234                         left = 128;
4235                 left &= ~0x3fULL;
4236         }
4237         return left;
4238 }
4239
4240 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4241 {
4242         return max(left, 32ULL);
4243 }
4244
4245 static u64 spr_limit_period(struct perf_event *event, u64 left)
4246 {
4247         if (event->attr.precise_ip == 3)
4248                 return max(left, 128ULL);
4249
4250         return left;
4251 }
4252
4253 PMU_FORMAT_ATTR(event,  "config:0-7"    );
4254 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
4255 PMU_FORMAT_ATTR(edge,   "config:18"     );
4256 PMU_FORMAT_ATTR(pc,     "config:19"     );
4257 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
4258 PMU_FORMAT_ATTR(inv,    "config:23"     );
4259 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
4260 PMU_FORMAT_ATTR(in_tx,  "config:32");
4261 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4262
4263 static struct attribute *intel_arch_formats_attr[] = {
4264         &format_attr_event.attr,
4265         &format_attr_umask.attr,
4266         &format_attr_edge.attr,
4267         &format_attr_pc.attr,
4268         &format_attr_inv.attr,
4269         &format_attr_cmask.attr,
4270         NULL,
4271 };
4272
4273 ssize_t intel_event_sysfs_show(char *page, u64 config)
4274 {
4275         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4276
4277         return x86_event_sysfs_show(page, config, event);
4278 }
4279
4280 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4281 {
4282         struct intel_shared_regs *regs;
4283         int i;
4284
4285         regs = kzalloc_node(sizeof(struct intel_shared_regs),
4286                             GFP_KERNEL, cpu_to_node(cpu));
4287         if (regs) {
4288                 /*
4289                  * initialize the locks to keep lockdep happy
4290                  */
4291                 for (i = 0; i < EXTRA_REG_MAX; i++)
4292                         raw_spin_lock_init(&regs->regs[i].lock);
4293
4294                 regs->core_id = -1;
4295         }
4296         return regs;
4297 }
4298
4299 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4300 {
4301         struct intel_excl_cntrs *c;
4302
4303         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4304                          GFP_KERNEL, cpu_to_node(cpu));
4305         if (c) {
4306                 raw_spin_lock_init(&c->lock);
4307                 c->core_id = -1;
4308         }
4309         return c;
4310 }
4311
4312
4313 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4314 {
4315         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4316
4317         if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4318                 cpuc->shared_regs = allocate_shared_regs(cpu);
4319                 if (!cpuc->shared_regs)
4320                         goto err;
4321         }
4322
4323         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4324                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4325
4326                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4327                 if (!cpuc->constraint_list)
4328                         goto err_shared_regs;
4329         }
4330
4331         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4332                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4333                 if (!cpuc->excl_cntrs)
4334                         goto err_constraint_list;
4335
4336                 cpuc->excl_thread_id = 0;
4337         }
4338
4339         return 0;
4340
4341 err_constraint_list:
4342         kfree(cpuc->constraint_list);
4343         cpuc->constraint_list = NULL;
4344
4345 err_shared_regs:
4346         kfree(cpuc->shared_regs);
4347         cpuc->shared_regs = NULL;
4348
4349 err:
4350         return -ENOMEM;
4351 }
4352
4353 static int intel_pmu_cpu_prepare(int cpu)
4354 {
4355         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4356 }
4357
4358 static void flip_smm_bit(void *data)
4359 {
4360         unsigned long set = *(unsigned long *)data;
4361
4362         if (set > 0) {
4363                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4364                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4365         } else {
4366                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4367                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4368         }
4369 }
4370
4371 static bool init_hybrid_pmu(int cpu)
4372 {
4373         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4374         u8 cpu_type = get_this_hybrid_cpu_type();
4375         struct x86_hybrid_pmu *pmu = NULL;
4376         int i;
4377
4378         if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4379                 cpu_type = x86_pmu.get_hybrid_cpu_type();
4380
4381         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4382                 if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4383                         pmu = &x86_pmu.hybrid_pmu[i];
4384                         break;
4385                 }
4386         }
4387         if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4388                 cpuc->pmu = NULL;
4389                 return false;
4390         }
4391
4392         /* Only check and dump the PMU information for the first CPU */
4393         if (!cpumask_empty(&pmu->supported_cpus))
4394                 goto end;
4395
4396         if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4397                 return false;
4398
4399         pr_info("%s PMU driver: ", pmu->name);
4400
4401         if (pmu->intel_cap.pebs_output_pt_available)
4402                 pr_cont("PEBS-via-PT ");
4403
4404         pr_cont("\n");
4405
4406         x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4407                              pmu->intel_ctrl);
4408
4409 end:
4410         cpumask_set_cpu(cpu, &pmu->supported_cpus);
4411         cpuc->pmu = &pmu->pmu;
4412
4413         x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4414
4415         return true;
4416 }
4417
4418 static void intel_pmu_cpu_starting(int cpu)
4419 {
4420         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4421         int core_id = topology_core_id(cpu);
4422         int i;
4423
4424         if (is_hybrid() && !init_hybrid_pmu(cpu))
4425                 return;
4426
4427         init_debug_store_on_cpu(cpu);
4428         /*
4429          * Deal with CPUs that don't clear their LBRs on power-up.
4430          */
4431         intel_pmu_lbr_reset();
4432
4433         cpuc->lbr_sel = NULL;
4434
4435         if (x86_pmu.flags & PMU_FL_TFA) {
4436                 WARN_ON_ONCE(cpuc->tfa_shadow);
4437                 cpuc->tfa_shadow = ~0ULL;
4438                 intel_set_tfa(cpuc, false);
4439         }
4440
4441         if (x86_pmu.version > 1)
4442                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4443
4444         /*
4445          * Disable perf metrics if any added CPU doesn't support it.
4446          *
4447          * Turn off the check for a hybrid architecture, because the
4448          * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4449          * the architecture features. The perf metrics is a model-specific
4450          * feature for now. The corresponding bit should always be 0 on
4451          * a hybrid platform, e.g., Alder Lake.
4452          */
4453         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4454                 union perf_capabilities perf_cap;
4455
4456                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4457                 if (!perf_cap.perf_metrics) {
4458                         x86_pmu.intel_cap.perf_metrics = 0;
4459                         x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4460                 }
4461         }
4462
4463         if (!cpuc->shared_regs)
4464                 return;
4465
4466         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4467                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4468                         struct intel_shared_regs *pc;
4469
4470                         pc = per_cpu(cpu_hw_events, i).shared_regs;
4471                         if (pc && pc->core_id == core_id) {
4472                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4473                                 cpuc->shared_regs = pc;
4474                                 break;
4475                         }
4476                 }
4477                 cpuc->shared_regs->core_id = core_id;
4478                 cpuc->shared_regs->refcnt++;
4479         }
4480
4481         if (x86_pmu.lbr_sel_map)
4482                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4483
4484         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4485                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4486                         struct cpu_hw_events *sibling;
4487                         struct intel_excl_cntrs *c;
4488
4489                         sibling = &per_cpu(cpu_hw_events, i);
4490                         c = sibling->excl_cntrs;
4491                         if (c && c->core_id == core_id) {
4492                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4493                                 cpuc->excl_cntrs = c;
4494                                 if (!sibling->excl_thread_id)
4495                                         cpuc->excl_thread_id = 1;
4496                                 break;
4497                         }
4498                 }
4499                 cpuc->excl_cntrs->core_id = core_id;
4500                 cpuc->excl_cntrs->refcnt++;
4501         }
4502 }
4503
4504 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4505 {
4506         struct intel_excl_cntrs *c;
4507
4508         c = cpuc->excl_cntrs;
4509         if (c) {
4510                 if (c->core_id == -1 || --c->refcnt == 0)
4511                         kfree(c);
4512                 cpuc->excl_cntrs = NULL;
4513         }
4514
4515         kfree(cpuc->constraint_list);
4516         cpuc->constraint_list = NULL;
4517 }
4518
4519 static void intel_pmu_cpu_dying(int cpu)
4520 {
4521         fini_debug_store_on_cpu(cpu);
4522 }
4523
4524 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4525 {
4526         struct intel_shared_regs *pc;
4527
4528         pc = cpuc->shared_regs;
4529         if (pc) {
4530                 if (pc->core_id == -1 || --pc->refcnt == 0)
4531                         kfree(pc);
4532                 cpuc->shared_regs = NULL;
4533         }
4534
4535         free_excl_cntrs(cpuc);
4536 }
4537
4538 static void intel_pmu_cpu_dead(int cpu)
4539 {
4540         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4541
4542         intel_cpuc_finish(cpuc);
4543
4544         if (is_hybrid() && cpuc->pmu)
4545                 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4546 }
4547
4548 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4549                                  bool sched_in)
4550 {
4551         intel_pmu_pebs_sched_task(ctx, sched_in);
4552         intel_pmu_lbr_sched_task(ctx, sched_in);
4553 }
4554
4555 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4556                                     struct perf_event_context *next)
4557 {
4558         intel_pmu_lbr_swap_task_ctx(prev, next);
4559 }
4560
4561 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4562 {
4563         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4564 }
4565
4566 static void intel_aux_output_init(void)
4567 {
4568         /* Refer also intel_pmu_aux_output_match() */
4569         if (x86_pmu.intel_cap.pebs_output_pt_available)
4570                 x86_pmu.assign = intel_pmu_assign_event;
4571 }
4572
4573 static int intel_pmu_aux_output_match(struct perf_event *event)
4574 {
4575         /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4576         if (!x86_pmu.intel_cap.pebs_output_pt_available)
4577                 return 0;
4578
4579         return is_intel_pt_event(event);
4580 }
4581
4582 static int intel_pmu_filter_match(struct perf_event *event)
4583 {
4584         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4585         unsigned int cpu = smp_processor_id();
4586
4587         return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4588 }
4589
4590 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4591
4592 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4593
4594 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4595
4596 static struct attribute *intel_arch3_formats_attr[] = {
4597         &format_attr_event.attr,
4598         &format_attr_umask.attr,
4599         &format_attr_edge.attr,
4600         &format_attr_pc.attr,
4601         &format_attr_any.attr,
4602         &format_attr_inv.attr,
4603         &format_attr_cmask.attr,
4604         NULL,
4605 };
4606
4607 static struct attribute *hsw_format_attr[] = {
4608         &format_attr_in_tx.attr,
4609         &format_attr_in_tx_cp.attr,
4610         &format_attr_offcore_rsp.attr,
4611         &format_attr_ldlat.attr,
4612         NULL
4613 };
4614
4615 static struct attribute *nhm_format_attr[] = {
4616         &format_attr_offcore_rsp.attr,
4617         &format_attr_ldlat.attr,
4618         NULL
4619 };
4620
4621 static struct attribute *slm_format_attr[] = {
4622         &format_attr_offcore_rsp.attr,
4623         NULL
4624 };
4625
4626 static struct attribute *skl_format_attr[] = {
4627         &format_attr_frontend.attr,
4628         NULL,
4629 };
4630
4631 static __initconst const struct x86_pmu core_pmu = {
4632         .name                   = "core",
4633         .handle_irq             = x86_pmu_handle_irq,
4634         .disable_all            = x86_pmu_disable_all,
4635         .enable_all             = core_pmu_enable_all,
4636         .enable                 = core_pmu_enable_event,
4637         .disable                = x86_pmu_disable_event,
4638         .hw_config              = core_pmu_hw_config,
4639         .schedule_events        = x86_schedule_events,
4640         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4641         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4642         .event_map              = intel_pmu_event_map,
4643         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4644         .apic                   = 1,
4645         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4646
4647         /*
4648          * Intel PMCs cannot be accessed sanely above 32-bit width,
4649          * so we install an artificial 1<<31 period regardless of
4650          * the generic event period:
4651          */
4652         .max_period             = (1ULL<<31) - 1,
4653         .get_event_constraints  = intel_get_event_constraints,
4654         .put_event_constraints  = intel_put_event_constraints,
4655         .event_constraints      = intel_core_event_constraints,
4656         .guest_get_msrs         = core_guest_get_msrs,
4657         .format_attrs           = intel_arch_formats_attr,
4658         .events_sysfs_show      = intel_event_sysfs_show,
4659
4660         /*
4661          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4662          * together with PMU version 1 and thus be using core_pmu with
4663          * shared_regs. We need following callbacks here to allocate
4664          * it properly.
4665          */
4666         .cpu_prepare            = intel_pmu_cpu_prepare,
4667         .cpu_starting           = intel_pmu_cpu_starting,
4668         .cpu_dying              = intel_pmu_cpu_dying,
4669         .cpu_dead               = intel_pmu_cpu_dead,
4670
4671         .check_period           = intel_pmu_check_period,
4672
4673         .lbr_reset              = intel_pmu_lbr_reset_64,
4674         .lbr_read               = intel_pmu_lbr_read_64,
4675         .lbr_save               = intel_pmu_lbr_save,
4676         .lbr_restore            = intel_pmu_lbr_restore,
4677 };
4678
4679 static __initconst const struct x86_pmu intel_pmu = {
4680         .name                   = "Intel",
4681         .handle_irq             = intel_pmu_handle_irq,
4682         .disable_all            = intel_pmu_disable_all,
4683         .enable_all             = intel_pmu_enable_all,
4684         .enable                 = intel_pmu_enable_event,
4685         .disable                = intel_pmu_disable_event,
4686         .add                    = intel_pmu_add_event,
4687         .del                    = intel_pmu_del_event,
4688         .read                   = intel_pmu_read_event,
4689         .hw_config              = intel_pmu_hw_config,
4690         .schedule_events        = x86_schedule_events,
4691         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4692         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4693         .event_map              = intel_pmu_event_map,
4694         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4695         .apic                   = 1,
4696         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4697         /*
4698          * Intel PMCs cannot be accessed sanely above 32 bit width,
4699          * so we install an artificial 1<<31 period regardless of
4700          * the generic event period:
4701          */
4702         .max_period             = (1ULL << 31) - 1,
4703         .get_event_constraints  = intel_get_event_constraints,
4704         .put_event_constraints  = intel_put_event_constraints,
4705         .pebs_aliases           = intel_pebs_aliases_core2,
4706
4707         .format_attrs           = intel_arch3_formats_attr,
4708         .events_sysfs_show      = intel_event_sysfs_show,
4709
4710         .cpu_prepare            = intel_pmu_cpu_prepare,
4711         .cpu_starting           = intel_pmu_cpu_starting,
4712         .cpu_dying              = intel_pmu_cpu_dying,
4713         .cpu_dead               = intel_pmu_cpu_dead,
4714
4715         .guest_get_msrs         = intel_guest_get_msrs,
4716         .sched_task             = intel_pmu_sched_task,
4717         .swap_task_ctx          = intel_pmu_swap_task_ctx,
4718
4719         .check_period           = intel_pmu_check_period,
4720
4721         .aux_output_match       = intel_pmu_aux_output_match,
4722
4723         .lbr_reset              = intel_pmu_lbr_reset_64,
4724         .lbr_read               = intel_pmu_lbr_read_64,
4725         .lbr_save               = intel_pmu_lbr_save,
4726         .lbr_restore            = intel_pmu_lbr_restore,
4727
4728         /*
4729          * SMM has access to all 4 rings and while traditionally SMM code only
4730          * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
4731          *
4732          * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
4733          * between SMM or not, this results in what should be pure userspace
4734          * counters including SMM data.
4735          *
4736          * This is a clear privilege issue, therefore globally disable
4737          * counting SMM by default.
4738          */
4739         .attr_freeze_on_smi     = 1,
4740 };
4741
4742 static __init void intel_clovertown_quirk(void)
4743 {
4744         /*
4745          * PEBS is unreliable due to:
4746          *
4747          *   AJ67  - PEBS may experience CPL leaks
4748          *   AJ68  - PEBS PMI may be delayed by one event
4749          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4750          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4751          *
4752          * AJ67 could be worked around by restricting the OS/USR flags.
4753          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4754          *
4755          * AJ106 could possibly be worked around by not allowing LBR
4756          *       usage from PEBS, including the fixup.
4757          * AJ68  could possibly be worked around by always programming
4758          *       a pebs_event_reset[0] value and coping with the lost events.
4759          *
4760          * But taken together it might just make sense to not enable PEBS on
4761          * these chips.
4762          */
4763         pr_warn("PEBS disabled due to CPU errata\n");
4764         x86_pmu.pebs = 0;
4765         x86_pmu.pebs_constraints = NULL;
4766 }
4767
4768 static const struct x86_cpu_desc isolation_ucodes[] = {
4769         INTEL_CPU_DESC(INTEL_FAM6_HASWELL,               3, 0x0000001f),
4770         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,             1, 0x0000001e),
4771         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,             1, 0x00000015),
4772         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
4773         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
4774         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,             4, 0x00000023),
4775         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,           1, 0x00000014),
4776         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           2, 0x00000010),
4777         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           3, 0x07000009),
4778         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           4, 0x0f000009),
4779         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           5, 0x0e000002),
4780         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           1, 0x0b000014),
4781         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
4782         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
4783         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             5, 0x00000000),
4784         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             6, 0x00000000),
4785         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             7, 0x00000000),
4786         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,             3, 0x0000007c),
4787         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,               3, 0x0000007c),
4788         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,              9, 0x0000004e),
4789         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,            9, 0x0000004e),
4790         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           10, 0x0000004e),
4791         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           11, 0x0000004e),
4792         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           12, 0x0000004e),
4793         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             10, 0x0000004e),
4794         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             11, 0x0000004e),
4795         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             12, 0x0000004e),
4796         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             13, 0x0000004e),
4797         {}
4798 };
4799
4800 static void intel_check_pebs_isolation(void)
4801 {
4802         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4803 }
4804
4805 static __init void intel_pebs_isolation_quirk(void)
4806 {
4807         WARN_ON_ONCE(x86_pmu.check_microcode);
4808         x86_pmu.check_microcode = intel_check_pebs_isolation;
4809         intel_check_pebs_isolation();
4810 }
4811
4812 static const struct x86_cpu_desc pebs_ucodes[] = {
4813         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
4814         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
4815         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
4816         {}
4817 };
4818
4819 static bool intel_snb_pebs_broken(void)
4820 {
4821         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4822 }
4823
4824 static void intel_snb_check_microcode(void)
4825 {
4826         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4827                 return;
4828
4829         /*
4830          * Serialized by the microcode lock..
4831          */
4832         if (x86_pmu.pebs_broken) {
4833                 pr_info("PEBS enabled due to microcode update\n");
4834                 x86_pmu.pebs_broken = 0;
4835         } else {
4836                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4837                 x86_pmu.pebs_broken = 1;
4838         }
4839 }
4840
4841 static bool is_lbr_from(unsigned long msr)
4842 {
4843         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4844
4845         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4846 }
4847
4848 /*
4849  * Under certain circumstances, access certain MSR may cause #GP.
4850  * The function tests if the input MSR can be safely accessed.
4851  */
4852 static bool check_msr(unsigned long msr, u64 mask)
4853 {
4854         u64 val_old, val_new, val_tmp;
4855
4856         /*
4857          * Disable the check for real HW, so we don't
4858          * mess with potentially enabled registers:
4859          */
4860         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4861                 return true;
4862
4863         /*
4864          * Read the current value, change it and read it back to see if it
4865          * matches, this is needed to detect certain hardware emulators
4866          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4867          */
4868         if (rdmsrl_safe(msr, &val_old))
4869                 return false;
4870
4871         /*
4872          * Only change the bits which can be updated by wrmsrl.
4873          */
4874         val_tmp = val_old ^ mask;
4875
4876         if (is_lbr_from(msr))
4877                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4878
4879         if (wrmsrl_safe(msr, val_tmp) ||
4880             rdmsrl_safe(msr, &val_new))
4881                 return false;
4882
4883         /*
4884          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4885          * should equal rdmsrl()'s even with the quirk.
4886          */
4887         if (val_new != val_tmp)
4888                 return false;
4889
4890         if (is_lbr_from(msr))
4891                 val_old = lbr_from_signext_quirk_wr(val_old);
4892
4893         /* Here it's sure that the MSR can be safely accessed.
4894          * Restore the old value and return.
4895          */
4896         wrmsrl(msr, val_old);
4897
4898         return true;
4899 }
4900
4901 static __init void intel_sandybridge_quirk(void)
4902 {
4903         x86_pmu.check_microcode = intel_snb_check_microcode;
4904         cpus_read_lock();
4905         intel_snb_check_microcode();
4906         cpus_read_unlock();
4907 }
4908
4909 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4910         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4911         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4912         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4913         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4914         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4915         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4916         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4917 };
4918
4919 static __init void intel_arch_events_quirk(void)
4920 {
4921         int bit;
4922
4923         /* disable event that reported as not present by cpuid */
4924         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4925                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4926                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4927                         intel_arch_events_map[bit].name);
4928         }
4929 }
4930
4931 static __init void intel_nehalem_quirk(void)
4932 {
4933         union cpuid10_ebx ebx;
4934
4935         ebx.full = x86_pmu.events_maskl;
4936         if (ebx.split.no_branch_misses_retired) {
4937                 /*
4938                  * Erratum AAJ80 detected, we work it around by using
4939                  * the BR_MISP_EXEC.ANY event. This will over-count
4940                  * branch-misses, but it's still much better than the
4941                  * architectural event which is often completely bogus:
4942                  */
4943                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4944                 ebx.split.no_branch_misses_retired = 0;
4945                 x86_pmu.events_maskl = ebx.full;
4946                 pr_info("CPU erratum AAJ80 worked around\n");
4947         }
4948 }
4949
4950 /*
4951  * enable software workaround for errata:
4952  * SNB: BJ122
4953  * IVB: BV98
4954  * HSW: HSD29
4955  *
4956  * Only needed when HT is enabled. However detecting
4957  * if HT is enabled is difficult (model specific). So instead,
4958  * we enable the workaround in the early boot, and verify if
4959  * it is needed in a later initcall phase once we have valid
4960  * topology information to check if HT is actually enabled
4961  */
4962 static __init void intel_ht_bug(void)
4963 {
4964         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4965
4966         x86_pmu.start_scheduling = intel_start_scheduling;
4967         x86_pmu.commit_scheduling = intel_commit_scheduling;
4968         x86_pmu.stop_scheduling = intel_stop_scheduling;
4969 }
4970
4971 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
4972 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
4973
4974 /* Haswell special events */
4975 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
4976 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
4977 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
4978 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
4979 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
4980 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
4981 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
4982 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
4983 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
4984 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
4985 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
4986 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
4987
4988 static struct attribute *hsw_events_attrs[] = {
4989         EVENT_PTR(td_slots_issued),
4990         EVENT_PTR(td_slots_retired),
4991         EVENT_PTR(td_fetch_bubbles),
4992         EVENT_PTR(td_total_slots),
4993         EVENT_PTR(td_total_slots_scale),
4994         EVENT_PTR(td_recovery_bubbles),
4995         EVENT_PTR(td_recovery_bubbles_scale),
4996         NULL
4997 };
4998
4999 static struct attribute *hsw_mem_events_attrs[] = {
5000         EVENT_PTR(mem_ld_hsw),
5001         EVENT_PTR(mem_st_hsw),
5002         NULL,
5003 };
5004
5005 static struct attribute *hsw_tsx_events_attrs[] = {
5006         EVENT_PTR(tx_start),
5007         EVENT_PTR(tx_commit),
5008         EVENT_PTR(tx_abort),
5009         EVENT_PTR(tx_capacity),
5010         EVENT_PTR(tx_conflict),
5011         EVENT_PTR(el_start),
5012         EVENT_PTR(el_commit),
5013         EVENT_PTR(el_abort),
5014         EVENT_PTR(el_capacity),
5015         EVENT_PTR(el_conflict),
5016         EVENT_PTR(cycles_t),
5017         EVENT_PTR(cycles_ct),
5018         NULL
5019 };
5020
5021 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
5022 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5023 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
5024 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5025
5026 static struct attribute *icl_events_attrs[] = {
5027         EVENT_PTR(mem_ld_hsw),
5028         EVENT_PTR(mem_st_hsw),
5029         NULL,
5030 };
5031
5032 static struct attribute *icl_td_events_attrs[] = {
5033         EVENT_PTR(slots),
5034         EVENT_PTR(td_retiring),
5035         EVENT_PTR(td_bad_spec),
5036         EVENT_PTR(td_fe_bound),
5037         EVENT_PTR(td_be_bound),
5038         NULL,
5039 };
5040
5041 static struct attribute *icl_tsx_events_attrs[] = {
5042         EVENT_PTR(tx_start),
5043         EVENT_PTR(tx_abort),
5044         EVENT_PTR(tx_commit),
5045         EVENT_PTR(tx_capacity_read),
5046         EVENT_PTR(tx_capacity_write),
5047         EVENT_PTR(tx_conflict),
5048         EVENT_PTR(el_start),
5049         EVENT_PTR(el_abort),
5050         EVENT_PTR(el_commit),
5051         EVENT_PTR(el_capacity_read),
5052         EVENT_PTR(el_capacity_write),
5053         EVENT_PTR(el_conflict),
5054         EVENT_PTR(cycles_t),
5055         EVENT_PTR(cycles_ct),
5056         NULL,
5057 };
5058
5059
5060 EVENT_ATTR_STR(mem-stores,      mem_st_spr,     "event=0xcd,umask=0x2");
5061 EVENT_ATTR_STR(mem-loads-aux,   mem_ld_aux,     "event=0x03,umask=0x82");
5062
5063 static struct attribute *spr_events_attrs[] = {
5064         EVENT_PTR(mem_ld_hsw),
5065         EVENT_PTR(mem_st_spr),
5066         EVENT_PTR(mem_ld_aux),
5067         NULL,
5068 };
5069
5070 static struct attribute *spr_td_events_attrs[] = {
5071         EVENT_PTR(slots),
5072         EVENT_PTR(td_retiring),
5073         EVENT_PTR(td_bad_spec),
5074         EVENT_PTR(td_fe_bound),
5075         EVENT_PTR(td_be_bound),
5076         EVENT_PTR(td_heavy_ops),
5077         EVENT_PTR(td_br_mispredict),
5078         EVENT_PTR(td_fetch_lat),
5079         EVENT_PTR(td_mem_bound),
5080         NULL,
5081 };
5082
5083 static struct attribute *spr_tsx_events_attrs[] = {
5084         EVENT_PTR(tx_start),
5085         EVENT_PTR(tx_abort),
5086         EVENT_PTR(tx_commit),
5087         EVENT_PTR(tx_capacity_read),
5088         EVENT_PTR(tx_capacity_write),
5089         EVENT_PTR(tx_conflict),
5090         EVENT_PTR(cycles_t),
5091         EVENT_PTR(cycles_ct),
5092         NULL,
5093 };
5094
5095 static ssize_t freeze_on_smi_show(struct device *cdev,
5096                                   struct device_attribute *attr,
5097                                   char *buf)
5098 {
5099         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5100 }
5101
5102 static DEFINE_MUTEX(freeze_on_smi_mutex);
5103
5104 static ssize_t freeze_on_smi_store(struct device *cdev,
5105                                    struct device_attribute *attr,
5106                                    const char *buf, size_t count)
5107 {
5108         unsigned long val;
5109         ssize_t ret;
5110
5111         ret = kstrtoul(buf, 0, &val);
5112         if (ret)
5113                 return ret;
5114
5115         if (val > 1)
5116                 return -EINVAL;
5117
5118         mutex_lock(&freeze_on_smi_mutex);
5119
5120         if (x86_pmu.attr_freeze_on_smi == val)
5121                 goto done;
5122
5123         x86_pmu.attr_freeze_on_smi = val;
5124
5125         cpus_read_lock();
5126         on_each_cpu(flip_smm_bit, &val, 1);
5127         cpus_read_unlock();
5128 done:
5129         mutex_unlock(&freeze_on_smi_mutex);
5130
5131         return count;
5132 }
5133
5134 static void update_tfa_sched(void *ignored)
5135 {
5136         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5137
5138         /*
5139          * check if PMC3 is used
5140          * and if so force schedule out for all event types all contexts
5141          */
5142         if (test_bit(3, cpuc->active_mask))
5143                 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5144 }
5145
5146 static ssize_t show_sysctl_tfa(struct device *cdev,
5147                               struct device_attribute *attr,
5148                               char *buf)
5149 {
5150         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5151 }
5152
5153 static ssize_t set_sysctl_tfa(struct device *cdev,
5154                               struct device_attribute *attr,
5155                               const char *buf, size_t count)
5156 {
5157         bool val;
5158         ssize_t ret;
5159
5160         ret = kstrtobool(buf, &val);
5161         if (ret)
5162                 return ret;
5163
5164         /* no change */
5165         if (val == allow_tsx_force_abort)
5166                 return count;
5167
5168         allow_tsx_force_abort = val;
5169
5170         cpus_read_lock();
5171         on_each_cpu(update_tfa_sched, NULL, 1);
5172         cpus_read_unlock();
5173
5174         return count;
5175 }
5176
5177
5178 static DEVICE_ATTR_RW(freeze_on_smi);
5179
5180 static ssize_t branches_show(struct device *cdev,
5181                              struct device_attribute *attr,
5182                              char *buf)
5183 {
5184         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5185 }
5186
5187 static DEVICE_ATTR_RO(branches);
5188
5189 static struct attribute *lbr_attrs[] = {
5190         &dev_attr_branches.attr,
5191         NULL
5192 };
5193
5194 static char pmu_name_str[30];
5195
5196 static ssize_t pmu_name_show(struct device *cdev,
5197                              struct device_attribute *attr,
5198                              char *buf)
5199 {
5200         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5201 }
5202
5203 static DEVICE_ATTR_RO(pmu_name);
5204
5205 static struct attribute *intel_pmu_caps_attrs[] = {
5206        &dev_attr_pmu_name.attr,
5207        NULL
5208 };
5209
5210 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5211                    show_sysctl_tfa,
5212                    set_sysctl_tfa);
5213
5214 static struct attribute *intel_pmu_attrs[] = {
5215         &dev_attr_freeze_on_smi.attr,
5216         &dev_attr_allow_tsx_force_abort.attr,
5217         NULL,
5218 };
5219
5220 static umode_t
5221 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5222 {
5223         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5224 }
5225
5226 static umode_t
5227 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5228 {
5229         return x86_pmu.pebs ? attr->mode : 0;
5230 }
5231
5232 static umode_t
5233 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5234 {
5235         return x86_pmu.lbr_nr ? attr->mode : 0;
5236 }
5237
5238 static umode_t
5239 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5240 {
5241         return x86_pmu.version >= 2 ? attr->mode : 0;
5242 }
5243
5244 static umode_t
5245 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5246 {
5247         if (attr == &dev_attr_allow_tsx_force_abort.attr)
5248                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5249
5250         return attr->mode;
5251 }
5252
5253 static struct attribute_group group_events_td  = {
5254         .name = "events",
5255 };
5256
5257 static struct attribute_group group_events_mem = {
5258         .name       = "events",
5259         .is_visible = pebs_is_visible,
5260 };
5261
5262 static struct attribute_group group_events_tsx = {
5263         .name       = "events",
5264         .is_visible = tsx_is_visible,
5265 };
5266
5267 static struct attribute_group group_caps_gen = {
5268         .name  = "caps",
5269         .attrs = intel_pmu_caps_attrs,
5270 };
5271
5272 static struct attribute_group group_caps_lbr = {
5273         .name       = "caps",
5274         .attrs      = lbr_attrs,
5275         .is_visible = lbr_is_visible,
5276 };
5277
5278 static struct attribute_group group_format_extra = {
5279         .name       = "format",
5280         .is_visible = exra_is_visible,
5281 };
5282
5283 static struct attribute_group group_format_extra_skl = {
5284         .name       = "format",
5285         .is_visible = exra_is_visible,
5286 };
5287
5288 static struct attribute_group group_default = {
5289         .attrs      = intel_pmu_attrs,
5290         .is_visible = default_is_visible,
5291 };
5292
5293 static const struct attribute_group *attr_update[] = {
5294         &group_events_td,
5295         &group_events_mem,
5296         &group_events_tsx,
5297         &group_caps_gen,
5298         &group_caps_lbr,
5299         &group_format_extra,
5300         &group_format_extra_skl,
5301         &group_default,
5302         NULL,
5303 };
5304
5305 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5306 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5307 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5308 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5309 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5310 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5311 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5312 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5313 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5314
5315 static struct attribute *adl_hybrid_events_attrs[] = {
5316         EVENT_PTR(slots_adl),
5317         EVENT_PTR(td_retiring_adl),
5318         EVENT_PTR(td_bad_spec_adl),
5319         EVENT_PTR(td_fe_bound_adl),
5320         EVENT_PTR(td_be_bound_adl),
5321         EVENT_PTR(td_heavy_ops_adl),
5322         EVENT_PTR(td_br_mis_adl),
5323         EVENT_PTR(td_fetch_lat_adl),
5324         EVENT_PTR(td_mem_bound_adl),
5325         NULL,
5326 };
5327
5328 /* Must be in IDX order */
5329 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5330 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5331 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5332
5333 static struct attribute *adl_hybrid_mem_attrs[] = {
5334         EVENT_PTR(mem_ld_adl),
5335         EVENT_PTR(mem_st_adl),
5336         EVENT_PTR(mem_ld_aux_adl),
5337         NULL,
5338 };
5339
5340 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5341 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5342 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5343 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5344 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5345 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5346 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5347 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5348
5349 static struct attribute *adl_hybrid_tsx_attrs[] = {
5350         EVENT_PTR(tx_start_adl),
5351         EVENT_PTR(tx_abort_adl),
5352         EVENT_PTR(tx_commit_adl),
5353         EVENT_PTR(tx_capacity_read_adl),
5354         EVENT_PTR(tx_capacity_write_adl),
5355         EVENT_PTR(tx_conflict_adl),
5356         EVENT_PTR(cycles_t_adl),
5357         EVENT_PTR(cycles_ct_adl),
5358         NULL,
5359 };
5360
5361 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5362 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5363 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5364 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5365 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5366
5367 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5368         FORMAT_HYBRID_PTR(in_tx),
5369         FORMAT_HYBRID_PTR(in_tx_cp),
5370         FORMAT_HYBRID_PTR(offcore_rsp),
5371         FORMAT_HYBRID_PTR(ldlat),
5372         FORMAT_HYBRID_PTR(frontend),
5373         NULL,
5374 };
5375
5376 static struct attribute *adl_hybrid_extra_attr[] = {
5377         FORMAT_HYBRID_PTR(offcore_rsp),
5378         FORMAT_HYBRID_PTR(ldlat),
5379         FORMAT_HYBRID_PTR(frontend),
5380         NULL,
5381 };
5382
5383 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5384 {
5385         struct device *dev = kobj_to_dev(kobj);
5386         struct x86_hybrid_pmu *pmu =
5387                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5388         struct perf_pmu_events_hybrid_attr *pmu_attr =
5389                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5390
5391         return pmu->cpu_type & pmu_attr->pmu_type;
5392 }
5393
5394 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5395                                         struct attribute *attr, int i)
5396 {
5397         return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5398 }
5399
5400 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5401 {
5402         int cpu = cpumask_first(&pmu->supported_cpus);
5403
5404         return (cpu >= nr_cpu_ids) ? -1 : cpu;
5405 }
5406
5407 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5408                                      struct attribute *attr, int i)
5409 {
5410         struct device *dev = kobj_to_dev(kobj);
5411         struct x86_hybrid_pmu *pmu =
5412                  container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5413         int cpu = hybrid_find_supported_cpu(pmu);
5414
5415         return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5416 }
5417
5418 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5419                                         struct attribute *attr, int i)
5420 {
5421         struct device *dev = kobj_to_dev(kobj);
5422         struct x86_hybrid_pmu *pmu =
5423                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5424         struct perf_pmu_format_hybrid_attr *pmu_attr =
5425                 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5426         int cpu = hybrid_find_supported_cpu(pmu);
5427
5428         return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5429 }
5430
5431 static struct attribute_group hybrid_group_events_td  = {
5432         .name           = "events",
5433         .is_visible     = hybrid_events_is_visible,
5434 };
5435
5436 static struct attribute_group hybrid_group_events_mem = {
5437         .name           = "events",
5438         .is_visible     = hybrid_events_is_visible,
5439 };
5440
5441 static struct attribute_group hybrid_group_events_tsx = {
5442         .name           = "events",
5443         .is_visible     = hybrid_tsx_is_visible,
5444 };
5445
5446 static struct attribute_group hybrid_group_format_extra = {
5447         .name           = "format",
5448         .is_visible     = hybrid_format_is_visible,
5449 };
5450
5451 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5452                                           struct device_attribute *attr,
5453                                           char *buf)
5454 {
5455         struct x86_hybrid_pmu *pmu =
5456                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5457
5458         return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5459 }
5460
5461 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5462 static struct attribute *intel_hybrid_cpus_attrs[] = {
5463         &dev_attr_cpus.attr,
5464         NULL,
5465 };
5466
5467 static struct attribute_group hybrid_group_cpus = {
5468         .attrs          = intel_hybrid_cpus_attrs,
5469 };
5470
5471 static const struct attribute_group *hybrid_attr_update[] = {
5472         &hybrid_group_events_td,
5473         &hybrid_group_events_mem,
5474         &hybrid_group_events_tsx,
5475         &group_caps_gen,
5476         &group_caps_lbr,
5477         &hybrid_group_format_extra,
5478         &group_default,
5479         &hybrid_group_cpus,
5480         NULL,
5481 };
5482
5483 static struct attribute *empty_attrs;
5484
5485 static void intel_pmu_check_num_counters(int *num_counters,
5486                                          int *num_counters_fixed,
5487                                          u64 *intel_ctrl, u64 fixed_mask)
5488 {
5489         if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5490                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5491                      *num_counters, INTEL_PMC_MAX_GENERIC);
5492                 *num_counters = INTEL_PMC_MAX_GENERIC;
5493         }
5494         *intel_ctrl = (1ULL << *num_counters) - 1;
5495
5496         if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5497                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5498                      *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5499                 *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5500         }
5501
5502         *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5503 }
5504
5505 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5506                                               int num_counters,
5507                                               int num_counters_fixed,
5508                                               u64 intel_ctrl)
5509 {
5510         struct event_constraint *c;
5511
5512         if (!event_constraints)
5513                 return;
5514
5515         /*
5516          * event on fixed counter2 (REF_CYCLES) only works on this
5517          * counter, so do not extend mask to generic counters
5518          */
5519         for_each_event_constraint(c, event_constraints) {
5520                 /*
5521                  * Don't extend the topdown slots and metrics
5522                  * events to the generic counters.
5523                  */
5524                 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5525                         /*
5526                          * Disable topdown slots and metrics events,
5527                          * if slots event is not in CPUID.
5528                          */
5529                         if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5530                                 c->idxmsk64 = 0;
5531                         c->weight = hweight64(c->idxmsk64);
5532                         continue;
5533                 }
5534
5535                 if (c->cmask == FIXED_EVENT_FLAGS) {
5536                         /* Disabled fixed counters which are not in CPUID */
5537                         c->idxmsk64 &= intel_ctrl;
5538
5539                         /*
5540                          * Don't extend the pseudo-encoding to the
5541                          * generic counters
5542                          */
5543                         if (!use_fixed_pseudo_encoding(c->code))
5544                                 c->idxmsk64 |= (1ULL << num_counters) - 1;
5545                 }
5546                 c->idxmsk64 &=
5547                         ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5548                 c->weight = hweight64(c->idxmsk64);
5549         }
5550 }
5551
5552 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5553 {
5554         struct extra_reg *er;
5555
5556         /*
5557          * Access extra MSR may cause #GP under certain circumstances.
5558          * E.g. KVM doesn't support offcore event
5559          * Check all extra_regs here.
5560          */
5561         if (!extra_regs)
5562                 return;
5563
5564         for (er = extra_regs; er->msr; er++) {
5565                 er->extra_msr_access = check_msr(er->msr, 0x11UL);
5566                 /* Disable LBR select mapping */
5567                 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5568                         x86_pmu.lbr_sel_map = NULL;
5569         }
5570 }
5571
5572 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5573 {
5574         struct x86_hybrid_pmu *pmu;
5575         int i;
5576
5577         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5578                 pmu = &x86_pmu.hybrid_pmu[i];
5579
5580                 intel_pmu_check_num_counters(&pmu->num_counters,
5581                                              &pmu->num_counters_fixed,
5582                                              &pmu->intel_ctrl,
5583                                              fixed_mask);
5584
5585                 if (pmu->intel_cap.perf_metrics) {
5586                         pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5587                         pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5588                 }
5589
5590                 if (pmu->intel_cap.pebs_output_pt_available)
5591                         pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5592
5593                 intel_pmu_check_event_constraints(pmu->event_constraints,
5594                                                   pmu->num_counters,
5595                                                   pmu->num_counters_fixed,
5596                                                   pmu->intel_ctrl);
5597
5598                 intel_pmu_check_extra_regs(pmu->extra_regs);
5599         }
5600 }
5601
5602 __init int intel_pmu_init(void)
5603 {
5604         struct attribute **extra_skl_attr = &empty_attrs;
5605         struct attribute **extra_attr = &empty_attrs;
5606         struct attribute **td_attr    = &empty_attrs;
5607         struct attribute **mem_attr   = &empty_attrs;
5608         struct attribute **tsx_attr   = &empty_attrs;
5609         union cpuid10_edx edx;
5610         union cpuid10_eax eax;
5611         union cpuid10_ebx ebx;
5612         unsigned int fixed_mask;
5613         bool pmem = false;
5614         int version, i;
5615         char *name;
5616         struct x86_hybrid_pmu *pmu;
5617
5618         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5619                 switch (boot_cpu_data.x86) {
5620                 case 0x6:
5621                         return p6_pmu_init();
5622                 case 0xb:
5623                         return knc_pmu_init();
5624                 case 0xf:
5625                         return p4_pmu_init();
5626                 }
5627                 return -ENODEV;
5628         }
5629
5630         /*
5631          * Check whether the Architectural PerfMon supports
5632          * Branch Misses Retired hw_event or not.
5633          */
5634         cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5635         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5636                 return -ENODEV;
5637
5638         version = eax.split.version_id;
5639         if (version < 2)
5640                 x86_pmu = core_pmu;
5641         else
5642                 x86_pmu = intel_pmu;
5643
5644         x86_pmu.version                 = version;
5645         x86_pmu.num_counters            = eax.split.num_counters;
5646         x86_pmu.cntval_bits             = eax.split.bit_width;
5647         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
5648
5649         x86_pmu.events_maskl            = ebx.full;
5650         x86_pmu.events_mask_len         = eax.split.mask_length;
5651
5652         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5653
5654         /*
5655          * Quirk: v2 perfmon does not report fixed-purpose events, so
5656          * assume at least 3 events, when not running in a hypervisor:
5657          */
5658         if (version > 1 && version < 5) {
5659                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5660
5661                 x86_pmu.num_counters_fixed =
5662                         max((int)edx.split.num_counters_fixed, assume);
5663
5664                 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5665         } else if (version >= 5)
5666                 x86_pmu.num_counters_fixed = fls(fixed_mask);
5667
5668         if (boot_cpu_has(X86_FEATURE_PDCM)) {
5669                 u64 capabilities;
5670
5671                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5672                 x86_pmu.intel_cap.capabilities = capabilities;
5673         }
5674
5675         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5676                 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5677                 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5678         }
5679
5680         if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5681                 intel_pmu_arch_lbr_init();
5682
5683         intel_ds_init();
5684
5685         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5686
5687         if (version >= 5) {
5688                 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5689                 if (x86_pmu.intel_cap.anythread_deprecated)
5690                         pr_cont(" AnyThread deprecated, ");
5691         }
5692
5693         /*
5694          * Install the hw-cache-events table:
5695          */
5696         switch (boot_cpu_data.x86_model) {
5697         case INTEL_FAM6_CORE_YONAH:
5698                 pr_cont("Core events, ");
5699                 name = "core";
5700                 break;
5701
5702         case INTEL_FAM6_CORE2_MEROM:
5703                 x86_add_quirk(intel_clovertown_quirk);
5704                 fallthrough;
5705
5706         case INTEL_FAM6_CORE2_MEROM_L:
5707         case INTEL_FAM6_CORE2_PENRYN:
5708         case INTEL_FAM6_CORE2_DUNNINGTON:
5709                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5710                        sizeof(hw_cache_event_ids));
5711
5712                 intel_pmu_lbr_init_core();
5713
5714                 x86_pmu.event_constraints = intel_core2_event_constraints;
5715                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5716                 pr_cont("Core2 events, ");
5717                 name = "core2";
5718                 break;
5719
5720         case INTEL_FAM6_NEHALEM:
5721         case INTEL_FAM6_NEHALEM_EP:
5722         case INTEL_FAM6_NEHALEM_EX:
5723                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5724                        sizeof(hw_cache_event_ids));
5725                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5726                        sizeof(hw_cache_extra_regs));
5727
5728                 intel_pmu_lbr_init_nhm();
5729
5730                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
5731                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5732                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5733                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
5734                 x86_pmu.limit_period = nhm_limit_period;
5735
5736                 mem_attr = nhm_mem_events_attrs;
5737
5738                 /* UOPS_ISSUED.STALLED_CYCLES */
5739                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5740                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5741                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5742                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5743                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5744
5745                 intel_pmu_pebs_data_source_nhm();
5746                 x86_add_quirk(intel_nehalem_quirk);
5747                 x86_pmu.pebs_no_tlb = 1;
5748                 extra_attr = nhm_format_attr;
5749
5750                 pr_cont("Nehalem events, ");
5751                 name = "nehalem";
5752                 break;
5753
5754         case INTEL_FAM6_ATOM_BONNELL:
5755         case INTEL_FAM6_ATOM_BONNELL_MID:
5756         case INTEL_FAM6_ATOM_SALTWELL:
5757         case INTEL_FAM6_ATOM_SALTWELL_MID:
5758         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5759                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5760                        sizeof(hw_cache_event_ids));
5761
5762                 intel_pmu_lbr_init_atom();
5763
5764                 x86_pmu.event_constraints = intel_gen_event_constraints;
5765                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5766                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5767                 pr_cont("Atom events, ");
5768                 name = "bonnell";
5769                 break;
5770
5771         case INTEL_FAM6_ATOM_SILVERMONT:
5772         case INTEL_FAM6_ATOM_SILVERMONT_D:
5773         case INTEL_FAM6_ATOM_SILVERMONT_MID:
5774         case INTEL_FAM6_ATOM_AIRMONT:
5775         case INTEL_FAM6_ATOM_AIRMONT_MID:
5776                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5777                         sizeof(hw_cache_event_ids));
5778                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5779                        sizeof(hw_cache_extra_regs));
5780
5781                 intel_pmu_lbr_init_slm();
5782
5783                 x86_pmu.event_constraints = intel_slm_event_constraints;
5784                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5785                 x86_pmu.extra_regs = intel_slm_extra_regs;
5786                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5787                 td_attr = slm_events_attrs;
5788                 extra_attr = slm_format_attr;
5789                 pr_cont("Silvermont events, ");
5790                 name = "silvermont";
5791                 break;
5792
5793         case INTEL_FAM6_ATOM_GOLDMONT:
5794         case INTEL_FAM6_ATOM_GOLDMONT_D:
5795                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5796                        sizeof(hw_cache_event_ids));
5797                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5798                        sizeof(hw_cache_extra_regs));
5799
5800                 intel_pmu_lbr_init_skl();
5801
5802                 x86_pmu.event_constraints = intel_slm_event_constraints;
5803                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5804                 x86_pmu.extra_regs = intel_glm_extra_regs;
5805                 /*
5806                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5807                  * for precise cycles.
5808                  * :pp is identical to :ppp
5809                  */
5810                 x86_pmu.pebs_aliases = NULL;
5811                 x86_pmu.pebs_prec_dist = true;
5812                 x86_pmu.lbr_pt_coexist = true;
5813                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5814                 td_attr = glm_events_attrs;
5815                 extra_attr = slm_format_attr;
5816                 pr_cont("Goldmont events, ");
5817                 name = "goldmont";
5818                 break;
5819
5820         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5821                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5822                        sizeof(hw_cache_event_ids));
5823                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5824                        sizeof(hw_cache_extra_regs));
5825
5826                 intel_pmu_lbr_init_skl();
5827
5828                 x86_pmu.event_constraints = intel_slm_event_constraints;
5829                 x86_pmu.extra_regs = intel_glm_extra_regs;
5830                 /*
5831                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5832                  * for precise cycles.
5833                  */
5834                 x86_pmu.pebs_aliases = NULL;
5835                 x86_pmu.pebs_prec_dist = true;
5836                 x86_pmu.lbr_pt_coexist = true;
5837                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5838                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
5839                 x86_pmu.get_event_constraints = glp_get_event_constraints;
5840                 td_attr = glm_events_attrs;
5841                 /* Goldmont Plus has 4-wide pipeline */
5842                 event_attr_td_total_slots_scale_glm.event_str = "4";
5843                 extra_attr = slm_format_attr;
5844                 pr_cont("Goldmont plus events, ");
5845                 name = "goldmont_plus";
5846                 break;
5847
5848         case INTEL_FAM6_ATOM_TREMONT_D:
5849         case INTEL_FAM6_ATOM_TREMONT:
5850         case INTEL_FAM6_ATOM_TREMONT_L:
5851                 x86_pmu.late_ack = true;
5852                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5853                        sizeof(hw_cache_event_ids));
5854                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5855                        sizeof(hw_cache_extra_regs));
5856                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5857
5858                 intel_pmu_lbr_init_skl();
5859
5860                 x86_pmu.event_constraints = intel_slm_event_constraints;
5861                 x86_pmu.extra_regs = intel_tnt_extra_regs;
5862                 /*
5863                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5864                  * for precise cycles.
5865                  */
5866                 x86_pmu.pebs_aliases = NULL;
5867                 x86_pmu.pebs_prec_dist = true;
5868                 x86_pmu.lbr_pt_coexist = true;
5869                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5870                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
5871                 td_attr = tnt_events_attrs;
5872                 extra_attr = slm_format_attr;
5873                 pr_cont("Tremont events, ");
5874                 name = "Tremont";
5875                 break;
5876
5877         case INTEL_FAM6_WESTMERE:
5878         case INTEL_FAM6_WESTMERE_EP:
5879         case INTEL_FAM6_WESTMERE_EX:
5880                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5881                        sizeof(hw_cache_event_ids));
5882                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5883                        sizeof(hw_cache_extra_regs));
5884
5885                 intel_pmu_lbr_init_nhm();
5886
5887                 x86_pmu.event_constraints = intel_westmere_event_constraints;
5888                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5889                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5890                 x86_pmu.extra_regs = intel_westmere_extra_regs;
5891                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5892
5893                 mem_attr = nhm_mem_events_attrs;
5894
5895                 /* UOPS_ISSUED.STALLED_CYCLES */
5896                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5897                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5898                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5899                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5900                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5901
5902                 intel_pmu_pebs_data_source_nhm();
5903                 extra_attr = nhm_format_attr;
5904                 pr_cont("Westmere events, ");
5905                 name = "westmere";
5906                 break;
5907
5908         case INTEL_FAM6_SANDYBRIDGE:
5909         case INTEL_FAM6_SANDYBRIDGE_X:
5910                 x86_add_quirk(intel_sandybridge_quirk);
5911                 x86_add_quirk(intel_ht_bug);
5912                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5913                        sizeof(hw_cache_event_ids));
5914                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5915                        sizeof(hw_cache_extra_regs));
5916
5917                 intel_pmu_lbr_init_snb();
5918
5919                 x86_pmu.event_constraints = intel_snb_event_constraints;
5920                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5921                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5922                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5923                         x86_pmu.extra_regs = intel_snbep_extra_regs;
5924                 else
5925                         x86_pmu.extra_regs = intel_snb_extra_regs;
5926
5927
5928                 /* all extra regs are per-cpu when HT is on */
5929                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5930                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5931
5932                 td_attr  = snb_events_attrs;
5933                 mem_attr = snb_mem_events_attrs;
5934
5935                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5936                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5937                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5938                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5939                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5940                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5941
5942                 extra_attr = nhm_format_attr;
5943
5944                 pr_cont("SandyBridge events, ");
5945                 name = "sandybridge";
5946                 break;
5947
5948         case INTEL_FAM6_IVYBRIDGE:
5949         case INTEL_FAM6_IVYBRIDGE_X:
5950                 x86_add_quirk(intel_ht_bug);
5951                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5952                        sizeof(hw_cache_event_ids));
5953                 /* dTLB-load-misses on IVB is different than SNB */
5954                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5955
5956                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5957                        sizeof(hw_cache_extra_regs));
5958
5959                 intel_pmu_lbr_init_snb();
5960
5961                 x86_pmu.event_constraints = intel_ivb_event_constraints;
5962                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5963                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5964                 x86_pmu.pebs_prec_dist = true;
5965                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5966                         x86_pmu.extra_regs = intel_snbep_extra_regs;
5967                 else
5968                         x86_pmu.extra_regs = intel_snb_extra_regs;
5969                 /* all extra regs are per-cpu when HT is on */
5970                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5971                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5972
5973                 td_attr  = snb_events_attrs;
5974                 mem_attr = snb_mem_events_attrs;
5975
5976                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5977                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5978                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5979
5980                 extra_attr = nhm_format_attr;
5981
5982                 pr_cont("IvyBridge events, ");
5983                 name = "ivybridge";
5984                 break;
5985
5986
5987         case INTEL_FAM6_HASWELL:
5988         case INTEL_FAM6_HASWELL_X:
5989         case INTEL_FAM6_HASWELL_L:
5990         case INTEL_FAM6_HASWELL_G:
5991                 x86_add_quirk(intel_ht_bug);
5992                 x86_add_quirk(intel_pebs_isolation_quirk);
5993                 x86_pmu.late_ack = true;
5994                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5995                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5996
5997                 intel_pmu_lbr_init_hsw();
5998
5999                 x86_pmu.event_constraints = intel_hsw_event_constraints;
6000                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6001                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6002                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6003                 x86_pmu.pebs_prec_dist = true;
6004                 /* all extra regs are per-cpu when HT is on */
6005                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6006                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6007
6008                 x86_pmu.hw_config = hsw_hw_config;
6009                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6010                 x86_pmu.lbr_double_abort = true;
6011                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6012                         hsw_format_attr : nhm_format_attr;
6013                 td_attr  = hsw_events_attrs;
6014                 mem_attr = hsw_mem_events_attrs;
6015                 tsx_attr = hsw_tsx_events_attrs;
6016                 pr_cont("Haswell events, ");
6017                 name = "haswell";
6018                 break;
6019
6020         case INTEL_FAM6_BROADWELL:
6021         case INTEL_FAM6_BROADWELL_D:
6022         case INTEL_FAM6_BROADWELL_G:
6023         case INTEL_FAM6_BROADWELL_X:
6024                 x86_add_quirk(intel_pebs_isolation_quirk);
6025                 x86_pmu.late_ack = true;
6026                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6027                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6028
6029                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6030                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6031                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
6032                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6033                                                                           HSW_SNOOP_DRAM;
6034                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6035                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6036                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6037                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6038
6039                 intel_pmu_lbr_init_hsw();
6040
6041                 x86_pmu.event_constraints = intel_bdw_event_constraints;
6042                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6043                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6044                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6045                 x86_pmu.pebs_prec_dist = true;
6046                 /* all extra regs are per-cpu when HT is on */
6047                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6048                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6049
6050                 x86_pmu.hw_config = hsw_hw_config;
6051                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6052                 x86_pmu.limit_period = bdw_limit_period;
6053                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6054                         hsw_format_attr : nhm_format_attr;
6055                 td_attr  = hsw_events_attrs;
6056                 mem_attr = hsw_mem_events_attrs;
6057                 tsx_attr = hsw_tsx_events_attrs;
6058                 pr_cont("Broadwell events, ");
6059                 name = "broadwell";
6060                 break;
6061
6062         case INTEL_FAM6_XEON_PHI_KNL:
6063         case INTEL_FAM6_XEON_PHI_KNM:
6064                 memcpy(hw_cache_event_ids,
6065                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6066                 memcpy(hw_cache_extra_regs,
6067                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6068                 intel_pmu_lbr_init_knl();
6069
6070                 x86_pmu.event_constraints = intel_slm_event_constraints;
6071                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6072                 x86_pmu.extra_regs = intel_knl_extra_regs;
6073
6074                 /* all extra regs are per-cpu when HT is on */
6075                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6076                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6077                 extra_attr = slm_format_attr;
6078                 pr_cont("Knights Landing/Mill events, ");
6079                 name = "knights-landing";
6080                 break;
6081
6082         case INTEL_FAM6_SKYLAKE_X:
6083                 pmem = true;
6084                 fallthrough;
6085         case INTEL_FAM6_SKYLAKE_L:
6086         case INTEL_FAM6_SKYLAKE:
6087         case INTEL_FAM6_KABYLAKE_L:
6088         case INTEL_FAM6_KABYLAKE:
6089         case INTEL_FAM6_COMETLAKE_L:
6090         case INTEL_FAM6_COMETLAKE:
6091                 x86_add_quirk(intel_pebs_isolation_quirk);
6092                 x86_pmu.late_ack = true;
6093                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6094                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6095                 intel_pmu_lbr_init_skl();
6096
6097                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6098                 event_attr_td_recovery_bubbles.event_str_noht =
6099                         "event=0xd,umask=0x1,cmask=1";
6100                 event_attr_td_recovery_bubbles.event_str_ht =
6101                         "event=0xd,umask=0x1,cmask=1,any=1";
6102
6103                 x86_pmu.event_constraints = intel_skl_event_constraints;
6104                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6105                 x86_pmu.extra_regs = intel_skl_extra_regs;
6106                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6107                 x86_pmu.pebs_prec_dist = true;
6108                 /* all extra regs are per-cpu when HT is on */
6109                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6110                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6111
6112                 x86_pmu.hw_config = hsw_hw_config;
6113                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6114                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6115                         hsw_format_attr : nhm_format_attr;
6116                 extra_skl_attr = skl_format_attr;
6117                 td_attr  = hsw_events_attrs;
6118                 mem_attr = hsw_mem_events_attrs;
6119                 tsx_attr = hsw_tsx_events_attrs;
6120                 intel_pmu_pebs_data_source_skl(pmem);
6121
6122                 /*
6123                  * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6124                  * TSX force abort hooks are not required on these systems. Only deploy
6125                  * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6126                  */
6127                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6128                    !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6129                         x86_pmu.flags |= PMU_FL_TFA;
6130                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
6131                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6132                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6133                 }
6134
6135                 pr_cont("Skylake events, ");
6136                 name = "skylake";
6137                 break;
6138
6139         case INTEL_FAM6_ICELAKE_X:
6140         case INTEL_FAM6_ICELAKE_D:
6141                 pmem = true;
6142                 fallthrough;
6143         case INTEL_FAM6_ICELAKE_L:
6144         case INTEL_FAM6_ICELAKE:
6145         case INTEL_FAM6_TIGERLAKE_L:
6146         case INTEL_FAM6_TIGERLAKE:
6147         case INTEL_FAM6_ROCKETLAKE:
6148                 x86_pmu.late_ack = true;
6149                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6150                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6151                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6152                 intel_pmu_lbr_init_skl();
6153
6154                 x86_pmu.event_constraints = intel_icl_event_constraints;
6155                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6156                 x86_pmu.extra_regs = intel_icl_extra_regs;
6157                 x86_pmu.pebs_aliases = NULL;
6158                 x86_pmu.pebs_prec_dist = true;
6159                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6160                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6161
6162                 x86_pmu.hw_config = hsw_hw_config;
6163                 x86_pmu.get_event_constraints = icl_get_event_constraints;
6164                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6165                         hsw_format_attr : nhm_format_attr;
6166                 extra_skl_attr = skl_format_attr;
6167                 mem_attr = icl_events_attrs;
6168                 td_attr = icl_td_events_attrs;
6169                 tsx_attr = icl_tsx_events_attrs;
6170                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6171                 x86_pmu.lbr_pt_coexist = true;
6172                 intel_pmu_pebs_data_source_skl(pmem);
6173                 x86_pmu.num_topdown_events = 4;
6174                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6175                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6176                 pr_cont("Icelake events, ");
6177                 name = "icelake";
6178                 break;
6179
6180         case INTEL_FAM6_SAPPHIRERAPIDS_X:
6181                 pmem = true;
6182                 x86_pmu.late_ack = true;
6183                 memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6184                 memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6185
6186                 x86_pmu.event_constraints = intel_spr_event_constraints;
6187                 x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6188                 x86_pmu.extra_regs = intel_spr_extra_regs;
6189                 x86_pmu.limit_period = spr_limit_period;
6190                 x86_pmu.pebs_aliases = NULL;
6191                 x86_pmu.pebs_prec_dist = true;
6192                 x86_pmu.pebs_block = true;
6193                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6194                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6195                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6196                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6197                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6198
6199                 x86_pmu.hw_config = hsw_hw_config;
6200                 x86_pmu.get_event_constraints = spr_get_event_constraints;
6201                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6202                         hsw_format_attr : nhm_format_attr;
6203                 extra_skl_attr = skl_format_attr;
6204                 mem_attr = spr_events_attrs;
6205                 td_attr = spr_td_events_attrs;
6206                 tsx_attr = spr_tsx_events_attrs;
6207                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6208                 x86_pmu.lbr_pt_coexist = true;
6209                 intel_pmu_pebs_data_source_skl(pmem);
6210                 x86_pmu.num_topdown_events = 8;
6211                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6212                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6213                 pr_cont("Sapphire Rapids events, ");
6214                 name = "sapphire_rapids";
6215                 break;
6216
6217         case INTEL_FAM6_ALDERLAKE:
6218         case INTEL_FAM6_ALDERLAKE_L:
6219         case INTEL_FAM6_RAPTORLAKE:
6220                 /*
6221                  * Alder Lake has 2 types of CPU, core and atom.
6222                  *
6223                  * Initialize the common PerfMon capabilities here.
6224                  */
6225                 x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6226                                              sizeof(struct x86_hybrid_pmu),
6227                                              GFP_KERNEL);
6228                 if (!x86_pmu.hybrid_pmu)
6229                         return -ENOMEM;
6230                 static_branch_enable(&perf_is_hybrid);
6231                 x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6232
6233                 x86_pmu.pebs_aliases = NULL;
6234                 x86_pmu.pebs_prec_dist = true;
6235                 x86_pmu.pebs_block = true;
6236                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6237                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6238                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6239                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6240                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6241                 x86_pmu.lbr_pt_coexist = true;
6242                 intel_pmu_pebs_data_source_skl(false);
6243                 x86_pmu.num_topdown_events = 8;
6244                 x86_pmu.update_topdown_event = adl_update_topdown_event;
6245                 x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6246
6247                 x86_pmu.filter_match = intel_pmu_filter_match;
6248                 x86_pmu.get_event_constraints = adl_get_event_constraints;
6249                 x86_pmu.hw_config = adl_hw_config;
6250                 x86_pmu.limit_period = spr_limit_period;
6251                 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6252                 /*
6253                  * The rtm_abort_event is used to check whether to enable GPRs
6254                  * for the RTM abort event. Atom doesn't have the RTM abort
6255                  * event. There is no harmful to set it in the common
6256                  * x86_pmu.rtm_abort_event.
6257                  */
6258                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6259
6260                 td_attr = adl_hybrid_events_attrs;
6261                 mem_attr = adl_hybrid_mem_attrs;
6262                 tsx_attr = adl_hybrid_tsx_attrs;
6263                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6264                         adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6265
6266                 /* Initialize big core specific PerfMon capabilities.*/
6267                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6268                 pmu->name = "cpu_core";
6269                 pmu->cpu_type = hybrid_big;
6270                 pmu->late_ack = true;
6271                 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6272                         pmu->num_counters = x86_pmu.num_counters + 2;
6273                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6274                 } else {
6275                         pmu->num_counters = x86_pmu.num_counters;
6276                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6277                 }
6278
6279                 /*
6280                  * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6281                  * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6282                  * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6283                  * mistakenly add extra counters for P-cores. Correct the number of
6284                  * counters here.
6285                  */
6286                 if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6287                         pmu->num_counters = x86_pmu.num_counters;
6288                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6289                 }
6290
6291                 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6292                 pmu->unconstrained = (struct event_constraint)
6293                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6294                                                            0, pmu->num_counters, 0, 0);
6295                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6296                 pmu->intel_cap.perf_metrics = 1;
6297                 pmu->intel_cap.pebs_output_pt_available = 0;
6298
6299                 memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6300                 memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6301                 pmu->event_constraints = intel_spr_event_constraints;
6302                 pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6303                 pmu->extra_regs = intel_spr_extra_regs;
6304
6305                 /* Initialize Atom core specific PerfMon capabilities.*/
6306                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6307                 pmu->name = "cpu_atom";
6308                 pmu->cpu_type = hybrid_small;
6309                 pmu->mid_ack = true;
6310                 pmu->num_counters = x86_pmu.num_counters;
6311                 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6312                 pmu->max_pebs_events = x86_pmu.max_pebs_events;
6313                 pmu->unconstrained = (struct event_constraint)
6314                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6315                                                            0, pmu->num_counters, 0, 0);
6316                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6317                 pmu->intel_cap.perf_metrics = 0;
6318                 pmu->intel_cap.pebs_output_pt_available = 1;
6319
6320                 memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6321                 memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6322                 pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6323                 pmu->event_constraints = intel_slm_event_constraints;
6324                 pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6325                 pmu->extra_regs = intel_grt_extra_regs;
6326                 pr_cont("Alderlake Hybrid events, ");
6327                 name = "alderlake_hybrid";
6328                 break;
6329
6330         default:
6331                 switch (x86_pmu.version) {
6332                 case 1:
6333                         x86_pmu.event_constraints = intel_v1_event_constraints;
6334                         pr_cont("generic architected perfmon v1, ");
6335                         name = "generic_arch_v1";
6336                         break;
6337                 case 2:
6338                 case 3:
6339                 case 4:
6340                         /*
6341                          * default constraints for v2 and up
6342                          */
6343                         x86_pmu.event_constraints = intel_gen_event_constraints;
6344                         pr_cont("generic architected perfmon, ");
6345                         name = "generic_arch_v2+";
6346                         break;
6347                 default:
6348                         /*
6349                          * The default constraints for v5 and up can support up to
6350                          * 16 fixed counters. For the fixed counters 4 and later,
6351                          * the pseudo-encoding is applied.
6352                          * The constraints may be cut according to the CPUID enumeration
6353                          * by inserting the EVENT_CONSTRAINT_END.
6354                          */
6355                         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
6356                                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
6357                         intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
6358                         x86_pmu.event_constraints = intel_v5_gen_event_constraints;
6359                         pr_cont("generic architected perfmon, ");
6360                         name = "generic_arch_v5+";
6361                         break;
6362                 }
6363         }
6364
6365         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6366
6367         if (!is_hybrid()) {
6368                 group_events_td.attrs  = td_attr;
6369                 group_events_mem.attrs = mem_attr;
6370                 group_events_tsx.attrs = tsx_attr;
6371                 group_format_extra.attrs = extra_attr;
6372                 group_format_extra_skl.attrs = extra_skl_attr;
6373
6374                 x86_pmu.attr_update = attr_update;
6375         } else {
6376                 hybrid_group_events_td.attrs  = td_attr;
6377                 hybrid_group_events_mem.attrs = mem_attr;
6378                 hybrid_group_events_tsx.attrs = tsx_attr;
6379                 hybrid_group_format_extra.attrs = extra_attr;
6380
6381                 x86_pmu.attr_update = hybrid_attr_update;
6382         }
6383
6384         intel_pmu_check_num_counters(&x86_pmu.num_counters,
6385                                      &x86_pmu.num_counters_fixed,
6386                                      &x86_pmu.intel_ctrl,
6387                                      (u64)fixed_mask);
6388
6389         /* AnyThread may be deprecated on arch perfmon v5 or later */
6390         if (x86_pmu.intel_cap.anythread_deprecated)
6391                 x86_pmu.format_attrs = intel_arch_formats_attr;
6392
6393         intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6394                                           x86_pmu.num_counters,
6395                                           x86_pmu.num_counters_fixed,
6396                                           x86_pmu.intel_ctrl);
6397         /*
6398          * Access LBR MSR may cause #GP under certain circumstances.
6399          * E.g. KVM doesn't support LBR MSR
6400          * Check all LBT MSR here.
6401          * Disable LBR access if any LBR MSRs can not be accessed.
6402          */
6403         if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6404                 x86_pmu.lbr_nr = 0;
6405         for (i = 0; i < x86_pmu.lbr_nr; i++) {
6406                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6407                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6408                         x86_pmu.lbr_nr = 0;
6409         }
6410
6411         if (x86_pmu.lbr_nr) {
6412                 intel_pmu_lbr_init();
6413
6414                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6415
6416                 /* only support branch_stack snapshot for perfmon >= v2 */
6417                 if (x86_pmu.disable_all == intel_pmu_disable_all) {
6418                         if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6419                                 static_call_update(perf_snapshot_branch_stack,
6420                                                    intel_pmu_snapshot_arch_branch_stack);
6421                         } else {
6422                                 static_call_update(perf_snapshot_branch_stack,
6423                                                    intel_pmu_snapshot_branch_stack);
6424                         }
6425                 }
6426         }
6427
6428         intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6429
6430         /* Support full width counters using alternative MSR range */
6431         if (x86_pmu.intel_cap.full_width_write) {
6432                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6433                 x86_pmu.perfctr = MSR_IA32_PMC0;
6434                 pr_cont("full-width counters, ");
6435         }
6436
6437         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6438                 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6439
6440         if (is_hybrid())
6441                 intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6442
6443         intel_aux_output_init();
6444
6445         return 0;
6446 }
6447
6448 /*
6449  * HT bug: phase 2 init
6450  * Called once we have valid topology information to check
6451  * whether or not HT is enabled
6452  * If HT is off, then we disable the workaround
6453  */
6454 static __init int fixup_ht_bug(void)
6455 {
6456         int c;
6457         /*
6458          * problem not present on this CPU model, nothing to do
6459          */
6460         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6461                 return 0;
6462
6463         if (topology_max_smt_threads() > 1) {
6464                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6465                 return 0;
6466         }
6467
6468         cpus_read_lock();
6469
6470         hardlockup_detector_perf_stop();
6471
6472         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6473
6474         x86_pmu.start_scheduling = NULL;
6475         x86_pmu.commit_scheduling = NULL;
6476         x86_pmu.stop_scheduling = NULL;
6477
6478         hardlockup_detector_perf_restart();
6479
6480         for_each_online_cpu(c)
6481                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6482
6483         cpus_read_unlock();
6484         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6485         return 0;
6486 }
6487 subsys_initcall(fixup_ht_bug)