8f6189f2fbf3d2b16ee590c6e283a67ac19640a0
[linux-2.6-microblaze.git] / arch / x86 / events / intel / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18
19 #include <asm/cpufeature.h>
20 #include <asm/hardirq.h>
21 #include <asm/intel-family.h>
22 #include <asm/intel_pt.h>
23 #include <asm/apic.h>
24 #include <asm/cpu_device_id.h>
25
26 #include "../perf_event.h"
27
28 /*
29  * Intel PerfMon, used on Core and later.
30  */
31 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
32 {
33         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
34         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
35         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
36         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
37         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
38         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
39         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
40         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
41 };
42
43 static struct event_constraint intel_core_event_constraints[] __read_mostly =
44 {
45         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
46         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
47         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
48         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
49         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
50         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
51         EVENT_CONSTRAINT_END
52 };
53
54 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
55 {
56         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
57         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
58         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
59         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
60         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
61         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
62         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
63         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
64         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
65         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
66         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
67         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
68         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
69         EVENT_CONSTRAINT_END
70 };
71
72 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
73 {
74         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
75         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
76         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
77         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
78         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
79         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
80         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
81         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
82         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
83         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
84         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
85         EVENT_CONSTRAINT_END
86 };
87
88 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
89 {
90         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
91         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
92         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
93         EVENT_EXTRA_END
94 };
95
96 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
97 {
98         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
99         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
100         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
101         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
102         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
103         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
104         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
105         EVENT_CONSTRAINT_END
106 };
107
108 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
109 {
110         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
111         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
112         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
113         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
114         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
115         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
117         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
118         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
119         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
120         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
121         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
122
123         /*
124          * When HT is off these events can only run on the bottom 4 counters
125          * When HT is on, they are impacted by the HT bug and require EXCL access
126          */
127         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
128         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
130         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
131
132         EVENT_CONSTRAINT_END
133 };
134
135 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
136 {
137         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
138         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
139         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
140         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
141         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
142         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
143         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
144         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
145         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
146         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
149         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
150
151         /*
152          * When HT is off these events can only run on the bottom 4 counters
153          * When HT is on, they are impacted by the HT bug and require EXCL access
154          */
155         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
156         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
158         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
159
160         EVENT_CONSTRAINT_END
161 };
162
163 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
164 {
165         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
166         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
167         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
168         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
169         EVENT_EXTRA_END
170 };
171
172 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
173 {
174         EVENT_CONSTRAINT_END
175 };
176
177 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
178 {
179         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
180         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
181         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
182         EVENT_CONSTRAINT_END
183 };
184
185 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
186 {
187         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
188         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
189         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
190         FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
191         FIXED_EVENT_CONSTRAINT(0x0500, 4),
192         FIXED_EVENT_CONSTRAINT(0x0600, 5),
193         FIXED_EVENT_CONSTRAINT(0x0700, 6),
194         FIXED_EVENT_CONSTRAINT(0x0800, 7),
195         FIXED_EVENT_CONSTRAINT(0x0900, 8),
196         FIXED_EVENT_CONSTRAINT(0x0a00, 9),
197         FIXED_EVENT_CONSTRAINT(0x0b00, 10),
198         FIXED_EVENT_CONSTRAINT(0x0c00, 11),
199         FIXED_EVENT_CONSTRAINT(0x0d00, 12),
200         FIXED_EVENT_CONSTRAINT(0x0e00, 13),
201         FIXED_EVENT_CONSTRAINT(0x0f00, 14),
202         FIXED_EVENT_CONSTRAINT(0x1000, 15),
203         EVENT_CONSTRAINT_END
204 };
205
206 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
207 {
208         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
211         EVENT_CONSTRAINT_END
212 };
213
214 static struct event_constraint intel_skl_event_constraints[] = {
215         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
216         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
217         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
218         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
219
220         /*
221          * when HT is off, these can only run on the bottom 4 counters
222          */
223         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
224         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
225         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
226         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
227         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
228
229         EVENT_CONSTRAINT_END
230 };
231
232 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
233         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
234         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
235         EVENT_EXTRA_END
236 };
237
238 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
239         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
240         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
241         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
242         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
243         EVENT_EXTRA_END
244 };
245
246 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
247         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
248         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
249         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
250         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
251         EVENT_EXTRA_END
252 };
253
254 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
255         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
256         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
257         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
258         /*
259          * Note the low 8 bits eventsel code is not a continuous field, containing
260          * some #GPing bits. These are masked out.
261          */
262         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
263         EVENT_EXTRA_END
264 };
265
266 static struct event_constraint intel_icl_event_constraints[] = {
267         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
268         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* old INST_RETIRED.PREC_DIST */
269         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
270         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
271         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
272         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
273         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
274         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
275         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
276         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
277         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
278         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
279         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
280         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
281         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
282         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
283         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
284         INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
285         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
286         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
287         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
288         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
289         INTEL_EVENT_CONSTRAINT(0xef, 0xf),
290         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
291         EVENT_CONSTRAINT_END
292 };
293
294 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
295         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
296         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
297         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
298         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
299         EVENT_EXTRA_END
300 };
301
302 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
303         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
304         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
305         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
306         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
307         INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
308         INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
309         EVENT_EXTRA_END
310 };
311
312 static struct event_constraint intel_spr_event_constraints[] = {
313         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
314         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
315         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
316         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
317         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
318         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
319         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
320         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
321         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
322         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
323         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
324         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
325         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
326
327         INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
328         INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
329         /*
330          * Generally event codes < 0x90 are restricted to counters 0-3.
331          * The 0x2E and 0x3C are exception, which has no restriction.
332          */
333         INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
334
335         INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
336         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
337         INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
338         INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
339         INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
340         INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
341         INTEL_EVENT_CONSTRAINT(0xce, 0x1),
342         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
343         /*
344          * Generally event codes >= 0x90 are likely to have no restrictions.
345          * The exception are defined as above.
346          */
347         INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
348
349         EVENT_CONSTRAINT_END
350 };
351
352
353 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
354 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
355 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
356
357 static struct attribute *nhm_mem_events_attrs[] = {
358         EVENT_PTR(mem_ld_nhm),
359         NULL,
360 };
361
362 /*
363  * topdown events for Intel Core CPUs.
364  *
365  * The events are all in slots, which is a free slot in a 4 wide
366  * pipeline. Some events are already reported in slots, for cycle
367  * events we multiply by the pipeline width (4).
368  *
369  * With Hyper Threading on, topdown metrics are either summed or averaged
370  * between the threads of a core: (count_t0 + count_t1).
371  *
372  * For the average case the metric is always scaled to pipeline width,
373  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
374  */
375
376 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
377         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
378         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
379 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
380 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
381         "event=0xe,umask=0x1");                 /* uops_issued.any */
382 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
383         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
384 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
385         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
386 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
387         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
388         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
389 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
390         "4", "2");
391
392 EVENT_ATTR_STR(slots,                   slots,                  "event=0x00,umask=0x4");
393 EVENT_ATTR_STR(topdown-retiring,        td_retiring,            "event=0x00,umask=0x80");
394 EVENT_ATTR_STR(topdown-bad-spec,        td_bad_spec,            "event=0x00,umask=0x81");
395 EVENT_ATTR_STR(topdown-fe-bound,        td_fe_bound,            "event=0x00,umask=0x82");
396 EVENT_ATTR_STR(topdown-be-bound,        td_be_bound,            "event=0x00,umask=0x83");
397 EVENT_ATTR_STR(topdown-heavy-ops,       td_heavy_ops,           "event=0x00,umask=0x84");
398 EVENT_ATTR_STR(topdown-br-mispredict,   td_br_mispredict,       "event=0x00,umask=0x85");
399 EVENT_ATTR_STR(topdown-fetch-lat,       td_fetch_lat,           "event=0x00,umask=0x86");
400 EVENT_ATTR_STR(topdown-mem-bound,       td_mem_bound,           "event=0x00,umask=0x87");
401
402 static struct attribute *snb_events_attrs[] = {
403         EVENT_PTR(td_slots_issued),
404         EVENT_PTR(td_slots_retired),
405         EVENT_PTR(td_fetch_bubbles),
406         EVENT_PTR(td_total_slots),
407         EVENT_PTR(td_total_slots_scale),
408         EVENT_PTR(td_recovery_bubbles),
409         EVENT_PTR(td_recovery_bubbles_scale),
410         NULL,
411 };
412
413 static struct attribute *snb_mem_events_attrs[] = {
414         EVENT_PTR(mem_ld_snb),
415         EVENT_PTR(mem_st_snb),
416         NULL,
417 };
418
419 static struct event_constraint intel_hsw_event_constraints[] = {
420         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
421         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
422         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
423         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
424         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
425         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
426         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
427         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
428         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
429         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
430         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
431         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
432
433         /*
434          * When HT is off these events can only run on the bottom 4 counters
435          * When HT is on, they are impacted by the HT bug and require EXCL access
436          */
437         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
438         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
439         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
440         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
441
442         EVENT_CONSTRAINT_END
443 };
444
445 static struct event_constraint intel_bdw_event_constraints[] = {
446         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
447         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
448         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
449         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
450         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
451         /*
452          * when HT is off, these can only run on the bottom 4 counters
453          */
454         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
455         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
456         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
457         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
458         EVENT_CONSTRAINT_END
459 };
460
461 static u64 intel_pmu_event_map(int hw_event)
462 {
463         return intel_perfmon_event_map[hw_event];
464 }
465
466 static __initconst const u64 spr_hw_cache_event_ids
467                                 [PERF_COUNT_HW_CACHE_MAX]
468                                 [PERF_COUNT_HW_CACHE_OP_MAX]
469                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
470 {
471  [ C(L1D ) ] = {
472         [ C(OP_READ) ] = {
473                 [ C(RESULT_ACCESS) ] = 0x81d0,
474                 [ C(RESULT_MISS)   ] = 0xe124,
475         },
476         [ C(OP_WRITE) ] = {
477                 [ C(RESULT_ACCESS) ] = 0x82d0,
478         },
479  },
480  [ C(L1I ) ] = {
481         [ C(OP_READ) ] = {
482                 [ C(RESULT_MISS)   ] = 0xe424,
483         },
484         [ C(OP_WRITE) ] = {
485                 [ C(RESULT_ACCESS) ] = -1,
486                 [ C(RESULT_MISS)   ] = -1,
487         },
488  },
489  [ C(LL  ) ] = {
490         [ C(OP_READ) ] = {
491                 [ C(RESULT_ACCESS) ] = 0x12a,
492                 [ C(RESULT_MISS)   ] = 0x12a,
493         },
494         [ C(OP_WRITE) ] = {
495                 [ C(RESULT_ACCESS) ] = 0x12a,
496                 [ C(RESULT_MISS)   ] = 0x12a,
497         },
498  },
499  [ C(DTLB) ] = {
500         [ C(OP_READ) ] = {
501                 [ C(RESULT_ACCESS) ] = 0x81d0,
502                 [ C(RESULT_MISS)   ] = 0xe12,
503         },
504         [ C(OP_WRITE) ] = {
505                 [ C(RESULT_ACCESS) ] = 0x82d0,
506                 [ C(RESULT_MISS)   ] = 0xe13,
507         },
508  },
509  [ C(ITLB) ] = {
510         [ C(OP_READ) ] = {
511                 [ C(RESULT_ACCESS) ] = -1,
512                 [ C(RESULT_MISS)   ] = 0xe11,
513         },
514         [ C(OP_WRITE) ] = {
515                 [ C(RESULT_ACCESS) ] = -1,
516                 [ C(RESULT_MISS)   ] = -1,
517         },
518         [ C(OP_PREFETCH) ] = {
519                 [ C(RESULT_ACCESS) ] = -1,
520                 [ C(RESULT_MISS)   ] = -1,
521         },
522  },
523  [ C(BPU ) ] = {
524         [ C(OP_READ) ] = {
525                 [ C(RESULT_ACCESS) ] = 0x4c4,
526                 [ C(RESULT_MISS)   ] = 0x4c5,
527         },
528         [ C(OP_WRITE) ] = {
529                 [ C(RESULT_ACCESS) ] = -1,
530                 [ C(RESULT_MISS)   ] = -1,
531         },
532         [ C(OP_PREFETCH) ] = {
533                 [ C(RESULT_ACCESS) ] = -1,
534                 [ C(RESULT_MISS)   ] = -1,
535         },
536  },
537  [ C(NODE) ] = {
538         [ C(OP_READ) ] = {
539                 [ C(RESULT_ACCESS) ] = 0x12a,
540                 [ C(RESULT_MISS)   ] = 0x12a,
541         },
542  },
543 };
544
545 static __initconst const u64 spr_hw_cache_extra_regs
546                                 [PERF_COUNT_HW_CACHE_MAX]
547                                 [PERF_COUNT_HW_CACHE_OP_MAX]
548                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
549 {
550  [ C(LL  ) ] = {
551         [ C(OP_READ) ] = {
552                 [ C(RESULT_ACCESS) ] = 0x10001,
553                 [ C(RESULT_MISS)   ] = 0x3fbfc00001,
554         },
555         [ C(OP_WRITE) ] = {
556                 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
557                 [ C(RESULT_MISS)   ] = 0x3f3fc00002,
558         },
559  },
560  [ C(NODE) ] = {
561         [ C(OP_READ) ] = {
562                 [ C(RESULT_ACCESS) ] = 0x10c000001,
563                 [ C(RESULT_MISS)   ] = 0x3fb3000001,
564         },
565  },
566 };
567
568 /*
569  * Notes on the events:
570  * - data reads do not include code reads (comparable to earlier tables)
571  * - data counts include speculative execution (except L1 write, dtlb, bpu)
572  * - remote node access includes remote memory, remote cache, remote mmio.
573  * - prefetches are not included in the counts.
574  * - icache miss does not include decoded icache
575  */
576
577 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
578 #define SKL_DEMAND_RFO                  BIT_ULL(1)
579 #define SKL_ANY_RESPONSE                BIT_ULL(16)
580 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
581 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
582 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
583 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
584 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
585 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
586                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
587                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
588                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
589 #define SKL_SPL_HIT                     BIT_ULL(30)
590 #define SKL_SNOOP_NONE                  BIT_ULL(31)
591 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
592 #define SKL_SNOOP_MISS                  BIT_ULL(33)
593 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
594 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
595 #define SKL_SNOOP_HITM                  BIT_ULL(36)
596 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
597 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
598                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
599                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
600                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
601 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
602 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
603                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
604                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
605                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
606 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
607 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
608 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
609                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
610                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
611
612 static __initconst const u64 skl_hw_cache_event_ids
613                                 [PERF_COUNT_HW_CACHE_MAX]
614                                 [PERF_COUNT_HW_CACHE_OP_MAX]
615                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617  [ C(L1D ) ] = {
618         [ C(OP_READ) ] = {
619                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
620                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
621         },
622         [ C(OP_WRITE) ] = {
623                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
624                 [ C(RESULT_MISS)   ] = 0x0,
625         },
626         [ C(OP_PREFETCH) ] = {
627                 [ C(RESULT_ACCESS) ] = 0x0,
628                 [ C(RESULT_MISS)   ] = 0x0,
629         },
630  },
631  [ C(L1I ) ] = {
632         [ C(OP_READ) ] = {
633                 [ C(RESULT_ACCESS) ] = 0x0,
634                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
635         },
636         [ C(OP_WRITE) ] = {
637                 [ C(RESULT_ACCESS) ] = -1,
638                 [ C(RESULT_MISS)   ] = -1,
639         },
640         [ C(OP_PREFETCH) ] = {
641                 [ C(RESULT_ACCESS) ] = 0x0,
642                 [ C(RESULT_MISS)   ] = 0x0,
643         },
644  },
645  [ C(LL  ) ] = {
646         [ C(OP_READ) ] = {
647                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
648                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
649         },
650         [ C(OP_WRITE) ] = {
651                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
652                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
653         },
654         [ C(OP_PREFETCH) ] = {
655                 [ C(RESULT_ACCESS) ] = 0x0,
656                 [ C(RESULT_MISS)   ] = 0x0,
657         },
658  },
659  [ C(DTLB) ] = {
660         [ C(OP_READ) ] = {
661                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
662                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
663         },
664         [ C(OP_WRITE) ] = {
665                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
666                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
667         },
668         [ C(OP_PREFETCH) ] = {
669                 [ C(RESULT_ACCESS) ] = 0x0,
670                 [ C(RESULT_MISS)   ] = 0x0,
671         },
672  },
673  [ C(ITLB) ] = {
674         [ C(OP_READ) ] = {
675                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
676                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
677         },
678         [ C(OP_WRITE) ] = {
679                 [ C(RESULT_ACCESS) ] = -1,
680                 [ C(RESULT_MISS)   ] = -1,
681         },
682         [ C(OP_PREFETCH) ] = {
683                 [ C(RESULT_ACCESS) ] = -1,
684                 [ C(RESULT_MISS)   ] = -1,
685         },
686  },
687  [ C(BPU ) ] = {
688         [ C(OP_READ) ] = {
689                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
690                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
691         },
692         [ C(OP_WRITE) ] = {
693                 [ C(RESULT_ACCESS) ] = -1,
694                 [ C(RESULT_MISS)   ] = -1,
695         },
696         [ C(OP_PREFETCH) ] = {
697                 [ C(RESULT_ACCESS) ] = -1,
698                 [ C(RESULT_MISS)   ] = -1,
699         },
700  },
701  [ C(NODE) ] = {
702         [ C(OP_READ) ] = {
703                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
704                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
705         },
706         [ C(OP_WRITE) ] = {
707                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
708                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
709         },
710         [ C(OP_PREFETCH) ] = {
711                 [ C(RESULT_ACCESS) ] = 0x0,
712                 [ C(RESULT_MISS)   ] = 0x0,
713         },
714  },
715 };
716
717 static __initconst const u64 skl_hw_cache_extra_regs
718                                 [PERF_COUNT_HW_CACHE_MAX]
719                                 [PERF_COUNT_HW_CACHE_OP_MAX]
720                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
721 {
722  [ C(LL  ) ] = {
723         [ C(OP_READ) ] = {
724                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
725                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
726                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
727                                        SKL_L3_MISS|SKL_ANY_SNOOP|
728                                        SKL_SUPPLIER_NONE,
729         },
730         [ C(OP_WRITE) ] = {
731                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
732                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
733                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
734                                        SKL_L3_MISS|SKL_ANY_SNOOP|
735                                        SKL_SUPPLIER_NONE,
736         },
737         [ C(OP_PREFETCH) ] = {
738                 [ C(RESULT_ACCESS) ] = 0x0,
739                 [ C(RESULT_MISS)   ] = 0x0,
740         },
741  },
742  [ C(NODE) ] = {
743         [ C(OP_READ) ] = {
744                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
745                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
746                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
747                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
748         },
749         [ C(OP_WRITE) ] = {
750                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
751                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
752                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
753                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
754         },
755         [ C(OP_PREFETCH) ] = {
756                 [ C(RESULT_ACCESS) ] = 0x0,
757                 [ C(RESULT_MISS)   ] = 0x0,
758         },
759  },
760 };
761
762 #define SNB_DMND_DATA_RD        (1ULL << 0)
763 #define SNB_DMND_RFO            (1ULL << 1)
764 #define SNB_DMND_IFETCH         (1ULL << 2)
765 #define SNB_DMND_WB             (1ULL << 3)
766 #define SNB_PF_DATA_RD          (1ULL << 4)
767 #define SNB_PF_RFO              (1ULL << 5)
768 #define SNB_PF_IFETCH           (1ULL << 6)
769 #define SNB_LLC_DATA_RD         (1ULL << 7)
770 #define SNB_LLC_RFO             (1ULL << 8)
771 #define SNB_LLC_IFETCH          (1ULL << 9)
772 #define SNB_BUS_LOCKS           (1ULL << 10)
773 #define SNB_STRM_ST             (1ULL << 11)
774 #define SNB_OTHER               (1ULL << 15)
775 #define SNB_RESP_ANY            (1ULL << 16)
776 #define SNB_NO_SUPP             (1ULL << 17)
777 #define SNB_LLC_HITM            (1ULL << 18)
778 #define SNB_LLC_HITE            (1ULL << 19)
779 #define SNB_LLC_HITS            (1ULL << 20)
780 #define SNB_LLC_HITF            (1ULL << 21)
781 #define SNB_LOCAL               (1ULL << 22)
782 #define SNB_REMOTE              (0xffULL << 23)
783 #define SNB_SNP_NONE            (1ULL << 31)
784 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
785 #define SNB_SNP_MISS            (1ULL << 33)
786 #define SNB_NO_FWD              (1ULL << 34)
787 #define SNB_SNP_FWD             (1ULL << 35)
788 #define SNB_HITM                (1ULL << 36)
789 #define SNB_NON_DRAM            (1ULL << 37)
790
791 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
792 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
793 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
794
795 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
796                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
797                                  SNB_HITM)
798
799 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
800 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
801
802 #define SNB_L3_ACCESS           SNB_RESP_ANY
803 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
804
805 static __initconst const u64 snb_hw_cache_extra_regs
806                                 [PERF_COUNT_HW_CACHE_MAX]
807                                 [PERF_COUNT_HW_CACHE_OP_MAX]
808                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
809 {
810  [ C(LL  ) ] = {
811         [ C(OP_READ) ] = {
812                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
813                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
814         },
815         [ C(OP_WRITE) ] = {
816                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
817                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
818         },
819         [ C(OP_PREFETCH) ] = {
820                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
821                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
822         },
823  },
824  [ C(NODE) ] = {
825         [ C(OP_READ) ] = {
826                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
827                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
828         },
829         [ C(OP_WRITE) ] = {
830                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
831                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
832         },
833         [ C(OP_PREFETCH) ] = {
834                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
835                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
836         },
837  },
838 };
839
840 static __initconst const u64 snb_hw_cache_event_ids
841                                 [PERF_COUNT_HW_CACHE_MAX]
842                                 [PERF_COUNT_HW_CACHE_OP_MAX]
843                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
844 {
845  [ C(L1D) ] = {
846         [ C(OP_READ) ] = {
847                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
848                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
849         },
850         [ C(OP_WRITE) ] = {
851                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
852                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
853         },
854         [ C(OP_PREFETCH) ] = {
855                 [ C(RESULT_ACCESS) ] = 0x0,
856                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
857         },
858  },
859  [ C(L1I ) ] = {
860         [ C(OP_READ) ] = {
861                 [ C(RESULT_ACCESS) ] = 0x0,
862                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
863         },
864         [ C(OP_WRITE) ] = {
865                 [ C(RESULT_ACCESS) ] = -1,
866                 [ C(RESULT_MISS)   ] = -1,
867         },
868         [ C(OP_PREFETCH) ] = {
869                 [ C(RESULT_ACCESS) ] = 0x0,
870                 [ C(RESULT_MISS)   ] = 0x0,
871         },
872  },
873  [ C(LL  ) ] = {
874         [ C(OP_READ) ] = {
875                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
876                 [ C(RESULT_ACCESS) ] = 0x01b7,
877                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
878                 [ C(RESULT_MISS)   ] = 0x01b7,
879         },
880         [ C(OP_WRITE) ] = {
881                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
882                 [ C(RESULT_ACCESS) ] = 0x01b7,
883                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
884                 [ C(RESULT_MISS)   ] = 0x01b7,
885         },
886         [ C(OP_PREFETCH) ] = {
887                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
888                 [ C(RESULT_ACCESS) ] = 0x01b7,
889                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
890                 [ C(RESULT_MISS)   ] = 0x01b7,
891         },
892  },
893  [ C(DTLB) ] = {
894         [ C(OP_READ) ] = {
895                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
896                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
897         },
898         [ C(OP_WRITE) ] = {
899                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
900                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
901         },
902         [ C(OP_PREFETCH) ] = {
903                 [ C(RESULT_ACCESS) ] = 0x0,
904                 [ C(RESULT_MISS)   ] = 0x0,
905         },
906  },
907  [ C(ITLB) ] = {
908         [ C(OP_READ) ] = {
909                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
910                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
911         },
912         [ C(OP_WRITE) ] = {
913                 [ C(RESULT_ACCESS) ] = -1,
914                 [ C(RESULT_MISS)   ] = -1,
915         },
916         [ C(OP_PREFETCH) ] = {
917                 [ C(RESULT_ACCESS) ] = -1,
918                 [ C(RESULT_MISS)   ] = -1,
919         },
920  },
921  [ C(BPU ) ] = {
922         [ C(OP_READ) ] = {
923                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
924                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
925         },
926         [ C(OP_WRITE) ] = {
927                 [ C(RESULT_ACCESS) ] = -1,
928                 [ C(RESULT_MISS)   ] = -1,
929         },
930         [ C(OP_PREFETCH) ] = {
931                 [ C(RESULT_ACCESS) ] = -1,
932                 [ C(RESULT_MISS)   ] = -1,
933         },
934  },
935  [ C(NODE) ] = {
936         [ C(OP_READ) ] = {
937                 [ C(RESULT_ACCESS) ] = 0x01b7,
938                 [ C(RESULT_MISS)   ] = 0x01b7,
939         },
940         [ C(OP_WRITE) ] = {
941                 [ C(RESULT_ACCESS) ] = 0x01b7,
942                 [ C(RESULT_MISS)   ] = 0x01b7,
943         },
944         [ C(OP_PREFETCH) ] = {
945                 [ C(RESULT_ACCESS) ] = 0x01b7,
946                 [ C(RESULT_MISS)   ] = 0x01b7,
947         },
948  },
949
950 };
951
952 /*
953  * Notes on the events:
954  * - data reads do not include code reads (comparable to earlier tables)
955  * - data counts include speculative execution (except L1 write, dtlb, bpu)
956  * - remote node access includes remote memory, remote cache, remote mmio.
957  * - prefetches are not included in the counts because they are not
958  *   reliably counted.
959  */
960
961 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
962 #define HSW_DEMAND_RFO                  BIT_ULL(1)
963 #define HSW_ANY_RESPONSE                BIT_ULL(16)
964 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
965 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
966 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
967 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
968 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
969 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
970                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
971                                          HSW_L3_MISS_REMOTE_HOP2P)
972 #define HSW_SNOOP_NONE                  BIT_ULL(31)
973 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
974 #define HSW_SNOOP_MISS                  BIT_ULL(33)
975 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
976 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
977 #define HSW_SNOOP_HITM                  BIT_ULL(36)
978 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
979 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
980                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
981                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
982                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
983 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
984 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
985 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
986 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
987                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
988 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
989
990 #define BDW_L3_MISS_LOCAL               BIT(26)
991 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
992                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
993                                          HSW_L3_MISS_REMOTE_HOP2P)
994
995
996 static __initconst const u64 hsw_hw_cache_event_ids
997                                 [PERF_COUNT_HW_CACHE_MAX]
998                                 [PERF_COUNT_HW_CACHE_OP_MAX]
999                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1000 {
1001  [ C(L1D ) ] = {
1002         [ C(OP_READ) ] = {
1003                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1004                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
1005         },
1006         [ C(OP_WRITE) ] = {
1007                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1008                 [ C(RESULT_MISS)   ] = 0x0,
1009         },
1010         [ C(OP_PREFETCH) ] = {
1011                 [ C(RESULT_ACCESS) ] = 0x0,
1012                 [ C(RESULT_MISS)   ] = 0x0,
1013         },
1014  },
1015  [ C(L1I ) ] = {
1016         [ C(OP_READ) ] = {
1017                 [ C(RESULT_ACCESS) ] = 0x0,
1018                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
1019         },
1020         [ C(OP_WRITE) ] = {
1021                 [ C(RESULT_ACCESS) ] = -1,
1022                 [ C(RESULT_MISS)   ] = -1,
1023         },
1024         [ C(OP_PREFETCH) ] = {
1025                 [ C(RESULT_ACCESS) ] = 0x0,
1026                 [ C(RESULT_MISS)   ] = 0x0,
1027         },
1028  },
1029  [ C(LL  ) ] = {
1030         [ C(OP_READ) ] = {
1031                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1032                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1033         },
1034         [ C(OP_WRITE) ] = {
1035                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1036                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1037         },
1038         [ C(OP_PREFETCH) ] = {
1039                 [ C(RESULT_ACCESS) ] = 0x0,
1040                 [ C(RESULT_MISS)   ] = 0x0,
1041         },
1042  },
1043  [ C(DTLB) ] = {
1044         [ C(OP_READ) ] = {
1045                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1046                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1047         },
1048         [ C(OP_WRITE) ] = {
1049                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1050                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1051         },
1052         [ C(OP_PREFETCH) ] = {
1053                 [ C(RESULT_ACCESS) ] = 0x0,
1054                 [ C(RESULT_MISS)   ] = 0x0,
1055         },
1056  },
1057  [ C(ITLB) ] = {
1058         [ C(OP_READ) ] = {
1059                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
1060                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1061         },
1062         [ C(OP_WRITE) ] = {
1063                 [ C(RESULT_ACCESS) ] = -1,
1064                 [ C(RESULT_MISS)   ] = -1,
1065         },
1066         [ C(OP_PREFETCH) ] = {
1067                 [ C(RESULT_ACCESS) ] = -1,
1068                 [ C(RESULT_MISS)   ] = -1,
1069         },
1070  },
1071  [ C(BPU ) ] = {
1072         [ C(OP_READ) ] = {
1073                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
1074                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
1075         },
1076         [ C(OP_WRITE) ] = {
1077                 [ C(RESULT_ACCESS) ] = -1,
1078                 [ C(RESULT_MISS)   ] = -1,
1079         },
1080         [ C(OP_PREFETCH) ] = {
1081                 [ C(RESULT_ACCESS) ] = -1,
1082                 [ C(RESULT_MISS)   ] = -1,
1083         },
1084  },
1085  [ C(NODE) ] = {
1086         [ C(OP_READ) ] = {
1087                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1088                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1089         },
1090         [ C(OP_WRITE) ] = {
1091                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1092                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1093         },
1094         [ C(OP_PREFETCH) ] = {
1095                 [ C(RESULT_ACCESS) ] = 0x0,
1096                 [ C(RESULT_MISS)   ] = 0x0,
1097         },
1098  },
1099 };
1100
1101 static __initconst const u64 hsw_hw_cache_extra_regs
1102                                 [PERF_COUNT_HW_CACHE_MAX]
1103                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1104                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1105 {
1106  [ C(LL  ) ] = {
1107         [ C(OP_READ) ] = {
1108                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1109                                        HSW_LLC_ACCESS,
1110                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1111                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1112         },
1113         [ C(OP_WRITE) ] = {
1114                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1115                                        HSW_LLC_ACCESS,
1116                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1117                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1118         },
1119         [ C(OP_PREFETCH) ] = {
1120                 [ C(RESULT_ACCESS) ] = 0x0,
1121                 [ C(RESULT_MISS)   ] = 0x0,
1122         },
1123  },
1124  [ C(NODE) ] = {
1125         [ C(OP_READ) ] = {
1126                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1127                                        HSW_L3_MISS_LOCAL_DRAM|
1128                                        HSW_SNOOP_DRAM,
1129                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1130                                        HSW_L3_MISS_REMOTE|
1131                                        HSW_SNOOP_DRAM,
1132         },
1133         [ C(OP_WRITE) ] = {
1134                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1135                                        HSW_L3_MISS_LOCAL_DRAM|
1136                                        HSW_SNOOP_DRAM,
1137                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1138                                        HSW_L3_MISS_REMOTE|
1139                                        HSW_SNOOP_DRAM,
1140         },
1141         [ C(OP_PREFETCH) ] = {
1142                 [ C(RESULT_ACCESS) ] = 0x0,
1143                 [ C(RESULT_MISS)   ] = 0x0,
1144         },
1145  },
1146 };
1147
1148 static __initconst const u64 westmere_hw_cache_event_ids
1149                                 [PERF_COUNT_HW_CACHE_MAX]
1150                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1151                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1152 {
1153  [ C(L1D) ] = {
1154         [ C(OP_READ) ] = {
1155                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1156                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1157         },
1158         [ C(OP_WRITE) ] = {
1159                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1160                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1161         },
1162         [ C(OP_PREFETCH) ] = {
1163                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1164                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1165         },
1166  },
1167  [ C(L1I ) ] = {
1168         [ C(OP_READ) ] = {
1169                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1170                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1171         },
1172         [ C(OP_WRITE) ] = {
1173                 [ C(RESULT_ACCESS) ] = -1,
1174                 [ C(RESULT_MISS)   ] = -1,
1175         },
1176         [ C(OP_PREFETCH) ] = {
1177                 [ C(RESULT_ACCESS) ] = 0x0,
1178                 [ C(RESULT_MISS)   ] = 0x0,
1179         },
1180  },
1181  [ C(LL  ) ] = {
1182         [ C(OP_READ) ] = {
1183                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1184                 [ C(RESULT_ACCESS) ] = 0x01b7,
1185                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1186                 [ C(RESULT_MISS)   ] = 0x01b7,
1187         },
1188         /*
1189          * Use RFO, not WRITEBACK, because a write miss would typically occur
1190          * on RFO.
1191          */
1192         [ C(OP_WRITE) ] = {
1193                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1194                 [ C(RESULT_ACCESS) ] = 0x01b7,
1195                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1196                 [ C(RESULT_MISS)   ] = 0x01b7,
1197         },
1198         [ C(OP_PREFETCH) ] = {
1199                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1200                 [ C(RESULT_ACCESS) ] = 0x01b7,
1201                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1202                 [ C(RESULT_MISS)   ] = 0x01b7,
1203         },
1204  },
1205  [ C(DTLB) ] = {
1206         [ C(OP_READ) ] = {
1207                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1208                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1209         },
1210         [ C(OP_WRITE) ] = {
1211                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1212                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1213         },
1214         [ C(OP_PREFETCH) ] = {
1215                 [ C(RESULT_ACCESS) ] = 0x0,
1216                 [ C(RESULT_MISS)   ] = 0x0,
1217         },
1218  },
1219  [ C(ITLB) ] = {
1220         [ C(OP_READ) ] = {
1221                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1222                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1223         },
1224         [ C(OP_WRITE) ] = {
1225                 [ C(RESULT_ACCESS) ] = -1,
1226                 [ C(RESULT_MISS)   ] = -1,
1227         },
1228         [ C(OP_PREFETCH) ] = {
1229                 [ C(RESULT_ACCESS) ] = -1,
1230                 [ C(RESULT_MISS)   ] = -1,
1231         },
1232  },
1233  [ C(BPU ) ] = {
1234         [ C(OP_READ) ] = {
1235                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1236                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1237         },
1238         [ C(OP_WRITE) ] = {
1239                 [ C(RESULT_ACCESS) ] = -1,
1240                 [ C(RESULT_MISS)   ] = -1,
1241         },
1242         [ C(OP_PREFETCH) ] = {
1243                 [ C(RESULT_ACCESS) ] = -1,
1244                 [ C(RESULT_MISS)   ] = -1,
1245         },
1246  },
1247  [ C(NODE) ] = {
1248         [ C(OP_READ) ] = {
1249                 [ C(RESULT_ACCESS) ] = 0x01b7,
1250                 [ C(RESULT_MISS)   ] = 0x01b7,
1251         },
1252         [ C(OP_WRITE) ] = {
1253                 [ C(RESULT_ACCESS) ] = 0x01b7,
1254                 [ C(RESULT_MISS)   ] = 0x01b7,
1255         },
1256         [ C(OP_PREFETCH) ] = {
1257                 [ C(RESULT_ACCESS) ] = 0x01b7,
1258                 [ C(RESULT_MISS)   ] = 0x01b7,
1259         },
1260  },
1261 };
1262
1263 /*
1264  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1265  * See IA32 SDM Vol 3B 30.6.1.3
1266  */
1267
1268 #define NHM_DMND_DATA_RD        (1 << 0)
1269 #define NHM_DMND_RFO            (1 << 1)
1270 #define NHM_DMND_IFETCH         (1 << 2)
1271 #define NHM_DMND_WB             (1 << 3)
1272 #define NHM_PF_DATA_RD          (1 << 4)
1273 #define NHM_PF_DATA_RFO         (1 << 5)
1274 #define NHM_PF_IFETCH           (1 << 6)
1275 #define NHM_OFFCORE_OTHER       (1 << 7)
1276 #define NHM_UNCORE_HIT          (1 << 8)
1277 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1278 #define NHM_OTHER_CORE_HITM     (1 << 10)
1279                                 /* reserved */
1280 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1281 #define NHM_REMOTE_DRAM         (1 << 13)
1282 #define NHM_LOCAL_DRAM          (1 << 14)
1283 #define NHM_NON_DRAM            (1 << 15)
1284
1285 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1286 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1287
1288 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1289 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1290 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1291
1292 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1293 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1294 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1295
1296 static __initconst const u64 nehalem_hw_cache_extra_regs
1297                                 [PERF_COUNT_HW_CACHE_MAX]
1298                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1299                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1300 {
1301  [ C(LL  ) ] = {
1302         [ C(OP_READ) ] = {
1303                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1304                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1305         },
1306         [ C(OP_WRITE) ] = {
1307                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1308                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1309         },
1310         [ C(OP_PREFETCH) ] = {
1311                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1312                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1313         },
1314  },
1315  [ C(NODE) ] = {
1316         [ C(OP_READ) ] = {
1317                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1318                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1319         },
1320         [ C(OP_WRITE) ] = {
1321                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1322                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1323         },
1324         [ C(OP_PREFETCH) ] = {
1325                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1326                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1327         },
1328  },
1329 };
1330
1331 static __initconst const u64 nehalem_hw_cache_event_ids
1332                                 [PERF_COUNT_HW_CACHE_MAX]
1333                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1334                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1335 {
1336  [ C(L1D) ] = {
1337         [ C(OP_READ) ] = {
1338                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1339                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1340         },
1341         [ C(OP_WRITE) ] = {
1342                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1343                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1344         },
1345         [ C(OP_PREFETCH) ] = {
1346                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1347                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1348         },
1349  },
1350  [ C(L1I ) ] = {
1351         [ C(OP_READ) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1353                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1354         },
1355         [ C(OP_WRITE) ] = {
1356                 [ C(RESULT_ACCESS) ] = -1,
1357                 [ C(RESULT_MISS)   ] = -1,
1358         },
1359         [ C(OP_PREFETCH) ] = {
1360                 [ C(RESULT_ACCESS) ] = 0x0,
1361                 [ C(RESULT_MISS)   ] = 0x0,
1362         },
1363  },
1364  [ C(LL  ) ] = {
1365         [ C(OP_READ) ] = {
1366                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1367                 [ C(RESULT_ACCESS) ] = 0x01b7,
1368                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1369                 [ C(RESULT_MISS)   ] = 0x01b7,
1370         },
1371         /*
1372          * Use RFO, not WRITEBACK, because a write miss would typically occur
1373          * on RFO.
1374          */
1375         [ C(OP_WRITE) ] = {
1376                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1377                 [ C(RESULT_ACCESS) ] = 0x01b7,
1378                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1379                 [ C(RESULT_MISS)   ] = 0x01b7,
1380         },
1381         [ C(OP_PREFETCH) ] = {
1382                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1383                 [ C(RESULT_ACCESS) ] = 0x01b7,
1384                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1385                 [ C(RESULT_MISS)   ] = 0x01b7,
1386         },
1387  },
1388  [ C(DTLB) ] = {
1389         [ C(OP_READ) ] = {
1390                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1391                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1392         },
1393         [ C(OP_WRITE) ] = {
1394                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1395                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1396         },
1397         [ C(OP_PREFETCH) ] = {
1398                 [ C(RESULT_ACCESS) ] = 0x0,
1399                 [ C(RESULT_MISS)   ] = 0x0,
1400         },
1401  },
1402  [ C(ITLB) ] = {
1403         [ C(OP_READ) ] = {
1404                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1405                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1406         },
1407         [ C(OP_WRITE) ] = {
1408                 [ C(RESULT_ACCESS) ] = -1,
1409                 [ C(RESULT_MISS)   ] = -1,
1410         },
1411         [ C(OP_PREFETCH) ] = {
1412                 [ C(RESULT_ACCESS) ] = -1,
1413                 [ C(RESULT_MISS)   ] = -1,
1414         },
1415  },
1416  [ C(BPU ) ] = {
1417         [ C(OP_READ) ] = {
1418                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1419                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1420         },
1421         [ C(OP_WRITE) ] = {
1422                 [ C(RESULT_ACCESS) ] = -1,
1423                 [ C(RESULT_MISS)   ] = -1,
1424         },
1425         [ C(OP_PREFETCH) ] = {
1426                 [ C(RESULT_ACCESS) ] = -1,
1427                 [ C(RESULT_MISS)   ] = -1,
1428         },
1429  },
1430  [ C(NODE) ] = {
1431         [ C(OP_READ) ] = {
1432                 [ C(RESULT_ACCESS) ] = 0x01b7,
1433                 [ C(RESULT_MISS)   ] = 0x01b7,
1434         },
1435         [ C(OP_WRITE) ] = {
1436                 [ C(RESULT_ACCESS) ] = 0x01b7,
1437                 [ C(RESULT_MISS)   ] = 0x01b7,
1438         },
1439         [ C(OP_PREFETCH) ] = {
1440                 [ C(RESULT_ACCESS) ] = 0x01b7,
1441                 [ C(RESULT_MISS)   ] = 0x01b7,
1442         },
1443  },
1444 };
1445
1446 static __initconst const u64 core2_hw_cache_event_ids
1447                                 [PERF_COUNT_HW_CACHE_MAX]
1448                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1449                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1450 {
1451  [ C(L1D) ] = {
1452         [ C(OP_READ) ] = {
1453                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1454                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1455         },
1456         [ C(OP_WRITE) ] = {
1457                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1458                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1459         },
1460         [ C(OP_PREFETCH) ] = {
1461                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1462                 [ C(RESULT_MISS)   ] = 0,
1463         },
1464  },
1465  [ C(L1I ) ] = {
1466         [ C(OP_READ) ] = {
1467                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1468                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1469         },
1470         [ C(OP_WRITE) ] = {
1471                 [ C(RESULT_ACCESS) ] = -1,
1472                 [ C(RESULT_MISS)   ] = -1,
1473         },
1474         [ C(OP_PREFETCH) ] = {
1475                 [ C(RESULT_ACCESS) ] = 0,
1476                 [ C(RESULT_MISS)   ] = 0,
1477         },
1478  },
1479  [ C(LL  ) ] = {
1480         [ C(OP_READ) ] = {
1481                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1482                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1483         },
1484         [ C(OP_WRITE) ] = {
1485                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1486                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1487         },
1488         [ C(OP_PREFETCH) ] = {
1489                 [ C(RESULT_ACCESS) ] = 0,
1490                 [ C(RESULT_MISS)   ] = 0,
1491         },
1492  },
1493  [ C(DTLB) ] = {
1494         [ C(OP_READ) ] = {
1495                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1496                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1497         },
1498         [ C(OP_WRITE) ] = {
1499                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1500                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1501         },
1502         [ C(OP_PREFETCH) ] = {
1503                 [ C(RESULT_ACCESS) ] = 0,
1504                 [ C(RESULT_MISS)   ] = 0,
1505         },
1506  },
1507  [ C(ITLB) ] = {
1508         [ C(OP_READ) ] = {
1509                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1510                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1511         },
1512         [ C(OP_WRITE) ] = {
1513                 [ C(RESULT_ACCESS) ] = -1,
1514                 [ C(RESULT_MISS)   ] = -1,
1515         },
1516         [ C(OP_PREFETCH) ] = {
1517                 [ C(RESULT_ACCESS) ] = -1,
1518                 [ C(RESULT_MISS)   ] = -1,
1519         },
1520  },
1521  [ C(BPU ) ] = {
1522         [ C(OP_READ) ] = {
1523                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1524                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1525         },
1526         [ C(OP_WRITE) ] = {
1527                 [ C(RESULT_ACCESS) ] = -1,
1528                 [ C(RESULT_MISS)   ] = -1,
1529         },
1530         [ C(OP_PREFETCH) ] = {
1531                 [ C(RESULT_ACCESS) ] = -1,
1532                 [ C(RESULT_MISS)   ] = -1,
1533         },
1534  },
1535 };
1536
1537 static __initconst const u64 atom_hw_cache_event_ids
1538                                 [PERF_COUNT_HW_CACHE_MAX]
1539                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1540                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1541 {
1542  [ C(L1D) ] = {
1543         [ C(OP_READ) ] = {
1544                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1545                 [ C(RESULT_MISS)   ] = 0,
1546         },
1547         [ C(OP_WRITE) ] = {
1548                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1549                 [ C(RESULT_MISS)   ] = 0,
1550         },
1551         [ C(OP_PREFETCH) ] = {
1552                 [ C(RESULT_ACCESS) ] = 0x0,
1553                 [ C(RESULT_MISS)   ] = 0,
1554         },
1555  },
1556  [ C(L1I ) ] = {
1557         [ C(OP_READ) ] = {
1558                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1559                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1560         },
1561         [ C(OP_WRITE) ] = {
1562                 [ C(RESULT_ACCESS) ] = -1,
1563                 [ C(RESULT_MISS)   ] = -1,
1564         },
1565         [ C(OP_PREFETCH) ] = {
1566                 [ C(RESULT_ACCESS) ] = 0,
1567                 [ C(RESULT_MISS)   ] = 0,
1568         },
1569  },
1570  [ C(LL  ) ] = {
1571         [ C(OP_READ) ] = {
1572                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1573                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1574         },
1575         [ C(OP_WRITE) ] = {
1576                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1577                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1578         },
1579         [ C(OP_PREFETCH) ] = {
1580                 [ C(RESULT_ACCESS) ] = 0,
1581                 [ C(RESULT_MISS)   ] = 0,
1582         },
1583  },
1584  [ C(DTLB) ] = {
1585         [ C(OP_READ) ] = {
1586                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1587                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1588         },
1589         [ C(OP_WRITE) ] = {
1590                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1591                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1592         },
1593         [ C(OP_PREFETCH) ] = {
1594                 [ C(RESULT_ACCESS) ] = 0,
1595                 [ C(RESULT_MISS)   ] = 0,
1596         },
1597  },
1598  [ C(ITLB) ] = {
1599         [ C(OP_READ) ] = {
1600                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1601                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1602         },
1603         [ C(OP_WRITE) ] = {
1604                 [ C(RESULT_ACCESS) ] = -1,
1605                 [ C(RESULT_MISS)   ] = -1,
1606         },
1607         [ C(OP_PREFETCH) ] = {
1608                 [ C(RESULT_ACCESS) ] = -1,
1609                 [ C(RESULT_MISS)   ] = -1,
1610         },
1611  },
1612  [ C(BPU ) ] = {
1613         [ C(OP_READ) ] = {
1614                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1615                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1616         },
1617         [ C(OP_WRITE) ] = {
1618                 [ C(RESULT_ACCESS) ] = -1,
1619                 [ C(RESULT_MISS)   ] = -1,
1620         },
1621         [ C(OP_PREFETCH) ] = {
1622                 [ C(RESULT_ACCESS) ] = -1,
1623                 [ C(RESULT_MISS)   ] = -1,
1624         },
1625  },
1626 };
1627
1628 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1629 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1630 /* no_alloc_cycles.not_delivered */
1631 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1632                "event=0xca,umask=0x50");
1633 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1634 /* uops_retired.all */
1635 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1636                "event=0xc2,umask=0x10");
1637 /* uops_retired.all */
1638 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1639                "event=0xc2,umask=0x10");
1640
1641 static struct attribute *slm_events_attrs[] = {
1642         EVENT_PTR(td_total_slots_slm),
1643         EVENT_PTR(td_total_slots_scale_slm),
1644         EVENT_PTR(td_fetch_bubbles_slm),
1645         EVENT_PTR(td_fetch_bubbles_scale_slm),
1646         EVENT_PTR(td_slots_issued_slm),
1647         EVENT_PTR(td_slots_retired_slm),
1648         NULL
1649 };
1650
1651 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1652 {
1653         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1654         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1655         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1656         EVENT_EXTRA_END
1657 };
1658
1659 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1660 #define SLM_DMND_WRITE          SNB_DMND_RFO
1661 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1662
1663 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1664 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1665 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1666
1667 static __initconst const u64 slm_hw_cache_extra_regs
1668                                 [PERF_COUNT_HW_CACHE_MAX]
1669                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1670                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1671 {
1672  [ C(LL  ) ] = {
1673         [ C(OP_READ) ] = {
1674                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1675                 [ C(RESULT_MISS)   ] = 0,
1676         },
1677         [ C(OP_WRITE) ] = {
1678                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1679                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1680         },
1681         [ C(OP_PREFETCH) ] = {
1682                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1683                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1684         },
1685  },
1686 };
1687
1688 static __initconst const u64 slm_hw_cache_event_ids
1689                                 [PERF_COUNT_HW_CACHE_MAX]
1690                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1691                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1692 {
1693  [ C(L1D) ] = {
1694         [ C(OP_READ) ] = {
1695                 [ C(RESULT_ACCESS) ] = 0,
1696                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1697         },
1698         [ C(OP_WRITE) ] = {
1699                 [ C(RESULT_ACCESS) ] = 0,
1700                 [ C(RESULT_MISS)   ] = 0,
1701         },
1702         [ C(OP_PREFETCH) ] = {
1703                 [ C(RESULT_ACCESS) ] = 0,
1704                 [ C(RESULT_MISS)   ] = 0,
1705         },
1706  },
1707  [ C(L1I ) ] = {
1708         [ C(OP_READ) ] = {
1709                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1710                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1711         },
1712         [ C(OP_WRITE) ] = {
1713                 [ C(RESULT_ACCESS) ] = -1,
1714                 [ C(RESULT_MISS)   ] = -1,
1715         },
1716         [ C(OP_PREFETCH) ] = {
1717                 [ C(RESULT_ACCESS) ] = 0,
1718                 [ C(RESULT_MISS)   ] = 0,
1719         },
1720  },
1721  [ C(LL  ) ] = {
1722         [ C(OP_READ) ] = {
1723                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1724                 [ C(RESULT_ACCESS) ] = 0x01b7,
1725                 [ C(RESULT_MISS)   ] = 0,
1726         },
1727         [ C(OP_WRITE) ] = {
1728                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1729                 [ C(RESULT_ACCESS) ] = 0x01b7,
1730                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1731                 [ C(RESULT_MISS)   ] = 0x01b7,
1732         },
1733         [ C(OP_PREFETCH) ] = {
1734                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1735                 [ C(RESULT_ACCESS) ] = 0x01b7,
1736                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1737                 [ C(RESULT_MISS)   ] = 0x01b7,
1738         },
1739  },
1740  [ C(DTLB) ] = {
1741         [ C(OP_READ) ] = {
1742                 [ C(RESULT_ACCESS) ] = 0,
1743                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1744         },
1745         [ C(OP_WRITE) ] = {
1746                 [ C(RESULT_ACCESS) ] = 0,
1747                 [ C(RESULT_MISS)   ] = 0,
1748         },
1749         [ C(OP_PREFETCH) ] = {
1750                 [ C(RESULT_ACCESS) ] = 0,
1751                 [ C(RESULT_MISS)   ] = 0,
1752         },
1753  },
1754  [ C(ITLB) ] = {
1755         [ C(OP_READ) ] = {
1756                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1757                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1758         },
1759         [ C(OP_WRITE) ] = {
1760                 [ C(RESULT_ACCESS) ] = -1,
1761                 [ C(RESULT_MISS)   ] = -1,
1762         },
1763         [ C(OP_PREFETCH) ] = {
1764                 [ C(RESULT_ACCESS) ] = -1,
1765                 [ C(RESULT_MISS)   ] = -1,
1766         },
1767  },
1768  [ C(BPU ) ] = {
1769         [ C(OP_READ) ] = {
1770                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1771                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1772         },
1773         [ C(OP_WRITE) ] = {
1774                 [ C(RESULT_ACCESS) ] = -1,
1775                 [ C(RESULT_MISS)   ] = -1,
1776         },
1777         [ C(OP_PREFETCH) ] = {
1778                 [ C(RESULT_ACCESS) ] = -1,
1779                 [ C(RESULT_MISS)   ] = -1,
1780         },
1781  },
1782 };
1783
1784 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1785 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1786 /* UOPS_NOT_DELIVERED.ANY */
1787 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1788 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1789 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1790 /* UOPS_RETIRED.ANY */
1791 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1792 /* UOPS_ISSUED.ANY */
1793 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1794
1795 static struct attribute *glm_events_attrs[] = {
1796         EVENT_PTR(td_total_slots_glm),
1797         EVENT_PTR(td_total_slots_scale_glm),
1798         EVENT_PTR(td_fetch_bubbles_glm),
1799         EVENT_PTR(td_recovery_bubbles_glm),
1800         EVENT_PTR(td_slots_issued_glm),
1801         EVENT_PTR(td_slots_retired_glm),
1802         NULL
1803 };
1804
1805 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1806         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1807         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1808         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1809         EVENT_EXTRA_END
1810 };
1811
1812 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1813 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1814 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1815 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1816 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1817 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1818 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1819 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1820 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1821 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1822
1823 static __initconst const u64 glm_hw_cache_event_ids
1824                                 [PERF_COUNT_HW_CACHE_MAX]
1825                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1826                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1827         [C(L1D)] = {
1828                 [C(OP_READ)] = {
1829                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1830                         [C(RESULT_MISS)]        = 0x0,
1831                 },
1832                 [C(OP_WRITE)] = {
1833                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1834                         [C(RESULT_MISS)]        = 0x0,
1835                 },
1836                 [C(OP_PREFETCH)] = {
1837                         [C(RESULT_ACCESS)]      = 0x0,
1838                         [C(RESULT_MISS)]        = 0x0,
1839                 },
1840         },
1841         [C(L1I)] = {
1842                 [C(OP_READ)] = {
1843                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1844                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1845                 },
1846                 [C(OP_WRITE)] = {
1847                         [C(RESULT_ACCESS)]      = -1,
1848                         [C(RESULT_MISS)]        = -1,
1849                 },
1850                 [C(OP_PREFETCH)] = {
1851                         [C(RESULT_ACCESS)]      = 0x0,
1852                         [C(RESULT_MISS)]        = 0x0,
1853                 },
1854         },
1855         [C(LL)] = {
1856                 [C(OP_READ)] = {
1857                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1858                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1859                 },
1860                 [C(OP_WRITE)] = {
1861                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1862                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1863                 },
1864                 [C(OP_PREFETCH)] = {
1865                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1866                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1867                 },
1868         },
1869         [C(DTLB)] = {
1870                 [C(OP_READ)] = {
1871                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1872                         [C(RESULT_MISS)]        = 0x0,
1873                 },
1874                 [C(OP_WRITE)] = {
1875                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1876                         [C(RESULT_MISS)]        = 0x0,
1877                 },
1878                 [C(OP_PREFETCH)] = {
1879                         [C(RESULT_ACCESS)]      = 0x0,
1880                         [C(RESULT_MISS)]        = 0x0,
1881                 },
1882         },
1883         [C(ITLB)] = {
1884                 [C(OP_READ)] = {
1885                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1886                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1887                 },
1888                 [C(OP_WRITE)] = {
1889                         [C(RESULT_ACCESS)]      = -1,
1890                         [C(RESULT_MISS)]        = -1,
1891                 },
1892                 [C(OP_PREFETCH)] = {
1893                         [C(RESULT_ACCESS)]      = -1,
1894                         [C(RESULT_MISS)]        = -1,
1895                 },
1896         },
1897         [C(BPU)] = {
1898                 [C(OP_READ)] = {
1899                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1900                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1901                 },
1902                 [C(OP_WRITE)] = {
1903                         [C(RESULT_ACCESS)]      = -1,
1904                         [C(RESULT_MISS)]        = -1,
1905                 },
1906                 [C(OP_PREFETCH)] = {
1907                         [C(RESULT_ACCESS)]      = -1,
1908                         [C(RESULT_MISS)]        = -1,
1909                 },
1910         },
1911 };
1912
1913 static __initconst const u64 glm_hw_cache_extra_regs
1914                                 [PERF_COUNT_HW_CACHE_MAX]
1915                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1916                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1917         [C(LL)] = {
1918                 [C(OP_READ)] = {
1919                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1920                                                   GLM_LLC_ACCESS,
1921                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1922                                                   GLM_LLC_MISS,
1923                 },
1924                 [C(OP_WRITE)] = {
1925                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1926                                                   GLM_LLC_ACCESS,
1927                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1928                                                   GLM_LLC_MISS,
1929                 },
1930                 [C(OP_PREFETCH)] = {
1931                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1932                                                   GLM_LLC_ACCESS,
1933                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1934                                                   GLM_LLC_MISS,
1935                 },
1936         },
1937 };
1938
1939 static __initconst const u64 glp_hw_cache_event_ids
1940                                 [PERF_COUNT_HW_CACHE_MAX]
1941                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1942                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1943         [C(L1D)] = {
1944                 [C(OP_READ)] = {
1945                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1946                         [C(RESULT_MISS)]        = 0x0,
1947                 },
1948                 [C(OP_WRITE)] = {
1949                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1950                         [C(RESULT_MISS)]        = 0x0,
1951                 },
1952                 [C(OP_PREFETCH)] = {
1953                         [C(RESULT_ACCESS)]      = 0x0,
1954                         [C(RESULT_MISS)]        = 0x0,
1955                 },
1956         },
1957         [C(L1I)] = {
1958                 [C(OP_READ)] = {
1959                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1960                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1961                 },
1962                 [C(OP_WRITE)] = {
1963                         [C(RESULT_ACCESS)]      = -1,
1964                         [C(RESULT_MISS)]        = -1,
1965                 },
1966                 [C(OP_PREFETCH)] = {
1967                         [C(RESULT_ACCESS)]      = 0x0,
1968                         [C(RESULT_MISS)]        = 0x0,
1969                 },
1970         },
1971         [C(LL)] = {
1972                 [C(OP_READ)] = {
1973                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1974                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1975                 },
1976                 [C(OP_WRITE)] = {
1977                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1978                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1979                 },
1980                 [C(OP_PREFETCH)] = {
1981                         [C(RESULT_ACCESS)]      = 0x0,
1982                         [C(RESULT_MISS)]        = 0x0,
1983                 },
1984         },
1985         [C(DTLB)] = {
1986                 [C(OP_READ)] = {
1987                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1988                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1989                 },
1990                 [C(OP_WRITE)] = {
1991                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1992                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1993                 },
1994                 [C(OP_PREFETCH)] = {
1995                         [C(RESULT_ACCESS)]      = 0x0,
1996                         [C(RESULT_MISS)]        = 0x0,
1997                 },
1998         },
1999         [C(ITLB)] = {
2000                 [C(OP_READ)] = {
2001                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
2002                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
2003                 },
2004                 [C(OP_WRITE)] = {
2005                         [C(RESULT_ACCESS)]      = -1,
2006                         [C(RESULT_MISS)]        = -1,
2007                 },
2008                 [C(OP_PREFETCH)] = {
2009                         [C(RESULT_ACCESS)]      = -1,
2010                         [C(RESULT_MISS)]        = -1,
2011                 },
2012         },
2013         [C(BPU)] = {
2014                 [C(OP_READ)] = {
2015                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
2016                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
2017                 },
2018                 [C(OP_WRITE)] = {
2019                         [C(RESULT_ACCESS)]      = -1,
2020                         [C(RESULT_MISS)]        = -1,
2021                 },
2022                 [C(OP_PREFETCH)] = {
2023                         [C(RESULT_ACCESS)]      = -1,
2024                         [C(RESULT_MISS)]        = -1,
2025                 },
2026         },
2027 };
2028
2029 static __initconst const u64 glp_hw_cache_extra_regs
2030                                 [PERF_COUNT_HW_CACHE_MAX]
2031                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2032                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2033         [C(LL)] = {
2034                 [C(OP_READ)] = {
2035                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
2036                                                   GLM_LLC_ACCESS,
2037                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
2038                                                   GLM_LLC_MISS,
2039                 },
2040                 [C(OP_WRITE)] = {
2041                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
2042                                                   GLM_LLC_ACCESS,
2043                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
2044                                                   GLM_LLC_MISS,
2045                 },
2046                 [C(OP_PREFETCH)] = {
2047                         [C(RESULT_ACCESS)]      = 0x0,
2048                         [C(RESULT_MISS)]        = 0x0,
2049                 },
2050         },
2051 };
2052
2053 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
2054 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
2055 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
2056 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
2057 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2058                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2059 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2060
2061 static __initconst const u64 tnt_hw_cache_extra_regs
2062                                 [PERF_COUNT_HW_CACHE_MAX]
2063                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2064                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2065         [C(LL)] = {
2066                 [C(OP_READ)] = {
2067                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
2068                                                   TNT_LLC_ACCESS,
2069                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
2070                                                   TNT_LLC_MISS,
2071                 },
2072                 [C(OP_WRITE)] = {
2073                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
2074                                                   TNT_LLC_ACCESS,
2075                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
2076                                                   TNT_LLC_MISS,
2077                 },
2078                 [C(OP_PREFETCH)] = {
2079                         [C(RESULT_ACCESS)]      = 0x0,
2080                         [C(RESULT_MISS)]        = 0x0,
2081                 },
2082         },
2083 };
2084
2085 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2086 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2087 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2088 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2089
2090 static struct attribute *tnt_events_attrs[] = {
2091         EVENT_PTR(td_fe_bound_tnt),
2092         EVENT_PTR(td_retiring_tnt),
2093         EVENT_PTR(td_bad_spec_tnt),
2094         EVENT_PTR(td_be_bound_tnt),
2095         NULL,
2096 };
2097
2098 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2099         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2100         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2101         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2102         EVENT_EXTRA_END
2103 };
2104
2105 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2106         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2107         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2108         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2109         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2110         EVENT_EXTRA_END
2111 };
2112
2113 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
2114 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
2115 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
2116 #define KNL_MCDRAM_FAR          BIT_ULL(22)
2117 #define KNL_DDR_LOCAL           BIT_ULL(23)
2118 #define KNL_DDR_FAR             BIT_ULL(24)
2119 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2120                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
2121 #define KNL_L2_READ             SLM_DMND_READ
2122 #define KNL_L2_WRITE            SLM_DMND_WRITE
2123 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
2124 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
2125 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2126                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
2127                                                   SNB_NON_DRAM)
2128
2129 static __initconst const u64 knl_hw_cache_extra_regs
2130                                 [PERF_COUNT_HW_CACHE_MAX]
2131                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2132                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2133         [C(LL)] = {
2134                 [C(OP_READ)] = {
2135                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2136                         [C(RESULT_MISS)]   = 0,
2137                 },
2138                 [C(OP_WRITE)] = {
2139                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2140                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2141                 },
2142                 [C(OP_PREFETCH)] = {
2143                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2144                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2145                 },
2146         },
2147 };
2148
2149 /*
2150  * Used from PMIs where the LBRs are already disabled.
2151  *
2152  * This function could be called consecutively. It is required to remain in
2153  * disabled state if called consecutively.
2154  *
2155  * During consecutive calls, the same disable value will be written to related
2156  * registers, so the PMU state remains unchanged.
2157  *
2158  * intel_bts events don't coexist with intel PMU's BTS events because of
2159  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2160  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2161  *
2162  * Avoid PEBS_ENABLE MSR access in PMIs.
2163  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2164  * It doesn't matter if the PEBS is enabled or not.
2165  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2166  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2167  * However, there are some cases which may change PEBS status, e.g. PMI
2168  * throttle. The PEBS_ENABLE should be updated where the status changes.
2169  */
2170 static __always_inline void __intel_pmu_disable_all(bool bts)
2171 {
2172         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2173
2174         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2175
2176         if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2177                 intel_pmu_disable_bts();
2178 }
2179
2180 static __always_inline void intel_pmu_disable_all(void)
2181 {
2182         __intel_pmu_disable_all(true);
2183         intel_pmu_pebs_disable_all();
2184         intel_pmu_lbr_disable_all();
2185 }
2186
2187 static void __intel_pmu_enable_all(int added, bool pmi)
2188 {
2189         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2190         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2191
2192         intel_pmu_lbr_enable_all(pmi);
2193         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2194                intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2195
2196         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2197                 struct perf_event *event =
2198                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2199
2200                 if (WARN_ON_ONCE(!event))
2201                         return;
2202
2203                 intel_pmu_enable_bts(event->hw.config);
2204         }
2205 }
2206
2207 static void intel_pmu_enable_all(int added)
2208 {
2209         intel_pmu_pebs_enable_all();
2210         __intel_pmu_enable_all(added, false);
2211 }
2212
2213 static noinline int
2214 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2215                                   unsigned int cnt, unsigned long flags)
2216 {
2217         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2218
2219         intel_pmu_lbr_read();
2220         cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2221
2222         memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2223         intel_pmu_enable_all(0);
2224         local_irq_restore(flags);
2225         return cnt;
2226 }
2227
2228 static int
2229 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2230 {
2231         unsigned long flags;
2232
2233         /* must not have branches... */
2234         local_irq_save(flags);
2235         __intel_pmu_disable_all(false); /* we don't care about BTS */
2236         __intel_pmu_lbr_disable();
2237         /*            ... until here */
2238         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2239 }
2240
2241 static int
2242 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2243 {
2244         unsigned long flags;
2245
2246         /* must not have branches... */
2247         local_irq_save(flags);
2248         __intel_pmu_disable_all(false); /* we don't care about BTS */
2249         __intel_pmu_arch_lbr_disable();
2250         /*            ... until here */
2251         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2252 }
2253
2254 /*
2255  * Workaround for:
2256  *   Intel Errata AAK100 (model 26)
2257  *   Intel Errata AAP53  (model 30)
2258  *   Intel Errata BD53   (model 44)
2259  *
2260  * The official story:
2261  *   These chips need to be 'reset' when adding counters by programming the
2262  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2263  *   in sequence on the same PMC or on different PMCs.
2264  *
2265  * In practice it appears some of these events do in fact count, and
2266  * we need to program all 4 events.
2267  */
2268 static void intel_pmu_nhm_workaround(void)
2269 {
2270         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2271         static const unsigned long nhm_magic[4] = {
2272                 0x4300B5,
2273                 0x4300D2,
2274                 0x4300B1,
2275                 0x4300B1
2276         };
2277         struct perf_event *event;
2278         int i;
2279
2280         /*
2281          * The Errata requires below steps:
2282          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2283          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2284          *    the corresponding PMCx;
2285          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2286          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2287          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2288          */
2289
2290         /*
2291          * The real steps we choose are a little different from above.
2292          * A) To reduce MSR operations, we don't run step 1) as they
2293          *    are already cleared before this function is called;
2294          * B) Call x86_perf_event_update to save PMCx before configuring
2295          *    PERFEVTSELx with magic number;
2296          * C) With step 5), we do clear only when the PERFEVTSELx is
2297          *    not used currently.
2298          * D) Call x86_perf_event_set_period to restore PMCx;
2299          */
2300
2301         /* We always operate 4 pairs of PERF Counters */
2302         for (i = 0; i < 4; i++) {
2303                 event = cpuc->events[i];
2304                 if (event)
2305                         x86_perf_event_update(event);
2306         }
2307
2308         for (i = 0; i < 4; i++) {
2309                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2310                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2311         }
2312
2313         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2314         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2315
2316         for (i = 0; i < 4; i++) {
2317                 event = cpuc->events[i];
2318
2319                 if (event) {
2320                         x86_perf_event_set_period(event);
2321                         __x86_pmu_enable_event(&event->hw,
2322                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2323                 } else
2324                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2325         }
2326 }
2327
2328 static void intel_pmu_nhm_enable_all(int added)
2329 {
2330         if (added)
2331                 intel_pmu_nhm_workaround();
2332         intel_pmu_enable_all(added);
2333 }
2334
2335 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2336 {
2337         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2338
2339         if (cpuc->tfa_shadow != val) {
2340                 cpuc->tfa_shadow = val;
2341                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2342         }
2343 }
2344
2345 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2346 {
2347         /*
2348          * We're going to use PMC3, make sure TFA is set before we touch it.
2349          */
2350         if (cntr == 3)
2351                 intel_set_tfa(cpuc, true);
2352 }
2353
2354 static void intel_tfa_pmu_enable_all(int added)
2355 {
2356         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2357
2358         /*
2359          * If we find PMC3 is no longer used when we enable the PMU, we can
2360          * clear TFA.
2361          */
2362         if (!test_bit(3, cpuc->active_mask))
2363                 intel_set_tfa(cpuc, false);
2364
2365         intel_pmu_enable_all(added);
2366 }
2367
2368 static inline u64 intel_pmu_get_status(void)
2369 {
2370         u64 status;
2371
2372         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2373
2374         return status;
2375 }
2376
2377 static inline void intel_pmu_ack_status(u64 ack)
2378 {
2379         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2380 }
2381
2382 static inline bool event_is_checkpointed(struct perf_event *event)
2383 {
2384         return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2385 }
2386
2387 static inline void intel_set_masks(struct perf_event *event, int idx)
2388 {
2389         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2390
2391         if (event->attr.exclude_host)
2392                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2393         if (event->attr.exclude_guest)
2394                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2395         if (event_is_checkpointed(event))
2396                 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2397 }
2398
2399 static inline void intel_clear_masks(struct perf_event *event, int idx)
2400 {
2401         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2402
2403         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2404         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2405         __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2406 }
2407
2408 static void intel_pmu_disable_fixed(struct perf_event *event)
2409 {
2410         struct hw_perf_event *hwc = &event->hw;
2411         u64 ctrl_val, mask;
2412         int idx = hwc->idx;
2413
2414         if (is_topdown_idx(idx)) {
2415                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2416
2417                 /*
2418                  * When there are other active TopDown events,
2419                  * don't disable the fixed counter 3.
2420                  */
2421                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2422                         return;
2423                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2424         }
2425
2426         intel_clear_masks(event, idx);
2427
2428         mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2429         rdmsrl(hwc->config_base, ctrl_val);
2430         ctrl_val &= ~mask;
2431         wrmsrl(hwc->config_base, ctrl_val);
2432 }
2433
2434 static void intel_pmu_disable_event(struct perf_event *event)
2435 {
2436         struct hw_perf_event *hwc = &event->hw;
2437         int idx = hwc->idx;
2438
2439         switch (idx) {
2440         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2441                 intel_clear_masks(event, idx);
2442                 x86_pmu_disable_event(event);
2443                 break;
2444         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2445         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2446                 intel_pmu_disable_fixed(event);
2447                 break;
2448         case INTEL_PMC_IDX_FIXED_BTS:
2449                 intel_pmu_disable_bts();
2450                 intel_pmu_drain_bts_buffer();
2451                 return;
2452         case INTEL_PMC_IDX_FIXED_VLBR:
2453                 intel_clear_masks(event, idx);
2454                 break;
2455         default:
2456                 intel_clear_masks(event, idx);
2457                 pr_warn("Failed to disable the event with invalid index %d\n",
2458                         idx);
2459                 return;
2460         }
2461
2462         /*
2463          * Needs to be called after x86_pmu_disable_event,
2464          * so we don't trigger the event without PEBS bit set.
2465          */
2466         if (unlikely(event->attr.precise_ip))
2467                 intel_pmu_pebs_disable(event);
2468 }
2469
2470 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2471 {
2472         if (is_pebs_pt(event))
2473                 perf_report_aux_output_id(event, idx);
2474 }
2475
2476 static void intel_pmu_del_event(struct perf_event *event)
2477 {
2478         if (needs_branch_stack(event))
2479                 intel_pmu_lbr_del(event);
2480         if (event->attr.precise_ip)
2481                 intel_pmu_pebs_del(event);
2482 }
2483
2484 static int icl_set_topdown_event_period(struct perf_event *event)
2485 {
2486         struct hw_perf_event *hwc = &event->hw;
2487         s64 left = local64_read(&hwc->period_left);
2488
2489         /*
2490          * The values in PERF_METRICS MSR are derived from fixed counter 3.
2491          * Software should start both registers, PERF_METRICS and fixed
2492          * counter 3, from zero.
2493          * Clear PERF_METRICS and Fixed counter 3 in initialization.
2494          * After that, both MSRs will be cleared for each read.
2495          * Don't need to clear them again.
2496          */
2497         if (left == x86_pmu.max_period) {
2498                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2499                 wrmsrl(MSR_PERF_METRICS, 0);
2500                 hwc->saved_slots = 0;
2501                 hwc->saved_metric = 0;
2502         }
2503
2504         if ((hwc->saved_slots) && is_slots_event(event)) {
2505                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2506                 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2507         }
2508
2509         perf_event_update_userpage(event);
2510
2511         return 0;
2512 }
2513
2514 static int adl_set_topdown_event_period(struct perf_event *event)
2515 {
2516         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2517
2518         if (pmu->cpu_type != hybrid_big)
2519                 return 0;
2520
2521         return icl_set_topdown_event_period(event);
2522 }
2523
2524 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2525 {
2526         u32 val;
2527
2528         /*
2529          * The metric is reported as an 8bit integer fraction
2530          * summing up to 0xff.
2531          * slots-in-metric = (Metric / 0xff) * slots
2532          */
2533         val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2534         return  mul_u64_u32_div(slots, val, 0xff);
2535 }
2536
2537 static u64 icl_get_topdown_value(struct perf_event *event,
2538                                        u64 slots, u64 metrics)
2539 {
2540         int idx = event->hw.idx;
2541         u64 delta;
2542
2543         if (is_metric_idx(idx))
2544                 delta = icl_get_metrics_event_value(metrics, slots, idx);
2545         else
2546                 delta = slots;
2547
2548         return delta;
2549 }
2550
2551 static void __icl_update_topdown_event(struct perf_event *event,
2552                                        u64 slots, u64 metrics,
2553                                        u64 last_slots, u64 last_metrics)
2554 {
2555         u64 delta, last = 0;
2556
2557         delta = icl_get_topdown_value(event, slots, metrics);
2558         if (last_slots)
2559                 last = icl_get_topdown_value(event, last_slots, last_metrics);
2560
2561         /*
2562          * The 8bit integer fraction of metric may be not accurate,
2563          * especially when the changes is very small.
2564          * For example, if only a few bad_spec happens, the fraction
2565          * may be reduced from 1 to 0. If so, the bad_spec event value
2566          * will be 0 which is definitely less than the last value.
2567          * Avoid update event->count for this case.
2568          */
2569         if (delta > last) {
2570                 delta -= last;
2571                 local64_add(delta, &event->count);
2572         }
2573 }
2574
2575 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2576                                       u64 metrics, int metric_end)
2577 {
2578         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2579         struct perf_event *other;
2580         int idx;
2581
2582         event->hw.saved_slots = slots;
2583         event->hw.saved_metric = metrics;
2584
2585         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2586                 if (!is_topdown_idx(idx))
2587                         continue;
2588                 other = cpuc->events[idx];
2589                 other->hw.saved_slots = slots;
2590                 other->hw.saved_metric = metrics;
2591         }
2592 }
2593
2594 /*
2595  * Update all active Topdown events.
2596  *
2597  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2598  * modify by a NMI. PMU has to be disabled before calling this function.
2599  */
2600
2601 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2602 {
2603         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2604         struct perf_event *other;
2605         u64 slots, metrics;
2606         bool reset = true;
2607         int idx;
2608
2609         /* read Fixed counter 3 */
2610         rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2611         if (!slots)
2612                 return 0;
2613
2614         /* read PERF_METRICS */
2615         rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2616
2617         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2618                 if (!is_topdown_idx(idx))
2619                         continue;
2620                 other = cpuc->events[idx];
2621                 __icl_update_topdown_event(other, slots, metrics,
2622                                            event ? event->hw.saved_slots : 0,
2623                                            event ? event->hw.saved_metric : 0);
2624         }
2625
2626         /*
2627          * Check and update this event, which may have been cleared
2628          * in active_mask e.g. x86_pmu_stop()
2629          */
2630         if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2631                 __icl_update_topdown_event(event, slots, metrics,
2632                                            event->hw.saved_slots,
2633                                            event->hw.saved_metric);
2634
2635                 /*
2636                  * In x86_pmu_stop(), the event is cleared in active_mask first,
2637                  * then drain the delta, which indicates context switch for
2638                  * counting.
2639                  * Save metric and slots for context switch.
2640                  * Don't need to reset the PERF_METRICS and Fixed counter 3.
2641                  * Because the values will be restored in next schedule in.
2642                  */
2643                 update_saved_topdown_regs(event, slots, metrics, metric_end);
2644                 reset = false;
2645         }
2646
2647         if (reset) {
2648                 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2649                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2650                 wrmsrl(MSR_PERF_METRICS, 0);
2651                 if (event)
2652                         update_saved_topdown_regs(event, 0, 0, metric_end);
2653         }
2654
2655         return slots;
2656 }
2657
2658 static u64 icl_update_topdown_event(struct perf_event *event)
2659 {
2660         return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2661                                                  x86_pmu.num_topdown_events - 1);
2662 }
2663
2664 static u64 adl_update_topdown_event(struct perf_event *event)
2665 {
2666         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2667
2668         if (pmu->cpu_type != hybrid_big)
2669                 return 0;
2670
2671         return icl_update_topdown_event(event);
2672 }
2673
2674
2675 static void intel_pmu_read_topdown_event(struct perf_event *event)
2676 {
2677         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2678
2679         /* Only need to call update_topdown_event() once for group read. */
2680         if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2681             !is_slots_event(event))
2682                 return;
2683
2684         perf_pmu_disable(event->pmu);
2685         x86_pmu.update_topdown_event(event);
2686         perf_pmu_enable(event->pmu);
2687 }
2688
2689 static void intel_pmu_read_event(struct perf_event *event)
2690 {
2691         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2692                 intel_pmu_auto_reload_read(event);
2693         else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2694                 intel_pmu_read_topdown_event(event);
2695         else
2696                 x86_perf_event_update(event);
2697 }
2698
2699 static void intel_pmu_enable_fixed(struct perf_event *event)
2700 {
2701         struct hw_perf_event *hwc = &event->hw;
2702         u64 ctrl_val, mask, bits = 0;
2703         int idx = hwc->idx;
2704
2705         if (is_topdown_idx(idx)) {
2706                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2707                 /*
2708                  * When there are other active TopDown events,
2709                  * don't enable the fixed counter 3 again.
2710                  */
2711                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2712                         return;
2713
2714                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2715         }
2716
2717         intel_set_masks(event, idx);
2718
2719         /*
2720          * Enable IRQ generation (0x8), if not PEBS,
2721          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2722          * if requested:
2723          */
2724         if (!event->attr.precise_ip)
2725                 bits |= 0x8;
2726         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2727                 bits |= 0x2;
2728         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2729                 bits |= 0x1;
2730
2731         /*
2732          * ANY bit is supported in v3 and up
2733          */
2734         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2735                 bits |= 0x4;
2736
2737         idx -= INTEL_PMC_IDX_FIXED;
2738         bits <<= (idx * 4);
2739         mask = 0xfULL << (idx * 4);
2740
2741         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2742                 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2743                 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2744         }
2745
2746         rdmsrl(hwc->config_base, ctrl_val);
2747         ctrl_val &= ~mask;
2748         ctrl_val |= bits;
2749         wrmsrl(hwc->config_base, ctrl_val);
2750 }
2751
2752 static void intel_pmu_enable_event(struct perf_event *event)
2753 {
2754         struct hw_perf_event *hwc = &event->hw;
2755         int idx = hwc->idx;
2756
2757         if (unlikely(event->attr.precise_ip))
2758                 intel_pmu_pebs_enable(event);
2759
2760         switch (idx) {
2761         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2762                 intel_set_masks(event, idx);
2763                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2764                 break;
2765         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2766         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2767                 intel_pmu_enable_fixed(event);
2768                 break;
2769         case INTEL_PMC_IDX_FIXED_BTS:
2770                 if (!__this_cpu_read(cpu_hw_events.enabled))
2771                         return;
2772                 intel_pmu_enable_bts(hwc->config);
2773                 break;
2774         case INTEL_PMC_IDX_FIXED_VLBR:
2775                 intel_set_masks(event, idx);
2776                 break;
2777         default:
2778                 pr_warn("Failed to enable the event with invalid index %d\n",
2779                         idx);
2780         }
2781 }
2782
2783 static void intel_pmu_add_event(struct perf_event *event)
2784 {
2785         if (event->attr.precise_ip)
2786                 intel_pmu_pebs_add(event);
2787         if (needs_branch_stack(event))
2788                 intel_pmu_lbr_add(event);
2789 }
2790
2791 /*
2792  * Save and restart an expired event. Called by NMI contexts,
2793  * so it has to be careful about preempting normal event ops:
2794  */
2795 int intel_pmu_save_and_restart(struct perf_event *event)
2796 {
2797         x86_perf_event_update(event);
2798         /*
2799          * For a checkpointed counter always reset back to 0.  This
2800          * avoids a situation where the counter overflows, aborts the
2801          * transaction and is then set back to shortly before the
2802          * overflow, and overflows and aborts again.
2803          */
2804         if (unlikely(event_is_checkpointed(event))) {
2805                 /* No race with NMIs because the counter should not be armed */
2806                 wrmsrl(event->hw.event_base, 0);
2807                 local64_set(&event->hw.prev_count, 0);
2808         }
2809         return x86_perf_event_set_period(event);
2810 }
2811
2812 static void intel_pmu_reset(void)
2813 {
2814         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2815         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2816         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2817         int num_counters = hybrid(cpuc->pmu, num_counters);
2818         unsigned long flags;
2819         int idx;
2820
2821         if (!num_counters)
2822                 return;
2823
2824         local_irq_save(flags);
2825
2826         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2827
2828         for (idx = 0; idx < num_counters; idx++) {
2829                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2830                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2831         }
2832         for (idx = 0; idx < num_counters_fixed; idx++) {
2833                 if (fixed_counter_disabled(idx, cpuc->pmu))
2834                         continue;
2835                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2836         }
2837
2838         if (ds)
2839                 ds->bts_index = ds->bts_buffer_base;
2840
2841         /* Ack all overflows and disable fixed counters */
2842         if (x86_pmu.version >= 2) {
2843                 intel_pmu_ack_status(intel_pmu_get_status());
2844                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2845         }
2846
2847         /* Reset LBRs and LBR freezing */
2848         if (x86_pmu.lbr_nr) {
2849                 update_debugctlmsr(get_debugctlmsr() &
2850                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2851         }
2852
2853         local_irq_restore(flags);
2854 }
2855
2856 /*
2857  * We may be running with guest PEBS events created by KVM, and the
2858  * PEBS records are logged into the guest's DS and invisible to host.
2859  *
2860  * In the case of guest PEBS overflow, we only trigger a fake event
2861  * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
2862  * The guest will then vm-entry and check the guest DS area to read
2863  * the guest PEBS records.
2864  *
2865  * The contents and other behavior of the guest event do not matter.
2866  */
2867 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
2868                                       struct perf_sample_data *data)
2869 {
2870         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2871         u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
2872         struct perf_event *event = NULL;
2873         int bit;
2874
2875         if (!unlikely(perf_guest_state()))
2876                 return;
2877
2878         if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
2879             !guest_pebs_idxs)
2880                 return;
2881
2882         for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs,
2883                          INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) {
2884                 event = cpuc->events[bit];
2885                 if (!event->attr.precise_ip)
2886                         continue;
2887
2888                 perf_sample_data_init(data, 0, event->hw.last_period);
2889                 if (perf_event_overflow(event, data, regs))
2890                         x86_pmu_stop(event, 0);
2891
2892                 /* Inject one fake event is enough. */
2893                 break;
2894         }
2895 }
2896
2897 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2898 {
2899         struct perf_sample_data data;
2900         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2901         int bit;
2902         int handled = 0;
2903         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2904
2905         inc_irq_stat(apic_perf_irqs);
2906
2907         /*
2908          * Ignore a range of extra bits in status that do not indicate
2909          * overflow by themselves.
2910          */
2911         status &= ~(GLOBAL_STATUS_COND_CHG |
2912                     GLOBAL_STATUS_ASIF |
2913                     GLOBAL_STATUS_LBRS_FROZEN);
2914         if (!status)
2915                 return 0;
2916         /*
2917          * In case multiple PEBS events are sampled at the same time,
2918          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2919          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2920          * having their bits set in the status register. This is a sign
2921          * that there was at least one PEBS record pending at the time
2922          * of the PMU interrupt. PEBS counters must only be processed
2923          * via the drain_pebs() calls and not via the regular sample
2924          * processing loop coming after that the function, otherwise
2925          * phony regular samples may be generated in the sampling buffer
2926          * not marked with the EXACT tag. Another possibility is to have
2927          * one PEBS event and at least one non-PEBS event which overflows
2928          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2929          * not be set, yet the overflow status bit for the PEBS counter will
2930          * be on Skylake.
2931          *
2932          * To avoid this problem, we systematically ignore the PEBS-enabled
2933          * counters from the GLOBAL_STATUS mask and we always process PEBS
2934          * events via drain_pebs().
2935          */
2936         status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
2937
2938         /*
2939          * PEBS overflow sets bit 62 in the global status register
2940          */
2941         if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2942                 u64 pebs_enabled = cpuc->pebs_enabled;
2943
2944                 handled++;
2945                 x86_pmu_handle_guest_pebs(regs, &data);
2946                 x86_pmu.drain_pebs(regs, &data);
2947                 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2948
2949                 /*
2950                  * PMI throttle may be triggered, which stops the PEBS event.
2951                  * Although cpuc->pebs_enabled is updated accordingly, the
2952                  * MSR_IA32_PEBS_ENABLE is not updated. Because the
2953                  * cpuc->enabled has been forced to 0 in PMI.
2954                  * Update the MSR if pebs_enabled is changed.
2955                  */
2956                 if (pebs_enabled != cpuc->pebs_enabled)
2957                         wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2958         }
2959
2960         /*
2961          * Intel PT
2962          */
2963         if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2964                 handled++;
2965                 if (!perf_guest_handle_intel_pt_intr())
2966                         intel_pt_interrupt();
2967         }
2968
2969         /*
2970          * Intel Perf metrics
2971          */
2972         if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2973                 handled++;
2974                 if (x86_pmu.update_topdown_event)
2975                         x86_pmu.update_topdown_event(NULL);
2976         }
2977
2978         /*
2979          * Checkpointed counters can lead to 'spurious' PMIs because the
2980          * rollback caused by the PMI will have cleared the overflow status
2981          * bit. Therefore always force probe these counters.
2982          */
2983         status |= cpuc->intel_cp_status;
2984
2985         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2986                 struct perf_event *event = cpuc->events[bit];
2987
2988                 handled++;
2989
2990                 if (!test_bit(bit, cpuc->active_mask))
2991                         continue;
2992
2993                 if (!intel_pmu_save_and_restart(event))
2994                         continue;
2995
2996                 perf_sample_data_init(&data, 0, event->hw.last_period);
2997
2998                 if (has_branch_stack(event))
2999                         data.br_stack = &cpuc->lbr_stack;
3000
3001                 if (perf_event_overflow(event, &data, regs))
3002                         x86_pmu_stop(event, 0);
3003         }
3004
3005         return handled;
3006 }
3007
3008 /*
3009  * This handler is triggered by the local APIC, so the APIC IRQ handling
3010  * rules apply:
3011  */
3012 static int intel_pmu_handle_irq(struct pt_regs *regs)
3013 {
3014         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3015         bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3016         bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3017         int loops;
3018         u64 status;
3019         int handled;
3020         int pmu_enabled;
3021
3022         /*
3023          * Save the PMU state.
3024          * It needs to be restored when leaving the handler.
3025          */
3026         pmu_enabled = cpuc->enabled;
3027         /*
3028          * In general, the early ACK is only applied for old platforms.
3029          * For the big core starts from Haswell, the late ACK should be
3030          * applied.
3031          * For the small core after Tremont, we have to do the ACK right
3032          * before re-enabling counters, which is in the middle of the
3033          * NMI handler.
3034          */
3035         if (!late_ack && !mid_ack)
3036                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3037         intel_bts_disable_local();
3038         cpuc->enabled = 0;
3039         __intel_pmu_disable_all(true);
3040         handled = intel_pmu_drain_bts_buffer();
3041         handled += intel_bts_interrupt();
3042         status = intel_pmu_get_status();
3043         if (!status)
3044                 goto done;
3045
3046         loops = 0;
3047 again:
3048         intel_pmu_lbr_read();
3049         intel_pmu_ack_status(status);
3050         if (++loops > 100) {
3051                 static bool warned;
3052
3053                 if (!warned) {
3054                         WARN(1, "perfevents: irq loop stuck!\n");
3055                         perf_event_print_debug();
3056                         warned = true;
3057                 }
3058                 intel_pmu_reset();
3059                 goto done;
3060         }
3061
3062         handled += handle_pmi_common(regs, status);
3063
3064         /*
3065          * Repeat if there is more work to be done:
3066          */
3067         status = intel_pmu_get_status();
3068         if (status)
3069                 goto again;
3070
3071 done:
3072         if (mid_ack)
3073                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3074         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3075         cpuc->enabled = pmu_enabled;
3076         if (pmu_enabled)
3077                 __intel_pmu_enable_all(0, true);
3078         intel_bts_enable_local();
3079
3080         /*
3081          * Only unmask the NMI after the overflow counters
3082          * have been reset. This avoids spurious NMIs on
3083          * Haswell CPUs.
3084          */
3085         if (late_ack)
3086                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3087         return handled;
3088 }
3089
3090 static struct event_constraint *
3091 intel_bts_constraints(struct perf_event *event)
3092 {
3093         if (unlikely(intel_pmu_has_bts(event)))
3094                 return &bts_constraint;
3095
3096         return NULL;
3097 }
3098
3099 /*
3100  * Note: matches a fake event, like Fixed2.
3101  */
3102 static struct event_constraint *
3103 intel_vlbr_constraints(struct perf_event *event)
3104 {
3105         struct event_constraint *c = &vlbr_constraint;
3106
3107         if (unlikely(constraint_match(c, event->hw.config))) {
3108                 event->hw.flags |= c->flags;
3109                 return c;
3110         }
3111
3112         return NULL;
3113 }
3114
3115 static int intel_alt_er(struct cpu_hw_events *cpuc,
3116                         int idx, u64 config)
3117 {
3118         struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3119         int alt_idx = idx;
3120
3121         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3122                 return idx;
3123
3124         if (idx == EXTRA_REG_RSP_0)
3125                 alt_idx = EXTRA_REG_RSP_1;
3126
3127         if (idx == EXTRA_REG_RSP_1)
3128                 alt_idx = EXTRA_REG_RSP_0;
3129
3130         if (config & ~extra_regs[alt_idx].valid_mask)
3131                 return idx;
3132
3133         return alt_idx;
3134 }
3135
3136 static void intel_fixup_er(struct perf_event *event, int idx)
3137 {
3138         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3139         event->hw.extra_reg.idx = idx;
3140
3141         if (idx == EXTRA_REG_RSP_0) {
3142                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3143                 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3144                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3145         } else if (idx == EXTRA_REG_RSP_1) {
3146                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3147                 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3148                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3149         }
3150 }
3151
3152 /*
3153  * manage allocation of shared extra msr for certain events
3154  *
3155  * sharing can be:
3156  * per-cpu: to be shared between the various events on a single PMU
3157  * per-core: per-cpu + shared by HT threads
3158  */
3159 static struct event_constraint *
3160 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3161                                    struct perf_event *event,
3162                                    struct hw_perf_event_extra *reg)
3163 {
3164         struct event_constraint *c = &emptyconstraint;
3165         struct er_account *era;
3166         unsigned long flags;
3167         int idx = reg->idx;
3168
3169         /*
3170          * reg->alloc can be set due to existing state, so for fake cpuc we
3171          * need to ignore this, otherwise we might fail to allocate proper fake
3172          * state for this extra reg constraint. Also see the comment below.
3173          */
3174         if (reg->alloc && !cpuc->is_fake)
3175                 return NULL; /* call x86_get_event_constraint() */
3176
3177 again:
3178         era = &cpuc->shared_regs->regs[idx];
3179         /*
3180          * we use spin_lock_irqsave() to avoid lockdep issues when
3181          * passing a fake cpuc
3182          */
3183         raw_spin_lock_irqsave(&era->lock, flags);
3184
3185         if (!atomic_read(&era->ref) || era->config == reg->config) {
3186
3187                 /*
3188                  * If its a fake cpuc -- as per validate_{group,event}() we
3189                  * shouldn't touch event state and we can avoid doing so
3190                  * since both will only call get_event_constraints() once
3191                  * on each event, this avoids the need for reg->alloc.
3192                  *
3193                  * Not doing the ER fixup will only result in era->reg being
3194                  * wrong, but since we won't actually try and program hardware
3195                  * this isn't a problem either.
3196                  */
3197                 if (!cpuc->is_fake) {
3198                         if (idx != reg->idx)
3199                                 intel_fixup_er(event, idx);
3200
3201                         /*
3202                          * x86_schedule_events() can call get_event_constraints()
3203                          * multiple times on events in the case of incremental
3204                          * scheduling(). reg->alloc ensures we only do the ER
3205                          * allocation once.
3206                          */
3207                         reg->alloc = 1;
3208                 }
3209
3210                 /* lock in msr value */
3211                 era->config = reg->config;
3212                 era->reg = reg->reg;
3213
3214                 /* one more user */
3215                 atomic_inc(&era->ref);
3216
3217                 /*
3218                  * need to call x86_get_event_constraint()
3219                  * to check if associated event has constraints
3220                  */
3221                 c = NULL;
3222         } else {
3223                 idx = intel_alt_er(cpuc, idx, reg->config);
3224                 if (idx != reg->idx) {
3225                         raw_spin_unlock_irqrestore(&era->lock, flags);
3226                         goto again;
3227                 }
3228         }
3229         raw_spin_unlock_irqrestore(&era->lock, flags);
3230
3231         return c;
3232 }
3233
3234 static void
3235 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3236                                    struct hw_perf_event_extra *reg)
3237 {
3238         struct er_account *era;
3239
3240         /*
3241          * Only put constraint if extra reg was actually allocated. Also takes
3242          * care of event which do not use an extra shared reg.
3243          *
3244          * Also, if this is a fake cpuc we shouldn't touch any event state
3245          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3246          * either since it'll be thrown out.
3247          */
3248         if (!reg->alloc || cpuc->is_fake)
3249                 return;
3250
3251         era = &cpuc->shared_regs->regs[reg->idx];
3252
3253         /* one fewer user */
3254         atomic_dec(&era->ref);
3255
3256         /* allocate again next time */
3257         reg->alloc = 0;
3258 }
3259
3260 static struct event_constraint *
3261 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3262                               struct perf_event *event)
3263 {
3264         struct event_constraint *c = NULL, *d;
3265         struct hw_perf_event_extra *xreg, *breg;
3266
3267         xreg = &event->hw.extra_reg;
3268         if (xreg->idx != EXTRA_REG_NONE) {
3269                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3270                 if (c == &emptyconstraint)
3271                         return c;
3272         }
3273         breg = &event->hw.branch_reg;
3274         if (breg->idx != EXTRA_REG_NONE) {
3275                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3276                 if (d == &emptyconstraint) {
3277                         __intel_shared_reg_put_constraints(cpuc, xreg);
3278                         c = d;
3279                 }
3280         }
3281         return c;
3282 }
3283
3284 struct event_constraint *
3285 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3286                           struct perf_event *event)
3287 {
3288         struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3289         struct event_constraint *c;
3290
3291         if (event_constraints) {
3292                 for_each_event_constraint(c, event_constraints) {
3293                         if (constraint_match(c, event->hw.config)) {
3294                                 event->hw.flags |= c->flags;
3295                                 return c;
3296                         }
3297                 }
3298         }
3299
3300         return &hybrid_var(cpuc->pmu, unconstrained);
3301 }
3302
3303 static struct event_constraint *
3304 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3305                             struct perf_event *event)
3306 {
3307         struct event_constraint *c;
3308
3309         c = intel_vlbr_constraints(event);
3310         if (c)
3311                 return c;
3312
3313         c = intel_bts_constraints(event);
3314         if (c)
3315                 return c;
3316
3317         c = intel_shared_regs_constraints(cpuc, event);
3318         if (c)
3319                 return c;
3320
3321         c = intel_pebs_constraints(event);
3322         if (c)
3323                 return c;
3324
3325         return x86_get_event_constraints(cpuc, idx, event);
3326 }
3327
3328 static void
3329 intel_start_scheduling(struct cpu_hw_events *cpuc)
3330 {
3331         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3332         struct intel_excl_states *xl;
3333         int tid = cpuc->excl_thread_id;
3334
3335         /*
3336          * nothing needed if in group validation mode
3337          */
3338         if (cpuc->is_fake || !is_ht_workaround_enabled())
3339                 return;
3340
3341         /*
3342          * no exclusion needed
3343          */
3344         if (WARN_ON_ONCE(!excl_cntrs))
3345                 return;
3346
3347         xl = &excl_cntrs->states[tid];
3348
3349         xl->sched_started = true;
3350         /*
3351          * lock shared state until we are done scheduling
3352          * in stop_event_scheduling()
3353          * makes scheduling appear as a transaction
3354          */
3355         raw_spin_lock(&excl_cntrs->lock);
3356 }
3357
3358 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3359 {
3360         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3361         struct event_constraint *c = cpuc->event_constraint[idx];
3362         struct intel_excl_states *xl;
3363         int tid = cpuc->excl_thread_id;
3364
3365         if (cpuc->is_fake || !is_ht_workaround_enabled())
3366                 return;
3367
3368         if (WARN_ON_ONCE(!excl_cntrs))
3369                 return;
3370
3371         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3372                 return;
3373
3374         xl = &excl_cntrs->states[tid];
3375
3376         lockdep_assert_held(&excl_cntrs->lock);
3377
3378         if (c->flags & PERF_X86_EVENT_EXCL)
3379                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3380         else
3381                 xl->state[cntr] = INTEL_EXCL_SHARED;
3382 }
3383
3384 static void
3385 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3386 {
3387         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3388         struct intel_excl_states *xl;
3389         int tid = cpuc->excl_thread_id;
3390
3391         /*
3392          * nothing needed if in group validation mode
3393          */
3394         if (cpuc->is_fake || !is_ht_workaround_enabled())
3395                 return;
3396         /*
3397          * no exclusion needed
3398          */
3399         if (WARN_ON_ONCE(!excl_cntrs))
3400                 return;
3401
3402         xl = &excl_cntrs->states[tid];
3403
3404         xl->sched_started = false;
3405         /*
3406          * release shared state lock (acquired in intel_start_scheduling())
3407          */
3408         raw_spin_unlock(&excl_cntrs->lock);
3409 }
3410
3411 static struct event_constraint *
3412 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3413 {
3414         WARN_ON_ONCE(!cpuc->constraint_list);
3415
3416         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3417                 struct event_constraint *cx;
3418
3419                 /*
3420                  * grab pre-allocated constraint entry
3421                  */
3422                 cx = &cpuc->constraint_list[idx];
3423
3424                 /*
3425                  * initialize dynamic constraint
3426                  * with static constraint
3427                  */
3428                 *cx = *c;
3429
3430                 /*
3431                  * mark constraint as dynamic
3432                  */
3433                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3434                 c = cx;
3435         }
3436
3437         return c;
3438 }
3439
3440 static struct event_constraint *
3441 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3442                            int idx, struct event_constraint *c)
3443 {
3444         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3445         struct intel_excl_states *xlo;
3446         int tid = cpuc->excl_thread_id;
3447         int is_excl, i, w;
3448
3449         /*
3450          * validating a group does not require
3451          * enforcing cross-thread  exclusion
3452          */
3453         if (cpuc->is_fake || !is_ht_workaround_enabled())
3454                 return c;
3455
3456         /*
3457          * no exclusion needed
3458          */
3459         if (WARN_ON_ONCE(!excl_cntrs))
3460                 return c;
3461
3462         /*
3463          * because we modify the constraint, we need
3464          * to make a copy. Static constraints come
3465          * from static const tables.
3466          *
3467          * only needed when constraint has not yet
3468          * been cloned (marked dynamic)
3469          */
3470         c = dyn_constraint(cpuc, c, idx);
3471
3472         /*
3473          * From here on, the constraint is dynamic.
3474          * Either it was just allocated above, or it
3475          * was allocated during a earlier invocation
3476          * of this function
3477          */
3478
3479         /*
3480          * state of sibling HT
3481          */
3482         xlo = &excl_cntrs->states[tid ^ 1];
3483
3484         /*
3485          * event requires exclusive counter access
3486          * across HT threads
3487          */
3488         is_excl = c->flags & PERF_X86_EVENT_EXCL;
3489         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3490                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3491                 if (!cpuc->n_excl++)
3492                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3493         }
3494
3495         /*
3496          * Modify static constraint with current dynamic
3497          * state of thread
3498          *
3499          * EXCLUSIVE: sibling counter measuring exclusive event
3500          * SHARED   : sibling counter measuring non-exclusive event
3501          * UNUSED   : sibling counter unused
3502          */
3503         w = c->weight;
3504         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3505                 /*
3506                  * exclusive event in sibling counter
3507                  * our corresponding counter cannot be used
3508                  * regardless of our event
3509                  */
3510                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3511                         __clear_bit(i, c->idxmsk);
3512                         w--;
3513                         continue;
3514                 }
3515                 /*
3516                  * if measuring an exclusive event, sibling
3517                  * measuring non-exclusive, then counter cannot
3518                  * be used
3519                  */
3520                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3521                         __clear_bit(i, c->idxmsk);
3522                         w--;
3523                         continue;
3524                 }
3525         }
3526
3527         /*
3528          * if we return an empty mask, then switch
3529          * back to static empty constraint to avoid
3530          * the cost of freeing later on
3531          */
3532         if (!w)
3533                 c = &emptyconstraint;
3534
3535         c->weight = w;
3536
3537         return c;
3538 }
3539
3540 static struct event_constraint *
3541 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3542                             struct perf_event *event)
3543 {
3544         struct event_constraint *c1, *c2;
3545
3546         c1 = cpuc->event_constraint[idx];
3547
3548         /*
3549          * first time only
3550          * - static constraint: no change across incremental scheduling calls
3551          * - dynamic constraint: handled by intel_get_excl_constraints()
3552          */
3553         c2 = __intel_get_event_constraints(cpuc, idx, event);
3554         if (c1) {
3555                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3556                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3557                 c1->weight = c2->weight;
3558                 c2 = c1;
3559         }
3560
3561         if (cpuc->excl_cntrs)
3562                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3563
3564         return c2;
3565 }
3566
3567 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3568                 struct perf_event *event)
3569 {
3570         struct hw_perf_event *hwc = &event->hw;
3571         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3572         int tid = cpuc->excl_thread_id;
3573         struct intel_excl_states *xl;
3574
3575         /*
3576          * nothing needed if in group validation mode
3577          */
3578         if (cpuc->is_fake)
3579                 return;
3580
3581         if (WARN_ON_ONCE(!excl_cntrs))
3582                 return;
3583
3584         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3585                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3586                 if (!--cpuc->n_excl)
3587                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3588         }
3589
3590         /*
3591          * If event was actually assigned, then mark the counter state as
3592          * unused now.
3593          */
3594         if (hwc->idx >= 0) {
3595                 xl = &excl_cntrs->states[tid];
3596
3597                 /*
3598                  * put_constraint may be called from x86_schedule_events()
3599                  * which already has the lock held so here make locking
3600                  * conditional.
3601                  */
3602                 if (!xl->sched_started)
3603                         raw_spin_lock(&excl_cntrs->lock);
3604
3605                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3606
3607                 if (!xl->sched_started)
3608                         raw_spin_unlock(&excl_cntrs->lock);
3609         }
3610 }
3611
3612 static void
3613 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3614                                         struct perf_event *event)
3615 {
3616         struct hw_perf_event_extra *reg;
3617
3618         reg = &event->hw.extra_reg;
3619         if (reg->idx != EXTRA_REG_NONE)
3620                 __intel_shared_reg_put_constraints(cpuc, reg);
3621
3622         reg = &event->hw.branch_reg;
3623         if (reg->idx != EXTRA_REG_NONE)
3624                 __intel_shared_reg_put_constraints(cpuc, reg);
3625 }
3626
3627 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3628                                         struct perf_event *event)
3629 {
3630         intel_put_shared_regs_event_constraints(cpuc, event);
3631
3632         /*
3633          * is PMU has exclusive counter restrictions, then
3634          * all events are subject to and must call the
3635          * put_excl_constraints() routine
3636          */
3637         if (cpuc->excl_cntrs)
3638                 intel_put_excl_constraints(cpuc, event);
3639 }
3640
3641 static void intel_pebs_aliases_core2(struct perf_event *event)
3642 {
3643         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3644                 /*
3645                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3646                  * (0x003c) so that we can use it with PEBS.
3647                  *
3648                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3649                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3650                  * (0x00c0), which is a PEBS capable event, to get the same
3651                  * count.
3652                  *
3653                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3654                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3655                  * larger than the maximum number of instructions that can be
3656                  * retired per cycle (4) and then inverting the condition, we
3657                  * count all cycles that retire 16 or less instructions, which
3658                  * is every cycle.
3659                  *
3660                  * Thereby we gain a PEBS capable cycle counter.
3661                  */
3662                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3663
3664                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3665                 event->hw.config = alt_config;
3666         }
3667 }
3668
3669 static void intel_pebs_aliases_snb(struct perf_event *event)
3670 {
3671         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3672                 /*
3673                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3674                  * (0x003c) so that we can use it with PEBS.
3675                  *
3676                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3677                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3678                  * (0x01c2), which is a PEBS capable event, to get the same
3679                  * count.
3680                  *
3681                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3682                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3683                  * larger than the maximum number of micro-ops that can be
3684                  * retired per cycle (4) and then inverting the condition, we
3685                  * count all cycles that retire 16 or less micro-ops, which
3686                  * is every cycle.
3687                  *
3688                  * Thereby we gain a PEBS capable cycle counter.
3689                  */
3690                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3691
3692                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3693                 event->hw.config = alt_config;
3694         }
3695 }
3696
3697 static void intel_pebs_aliases_precdist(struct perf_event *event)
3698 {
3699         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3700                 /*
3701                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3702                  * (0x003c) so that we can use it with PEBS.
3703                  *
3704                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3705                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3706                  * (0x01c0), which is a PEBS capable event, to get the same
3707                  * count.
3708                  *
3709                  * The PREC_DIST event has special support to minimize sample
3710                  * shadowing effects. One drawback is that it can be
3711                  * only programmed on counter 1, but that seems like an
3712                  * acceptable trade off.
3713                  */
3714                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3715
3716                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3717                 event->hw.config = alt_config;
3718         }
3719 }
3720
3721 static void intel_pebs_aliases_ivb(struct perf_event *event)
3722 {
3723         if (event->attr.precise_ip < 3)
3724                 return intel_pebs_aliases_snb(event);
3725         return intel_pebs_aliases_precdist(event);
3726 }
3727
3728 static void intel_pebs_aliases_skl(struct perf_event *event)
3729 {
3730         if (event->attr.precise_ip < 3)
3731                 return intel_pebs_aliases_core2(event);
3732         return intel_pebs_aliases_precdist(event);
3733 }
3734
3735 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3736 {
3737         unsigned long flags = x86_pmu.large_pebs_flags;
3738
3739         if (event->attr.use_clockid)
3740                 flags &= ~PERF_SAMPLE_TIME;
3741         if (!event->attr.exclude_kernel)
3742                 flags &= ~PERF_SAMPLE_REGS_USER;
3743         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3744                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3745         return flags;
3746 }
3747
3748 static int intel_pmu_bts_config(struct perf_event *event)
3749 {
3750         struct perf_event_attr *attr = &event->attr;
3751
3752         if (unlikely(intel_pmu_has_bts(event))) {
3753                 /* BTS is not supported by this architecture. */
3754                 if (!x86_pmu.bts_active)
3755                         return -EOPNOTSUPP;
3756
3757                 /* BTS is currently only allowed for user-mode. */
3758                 if (!attr->exclude_kernel)
3759                         return -EOPNOTSUPP;
3760
3761                 /* BTS is not allowed for precise events. */
3762                 if (attr->precise_ip)
3763                         return -EOPNOTSUPP;
3764
3765                 /* disallow bts if conflicting events are present */
3766                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3767                         return -EBUSY;
3768
3769                 event->destroy = hw_perf_lbr_event_destroy;
3770         }
3771
3772         return 0;
3773 }
3774
3775 static int core_pmu_hw_config(struct perf_event *event)
3776 {
3777         int ret = x86_pmu_hw_config(event);
3778
3779         if (ret)
3780                 return ret;
3781
3782         return intel_pmu_bts_config(event);
3783 }
3784
3785 #define INTEL_TD_METRIC_AVAILABLE_MAX   (INTEL_TD_METRIC_RETIRING + \
3786                                          ((x86_pmu.num_topdown_events - 1) << 8))
3787
3788 static bool is_available_metric_event(struct perf_event *event)
3789 {
3790         return is_metric_event(event) &&
3791                 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3792 }
3793
3794 static inline bool is_mem_loads_event(struct perf_event *event)
3795 {
3796         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3797 }
3798
3799 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3800 {
3801         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3802 }
3803
3804 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3805 {
3806         if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3807                 return false;
3808
3809         if (is_hybrid())
3810                 return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3811
3812         return true;
3813 }
3814
3815 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3816 {
3817         union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3818
3819         return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3820 }
3821
3822 static int intel_pmu_hw_config(struct perf_event *event)
3823 {
3824         int ret = x86_pmu_hw_config(event);
3825
3826         if (ret)
3827                 return ret;
3828
3829         ret = intel_pmu_bts_config(event);
3830         if (ret)
3831                 return ret;
3832
3833         if (event->attr.precise_ip) {
3834                 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3835                         return -EINVAL;
3836
3837                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3838                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3839                         if (!(event->attr.sample_type &
3840                               ~intel_pmu_large_pebs_flags(event))) {
3841                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3842                                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3843                         }
3844                 }
3845                 if (x86_pmu.pebs_aliases)
3846                         x86_pmu.pebs_aliases(event);
3847
3848                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3849                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3850         }
3851
3852         if (needs_branch_stack(event)) {
3853                 ret = intel_pmu_setup_lbr_filter(event);
3854                 if (ret)
3855                         return ret;
3856                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3857
3858                 /*
3859                  * BTS is set up earlier in this path, so don't account twice
3860                  */
3861                 if (!unlikely(intel_pmu_has_bts(event))) {
3862                         /* disallow lbr if conflicting events are present */
3863                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3864                                 return -EBUSY;
3865
3866                         event->destroy = hw_perf_lbr_event_destroy;
3867                 }
3868         }
3869
3870         if (event->attr.aux_output) {
3871                 if (!event->attr.precise_ip)
3872                         return -EINVAL;
3873
3874                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3875         }
3876
3877         if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3878             (event->attr.type == PERF_TYPE_HW_CACHE))
3879                 return 0;
3880
3881         /*
3882          * Config Topdown slots and metric events
3883          *
3884          * The slots event on Fixed Counter 3 can support sampling,
3885          * which will be handled normally in x86_perf_event_update().
3886          *
3887          * Metric events don't support sampling and require being paired
3888          * with a slots event as group leader. When the slots event
3889          * is used in a metrics group, it too cannot support sampling.
3890          */
3891         if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3892                 if (event->attr.config1 || event->attr.config2)
3893                         return -EINVAL;
3894
3895                 /*
3896                  * The TopDown metrics events and slots event don't
3897                  * support any filters.
3898                  */
3899                 if (event->attr.config & X86_ALL_EVENT_FLAGS)
3900                         return -EINVAL;
3901
3902                 if (is_available_metric_event(event)) {
3903                         struct perf_event *leader = event->group_leader;
3904
3905                         /* The metric events don't support sampling. */
3906                         if (is_sampling_event(event))
3907                                 return -EINVAL;
3908
3909                         /* The metric events require a slots group leader. */
3910                         if (!is_slots_event(leader))
3911                                 return -EINVAL;
3912
3913                         /*
3914                          * The leader/SLOTS must not be a sampling event for
3915                          * metric use; hardware requires it starts at 0 when used
3916                          * in conjunction with MSR_PERF_METRICS.
3917                          */
3918                         if (is_sampling_event(leader))
3919                                 return -EINVAL;
3920
3921                         event->event_caps |= PERF_EV_CAP_SIBLING;
3922                         /*
3923                          * Only once we have a METRICs sibling do we
3924                          * need TopDown magic.
3925                          */
3926                         leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3927                         event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3928                 }
3929         }
3930
3931         /*
3932          * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3933          * doesn't function quite right. As a work-around it needs to always be
3934          * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3935          * The actual count of this second event is irrelevant it just needs
3936          * to be active to make the first event function correctly.
3937          *
3938          * In a group, the auxiliary event must be in front of the load latency
3939          * event. The rule is to simplify the implementation of the check.
3940          * That's because perf cannot have a complete group at the moment.
3941          */
3942         if (require_mem_loads_aux_event(event) &&
3943             (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3944             is_mem_loads_event(event)) {
3945                 struct perf_event *leader = event->group_leader;
3946                 struct perf_event *sibling = NULL;
3947
3948                 if (!is_mem_loads_aux_event(leader)) {
3949                         for_each_sibling_event(sibling, leader) {
3950                                 if (is_mem_loads_aux_event(sibling))
3951                                         break;
3952                         }
3953                         if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3954                                 return -ENODATA;
3955                 }
3956         }
3957
3958         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3959                 return 0;
3960
3961         if (x86_pmu.version < 3)
3962                 return -EINVAL;
3963
3964         ret = perf_allow_cpu(&event->attr);
3965         if (ret)
3966                 return ret;
3967
3968         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3969
3970         return 0;
3971 }
3972
3973 /*
3974  * Currently, the only caller of this function is the atomic_switch_perf_msrs().
3975  * The host perf conext helps to prepare the values of the real hardware for
3976  * a set of msrs that need to be switched atomically in a vmx transaction.
3977  *
3978  * For example, the pseudocode needed to add a new msr should look like:
3979  *
3980  * arr[(*nr)++] = (struct perf_guest_switch_msr){
3981  *      .msr = the hardware msr address,
3982  *      .host = the value the hardware has when it doesn't run a guest,
3983  *      .guest = the value the hardware has when it runs a guest,
3984  * };
3985  *
3986  * These values have nothing to do with the emulated values the guest sees
3987  * when it uses {RD,WR}MSR, which should be handled by the KVM context,
3988  * specifically in the intel_pmu_{get,set}_msr().
3989  */
3990 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
3991 {
3992         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3993         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3994         struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
3995         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3996         u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
3997         int global_ctrl, pebs_enable;
3998
3999         *nr = 0;
4000         global_ctrl = (*nr)++;
4001         arr[global_ctrl] = (struct perf_guest_switch_msr){
4002                 .msr = MSR_CORE_PERF_GLOBAL_CTRL,
4003                 .host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4004                 .guest = intel_ctrl & (~cpuc->intel_ctrl_host_mask | ~pebs_mask),
4005         };
4006
4007         if (!x86_pmu.pebs)
4008                 return arr;
4009
4010         /*
4011          * If PMU counter has PEBS enabled it is not enough to
4012          * disable counter on a guest entry since PEBS memory
4013          * write can overshoot guest entry and corrupt guest
4014          * memory. Disabling PEBS solves the problem.
4015          *
4016          * Don't do this if the CPU already enforces it.
4017          */
4018         if (x86_pmu.pebs_no_isolation) {
4019                 arr[(*nr)++] = (struct perf_guest_switch_msr){
4020                         .msr = MSR_IA32_PEBS_ENABLE,
4021                         .host = cpuc->pebs_enabled,
4022                         .guest = 0,
4023                 };
4024                 return arr;
4025         }
4026
4027         if (!kvm_pmu || !x86_pmu.pebs_ept)
4028                 return arr;
4029
4030         arr[(*nr)++] = (struct perf_guest_switch_msr){
4031                 .msr = MSR_IA32_DS_AREA,
4032                 .host = (unsigned long)cpuc->ds,
4033                 .guest = kvm_pmu->ds_area,
4034         };
4035
4036         if (x86_pmu.intel_cap.pebs_baseline) {
4037                 arr[(*nr)++] = (struct perf_guest_switch_msr){
4038                         .msr = MSR_PEBS_DATA_CFG,
4039                         .host = cpuc->pebs_data_cfg,
4040                         .guest = kvm_pmu->pebs_data_cfg,
4041                 };
4042         }
4043
4044         pebs_enable = (*nr)++;
4045         arr[pebs_enable] = (struct perf_guest_switch_msr){
4046                 .msr = MSR_IA32_PEBS_ENABLE,
4047                 .host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4048                 .guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
4049         };
4050
4051         /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4052         arr[0].guest |= arr[*nr].guest;
4053
4054         return arr;
4055 }
4056
4057 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4058 {
4059         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4060         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4061         int idx;
4062
4063         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
4064                 struct perf_event *event = cpuc->events[idx];
4065
4066                 arr[idx].msr = x86_pmu_config_addr(idx);
4067                 arr[idx].host = arr[idx].guest = 0;
4068
4069                 if (!test_bit(idx, cpuc->active_mask))
4070                         continue;
4071
4072                 arr[idx].host = arr[idx].guest =
4073                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4074
4075                 if (event->attr.exclude_host)
4076                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4077                 else if (event->attr.exclude_guest)
4078                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4079         }
4080
4081         *nr = x86_pmu.num_counters;
4082         return arr;
4083 }
4084
4085 static void core_pmu_enable_event(struct perf_event *event)
4086 {
4087         if (!event->attr.exclude_host)
4088                 x86_pmu_enable_event(event);
4089 }
4090
4091 static void core_pmu_enable_all(int added)
4092 {
4093         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4094         int idx;
4095
4096         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4097                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4098
4099                 if (!test_bit(idx, cpuc->active_mask) ||
4100                                 cpuc->events[idx]->attr.exclude_host)
4101                         continue;
4102
4103                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4104         }
4105 }
4106
4107 static int hsw_hw_config(struct perf_event *event)
4108 {
4109         int ret = intel_pmu_hw_config(event);
4110
4111         if (ret)
4112                 return ret;
4113         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4114                 return 0;
4115         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4116
4117         /*
4118          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4119          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4120          * this combination.
4121          */
4122         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4123              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4124               event->attr.precise_ip > 0))
4125                 return -EOPNOTSUPP;
4126
4127         if (event_is_checkpointed(event)) {
4128                 /*
4129                  * Sampling of checkpointed events can cause situations where
4130                  * the CPU constantly aborts because of a overflow, which is
4131                  * then checkpointed back and ignored. Forbid checkpointing
4132                  * for sampling.
4133                  *
4134                  * But still allow a long sampling period, so that perf stat
4135                  * from KVM works.
4136                  */
4137                 if (event->attr.sample_period > 0 &&
4138                     event->attr.sample_period < 0x7fffffff)
4139                         return -EOPNOTSUPP;
4140         }
4141         return 0;
4142 }
4143
4144 static struct event_constraint counter0_constraint =
4145                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4146
4147 static struct event_constraint counter2_constraint =
4148                         EVENT_CONSTRAINT(0, 0x4, 0);
4149
4150 static struct event_constraint fixed0_constraint =
4151                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4152
4153 static struct event_constraint fixed0_counter0_constraint =
4154                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4155
4156 static struct event_constraint *
4157 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4158                           struct perf_event *event)
4159 {
4160         struct event_constraint *c;
4161
4162         c = intel_get_event_constraints(cpuc, idx, event);
4163
4164         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4165         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4166                 if (c->idxmsk64 & (1U << 2))
4167                         return &counter2_constraint;
4168                 return &emptyconstraint;
4169         }
4170
4171         return c;
4172 }
4173
4174 static struct event_constraint *
4175 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4176                           struct perf_event *event)
4177 {
4178         /*
4179          * Fixed counter 0 has less skid.
4180          * Force instruction:ppp in Fixed counter 0
4181          */
4182         if ((event->attr.precise_ip == 3) &&
4183             constraint_match(&fixed0_constraint, event->hw.config))
4184                 return &fixed0_constraint;
4185
4186         return hsw_get_event_constraints(cpuc, idx, event);
4187 }
4188
4189 static struct event_constraint *
4190 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4191                           struct perf_event *event)
4192 {
4193         struct event_constraint *c;
4194
4195         c = icl_get_event_constraints(cpuc, idx, event);
4196
4197         /*
4198          * The :ppp indicates the Precise Distribution (PDist) facility, which
4199          * is only supported on the GP counter 0. If a :ppp event which is not
4200          * available on the GP counter 0, error out.
4201          * Exception: Instruction PDIR is only available on the fixed counter 0.
4202          */
4203         if ((event->attr.precise_ip == 3) &&
4204             !constraint_match(&fixed0_constraint, event->hw.config)) {
4205                 if (c->idxmsk64 & BIT_ULL(0))
4206                         return &counter0_constraint;
4207
4208                 return &emptyconstraint;
4209         }
4210
4211         return c;
4212 }
4213
4214 static struct event_constraint *
4215 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4216                           struct perf_event *event)
4217 {
4218         struct event_constraint *c;
4219
4220         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4221         if (event->attr.precise_ip == 3)
4222                 return &counter0_constraint;
4223
4224         c = intel_get_event_constraints(cpuc, idx, event);
4225
4226         return c;
4227 }
4228
4229 static struct event_constraint *
4230 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4231                           struct perf_event *event)
4232 {
4233         struct event_constraint *c;
4234
4235         /*
4236          * :ppp means to do reduced skid PEBS,
4237          * which is available on PMC0 and fixed counter 0.
4238          */
4239         if (event->attr.precise_ip == 3) {
4240                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4241                 if (constraint_match(&fixed0_constraint, event->hw.config))
4242                         return &fixed0_counter0_constraint;
4243
4244                 return &counter0_constraint;
4245         }
4246
4247         c = intel_get_event_constraints(cpuc, idx, event);
4248
4249         return c;
4250 }
4251
4252 static bool allow_tsx_force_abort = true;
4253
4254 static struct event_constraint *
4255 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4256                           struct perf_event *event)
4257 {
4258         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4259
4260         /*
4261          * Without TFA we must not use PMC3.
4262          */
4263         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4264                 c = dyn_constraint(cpuc, c, idx);
4265                 c->idxmsk64 &= ~(1ULL << 3);
4266                 c->weight--;
4267         }
4268
4269         return c;
4270 }
4271
4272 static struct event_constraint *
4273 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4274                           struct perf_event *event)
4275 {
4276         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4277
4278         if (pmu->cpu_type == hybrid_big)
4279                 return spr_get_event_constraints(cpuc, idx, event);
4280         else if (pmu->cpu_type == hybrid_small)
4281                 return tnt_get_event_constraints(cpuc, idx, event);
4282
4283         WARN_ON(1);
4284         return &emptyconstraint;
4285 }
4286
4287 static int adl_hw_config(struct perf_event *event)
4288 {
4289         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4290
4291         if (pmu->cpu_type == hybrid_big)
4292                 return hsw_hw_config(event);
4293         else if (pmu->cpu_type == hybrid_small)
4294                 return intel_pmu_hw_config(event);
4295
4296         WARN_ON(1);
4297         return -EOPNOTSUPP;
4298 }
4299
4300 static u8 adl_get_hybrid_cpu_type(void)
4301 {
4302         return hybrid_big;
4303 }
4304
4305 /*
4306  * Broadwell:
4307  *
4308  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4309  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4310  * the two to enforce a minimum period of 128 (the smallest value that has bits
4311  * 0-5 cleared and >= 100).
4312  *
4313  * Because of how the code in x86_perf_event_set_period() works, the truncation
4314  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4315  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4316  *
4317  * Therefore the effective (average) period matches the requested period,
4318  * despite coarser hardware granularity.
4319  */
4320 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4321 {
4322         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4323                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
4324                 if (left < 128)
4325                         left = 128;
4326                 left &= ~0x3fULL;
4327         }
4328         return left;
4329 }
4330
4331 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4332 {
4333         return max(left, 32ULL);
4334 }
4335
4336 static u64 spr_limit_period(struct perf_event *event, u64 left)
4337 {
4338         if (event->attr.precise_ip == 3)
4339                 return max(left, 128ULL);
4340
4341         return left;
4342 }
4343
4344 PMU_FORMAT_ATTR(event,  "config:0-7"    );
4345 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
4346 PMU_FORMAT_ATTR(edge,   "config:18"     );
4347 PMU_FORMAT_ATTR(pc,     "config:19"     );
4348 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
4349 PMU_FORMAT_ATTR(inv,    "config:23"     );
4350 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
4351 PMU_FORMAT_ATTR(in_tx,  "config:32");
4352 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4353
4354 static struct attribute *intel_arch_formats_attr[] = {
4355         &format_attr_event.attr,
4356         &format_attr_umask.attr,
4357         &format_attr_edge.attr,
4358         &format_attr_pc.attr,
4359         &format_attr_inv.attr,
4360         &format_attr_cmask.attr,
4361         NULL,
4362 };
4363
4364 ssize_t intel_event_sysfs_show(char *page, u64 config)
4365 {
4366         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4367
4368         return x86_event_sysfs_show(page, config, event);
4369 }
4370
4371 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4372 {
4373         struct intel_shared_regs *regs;
4374         int i;
4375
4376         regs = kzalloc_node(sizeof(struct intel_shared_regs),
4377                             GFP_KERNEL, cpu_to_node(cpu));
4378         if (regs) {
4379                 /*
4380                  * initialize the locks to keep lockdep happy
4381                  */
4382                 for (i = 0; i < EXTRA_REG_MAX; i++)
4383                         raw_spin_lock_init(&regs->regs[i].lock);
4384
4385                 regs->core_id = -1;
4386         }
4387         return regs;
4388 }
4389
4390 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4391 {
4392         struct intel_excl_cntrs *c;
4393
4394         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4395                          GFP_KERNEL, cpu_to_node(cpu));
4396         if (c) {
4397                 raw_spin_lock_init(&c->lock);
4398                 c->core_id = -1;
4399         }
4400         return c;
4401 }
4402
4403
4404 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4405 {
4406         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4407
4408         if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4409                 cpuc->shared_regs = allocate_shared_regs(cpu);
4410                 if (!cpuc->shared_regs)
4411                         goto err;
4412         }
4413
4414         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4415                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4416
4417                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4418                 if (!cpuc->constraint_list)
4419                         goto err_shared_regs;
4420         }
4421
4422         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4423                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4424                 if (!cpuc->excl_cntrs)
4425                         goto err_constraint_list;
4426
4427                 cpuc->excl_thread_id = 0;
4428         }
4429
4430         return 0;
4431
4432 err_constraint_list:
4433         kfree(cpuc->constraint_list);
4434         cpuc->constraint_list = NULL;
4435
4436 err_shared_regs:
4437         kfree(cpuc->shared_regs);
4438         cpuc->shared_regs = NULL;
4439
4440 err:
4441         return -ENOMEM;
4442 }
4443
4444 static int intel_pmu_cpu_prepare(int cpu)
4445 {
4446         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4447 }
4448
4449 static void flip_smm_bit(void *data)
4450 {
4451         unsigned long set = *(unsigned long *)data;
4452
4453         if (set > 0) {
4454                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4455                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4456         } else {
4457                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4458                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4459         }
4460 }
4461
4462 static bool init_hybrid_pmu(int cpu)
4463 {
4464         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4465         u8 cpu_type = get_this_hybrid_cpu_type();
4466         struct x86_hybrid_pmu *pmu = NULL;
4467         int i;
4468
4469         if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4470                 cpu_type = x86_pmu.get_hybrid_cpu_type();
4471
4472         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4473                 if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4474                         pmu = &x86_pmu.hybrid_pmu[i];
4475                         break;
4476                 }
4477         }
4478         if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4479                 cpuc->pmu = NULL;
4480                 return false;
4481         }
4482
4483         /* Only check and dump the PMU information for the first CPU */
4484         if (!cpumask_empty(&pmu->supported_cpus))
4485                 goto end;
4486
4487         if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4488                 return false;
4489
4490         pr_info("%s PMU driver: ", pmu->name);
4491
4492         if (pmu->intel_cap.pebs_output_pt_available)
4493                 pr_cont("PEBS-via-PT ");
4494
4495         pr_cont("\n");
4496
4497         x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4498                              pmu->intel_ctrl);
4499
4500 end:
4501         cpumask_set_cpu(cpu, &pmu->supported_cpus);
4502         cpuc->pmu = &pmu->pmu;
4503
4504         x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4505
4506         return true;
4507 }
4508
4509 static void intel_pmu_cpu_starting(int cpu)
4510 {
4511         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4512         int core_id = topology_core_id(cpu);
4513         int i;
4514
4515         if (is_hybrid() && !init_hybrid_pmu(cpu))
4516                 return;
4517
4518         init_debug_store_on_cpu(cpu);
4519         /*
4520          * Deal with CPUs that don't clear their LBRs on power-up.
4521          */
4522         intel_pmu_lbr_reset();
4523
4524         cpuc->lbr_sel = NULL;
4525
4526         if (x86_pmu.flags & PMU_FL_TFA) {
4527                 WARN_ON_ONCE(cpuc->tfa_shadow);
4528                 cpuc->tfa_shadow = ~0ULL;
4529                 intel_set_tfa(cpuc, false);
4530         }
4531
4532         if (x86_pmu.version > 1)
4533                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4534
4535         /*
4536          * Disable perf metrics if any added CPU doesn't support it.
4537          *
4538          * Turn off the check for a hybrid architecture, because the
4539          * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4540          * the architecture features. The perf metrics is a model-specific
4541          * feature for now. The corresponding bit should always be 0 on
4542          * a hybrid platform, e.g., Alder Lake.
4543          */
4544         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4545                 union perf_capabilities perf_cap;
4546
4547                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4548                 if (!perf_cap.perf_metrics) {
4549                         x86_pmu.intel_cap.perf_metrics = 0;
4550                         x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4551                 }
4552         }
4553
4554         if (!cpuc->shared_regs)
4555                 return;
4556
4557         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4558                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4559                         struct intel_shared_regs *pc;
4560
4561                         pc = per_cpu(cpu_hw_events, i).shared_regs;
4562                         if (pc && pc->core_id == core_id) {
4563                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4564                                 cpuc->shared_regs = pc;
4565                                 break;
4566                         }
4567                 }
4568                 cpuc->shared_regs->core_id = core_id;
4569                 cpuc->shared_regs->refcnt++;
4570         }
4571
4572         if (x86_pmu.lbr_sel_map)
4573                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4574
4575         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4576                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4577                         struct cpu_hw_events *sibling;
4578                         struct intel_excl_cntrs *c;
4579
4580                         sibling = &per_cpu(cpu_hw_events, i);
4581                         c = sibling->excl_cntrs;
4582                         if (c && c->core_id == core_id) {
4583                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4584                                 cpuc->excl_cntrs = c;
4585                                 if (!sibling->excl_thread_id)
4586                                         cpuc->excl_thread_id = 1;
4587                                 break;
4588                         }
4589                 }
4590                 cpuc->excl_cntrs->core_id = core_id;
4591                 cpuc->excl_cntrs->refcnt++;
4592         }
4593 }
4594
4595 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4596 {
4597         struct intel_excl_cntrs *c;
4598
4599         c = cpuc->excl_cntrs;
4600         if (c) {
4601                 if (c->core_id == -1 || --c->refcnt == 0)
4602                         kfree(c);
4603                 cpuc->excl_cntrs = NULL;
4604         }
4605
4606         kfree(cpuc->constraint_list);
4607         cpuc->constraint_list = NULL;
4608 }
4609
4610 static void intel_pmu_cpu_dying(int cpu)
4611 {
4612         fini_debug_store_on_cpu(cpu);
4613 }
4614
4615 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4616 {
4617         struct intel_shared_regs *pc;
4618
4619         pc = cpuc->shared_regs;
4620         if (pc) {
4621                 if (pc->core_id == -1 || --pc->refcnt == 0)
4622                         kfree(pc);
4623                 cpuc->shared_regs = NULL;
4624         }
4625
4626         free_excl_cntrs(cpuc);
4627 }
4628
4629 static void intel_pmu_cpu_dead(int cpu)
4630 {
4631         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4632
4633         intel_cpuc_finish(cpuc);
4634
4635         if (is_hybrid() && cpuc->pmu)
4636                 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4637 }
4638
4639 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4640                                  bool sched_in)
4641 {
4642         intel_pmu_pebs_sched_task(ctx, sched_in);
4643         intel_pmu_lbr_sched_task(ctx, sched_in);
4644 }
4645
4646 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4647                                     struct perf_event_context *next)
4648 {
4649         intel_pmu_lbr_swap_task_ctx(prev, next);
4650 }
4651
4652 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4653 {
4654         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4655 }
4656
4657 static void intel_aux_output_init(void)
4658 {
4659         /* Refer also intel_pmu_aux_output_match() */
4660         if (x86_pmu.intel_cap.pebs_output_pt_available)
4661                 x86_pmu.assign = intel_pmu_assign_event;
4662 }
4663
4664 static int intel_pmu_aux_output_match(struct perf_event *event)
4665 {
4666         /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4667         if (!x86_pmu.intel_cap.pebs_output_pt_available)
4668                 return 0;
4669
4670         return is_intel_pt_event(event);
4671 }
4672
4673 static int intel_pmu_filter_match(struct perf_event *event)
4674 {
4675         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4676         unsigned int cpu = smp_processor_id();
4677
4678         return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4679 }
4680
4681 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4682
4683 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4684
4685 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4686
4687 static struct attribute *intel_arch3_formats_attr[] = {
4688         &format_attr_event.attr,
4689         &format_attr_umask.attr,
4690         &format_attr_edge.attr,
4691         &format_attr_pc.attr,
4692         &format_attr_any.attr,
4693         &format_attr_inv.attr,
4694         &format_attr_cmask.attr,
4695         NULL,
4696 };
4697
4698 static struct attribute *hsw_format_attr[] = {
4699         &format_attr_in_tx.attr,
4700         &format_attr_in_tx_cp.attr,
4701         &format_attr_offcore_rsp.attr,
4702         &format_attr_ldlat.attr,
4703         NULL
4704 };
4705
4706 static struct attribute *nhm_format_attr[] = {
4707         &format_attr_offcore_rsp.attr,
4708         &format_attr_ldlat.attr,
4709         NULL
4710 };
4711
4712 static struct attribute *slm_format_attr[] = {
4713         &format_attr_offcore_rsp.attr,
4714         NULL
4715 };
4716
4717 static struct attribute *skl_format_attr[] = {
4718         &format_attr_frontend.attr,
4719         NULL,
4720 };
4721
4722 static __initconst const struct x86_pmu core_pmu = {
4723         .name                   = "core",
4724         .handle_irq             = x86_pmu_handle_irq,
4725         .disable_all            = x86_pmu_disable_all,
4726         .enable_all             = core_pmu_enable_all,
4727         .enable                 = core_pmu_enable_event,
4728         .disable                = x86_pmu_disable_event,
4729         .hw_config              = core_pmu_hw_config,
4730         .schedule_events        = x86_schedule_events,
4731         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4732         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4733         .event_map              = intel_pmu_event_map,
4734         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4735         .apic                   = 1,
4736         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4737
4738         /*
4739          * Intel PMCs cannot be accessed sanely above 32-bit width,
4740          * so we install an artificial 1<<31 period regardless of
4741          * the generic event period:
4742          */
4743         .max_period             = (1ULL<<31) - 1,
4744         .get_event_constraints  = intel_get_event_constraints,
4745         .put_event_constraints  = intel_put_event_constraints,
4746         .event_constraints      = intel_core_event_constraints,
4747         .guest_get_msrs         = core_guest_get_msrs,
4748         .format_attrs           = intel_arch_formats_attr,
4749         .events_sysfs_show      = intel_event_sysfs_show,
4750
4751         /*
4752          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4753          * together with PMU version 1 and thus be using core_pmu with
4754          * shared_regs. We need following callbacks here to allocate
4755          * it properly.
4756          */
4757         .cpu_prepare            = intel_pmu_cpu_prepare,
4758         .cpu_starting           = intel_pmu_cpu_starting,
4759         .cpu_dying              = intel_pmu_cpu_dying,
4760         .cpu_dead               = intel_pmu_cpu_dead,
4761
4762         .check_period           = intel_pmu_check_period,
4763
4764         .lbr_reset              = intel_pmu_lbr_reset_64,
4765         .lbr_read               = intel_pmu_lbr_read_64,
4766         .lbr_save               = intel_pmu_lbr_save,
4767         .lbr_restore            = intel_pmu_lbr_restore,
4768 };
4769
4770 static __initconst const struct x86_pmu intel_pmu = {
4771         .name                   = "Intel",
4772         .handle_irq             = intel_pmu_handle_irq,
4773         .disable_all            = intel_pmu_disable_all,
4774         .enable_all             = intel_pmu_enable_all,
4775         .enable                 = intel_pmu_enable_event,
4776         .disable                = intel_pmu_disable_event,
4777         .add                    = intel_pmu_add_event,
4778         .del                    = intel_pmu_del_event,
4779         .read                   = intel_pmu_read_event,
4780         .hw_config              = intel_pmu_hw_config,
4781         .schedule_events        = x86_schedule_events,
4782         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4783         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4784         .event_map              = intel_pmu_event_map,
4785         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4786         .apic                   = 1,
4787         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4788         /*
4789          * Intel PMCs cannot be accessed sanely above 32 bit width,
4790          * so we install an artificial 1<<31 period regardless of
4791          * the generic event period:
4792          */
4793         .max_period             = (1ULL << 31) - 1,
4794         .get_event_constraints  = intel_get_event_constraints,
4795         .put_event_constraints  = intel_put_event_constraints,
4796         .pebs_aliases           = intel_pebs_aliases_core2,
4797
4798         .format_attrs           = intel_arch3_formats_attr,
4799         .events_sysfs_show      = intel_event_sysfs_show,
4800
4801         .cpu_prepare            = intel_pmu_cpu_prepare,
4802         .cpu_starting           = intel_pmu_cpu_starting,
4803         .cpu_dying              = intel_pmu_cpu_dying,
4804         .cpu_dead               = intel_pmu_cpu_dead,
4805
4806         .guest_get_msrs         = intel_guest_get_msrs,
4807         .sched_task             = intel_pmu_sched_task,
4808         .swap_task_ctx          = intel_pmu_swap_task_ctx,
4809
4810         .check_period           = intel_pmu_check_period,
4811
4812         .aux_output_match       = intel_pmu_aux_output_match,
4813
4814         .lbr_reset              = intel_pmu_lbr_reset_64,
4815         .lbr_read               = intel_pmu_lbr_read_64,
4816         .lbr_save               = intel_pmu_lbr_save,
4817         .lbr_restore            = intel_pmu_lbr_restore,
4818
4819         /*
4820          * SMM has access to all 4 rings and while traditionally SMM code only
4821          * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
4822          *
4823          * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
4824          * between SMM or not, this results in what should be pure userspace
4825          * counters including SMM data.
4826          *
4827          * This is a clear privilege issue, therefore globally disable
4828          * counting SMM by default.
4829          */
4830         .attr_freeze_on_smi     = 1,
4831 };
4832
4833 static __init void intel_clovertown_quirk(void)
4834 {
4835         /*
4836          * PEBS is unreliable due to:
4837          *
4838          *   AJ67  - PEBS may experience CPL leaks
4839          *   AJ68  - PEBS PMI may be delayed by one event
4840          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4841          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4842          *
4843          * AJ67 could be worked around by restricting the OS/USR flags.
4844          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4845          *
4846          * AJ106 could possibly be worked around by not allowing LBR
4847          *       usage from PEBS, including the fixup.
4848          * AJ68  could possibly be worked around by always programming
4849          *       a pebs_event_reset[0] value and coping with the lost events.
4850          *
4851          * But taken together it might just make sense to not enable PEBS on
4852          * these chips.
4853          */
4854         pr_warn("PEBS disabled due to CPU errata\n");
4855         x86_pmu.pebs = 0;
4856         x86_pmu.pebs_constraints = NULL;
4857 }
4858
4859 static const struct x86_cpu_desc isolation_ucodes[] = {
4860         INTEL_CPU_DESC(INTEL_FAM6_HASWELL,               3, 0x0000001f),
4861         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,             1, 0x0000001e),
4862         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,             1, 0x00000015),
4863         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
4864         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
4865         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,             4, 0x00000023),
4866         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,           1, 0x00000014),
4867         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           2, 0x00000010),
4868         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           3, 0x07000009),
4869         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           4, 0x0f000009),
4870         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           5, 0x0e000002),
4871         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           1, 0x0b000014),
4872         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
4873         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
4874         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             5, 0x00000000),
4875         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             6, 0x00000000),
4876         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             7, 0x00000000),
4877         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,             3, 0x0000007c),
4878         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,               3, 0x0000007c),
4879         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,              9, 0x0000004e),
4880         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,            9, 0x0000004e),
4881         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           10, 0x0000004e),
4882         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           11, 0x0000004e),
4883         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           12, 0x0000004e),
4884         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             10, 0x0000004e),
4885         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             11, 0x0000004e),
4886         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             12, 0x0000004e),
4887         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             13, 0x0000004e),
4888         {}
4889 };
4890
4891 static void intel_check_pebs_isolation(void)
4892 {
4893         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4894 }
4895
4896 static __init void intel_pebs_isolation_quirk(void)
4897 {
4898         WARN_ON_ONCE(x86_pmu.check_microcode);
4899         x86_pmu.check_microcode = intel_check_pebs_isolation;
4900         intel_check_pebs_isolation();
4901 }
4902
4903 static const struct x86_cpu_desc pebs_ucodes[] = {
4904         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
4905         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
4906         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
4907         {}
4908 };
4909
4910 static bool intel_snb_pebs_broken(void)
4911 {
4912         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4913 }
4914
4915 static void intel_snb_check_microcode(void)
4916 {
4917         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4918                 return;
4919
4920         /*
4921          * Serialized by the microcode lock..
4922          */
4923         if (x86_pmu.pebs_broken) {
4924                 pr_info("PEBS enabled due to microcode update\n");
4925                 x86_pmu.pebs_broken = 0;
4926         } else {
4927                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4928                 x86_pmu.pebs_broken = 1;
4929         }
4930 }
4931
4932 static bool is_lbr_from(unsigned long msr)
4933 {
4934         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4935
4936         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4937 }
4938
4939 /*
4940  * Under certain circumstances, access certain MSR may cause #GP.
4941  * The function tests if the input MSR can be safely accessed.
4942  */
4943 static bool check_msr(unsigned long msr, u64 mask)
4944 {
4945         u64 val_old, val_new, val_tmp;
4946
4947         /*
4948          * Disable the check for real HW, so we don't
4949          * mess with potentially enabled registers:
4950          */
4951         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4952                 return true;
4953
4954         /*
4955          * Read the current value, change it and read it back to see if it
4956          * matches, this is needed to detect certain hardware emulators
4957          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4958          */
4959         if (rdmsrl_safe(msr, &val_old))
4960                 return false;
4961
4962         /*
4963          * Only change the bits which can be updated by wrmsrl.
4964          */
4965         val_tmp = val_old ^ mask;
4966
4967         if (is_lbr_from(msr))
4968                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4969
4970         if (wrmsrl_safe(msr, val_tmp) ||
4971             rdmsrl_safe(msr, &val_new))
4972                 return false;
4973
4974         /*
4975          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4976          * should equal rdmsrl()'s even with the quirk.
4977          */
4978         if (val_new != val_tmp)
4979                 return false;
4980
4981         if (is_lbr_from(msr))
4982                 val_old = lbr_from_signext_quirk_wr(val_old);
4983
4984         /* Here it's sure that the MSR can be safely accessed.
4985          * Restore the old value and return.
4986          */
4987         wrmsrl(msr, val_old);
4988
4989         return true;
4990 }
4991
4992 static __init void intel_sandybridge_quirk(void)
4993 {
4994         x86_pmu.check_microcode = intel_snb_check_microcode;
4995         cpus_read_lock();
4996         intel_snb_check_microcode();
4997         cpus_read_unlock();
4998 }
4999
5000 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5001         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5002         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5003         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5004         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5005         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5006         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5007         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5008 };
5009
5010 static __init void intel_arch_events_quirk(void)
5011 {
5012         int bit;
5013
5014         /* disable event that reported as not present by cpuid */
5015         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5016                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5017                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
5018                         intel_arch_events_map[bit].name);
5019         }
5020 }
5021
5022 static __init void intel_nehalem_quirk(void)
5023 {
5024         union cpuid10_ebx ebx;
5025
5026         ebx.full = x86_pmu.events_maskl;
5027         if (ebx.split.no_branch_misses_retired) {
5028                 /*
5029                  * Erratum AAJ80 detected, we work it around by using
5030                  * the BR_MISP_EXEC.ANY event. This will over-count
5031                  * branch-misses, but it's still much better than the
5032                  * architectural event which is often completely bogus:
5033                  */
5034                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5035                 ebx.split.no_branch_misses_retired = 0;
5036                 x86_pmu.events_maskl = ebx.full;
5037                 pr_info("CPU erratum AAJ80 worked around\n");
5038         }
5039 }
5040
5041 /*
5042  * enable software workaround for errata:
5043  * SNB: BJ122
5044  * IVB: BV98
5045  * HSW: HSD29
5046  *
5047  * Only needed when HT is enabled. However detecting
5048  * if HT is enabled is difficult (model specific). So instead,
5049  * we enable the workaround in the early boot, and verify if
5050  * it is needed in a later initcall phase once we have valid
5051  * topology information to check if HT is actually enabled
5052  */
5053 static __init void intel_ht_bug(void)
5054 {
5055         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5056
5057         x86_pmu.start_scheduling = intel_start_scheduling;
5058         x86_pmu.commit_scheduling = intel_commit_scheduling;
5059         x86_pmu.stop_scheduling = intel_stop_scheduling;
5060 }
5061
5062 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
5063 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
5064
5065 /* Haswell special events */
5066 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
5067 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
5068 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
5069 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
5070 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
5071 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
5072 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
5073 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
5074 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
5075 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
5076 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
5077 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
5078
5079 static struct attribute *hsw_events_attrs[] = {
5080         EVENT_PTR(td_slots_issued),
5081         EVENT_PTR(td_slots_retired),
5082         EVENT_PTR(td_fetch_bubbles),
5083         EVENT_PTR(td_total_slots),
5084         EVENT_PTR(td_total_slots_scale),
5085         EVENT_PTR(td_recovery_bubbles),
5086         EVENT_PTR(td_recovery_bubbles_scale),
5087         NULL
5088 };
5089
5090 static struct attribute *hsw_mem_events_attrs[] = {
5091         EVENT_PTR(mem_ld_hsw),
5092         EVENT_PTR(mem_st_hsw),
5093         NULL,
5094 };
5095
5096 static struct attribute *hsw_tsx_events_attrs[] = {
5097         EVENT_PTR(tx_start),
5098         EVENT_PTR(tx_commit),
5099         EVENT_PTR(tx_abort),
5100         EVENT_PTR(tx_capacity),
5101         EVENT_PTR(tx_conflict),
5102         EVENT_PTR(el_start),
5103         EVENT_PTR(el_commit),
5104         EVENT_PTR(el_abort),
5105         EVENT_PTR(el_capacity),
5106         EVENT_PTR(el_conflict),
5107         EVENT_PTR(cycles_t),
5108         EVENT_PTR(cycles_ct),
5109         NULL
5110 };
5111
5112 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
5113 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5114 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
5115 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5116
5117 static struct attribute *icl_events_attrs[] = {
5118         EVENT_PTR(mem_ld_hsw),
5119         EVENT_PTR(mem_st_hsw),
5120         NULL,
5121 };
5122
5123 static struct attribute *icl_td_events_attrs[] = {
5124         EVENT_PTR(slots),
5125         EVENT_PTR(td_retiring),
5126         EVENT_PTR(td_bad_spec),
5127         EVENT_PTR(td_fe_bound),
5128         EVENT_PTR(td_be_bound),
5129         NULL,
5130 };
5131
5132 static struct attribute *icl_tsx_events_attrs[] = {
5133         EVENT_PTR(tx_start),
5134         EVENT_PTR(tx_abort),
5135         EVENT_PTR(tx_commit),
5136         EVENT_PTR(tx_capacity_read),
5137         EVENT_PTR(tx_capacity_write),
5138         EVENT_PTR(tx_conflict),
5139         EVENT_PTR(el_start),
5140         EVENT_PTR(el_abort),
5141         EVENT_PTR(el_commit),
5142         EVENT_PTR(el_capacity_read),
5143         EVENT_PTR(el_capacity_write),
5144         EVENT_PTR(el_conflict),
5145         EVENT_PTR(cycles_t),
5146         EVENT_PTR(cycles_ct),
5147         NULL,
5148 };
5149
5150
5151 EVENT_ATTR_STR(mem-stores,      mem_st_spr,     "event=0xcd,umask=0x2");
5152 EVENT_ATTR_STR(mem-loads-aux,   mem_ld_aux,     "event=0x03,umask=0x82");
5153
5154 static struct attribute *spr_events_attrs[] = {
5155         EVENT_PTR(mem_ld_hsw),
5156         EVENT_PTR(mem_st_spr),
5157         EVENT_PTR(mem_ld_aux),
5158         NULL,
5159 };
5160
5161 static struct attribute *spr_td_events_attrs[] = {
5162         EVENT_PTR(slots),
5163         EVENT_PTR(td_retiring),
5164         EVENT_PTR(td_bad_spec),
5165         EVENT_PTR(td_fe_bound),
5166         EVENT_PTR(td_be_bound),
5167         EVENT_PTR(td_heavy_ops),
5168         EVENT_PTR(td_br_mispredict),
5169         EVENT_PTR(td_fetch_lat),
5170         EVENT_PTR(td_mem_bound),
5171         NULL,
5172 };
5173
5174 static struct attribute *spr_tsx_events_attrs[] = {
5175         EVENT_PTR(tx_start),
5176         EVENT_PTR(tx_abort),
5177         EVENT_PTR(tx_commit),
5178         EVENT_PTR(tx_capacity_read),
5179         EVENT_PTR(tx_capacity_write),
5180         EVENT_PTR(tx_conflict),
5181         EVENT_PTR(cycles_t),
5182         EVENT_PTR(cycles_ct),
5183         NULL,
5184 };
5185
5186 static ssize_t freeze_on_smi_show(struct device *cdev,
5187                                   struct device_attribute *attr,
5188                                   char *buf)
5189 {
5190         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5191 }
5192
5193 static DEFINE_MUTEX(freeze_on_smi_mutex);
5194
5195 static ssize_t freeze_on_smi_store(struct device *cdev,
5196                                    struct device_attribute *attr,
5197                                    const char *buf, size_t count)
5198 {
5199         unsigned long val;
5200         ssize_t ret;
5201
5202         ret = kstrtoul(buf, 0, &val);
5203         if (ret)
5204                 return ret;
5205
5206         if (val > 1)
5207                 return -EINVAL;
5208
5209         mutex_lock(&freeze_on_smi_mutex);
5210
5211         if (x86_pmu.attr_freeze_on_smi == val)
5212                 goto done;
5213
5214         x86_pmu.attr_freeze_on_smi = val;
5215
5216         cpus_read_lock();
5217         on_each_cpu(flip_smm_bit, &val, 1);
5218         cpus_read_unlock();
5219 done:
5220         mutex_unlock(&freeze_on_smi_mutex);
5221
5222         return count;
5223 }
5224
5225 static void update_tfa_sched(void *ignored)
5226 {
5227         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5228
5229         /*
5230          * check if PMC3 is used
5231          * and if so force schedule out for all event types all contexts
5232          */
5233         if (test_bit(3, cpuc->active_mask))
5234                 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5235 }
5236
5237 static ssize_t show_sysctl_tfa(struct device *cdev,
5238                               struct device_attribute *attr,
5239                               char *buf)
5240 {
5241         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5242 }
5243
5244 static ssize_t set_sysctl_tfa(struct device *cdev,
5245                               struct device_attribute *attr,
5246                               const char *buf, size_t count)
5247 {
5248         bool val;
5249         ssize_t ret;
5250
5251         ret = kstrtobool(buf, &val);
5252         if (ret)
5253                 return ret;
5254
5255         /* no change */
5256         if (val == allow_tsx_force_abort)
5257                 return count;
5258
5259         allow_tsx_force_abort = val;
5260
5261         cpus_read_lock();
5262         on_each_cpu(update_tfa_sched, NULL, 1);
5263         cpus_read_unlock();
5264
5265         return count;
5266 }
5267
5268
5269 static DEVICE_ATTR_RW(freeze_on_smi);
5270
5271 static ssize_t branches_show(struct device *cdev,
5272                              struct device_attribute *attr,
5273                              char *buf)
5274 {
5275         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5276 }
5277
5278 static DEVICE_ATTR_RO(branches);
5279
5280 static struct attribute *lbr_attrs[] = {
5281         &dev_attr_branches.attr,
5282         NULL
5283 };
5284
5285 static char pmu_name_str[30];
5286
5287 static ssize_t pmu_name_show(struct device *cdev,
5288                              struct device_attribute *attr,
5289                              char *buf)
5290 {
5291         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5292 }
5293
5294 static DEVICE_ATTR_RO(pmu_name);
5295
5296 static struct attribute *intel_pmu_caps_attrs[] = {
5297        &dev_attr_pmu_name.attr,
5298        NULL
5299 };
5300
5301 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5302                    show_sysctl_tfa,
5303                    set_sysctl_tfa);
5304
5305 static struct attribute *intel_pmu_attrs[] = {
5306         &dev_attr_freeze_on_smi.attr,
5307         &dev_attr_allow_tsx_force_abort.attr,
5308         NULL,
5309 };
5310
5311 static umode_t
5312 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5313 {
5314         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5315 }
5316
5317 static umode_t
5318 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5319 {
5320         return x86_pmu.pebs ? attr->mode : 0;
5321 }
5322
5323 static umode_t
5324 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5325 {
5326         return x86_pmu.lbr_nr ? attr->mode : 0;
5327 }
5328
5329 static umode_t
5330 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5331 {
5332         return x86_pmu.version >= 2 ? attr->mode : 0;
5333 }
5334
5335 static umode_t
5336 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5337 {
5338         if (attr == &dev_attr_allow_tsx_force_abort.attr)
5339                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5340
5341         return attr->mode;
5342 }
5343
5344 static struct attribute_group group_events_td  = {
5345         .name = "events",
5346 };
5347
5348 static struct attribute_group group_events_mem = {
5349         .name       = "events",
5350         .is_visible = pebs_is_visible,
5351 };
5352
5353 static struct attribute_group group_events_tsx = {
5354         .name       = "events",
5355         .is_visible = tsx_is_visible,
5356 };
5357
5358 static struct attribute_group group_caps_gen = {
5359         .name  = "caps",
5360         .attrs = intel_pmu_caps_attrs,
5361 };
5362
5363 static struct attribute_group group_caps_lbr = {
5364         .name       = "caps",
5365         .attrs      = lbr_attrs,
5366         .is_visible = lbr_is_visible,
5367 };
5368
5369 static struct attribute_group group_format_extra = {
5370         .name       = "format",
5371         .is_visible = exra_is_visible,
5372 };
5373
5374 static struct attribute_group group_format_extra_skl = {
5375         .name       = "format",
5376         .is_visible = exra_is_visible,
5377 };
5378
5379 static struct attribute_group group_default = {
5380         .attrs      = intel_pmu_attrs,
5381         .is_visible = default_is_visible,
5382 };
5383
5384 static const struct attribute_group *attr_update[] = {
5385         &group_events_td,
5386         &group_events_mem,
5387         &group_events_tsx,
5388         &group_caps_gen,
5389         &group_caps_lbr,
5390         &group_format_extra,
5391         &group_format_extra_skl,
5392         &group_default,
5393         NULL,
5394 };
5395
5396 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5397 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5398 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5399 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5400 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5401 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5402 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5403 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5404 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5405
5406 static struct attribute *adl_hybrid_events_attrs[] = {
5407         EVENT_PTR(slots_adl),
5408         EVENT_PTR(td_retiring_adl),
5409         EVENT_PTR(td_bad_spec_adl),
5410         EVENT_PTR(td_fe_bound_adl),
5411         EVENT_PTR(td_be_bound_adl),
5412         EVENT_PTR(td_heavy_ops_adl),
5413         EVENT_PTR(td_br_mis_adl),
5414         EVENT_PTR(td_fetch_lat_adl),
5415         EVENT_PTR(td_mem_bound_adl),
5416         NULL,
5417 };
5418
5419 /* Must be in IDX order */
5420 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5421 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5422 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5423
5424 static struct attribute *adl_hybrid_mem_attrs[] = {
5425         EVENT_PTR(mem_ld_adl),
5426         EVENT_PTR(mem_st_adl),
5427         EVENT_PTR(mem_ld_aux_adl),
5428         NULL,
5429 };
5430
5431 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5432 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5433 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5434 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5435 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5436 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5437 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5438 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5439
5440 static struct attribute *adl_hybrid_tsx_attrs[] = {
5441         EVENT_PTR(tx_start_adl),
5442         EVENT_PTR(tx_abort_adl),
5443         EVENT_PTR(tx_commit_adl),
5444         EVENT_PTR(tx_capacity_read_adl),
5445         EVENT_PTR(tx_capacity_write_adl),
5446         EVENT_PTR(tx_conflict_adl),
5447         EVENT_PTR(cycles_t_adl),
5448         EVENT_PTR(cycles_ct_adl),
5449         NULL,
5450 };
5451
5452 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5453 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5454 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5455 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5456 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5457
5458 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5459         FORMAT_HYBRID_PTR(in_tx),
5460         FORMAT_HYBRID_PTR(in_tx_cp),
5461         FORMAT_HYBRID_PTR(offcore_rsp),
5462         FORMAT_HYBRID_PTR(ldlat),
5463         FORMAT_HYBRID_PTR(frontend),
5464         NULL,
5465 };
5466
5467 static struct attribute *adl_hybrid_extra_attr[] = {
5468         FORMAT_HYBRID_PTR(offcore_rsp),
5469         FORMAT_HYBRID_PTR(ldlat),
5470         FORMAT_HYBRID_PTR(frontend),
5471         NULL,
5472 };
5473
5474 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5475 {
5476         struct device *dev = kobj_to_dev(kobj);
5477         struct x86_hybrid_pmu *pmu =
5478                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5479         struct perf_pmu_events_hybrid_attr *pmu_attr =
5480                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5481
5482         return pmu->cpu_type & pmu_attr->pmu_type;
5483 }
5484
5485 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5486                                         struct attribute *attr, int i)
5487 {
5488         return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5489 }
5490
5491 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5492 {
5493         int cpu = cpumask_first(&pmu->supported_cpus);
5494
5495         return (cpu >= nr_cpu_ids) ? -1 : cpu;
5496 }
5497
5498 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5499                                      struct attribute *attr, int i)
5500 {
5501         struct device *dev = kobj_to_dev(kobj);
5502         struct x86_hybrid_pmu *pmu =
5503                  container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5504         int cpu = hybrid_find_supported_cpu(pmu);
5505
5506         return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5507 }
5508
5509 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5510                                         struct attribute *attr, int i)
5511 {
5512         struct device *dev = kobj_to_dev(kobj);
5513         struct x86_hybrid_pmu *pmu =
5514                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5515         struct perf_pmu_format_hybrid_attr *pmu_attr =
5516                 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5517         int cpu = hybrid_find_supported_cpu(pmu);
5518
5519         return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5520 }
5521
5522 static struct attribute_group hybrid_group_events_td  = {
5523         .name           = "events",
5524         .is_visible     = hybrid_events_is_visible,
5525 };
5526
5527 static struct attribute_group hybrid_group_events_mem = {
5528         .name           = "events",
5529         .is_visible     = hybrid_events_is_visible,
5530 };
5531
5532 static struct attribute_group hybrid_group_events_tsx = {
5533         .name           = "events",
5534         .is_visible     = hybrid_tsx_is_visible,
5535 };
5536
5537 static struct attribute_group hybrid_group_format_extra = {
5538         .name           = "format",
5539         .is_visible     = hybrid_format_is_visible,
5540 };
5541
5542 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5543                                           struct device_attribute *attr,
5544                                           char *buf)
5545 {
5546         struct x86_hybrid_pmu *pmu =
5547                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5548
5549         return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5550 }
5551
5552 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5553 static struct attribute *intel_hybrid_cpus_attrs[] = {
5554         &dev_attr_cpus.attr,
5555         NULL,
5556 };
5557
5558 static struct attribute_group hybrid_group_cpus = {
5559         .attrs          = intel_hybrid_cpus_attrs,
5560 };
5561
5562 static const struct attribute_group *hybrid_attr_update[] = {
5563         &hybrid_group_events_td,
5564         &hybrid_group_events_mem,
5565         &hybrid_group_events_tsx,
5566         &group_caps_gen,
5567         &group_caps_lbr,
5568         &hybrid_group_format_extra,
5569         &group_default,
5570         &hybrid_group_cpus,
5571         NULL,
5572 };
5573
5574 static struct attribute *empty_attrs;
5575
5576 static void intel_pmu_check_num_counters(int *num_counters,
5577                                          int *num_counters_fixed,
5578                                          u64 *intel_ctrl, u64 fixed_mask)
5579 {
5580         if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5581                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5582                      *num_counters, INTEL_PMC_MAX_GENERIC);
5583                 *num_counters = INTEL_PMC_MAX_GENERIC;
5584         }
5585         *intel_ctrl = (1ULL << *num_counters) - 1;
5586
5587         if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5588                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5589                      *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5590                 *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5591         }
5592
5593         *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5594 }
5595
5596 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5597                                               int num_counters,
5598                                               int num_counters_fixed,
5599                                               u64 intel_ctrl)
5600 {
5601         struct event_constraint *c;
5602
5603         if (!event_constraints)
5604                 return;
5605
5606         /*
5607          * event on fixed counter2 (REF_CYCLES) only works on this
5608          * counter, so do not extend mask to generic counters
5609          */
5610         for_each_event_constraint(c, event_constraints) {
5611                 /*
5612                  * Don't extend the topdown slots and metrics
5613                  * events to the generic counters.
5614                  */
5615                 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5616                         /*
5617                          * Disable topdown slots and metrics events,
5618                          * if slots event is not in CPUID.
5619                          */
5620                         if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5621                                 c->idxmsk64 = 0;
5622                         c->weight = hweight64(c->idxmsk64);
5623                         continue;
5624                 }
5625
5626                 if (c->cmask == FIXED_EVENT_FLAGS) {
5627                         /* Disabled fixed counters which are not in CPUID */
5628                         c->idxmsk64 &= intel_ctrl;
5629
5630                         /*
5631                          * Don't extend the pseudo-encoding to the
5632                          * generic counters
5633                          */
5634                         if (!use_fixed_pseudo_encoding(c->code))
5635                                 c->idxmsk64 |= (1ULL << num_counters) - 1;
5636                 }
5637                 c->idxmsk64 &=
5638                         ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5639                 c->weight = hweight64(c->idxmsk64);
5640         }
5641 }
5642
5643 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5644 {
5645         struct extra_reg *er;
5646
5647         /*
5648          * Access extra MSR may cause #GP under certain circumstances.
5649          * E.g. KVM doesn't support offcore event
5650          * Check all extra_regs here.
5651          */
5652         if (!extra_regs)
5653                 return;
5654
5655         for (er = extra_regs; er->msr; er++) {
5656                 er->extra_msr_access = check_msr(er->msr, 0x11UL);
5657                 /* Disable LBR select mapping */
5658                 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5659                         x86_pmu.lbr_sel_map = NULL;
5660         }
5661 }
5662
5663 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5664 {
5665         struct x86_hybrid_pmu *pmu;
5666         int i;
5667
5668         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5669                 pmu = &x86_pmu.hybrid_pmu[i];
5670
5671                 intel_pmu_check_num_counters(&pmu->num_counters,
5672                                              &pmu->num_counters_fixed,
5673                                              &pmu->intel_ctrl,
5674                                              fixed_mask);
5675
5676                 if (pmu->intel_cap.perf_metrics) {
5677                         pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5678                         pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5679                 }
5680
5681                 if (pmu->intel_cap.pebs_output_pt_available)
5682                         pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5683
5684                 intel_pmu_check_event_constraints(pmu->event_constraints,
5685                                                   pmu->num_counters,
5686                                                   pmu->num_counters_fixed,
5687                                                   pmu->intel_ctrl);
5688
5689                 intel_pmu_check_extra_regs(pmu->extra_regs);
5690         }
5691 }
5692
5693 __init int intel_pmu_init(void)
5694 {
5695         struct attribute **extra_skl_attr = &empty_attrs;
5696         struct attribute **extra_attr = &empty_attrs;
5697         struct attribute **td_attr    = &empty_attrs;
5698         struct attribute **mem_attr   = &empty_attrs;
5699         struct attribute **tsx_attr   = &empty_attrs;
5700         union cpuid10_edx edx;
5701         union cpuid10_eax eax;
5702         union cpuid10_ebx ebx;
5703         unsigned int fixed_mask;
5704         bool pmem = false;
5705         int version, i;
5706         char *name;
5707         struct x86_hybrid_pmu *pmu;
5708
5709         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5710                 switch (boot_cpu_data.x86) {
5711                 case 0x6:
5712                         return p6_pmu_init();
5713                 case 0xb:
5714                         return knc_pmu_init();
5715                 case 0xf:
5716                         return p4_pmu_init();
5717                 }
5718                 return -ENODEV;
5719         }
5720
5721         /*
5722          * Check whether the Architectural PerfMon supports
5723          * Branch Misses Retired hw_event or not.
5724          */
5725         cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5726         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5727                 return -ENODEV;
5728
5729         version = eax.split.version_id;
5730         if (version < 2)
5731                 x86_pmu = core_pmu;
5732         else
5733                 x86_pmu = intel_pmu;
5734
5735         x86_pmu.version                 = version;
5736         x86_pmu.num_counters            = eax.split.num_counters;
5737         x86_pmu.cntval_bits             = eax.split.bit_width;
5738         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
5739
5740         x86_pmu.events_maskl            = ebx.full;
5741         x86_pmu.events_mask_len         = eax.split.mask_length;
5742
5743         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5744         x86_pmu.pebs_capable            = PEBS_COUNTER_MASK;
5745
5746         /*
5747          * Quirk: v2 perfmon does not report fixed-purpose events, so
5748          * assume at least 3 events, when not running in a hypervisor:
5749          */
5750         if (version > 1 && version < 5) {
5751                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5752
5753                 x86_pmu.num_counters_fixed =
5754                         max((int)edx.split.num_counters_fixed, assume);
5755
5756                 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5757         } else if (version >= 5)
5758                 x86_pmu.num_counters_fixed = fls(fixed_mask);
5759
5760         if (boot_cpu_has(X86_FEATURE_PDCM)) {
5761                 u64 capabilities;
5762
5763                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5764                 x86_pmu.intel_cap.capabilities = capabilities;
5765         }
5766
5767         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5768                 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5769                 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5770         }
5771
5772         if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5773                 intel_pmu_arch_lbr_init();
5774
5775         intel_ds_init();
5776
5777         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5778
5779         if (version >= 5) {
5780                 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5781                 if (x86_pmu.intel_cap.anythread_deprecated)
5782                         pr_cont(" AnyThread deprecated, ");
5783         }
5784
5785         /*
5786          * Install the hw-cache-events table:
5787          */
5788         switch (boot_cpu_data.x86_model) {
5789         case INTEL_FAM6_CORE_YONAH:
5790                 pr_cont("Core events, ");
5791                 name = "core";
5792                 break;
5793
5794         case INTEL_FAM6_CORE2_MEROM:
5795                 x86_add_quirk(intel_clovertown_quirk);
5796                 fallthrough;
5797
5798         case INTEL_FAM6_CORE2_MEROM_L:
5799         case INTEL_FAM6_CORE2_PENRYN:
5800         case INTEL_FAM6_CORE2_DUNNINGTON:
5801                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5802                        sizeof(hw_cache_event_ids));
5803
5804                 intel_pmu_lbr_init_core();
5805
5806                 x86_pmu.event_constraints = intel_core2_event_constraints;
5807                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5808                 pr_cont("Core2 events, ");
5809                 name = "core2";
5810                 break;
5811
5812         case INTEL_FAM6_NEHALEM:
5813         case INTEL_FAM6_NEHALEM_EP:
5814         case INTEL_FAM6_NEHALEM_EX:
5815                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5816                        sizeof(hw_cache_event_ids));
5817                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5818                        sizeof(hw_cache_extra_regs));
5819
5820                 intel_pmu_lbr_init_nhm();
5821
5822                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
5823                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5824                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5825                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
5826                 x86_pmu.limit_period = nhm_limit_period;
5827
5828                 mem_attr = nhm_mem_events_attrs;
5829
5830                 /* UOPS_ISSUED.STALLED_CYCLES */
5831                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5832                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5833                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5834                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5835                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5836
5837                 intel_pmu_pebs_data_source_nhm();
5838                 x86_add_quirk(intel_nehalem_quirk);
5839                 x86_pmu.pebs_no_tlb = 1;
5840                 extra_attr = nhm_format_attr;
5841
5842                 pr_cont("Nehalem events, ");
5843                 name = "nehalem";
5844                 break;
5845
5846         case INTEL_FAM6_ATOM_BONNELL:
5847         case INTEL_FAM6_ATOM_BONNELL_MID:
5848         case INTEL_FAM6_ATOM_SALTWELL:
5849         case INTEL_FAM6_ATOM_SALTWELL_MID:
5850         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5851                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5852                        sizeof(hw_cache_event_ids));
5853
5854                 intel_pmu_lbr_init_atom();
5855
5856                 x86_pmu.event_constraints = intel_gen_event_constraints;
5857                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5858                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5859                 pr_cont("Atom events, ");
5860                 name = "bonnell";
5861                 break;
5862
5863         case INTEL_FAM6_ATOM_SILVERMONT:
5864         case INTEL_FAM6_ATOM_SILVERMONT_D:
5865         case INTEL_FAM6_ATOM_SILVERMONT_MID:
5866         case INTEL_FAM6_ATOM_AIRMONT:
5867         case INTEL_FAM6_ATOM_AIRMONT_MID:
5868                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5869                         sizeof(hw_cache_event_ids));
5870                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5871                        sizeof(hw_cache_extra_regs));
5872
5873                 intel_pmu_lbr_init_slm();
5874
5875                 x86_pmu.event_constraints = intel_slm_event_constraints;
5876                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5877                 x86_pmu.extra_regs = intel_slm_extra_regs;
5878                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5879                 td_attr = slm_events_attrs;
5880                 extra_attr = slm_format_attr;
5881                 pr_cont("Silvermont events, ");
5882                 name = "silvermont";
5883                 break;
5884
5885         case INTEL_FAM6_ATOM_GOLDMONT:
5886         case INTEL_FAM6_ATOM_GOLDMONT_D:
5887                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5888                        sizeof(hw_cache_event_ids));
5889                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5890                        sizeof(hw_cache_extra_regs));
5891
5892                 intel_pmu_lbr_init_skl();
5893
5894                 x86_pmu.event_constraints = intel_slm_event_constraints;
5895                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5896                 x86_pmu.extra_regs = intel_glm_extra_regs;
5897                 /*
5898                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5899                  * for precise cycles.
5900                  * :pp is identical to :ppp
5901                  */
5902                 x86_pmu.pebs_aliases = NULL;
5903                 x86_pmu.pebs_prec_dist = true;
5904                 x86_pmu.lbr_pt_coexist = true;
5905                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5906                 td_attr = glm_events_attrs;
5907                 extra_attr = slm_format_attr;
5908                 pr_cont("Goldmont events, ");
5909                 name = "goldmont";
5910                 break;
5911
5912         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5913                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5914                        sizeof(hw_cache_event_ids));
5915                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5916                        sizeof(hw_cache_extra_regs));
5917
5918                 intel_pmu_lbr_init_skl();
5919
5920                 x86_pmu.event_constraints = intel_slm_event_constraints;
5921                 x86_pmu.extra_regs = intel_glm_extra_regs;
5922                 /*
5923                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5924                  * for precise cycles.
5925                  */
5926                 x86_pmu.pebs_aliases = NULL;
5927                 x86_pmu.pebs_prec_dist = true;
5928                 x86_pmu.lbr_pt_coexist = true;
5929                 x86_pmu.pebs_capable = ~0ULL;
5930                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5931                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
5932                 x86_pmu.get_event_constraints = glp_get_event_constraints;
5933                 td_attr = glm_events_attrs;
5934                 /* Goldmont Plus has 4-wide pipeline */
5935                 event_attr_td_total_slots_scale_glm.event_str = "4";
5936                 extra_attr = slm_format_attr;
5937                 pr_cont("Goldmont plus events, ");
5938                 name = "goldmont_plus";
5939                 break;
5940
5941         case INTEL_FAM6_ATOM_TREMONT_D:
5942         case INTEL_FAM6_ATOM_TREMONT:
5943         case INTEL_FAM6_ATOM_TREMONT_L:
5944                 x86_pmu.late_ack = true;
5945                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5946                        sizeof(hw_cache_event_ids));
5947                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5948                        sizeof(hw_cache_extra_regs));
5949                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5950
5951                 intel_pmu_lbr_init_skl();
5952
5953                 x86_pmu.event_constraints = intel_slm_event_constraints;
5954                 x86_pmu.extra_regs = intel_tnt_extra_regs;
5955                 /*
5956                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5957                  * for precise cycles.
5958                  */
5959                 x86_pmu.pebs_aliases = NULL;
5960                 x86_pmu.pebs_prec_dist = true;
5961                 x86_pmu.lbr_pt_coexist = true;
5962                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5963                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
5964                 td_attr = tnt_events_attrs;
5965                 extra_attr = slm_format_attr;
5966                 pr_cont("Tremont events, ");
5967                 name = "Tremont";
5968                 break;
5969
5970         case INTEL_FAM6_WESTMERE:
5971         case INTEL_FAM6_WESTMERE_EP:
5972         case INTEL_FAM6_WESTMERE_EX:
5973                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5974                        sizeof(hw_cache_event_ids));
5975                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5976                        sizeof(hw_cache_extra_regs));
5977
5978                 intel_pmu_lbr_init_nhm();
5979
5980                 x86_pmu.event_constraints = intel_westmere_event_constraints;
5981                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5982                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5983                 x86_pmu.extra_regs = intel_westmere_extra_regs;
5984                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5985
5986                 mem_attr = nhm_mem_events_attrs;
5987
5988                 /* UOPS_ISSUED.STALLED_CYCLES */
5989                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5990                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5991                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5992                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5993                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5994
5995                 intel_pmu_pebs_data_source_nhm();
5996                 extra_attr = nhm_format_attr;
5997                 pr_cont("Westmere events, ");
5998                 name = "westmere";
5999                 break;
6000
6001         case INTEL_FAM6_SANDYBRIDGE:
6002         case INTEL_FAM6_SANDYBRIDGE_X:
6003                 x86_add_quirk(intel_sandybridge_quirk);
6004                 x86_add_quirk(intel_ht_bug);
6005                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6006                        sizeof(hw_cache_event_ids));
6007                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6008                        sizeof(hw_cache_extra_regs));
6009
6010                 intel_pmu_lbr_init_snb();
6011
6012                 x86_pmu.event_constraints = intel_snb_event_constraints;
6013                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
6014                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
6015                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
6016                         x86_pmu.extra_regs = intel_snbep_extra_regs;
6017                 else
6018                         x86_pmu.extra_regs = intel_snb_extra_regs;
6019
6020
6021                 /* all extra regs are per-cpu when HT is on */
6022                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6023                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6024
6025                 td_attr  = snb_events_attrs;
6026                 mem_attr = snb_mem_events_attrs;
6027
6028                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6029                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6030                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6031                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
6032                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6033                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
6034
6035                 extra_attr = nhm_format_attr;
6036
6037                 pr_cont("SandyBridge events, ");
6038                 name = "sandybridge";
6039                 break;
6040
6041         case INTEL_FAM6_IVYBRIDGE:
6042         case INTEL_FAM6_IVYBRIDGE_X:
6043                 x86_add_quirk(intel_ht_bug);
6044                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6045                        sizeof(hw_cache_event_ids));
6046                 /* dTLB-load-misses on IVB is different than SNB */
6047                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
6048
6049                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6050                        sizeof(hw_cache_extra_regs));
6051
6052                 intel_pmu_lbr_init_snb();
6053
6054                 x86_pmu.event_constraints = intel_ivb_event_constraints;
6055                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
6056                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6057                 x86_pmu.pebs_prec_dist = true;
6058                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
6059                         x86_pmu.extra_regs = intel_snbep_extra_regs;
6060                 else
6061                         x86_pmu.extra_regs = intel_snb_extra_regs;
6062                 /* all extra regs are per-cpu when HT is on */
6063                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6064                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6065
6066                 td_attr  = snb_events_attrs;
6067                 mem_attr = snb_mem_events_attrs;
6068
6069                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6070                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6071                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6072
6073                 extra_attr = nhm_format_attr;
6074
6075                 pr_cont("IvyBridge events, ");
6076                 name = "ivybridge";
6077                 break;
6078
6079
6080         case INTEL_FAM6_HASWELL:
6081         case INTEL_FAM6_HASWELL_X:
6082         case INTEL_FAM6_HASWELL_L:
6083         case INTEL_FAM6_HASWELL_G:
6084                 x86_add_quirk(intel_ht_bug);
6085                 x86_add_quirk(intel_pebs_isolation_quirk);
6086                 x86_pmu.late_ack = true;
6087                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6088                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6089
6090                 intel_pmu_lbr_init_hsw();
6091
6092                 x86_pmu.event_constraints = intel_hsw_event_constraints;
6093                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6094                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6095                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6096                 x86_pmu.pebs_prec_dist = true;
6097                 /* all extra regs are per-cpu when HT is on */
6098                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6099                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6100
6101                 x86_pmu.hw_config = hsw_hw_config;
6102                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6103                 x86_pmu.lbr_double_abort = true;
6104                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6105                         hsw_format_attr : nhm_format_attr;
6106                 td_attr  = hsw_events_attrs;
6107                 mem_attr = hsw_mem_events_attrs;
6108                 tsx_attr = hsw_tsx_events_attrs;
6109                 pr_cont("Haswell events, ");
6110                 name = "haswell";
6111                 break;
6112
6113         case INTEL_FAM6_BROADWELL:
6114         case INTEL_FAM6_BROADWELL_D:
6115         case INTEL_FAM6_BROADWELL_G:
6116         case INTEL_FAM6_BROADWELL_X:
6117                 x86_add_quirk(intel_pebs_isolation_quirk);
6118                 x86_pmu.late_ack = true;
6119                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6120                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6121
6122                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6123                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6124                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
6125                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6126                                                                           HSW_SNOOP_DRAM;
6127                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6128                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6129                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6130                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6131
6132                 intel_pmu_lbr_init_hsw();
6133
6134                 x86_pmu.event_constraints = intel_bdw_event_constraints;
6135                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6136                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6137                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6138                 x86_pmu.pebs_prec_dist = true;
6139                 /* all extra regs are per-cpu when HT is on */
6140                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6141                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6142
6143                 x86_pmu.hw_config = hsw_hw_config;
6144                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6145                 x86_pmu.limit_period = bdw_limit_period;
6146                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6147                         hsw_format_attr : nhm_format_attr;
6148                 td_attr  = hsw_events_attrs;
6149                 mem_attr = hsw_mem_events_attrs;
6150                 tsx_attr = hsw_tsx_events_attrs;
6151                 pr_cont("Broadwell events, ");
6152                 name = "broadwell";
6153                 break;
6154
6155         case INTEL_FAM6_XEON_PHI_KNL:
6156         case INTEL_FAM6_XEON_PHI_KNM:
6157                 memcpy(hw_cache_event_ids,
6158                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6159                 memcpy(hw_cache_extra_regs,
6160                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6161                 intel_pmu_lbr_init_knl();
6162
6163                 x86_pmu.event_constraints = intel_slm_event_constraints;
6164                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6165                 x86_pmu.extra_regs = intel_knl_extra_regs;
6166
6167                 /* all extra regs are per-cpu when HT is on */
6168                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6169                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6170                 extra_attr = slm_format_attr;
6171                 pr_cont("Knights Landing/Mill events, ");
6172                 name = "knights-landing";
6173                 break;
6174
6175         case INTEL_FAM6_SKYLAKE_X:
6176                 pmem = true;
6177                 fallthrough;
6178         case INTEL_FAM6_SKYLAKE_L:
6179         case INTEL_FAM6_SKYLAKE:
6180         case INTEL_FAM6_KABYLAKE_L:
6181         case INTEL_FAM6_KABYLAKE:
6182         case INTEL_FAM6_COMETLAKE_L:
6183         case INTEL_FAM6_COMETLAKE:
6184                 x86_add_quirk(intel_pebs_isolation_quirk);
6185                 x86_pmu.late_ack = true;
6186                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6187                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6188                 intel_pmu_lbr_init_skl();
6189
6190                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6191                 event_attr_td_recovery_bubbles.event_str_noht =
6192                         "event=0xd,umask=0x1,cmask=1";
6193                 event_attr_td_recovery_bubbles.event_str_ht =
6194                         "event=0xd,umask=0x1,cmask=1,any=1";
6195
6196                 x86_pmu.event_constraints = intel_skl_event_constraints;
6197                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6198                 x86_pmu.extra_regs = intel_skl_extra_regs;
6199                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6200                 x86_pmu.pebs_prec_dist = true;
6201                 /* all extra regs are per-cpu when HT is on */
6202                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6203                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6204
6205                 x86_pmu.hw_config = hsw_hw_config;
6206                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6207                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6208                         hsw_format_attr : nhm_format_attr;
6209                 extra_skl_attr = skl_format_attr;
6210                 td_attr  = hsw_events_attrs;
6211                 mem_attr = hsw_mem_events_attrs;
6212                 tsx_attr = hsw_tsx_events_attrs;
6213                 intel_pmu_pebs_data_source_skl(pmem);
6214
6215                 /*
6216                  * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6217                  * TSX force abort hooks are not required on these systems. Only deploy
6218                  * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6219                  */
6220                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6221                    !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6222                         x86_pmu.flags |= PMU_FL_TFA;
6223                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
6224                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6225                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6226                 }
6227
6228                 pr_cont("Skylake events, ");
6229                 name = "skylake";
6230                 break;
6231
6232         case INTEL_FAM6_ICELAKE_X:
6233         case INTEL_FAM6_ICELAKE_D:
6234                 x86_pmu.pebs_ept = 1;
6235                 pmem = true;
6236                 fallthrough;
6237         case INTEL_FAM6_ICELAKE_L:
6238         case INTEL_FAM6_ICELAKE:
6239         case INTEL_FAM6_TIGERLAKE_L:
6240         case INTEL_FAM6_TIGERLAKE:
6241         case INTEL_FAM6_ROCKETLAKE:
6242                 x86_pmu.late_ack = true;
6243                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6244                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6245                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6246                 intel_pmu_lbr_init_skl();
6247
6248                 x86_pmu.event_constraints = intel_icl_event_constraints;
6249                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6250                 x86_pmu.extra_regs = intel_icl_extra_regs;
6251                 x86_pmu.pebs_aliases = NULL;
6252                 x86_pmu.pebs_prec_dist = true;
6253                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6254                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6255
6256                 x86_pmu.hw_config = hsw_hw_config;
6257                 x86_pmu.get_event_constraints = icl_get_event_constraints;
6258                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6259                         hsw_format_attr : nhm_format_attr;
6260                 extra_skl_attr = skl_format_attr;
6261                 mem_attr = icl_events_attrs;
6262                 td_attr = icl_td_events_attrs;
6263                 tsx_attr = icl_tsx_events_attrs;
6264                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6265                 x86_pmu.lbr_pt_coexist = true;
6266                 intel_pmu_pebs_data_source_skl(pmem);
6267                 x86_pmu.num_topdown_events = 4;
6268                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6269                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6270                 pr_cont("Icelake events, ");
6271                 name = "icelake";
6272                 break;
6273
6274         case INTEL_FAM6_SAPPHIRERAPIDS_X:
6275                 pmem = true;
6276                 x86_pmu.late_ack = true;
6277                 memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6278                 memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6279
6280                 x86_pmu.event_constraints = intel_spr_event_constraints;
6281                 x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6282                 x86_pmu.extra_regs = intel_spr_extra_regs;
6283                 x86_pmu.limit_period = spr_limit_period;
6284                 x86_pmu.pebs_aliases = NULL;
6285                 x86_pmu.pebs_prec_dist = true;
6286                 x86_pmu.pebs_block = true;
6287                 x86_pmu.pebs_capable = ~0ULL;
6288                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6289                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6290                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6291                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6292                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6293
6294                 x86_pmu.hw_config = hsw_hw_config;
6295                 x86_pmu.get_event_constraints = spr_get_event_constraints;
6296                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6297                         hsw_format_attr : nhm_format_attr;
6298                 extra_skl_attr = skl_format_attr;
6299                 mem_attr = spr_events_attrs;
6300                 td_attr = spr_td_events_attrs;
6301                 tsx_attr = spr_tsx_events_attrs;
6302                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6303                 x86_pmu.lbr_pt_coexist = true;
6304                 intel_pmu_pebs_data_source_skl(pmem);
6305                 x86_pmu.num_topdown_events = 8;
6306                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6307                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6308                 pr_cont("Sapphire Rapids events, ");
6309                 name = "sapphire_rapids";
6310                 break;
6311
6312         case INTEL_FAM6_ALDERLAKE:
6313         case INTEL_FAM6_ALDERLAKE_L:
6314         case INTEL_FAM6_ALDERLAKE_N:
6315         case INTEL_FAM6_RAPTORLAKE:
6316         case INTEL_FAM6_RAPTORLAKE_P:
6317                 /*
6318                  * Alder Lake has 2 types of CPU, core and atom.
6319                  *
6320                  * Initialize the common PerfMon capabilities here.
6321                  */
6322                 x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6323                                              sizeof(struct x86_hybrid_pmu),
6324                                              GFP_KERNEL);
6325                 if (!x86_pmu.hybrid_pmu)
6326                         return -ENOMEM;
6327                 static_branch_enable(&perf_is_hybrid);
6328                 x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6329
6330                 x86_pmu.pebs_aliases = NULL;
6331                 x86_pmu.pebs_prec_dist = true;
6332                 x86_pmu.pebs_block = true;
6333                 x86_pmu.pebs_capable = ~0ULL;
6334                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6335                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6336                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6337                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6338                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6339                 x86_pmu.lbr_pt_coexist = true;
6340                 intel_pmu_pebs_data_source_skl(false);
6341                 x86_pmu.num_topdown_events = 8;
6342                 x86_pmu.update_topdown_event = adl_update_topdown_event;
6343                 x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6344
6345                 x86_pmu.filter_match = intel_pmu_filter_match;
6346                 x86_pmu.get_event_constraints = adl_get_event_constraints;
6347                 x86_pmu.hw_config = adl_hw_config;
6348                 x86_pmu.limit_period = spr_limit_period;
6349                 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6350                 /*
6351                  * The rtm_abort_event is used to check whether to enable GPRs
6352                  * for the RTM abort event. Atom doesn't have the RTM abort
6353                  * event. There is no harmful to set it in the common
6354                  * x86_pmu.rtm_abort_event.
6355                  */
6356                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6357
6358                 td_attr = adl_hybrid_events_attrs;
6359                 mem_attr = adl_hybrid_mem_attrs;
6360                 tsx_attr = adl_hybrid_tsx_attrs;
6361                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6362                         adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6363
6364                 /* Initialize big core specific PerfMon capabilities.*/
6365                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6366                 pmu->name = "cpu_core";
6367                 pmu->cpu_type = hybrid_big;
6368                 pmu->late_ack = true;
6369                 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6370                         pmu->num_counters = x86_pmu.num_counters + 2;
6371                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6372                 } else {
6373                         pmu->num_counters = x86_pmu.num_counters;
6374                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6375                 }
6376
6377                 /*
6378                  * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6379                  * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6380                  * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6381                  * mistakenly add extra counters for P-cores. Correct the number of
6382                  * counters here.
6383                  */
6384                 if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6385                         pmu->num_counters = x86_pmu.num_counters;
6386                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6387                 }
6388
6389                 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6390                 pmu->unconstrained = (struct event_constraint)
6391                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6392                                                            0, pmu->num_counters, 0, 0);
6393                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6394                 pmu->intel_cap.perf_metrics = 1;
6395                 pmu->intel_cap.pebs_output_pt_available = 0;
6396
6397                 memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6398                 memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6399                 pmu->event_constraints = intel_spr_event_constraints;
6400                 pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6401                 pmu->extra_regs = intel_spr_extra_regs;
6402
6403                 /* Initialize Atom core specific PerfMon capabilities.*/
6404                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6405                 pmu->name = "cpu_atom";
6406                 pmu->cpu_type = hybrid_small;
6407                 pmu->mid_ack = true;
6408                 pmu->num_counters = x86_pmu.num_counters;
6409                 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6410                 pmu->max_pebs_events = x86_pmu.max_pebs_events;
6411                 pmu->unconstrained = (struct event_constraint)
6412                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6413                                                            0, pmu->num_counters, 0, 0);
6414                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6415                 pmu->intel_cap.perf_metrics = 0;
6416                 pmu->intel_cap.pebs_output_pt_available = 1;
6417
6418                 memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6419                 memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6420                 pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6421                 pmu->event_constraints = intel_slm_event_constraints;
6422                 pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6423                 pmu->extra_regs = intel_grt_extra_regs;
6424                 pr_cont("Alderlake Hybrid events, ");
6425                 name = "alderlake_hybrid";
6426                 break;
6427
6428         default:
6429                 switch (x86_pmu.version) {
6430                 case 1:
6431                         x86_pmu.event_constraints = intel_v1_event_constraints;
6432                         pr_cont("generic architected perfmon v1, ");
6433                         name = "generic_arch_v1";
6434                         break;
6435                 case 2:
6436                 case 3:
6437                 case 4:
6438                         /*
6439                          * default constraints for v2 and up
6440                          */
6441                         x86_pmu.event_constraints = intel_gen_event_constraints;
6442                         pr_cont("generic architected perfmon, ");
6443                         name = "generic_arch_v2+";
6444                         break;
6445                 default:
6446                         /*
6447                          * The default constraints for v5 and up can support up to
6448                          * 16 fixed counters. For the fixed counters 4 and later,
6449                          * the pseudo-encoding is applied.
6450                          * The constraints may be cut according to the CPUID enumeration
6451                          * by inserting the EVENT_CONSTRAINT_END.
6452                          */
6453                         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
6454                                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
6455                         intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
6456                         x86_pmu.event_constraints = intel_v5_gen_event_constraints;
6457                         pr_cont("generic architected perfmon, ");
6458                         name = "generic_arch_v5+";
6459                         break;
6460                 }
6461         }
6462
6463         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6464
6465         if (!is_hybrid()) {
6466                 group_events_td.attrs  = td_attr;
6467                 group_events_mem.attrs = mem_attr;
6468                 group_events_tsx.attrs = tsx_attr;
6469                 group_format_extra.attrs = extra_attr;
6470                 group_format_extra_skl.attrs = extra_skl_attr;
6471
6472                 x86_pmu.attr_update = attr_update;
6473         } else {
6474                 hybrid_group_events_td.attrs  = td_attr;
6475                 hybrid_group_events_mem.attrs = mem_attr;
6476                 hybrid_group_events_tsx.attrs = tsx_attr;
6477                 hybrid_group_format_extra.attrs = extra_attr;
6478
6479                 x86_pmu.attr_update = hybrid_attr_update;
6480         }
6481
6482         intel_pmu_check_num_counters(&x86_pmu.num_counters,
6483                                      &x86_pmu.num_counters_fixed,
6484                                      &x86_pmu.intel_ctrl,
6485                                      (u64)fixed_mask);
6486
6487         /* AnyThread may be deprecated on arch perfmon v5 or later */
6488         if (x86_pmu.intel_cap.anythread_deprecated)
6489                 x86_pmu.format_attrs = intel_arch_formats_attr;
6490
6491         intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6492                                           x86_pmu.num_counters,
6493                                           x86_pmu.num_counters_fixed,
6494                                           x86_pmu.intel_ctrl);
6495         /*
6496          * Access LBR MSR may cause #GP under certain circumstances.
6497          * E.g. KVM doesn't support LBR MSR
6498          * Check all LBT MSR here.
6499          * Disable LBR access if any LBR MSRs can not be accessed.
6500          */
6501         if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6502                 x86_pmu.lbr_nr = 0;
6503         for (i = 0; i < x86_pmu.lbr_nr; i++) {
6504                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6505                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6506                         x86_pmu.lbr_nr = 0;
6507         }
6508
6509         if (x86_pmu.lbr_nr) {
6510                 intel_pmu_lbr_init();
6511
6512                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6513
6514                 /* only support branch_stack snapshot for perfmon >= v2 */
6515                 if (x86_pmu.disable_all == intel_pmu_disable_all) {
6516                         if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6517                                 static_call_update(perf_snapshot_branch_stack,
6518                                                    intel_pmu_snapshot_arch_branch_stack);
6519                         } else {
6520                                 static_call_update(perf_snapshot_branch_stack,
6521                                                    intel_pmu_snapshot_branch_stack);
6522                         }
6523                 }
6524         }
6525
6526         intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6527
6528         /* Support full width counters using alternative MSR range */
6529         if (x86_pmu.intel_cap.full_width_write) {
6530                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6531                 x86_pmu.perfctr = MSR_IA32_PMC0;
6532                 pr_cont("full-width counters, ");
6533         }
6534
6535         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6536                 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6537
6538         if (is_hybrid())
6539                 intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6540
6541         intel_aux_output_init();
6542
6543         return 0;
6544 }
6545
6546 /*
6547  * HT bug: phase 2 init
6548  * Called once we have valid topology information to check
6549  * whether or not HT is enabled
6550  * If HT is off, then we disable the workaround
6551  */
6552 static __init int fixup_ht_bug(void)
6553 {
6554         int c;
6555         /*
6556          * problem not present on this CPU model, nothing to do
6557          */
6558         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6559                 return 0;
6560
6561         if (topology_max_smt_threads() > 1) {
6562                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6563                 return 0;
6564         }
6565
6566         cpus_read_lock();
6567
6568         hardlockup_detector_perf_stop();
6569
6570         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6571
6572         x86_pmu.start_scheduling = NULL;
6573         x86_pmu.commit_scheduling = NULL;
6574         x86_pmu.stop_scheduling = NULL;
6575
6576         hardlockup_detector_perf_restart();
6577
6578         for_each_online_cpu(c)
6579                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6580
6581         cpus_read_unlock();
6582         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6583         return 0;
6584 }
6585 subsys_initcall(fixup_ht_bug)