KVM: x86/pmu: Disable guest PEBS temporarily in two rare situations
[linux-2.6-microblaze.git] / arch / x86 / events / intel / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 #include <linux/kvm_host.h>
18
19 #include <asm/cpufeature.h>
20 #include <asm/hardirq.h>
21 #include <asm/intel-family.h>
22 #include <asm/intel_pt.h>
23 #include <asm/apic.h>
24 #include <asm/cpu_device_id.h>
25
26 #include "../perf_event.h"
27
28 /*
29  * Intel PerfMon, used on Core and later.
30  */
31 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
32 {
33         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
34         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
35         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
36         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
37         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
38         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
39         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
40         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
41 };
42
43 static struct event_constraint intel_core_event_constraints[] __read_mostly =
44 {
45         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
46         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
47         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
48         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
49         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
50         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
51         EVENT_CONSTRAINT_END
52 };
53
54 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
55 {
56         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
57         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
58         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
59         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
60         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
61         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
62         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
63         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
64         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
65         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
66         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
67         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
68         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
69         EVENT_CONSTRAINT_END
70 };
71
72 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
73 {
74         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
75         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
76         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
77         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
78         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
79         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
80         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
81         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
82         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
83         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
84         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
85         EVENT_CONSTRAINT_END
86 };
87
88 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
89 {
90         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
91         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
92         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
93         EVENT_EXTRA_END
94 };
95
96 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
97 {
98         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
99         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
100         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
101         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
102         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
103         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
104         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
105         EVENT_CONSTRAINT_END
106 };
107
108 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
109 {
110         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
111         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
112         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
113         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
114         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
115         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
116         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
117         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
118         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
119         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
120         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
121         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
122
123         /*
124          * When HT is off these events can only run on the bottom 4 counters
125          * When HT is on, they are impacted by the HT bug and require EXCL access
126          */
127         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
128         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
130         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
131
132         EVENT_CONSTRAINT_END
133 };
134
135 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
136 {
137         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
138         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
139         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
140         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
141         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
142         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
143         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
144         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
145         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
146         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
149         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
150
151         /*
152          * When HT is off these events can only run on the bottom 4 counters
153          * When HT is on, they are impacted by the HT bug and require EXCL access
154          */
155         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
156         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
158         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
159
160         EVENT_CONSTRAINT_END
161 };
162
163 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
164 {
165         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
166         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
167         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
168         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
169         EVENT_EXTRA_END
170 };
171
172 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
173 {
174         EVENT_CONSTRAINT_END
175 };
176
177 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
178 {
179         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
180         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
181         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
182         EVENT_CONSTRAINT_END
183 };
184
185 static struct event_constraint intel_v5_gen_event_constraints[] __read_mostly =
186 {
187         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
188         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
189         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
190         FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
191         FIXED_EVENT_CONSTRAINT(0x0500, 4),
192         FIXED_EVENT_CONSTRAINT(0x0600, 5),
193         FIXED_EVENT_CONSTRAINT(0x0700, 6),
194         FIXED_EVENT_CONSTRAINT(0x0800, 7),
195         FIXED_EVENT_CONSTRAINT(0x0900, 8),
196         FIXED_EVENT_CONSTRAINT(0x0a00, 9),
197         FIXED_EVENT_CONSTRAINT(0x0b00, 10),
198         FIXED_EVENT_CONSTRAINT(0x0c00, 11),
199         FIXED_EVENT_CONSTRAINT(0x0d00, 12),
200         FIXED_EVENT_CONSTRAINT(0x0e00, 13),
201         FIXED_EVENT_CONSTRAINT(0x0f00, 14),
202         FIXED_EVENT_CONSTRAINT(0x1000, 15),
203         EVENT_CONSTRAINT_END
204 };
205
206 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
207 {
208         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
209         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
210         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
211         EVENT_CONSTRAINT_END
212 };
213
214 static struct event_constraint intel_skl_event_constraints[] = {
215         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
216         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
217         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
218         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
219
220         /*
221          * when HT is off, these can only run on the bottom 4 counters
222          */
223         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
224         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
225         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
226         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
227         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
228
229         EVENT_CONSTRAINT_END
230 };
231
232 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
233         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
234         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
235         EVENT_EXTRA_END
236 };
237
238 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
239         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
240         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
241         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
242         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
243         EVENT_EXTRA_END
244 };
245
246 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
247         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
248         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
249         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
250         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
251         EVENT_EXTRA_END
252 };
253
254 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
255         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
256         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
257         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
258         /*
259          * Note the low 8 bits eventsel code is not a continuous field, containing
260          * some #GPing bits. These are masked out.
261          */
262         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
263         EVENT_EXTRA_END
264 };
265
266 static struct event_constraint intel_icl_event_constraints[] = {
267         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
268         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* old INST_RETIRED.PREC_DIST */
269         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
270         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
271         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
272         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
273         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
274         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
275         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
276         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
277         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
278         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
279         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
280         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
281         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
282         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
283         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
284         INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
285         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
286         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
287         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
288         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
289         INTEL_EVENT_CONSTRAINT(0xef, 0xf),
290         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
291         EVENT_CONSTRAINT_END
292 };
293
294 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
295         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
296         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
297         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
298         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
299         EVENT_EXTRA_END
300 };
301
302 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
303         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
304         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
305         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
306         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
307         INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
308         INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
309         EVENT_EXTRA_END
310 };
311
312 static struct event_constraint intel_spr_event_constraints[] = {
313         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
314         FIXED_EVENT_CONSTRAINT(0x0100, 0),      /* INST_RETIRED.PREC_DIST */
315         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
316         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
317         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
318         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
319         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
320         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
321         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
322         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
323         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
324         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
325         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
326
327         INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
328         INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
329         /*
330          * Generally event codes < 0x90 are restricted to counters 0-3.
331          * The 0x2E and 0x3C are exception, which has no restriction.
332          */
333         INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
334
335         INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
336         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
337         INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
338         INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
339         INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
340         INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
341         INTEL_EVENT_CONSTRAINT(0xce, 0x1),
342         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
343         /*
344          * Generally event codes >= 0x90 are likely to have no restrictions.
345          * The exception are defined as above.
346          */
347         INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
348
349         EVENT_CONSTRAINT_END
350 };
351
352
353 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
354 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
355 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
356
357 static struct attribute *nhm_mem_events_attrs[] = {
358         EVENT_PTR(mem_ld_nhm),
359         NULL,
360 };
361
362 /*
363  * topdown events for Intel Core CPUs.
364  *
365  * The events are all in slots, which is a free slot in a 4 wide
366  * pipeline. Some events are already reported in slots, for cycle
367  * events we multiply by the pipeline width (4).
368  *
369  * With Hyper Threading on, topdown metrics are either summed or averaged
370  * between the threads of a core: (count_t0 + count_t1).
371  *
372  * For the average case the metric is always scaled to pipeline width,
373  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
374  */
375
376 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
377         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
378         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
379 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
380 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
381         "event=0xe,umask=0x1");                 /* uops_issued.any */
382 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
383         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
384 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
385         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
386 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
387         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
388         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
389 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
390         "4", "2");
391
392 EVENT_ATTR_STR(slots,                   slots,                  "event=0x00,umask=0x4");
393 EVENT_ATTR_STR(topdown-retiring,        td_retiring,            "event=0x00,umask=0x80");
394 EVENT_ATTR_STR(topdown-bad-spec,        td_bad_spec,            "event=0x00,umask=0x81");
395 EVENT_ATTR_STR(topdown-fe-bound,        td_fe_bound,            "event=0x00,umask=0x82");
396 EVENT_ATTR_STR(topdown-be-bound,        td_be_bound,            "event=0x00,umask=0x83");
397 EVENT_ATTR_STR(topdown-heavy-ops,       td_heavy_ops,           "event=0x00,umask=0x84");
398 EVENT_ATTR_STR(topdown-br-mispredict,   td_br_mispredict,       "event=0x00,umask=0x85");
399 EVENT_ATTR_STR(topdown-fetch-lat,       td_fetch_lat,           "event=0x00,umask=0x86");
400 EVENT_ATTR_STR(topdown-mem-bound,       td_mem_bound,           "event=0x00,umask=0x87");
401
402 static struct attribute *snb_events_attrs[] = {
403         EVENT_PTR(td_slots_issued),
404         EVENT_PTR(td_slots_retired),
405         EVENT_PTR(td_fetch_bubbles),
406         EVENT_PTR(td_total_slots),
407         EVENT_PTR(td_total_slots_scale),
408         EVENT_PTR(td_recovery_bubbles),
409         EVENT_PTR(td_recovery_bubbles_scale),
410         NULL,
411 };
412
413 static struct attribute *snb_mem_events_attrs[] = {
414         EVENT_PTR(mem_ld_snb),
415         EVENT_PTR(mem_st_snb),
416         NULL,
417 };
418
419 static struct event_constraint intel_hsw_event_constraints[] = {
420         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
421         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
422         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
423         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
424         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
425         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
426         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
427         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
428         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
429         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
430         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
431         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
432
433         /*
434          * When HT is off these events can only run on the bottom 4 counters
435          * When HT is on, they are impacted by the HT bug and require EXCL access
436          */
437         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
438         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
439         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
440         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
441
442         EVENT_CONSTRAINT_END
443 };
444
445 static struct event_constraint intel_bdw_event_constraints[] = {
446         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
447         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
448         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
449         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
450         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
451         /*
452          * when HT is off, these can only run on the bottom 4 counters
453          */
454         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
455         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
456         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
457         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
458         EVENT_CONSTRAINT_END
459 };
460
461 static u64 intel_pmu_event_map(int hw_event)
462 {
463         return intel_perfmon_event_map[hw_event];
464 }
465
466 static __initconst const u64 spr_hw_cache_event_ids
467                                 [PERF_COUNT_HW_CACHE_MAX]
468                                 [PERF_COUNT_HW_CACHE_OP_MAX]
469                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
470 {
471  [ C(L1D ) ] = {
472         [ C(OP_READ) ] = {
473                 [ C(RESULT_ACCESS) ] = 0x81d0,
474                 [ C(RESULT_MISS)   ] = 0xe124,
475         },
476         [ C(OP_WRITE) ] = {
477                 [ C(RESULT_ACCESS) ] = 0x82d0,
478         },
479  },
480  [ C(L1I ) ] = {
481         [ C(OP_READ) ] = {
482                 [ C(RESULT_MISS)   ] = 0xe424,
483         },
484         [ C(OP_WRITE) ] = {
485                 [ C(RESULT_ACCESS) ] = -1,
486                 [ C(RESULT_MISS)   ] = -1,
487         },
488  },
489  [ C(LL  ) ] = {
490         [ C(OP_READ) ] = {
491                 [ C(RESULT_ACCESS) ] = 0x12a,
492                 [ C(RESULT_MISS)   ] = 0x12a,
493         },
494         [ C(OP_WRITE) ] = {
495                 [ C(RESULT_ACCESS) ] = 0x12a,
496                 [ C(RESULT_MISS)   ] = 0x12a,
497         },
498  },
499  [ C(DTLB) ] = {
500         [ C(OP_READ) ] = {
501                 [ C(RESULT_ACCESS) ] = 0x81d0,
502                 [ C(RESULT_MISS)   ] = 0xe12,
503         },
504         [ C(OP_WRITE) ] = {
505                 [ C(RESULT_ACCESS) ] = 0x82d0,
506                 [ C(RESULT_MISS)   ] = 0xe13,
507         },
508  },
509  [ C(ITLB) ] = {
510         [ C(OP_READ) ] = {
511                 [ C(RESULT_ACCESS) ] = -1,
512                 [ C(RESULT_MISS)   ] = 0xe11,
513         },
514         [ C(OP_WRITE) ] = {
515                 [ C(RESULT_ACCESS) ] = -1,
516                 [ C(RESULT_MISS)   ] = -1,
517         },
518         [ C(OP_PREFETCH) ] = {
519                 [ C(RESULT_ACCESS) ] = -1,
520                 [ C(RESULT_MISS)   ] = -1,
521         },
522  },
523  [ C(BPU ) ] = {
524         [ C(OP_READ) ] = {
525                 [ C(RESULT_ACCESS) ] = 0x4c4,
526                 [ C(RESULT_MISS)   ] = 0x4c5,
527         },
528         [ C(OP_WRITE) ] = {
529                 [ C(RESULT_ACCESS) ] = -1,
530                 [ C(RESULT_MISS)   ] = -1,
531         },
532         [ C(OP_PREFETCH) ] = {
533                 [ C(RESULT_ACCESS) ] = -1,
534                 [ C(RESULT_MISS)   ] = -1,
535         },
536  },
537  [ C(NODE) ] = {
538         [ C(OP_READ) ] = {
539                 [ C(RESULT_ACCESS) ] = 0x12a,
540                 [ C(RESULT_MISS)   ] = 0x12a,
541         },
542  },
543 };
544
545 static __initconst const u64 spr_hw_cache_extra_regs
546                                 [PERF_COUNT_HW_CACHE_MAX]
547                                 [PERF_COUNT_HW_CACHE_OP_MAX]
548                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
549 {
550  [ C(LL  ) ] = {
551         [ C(OP_READ) ] = {
552                 [ C(RESULT_ACCESS) ] = 0x10001,
553                 [ C(RESULT_MISS)   ] = 0x3fbfc00001,
554         },
555         [ C(OP_WRITE) ] = {
556                 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
557                 [ C(RESULT_MISS)   ] = 0x3f3fc00002,
558         },
559  },
560  [ C(NODE) ] = {
561         [ C(OP_READ) ] = {
562                 [ C(RESULT_ACCESS) ] = 0x10c000001,
563                 [ C(RESULT_MISS)   ] = 0x3fb3000001,
564         },
565  },
566 };
567
568 /*
569  * Notes on the events:
570  * - data reads do not include code reads (comparable to earlier tables)
571  * - data counts include speculative execution (except L1 write, dtlb, bpu)
572  * - remote node access includes remote memory, remote cache, remote mmio.
573  * - prefetches are not included in the counts.
574  * - icache miss does not include decoded icache
575  */
576
577 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
578 #define SKL_DEMAND_RFO                  BIT_ULL(1)
579 #define SKL_ANY_RESPONSE                BIT_ULL(16)
580 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
581 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
582 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
583 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
584 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
585 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
586                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
587                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
588                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
589 #define SKL_SPL_HIT                     BIT_ULL(30)
590 #define SKL_SNOOP_NONE                  BIT_ULL(31)
591 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
592 #define SKL_SNOOP_MISS                  BIT_ULL(33)
593 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
594 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
595 #define SKL_SNOOP_HITM                  BIT_ULL(36)
596 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
597 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
598                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
599                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
600                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
601 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
602 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
603                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
604                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
605                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
606 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
607 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
608 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
609                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
610                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
611
612 static __initconst const u64 skl_hw_cache_event_ids
613                                 [PERF_COUNT_HW_CACHE_MAX]
614                                 [PERF_COUNT_HW_CACHE_OP_MAX]
615                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617  [ C(L1D ) ] = {
618         [ C(OP_READ) ] = {
619                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
620                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
621         },
622         [ C(OP_WRITE) ] = {
623                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
624                 [ C(RESULT_MISS)   ] = 0x0,
625         },
626         [ C(OP_PREFETCH) ] = {
627                 [ C(RESULT_ACCESS) ] = 0x0,
628                 [ C(RESULT_MISS)   ] = 0x0,
629         },
630  },
631  [ C(L1I ) ] = {
632         [ C(OP_READ) ] = {
633                 [ C(RESULT_ACCESS) ] = 0x0,
634                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
635         },
636         [ C(OP_WRITE) ] = {
637                 [ C(RESULT_ACCESS) ] = -1,
638                 [ C(RESULT_MISS)   ] = -1,
639         },
640         [ C(OP_PREFETCH) ] = {
641                 [ C(RESULT_ACCESS) ] = 0x0,
642                 [ C(RESULT_MISS)   ] = 0x0,
643         },
644  },
645  [ C(LL  ) ] = {
646         [ C(OP_READ) ] = {
647                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
648                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
649         },
650         [ C(OP_WRITE) ] = {
651                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
652                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
653         },
654         [ C(OP_PREFETCH) ] = {
655                 [ C(RESULT_ACCESS) ] = 0x0,
656                 [ C(RESULT_MISS)   ] = 0x0,
657         },
658  },
659  [ C(DTLB) ] = {
660         [ C(OP_READ) ] = {
661                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
662                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
663         },
664         [ C(OP_WRITE) ] = {
665                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
666                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
667         },
668         [ C(OP_PREFETCH) ] = {
669                 [ C(RESULT_ACCESS) ] = 0x0,
670                 [ C(RESULT_MISS)   ] = 0x0,
671         },
672  },
673  [ C(ITLB) ] = {
674         [ C(OP_READ) ] = {
675                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
676                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
677         },
678         [ C(OP_WRITE) ] = {
679                 [ C(RESULT_ACCESS) ] = -1,
680                 [ C(RESULT_MISS)   ] = -1,
681         },
682         [ C(OP_PREFETCH) ] = {
683                 [ C(RESULT_ACCESS) ] = -1,
684                 [ C(RESULT_MISS)   ] = -1,
685         },
686  },
687  [ C(BPU ) ] = {
688         [ C(OP_READ) ] = {
689                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
690                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
691         },
692         [ C(OP_WRITE) ] = {
693                 [ C(RESULT_ACCESS) ] = -1,
694                 [ C(RESULT_MISS)   ] = -1,
695         },
696         [ C(OP_PREFETCH) ] = {
697                 [ C(RESULT_ACCESS) ] = -1,
698                 [ C(RESULT_MISS)   ] = -1,
699         },
700  },
701  [ C(NODE) ] = {
702         [ C(OP_READ) ] = {
703                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
704                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
705         },
706         [ C(OP_WRITE) ] = {
707                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
708                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
709         },
710         [ C(OP_PREFETCH) ] = {
711                 [ C(RESULT_ACCESS) ] = 0x0,
712                 [ C(RESULT_MISS)   ] = 0x0,
713         },
714  },
715 };
716
717 static __initconst const u64 skl_hw_cache_extra_regs
718                                 [PERF_COUNT_HW_CACHE_MAX]
719                                 [PERF_COUNT_HW_CACHE_OP_MAX]
720                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
721 {
722  [ C(LL  ) ] = {
723         [ C(OP_READ) ] = {
724                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
725                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
726                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
727                                        SKL_L3_MISS|SKL_ANY_SNOOP|
728                                        SKL_SUPPLIER_NONE,
729         },
730         [ C(OP_WRITE) ] = {
731                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
732                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
733                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
734                                        SKL_L3_MISS|SKL_ANY_SNOOP|
735                                        SKL_SUPPLIER_NONE,
736         },
737         [ C(OP_PREFETCH) ] = {
738                 [ C(RESULT_ACCESS) ] = 0x0,
739                 [ C(RESULT_MISS)   ] = 0x0,
740         },
741  },
742  [ C(NODE) ] = {
743         [ C(OP_READ) ] = {
744                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
745                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
746                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
747                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
748         },
749         [ C(OP_WRITE) ] = {
750                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
751                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
752                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
753                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
754         },
755         [ C(OP_PREFETCH) ] = {
756                 [ C(RESULT_ACCESS) ] = 0x0,
757                 [ C(RESULT_MISS)   ] = 0x0,
758         },
759  },
760 };
761
762 #define SNB_DMND_DATA_RD        (1ULL << 0)
763 #define SNB_DMND_RFO            (1ULL << 1)
764 #define SNB_DMND_IFETCH         (1ULL << 2)
765 #define SNB_DMND_WB             (1ULL << 3)
766 #define SNB_PF_DATA_RD          (1ULL << 4)
767 #define SNB_PF_RFO              (1ULL << 5)
768 #define SNB_PF_IFETCH           (1ULL << 6)
769 #define SNB_LLC_DATA_RD         (1ULL << 7)
770 #define SNB_LLC_RFO             (1ULL << 8)
771 #define SNB_LLC_IFETCH          (1ULL << 9)
772 #define SNB_BUS_LOCKS           (1ULL << 10)
773 #define SNB_STRM_ST             (1ULL << 11)
774 #define SNB_OTHER               (1ULL << 15)
775 #define SNB_RESP_ANY            (1ULL << 16)
776 #define SNB_NO_SUPP             (1ULL << 17)
777 #define SNB_LLC_HITM            (1ULL << 18)
778 #define SNB_LLC_HITE            (1ULL << 19)
779 #define SNB_LLC_HITS            (1ULL << 20)
780 #define SNB_LLC_HITF            (1ULL << 21)
781 #define SNB_LOCAL               (1ULL << 22)
782 #define SNB_REMOTE              (0xffULL << 23)
783 #define SNB_SNP_NONE            (1ULL << 31)
784 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
785 #define SNB_SNP_MISS            (1ULL << 33)
786 #define SNB_NO_FWD              (1ULL << 34)
787 #define SNB_SNP_FWD             (1ULL << 35)
788 #define SNB_HITM                (1ULL << 36)
789 #define SNB_NON_DRAM            (1ULL << 37)
790
791 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
792 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
793 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
794
795 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
796                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
797                                  SNB_HITM)
798
799 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
800 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
801
802 #define SNB_L3_ACCESS           SNB_RESP_ANY
803 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
804
805 static __initconst const u64 snb_hw_cache_extra_regs
806                                 [PERF_COUNT_HW_CACHE_MAX]
807                                 [PERF_COUNT_HW_CACHE_OP_MAX]
808                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
809 {
810  [ C(LL  ) ] = {
811         [ C(OP_READ) ] = {
812                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
813                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
814         },
815         [ C(OP_WRITE) ] = {
816                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
817                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
818         },
819         [ C(OP_PREFETCH) ] = {
820                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
821                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
822         },
823  },
824  [ C(NODE) ] = {
825         [ C(OP_READ) ] = {
826                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
827                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
828         },
829         [ C(OP_WRITE) ] = {
830                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
831                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
832         },
833         [ C(OP_PREFETCH) ] = {
834                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
835                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
836         },
837  },
838 };
839
840 static __initconst const u64 snb_hw_cache_event_ids
841                                 [PERF_COUNT_HW_CACHE_MAX]
842                                 [PERF_COUNT_HW_CACHE_OP_MAX]
843                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
844 {
845  [ C(L1D) ] = {
846         [ C(OP_READ) ] = {
847                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
848                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
849         },
850         [ C(OP_WRITE) ] = {
851                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
852                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
853         },
854         [ C(OP_PREFETCH) ] = {
855                 [ C(RESULT_ACCESS) ] = 0x0,
856                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
857         },
858  },
859  [ C(L1I ) ] = {
860         [ C(OP_READ) ] = {
861                 [ C(RESULT_ACCESS) ] = 0x0,
862                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
863         },
864         [ C(OP_WRITE) ] = {
865                 [ C(RESULT_ACCESS) ] = -1,
866                 [ C(RESULT_MISS)   ] = -1,
867         },
868         [ C(OP_PREFETCH) ] = {
869                 [ C(RESULT_ACCESS) ] = 0x0,
870                 [ C(RESULT_MISS)   ] = 0x0,
871         },
872  },
873  [ C(LL  ) ] = {
874         [ C(OP_READ) ] = {
875                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
876                 [ C(RESULT_ACCESS) ] = 0x01b7,
877                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
878                 [ C(RESULT_MISS)   ] = 0x01b7,
879         },
880         [ C(OP_WRITE) ] = {
881                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
882                 [ C(RESULT_ACCESS) ] = 0x01b7,
883                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
884                 [ C(RESULT_MISS)   ] = 0x01b7,
885         },
886         [ C(OP_PREFETCH) ] = {
887                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
888                 [ C(RESULT_ACCESS) ] = 0x01b7,
889                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
890                 [ C(RESULT_MISS)   ] = 0x01b7,
891         },
892  },
893  [ C(DTLB) ] = {
894         [ C(OP_READ) ] = {
895                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
896                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
897         },
898         [ C(OP_WRITE) ] = {
899                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
900                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
901         },
902         [ C(OP_PREFETCH) ] = {
903                 [ C(RESULT_ACCESS) ] = 0x0,
904                 [ C(RESULT_MISS)   ] = 0x0,
905         },
906  },
907  [ C(ITLB) ] = {
908         [ C(OP_READ) ] = {
909                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
910                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
911         },
912         [ C(OP_WRITE) ] = {
913                 [ C(RESULT_ACCESS) ] = -1,
914                 [ C(RESULT_MISS)   ] = -1,
915         },
916         [ C(OP_PREFETCH) ] = {
917                 [ C(RESULT_ACCESS) ] = -1,
918                 [ C(RESULT_MISS)   ] = -1,
919         },
920  },
921  [ C(BPU ) ] = {
922         [ C(OP_READ) ] = {
923                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
924                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
925         },
926         [ C(OP_WRITE) ] = {
927                 [ C(RESULT_ACCESS) ] = -1,
928                 [ C(RESULT_MISS)   ] = -1,
929         },
930         [ C(OP_PREFETCH) ] = {
931                 [ C(RESULT_ACCESS) ] = -1,
932                 [ C(RESULT_MISS)   ] = -1,
933         },
934  },
935  [ C(NODE) ] = {
936         [ C(OP_READ) ] = {
937                 [ C(RESULT_ACCESS) ] = 0x01b7,
938                 [ C(RESULT_MISS)   ] = 0x01b7,
939         },
940         [ C(OP_WRITE) ] = {
941                 [ C(RESULT_ACCESS) ] = 0x01b7,
942                 [ C(RESULT_MISS)   ] = 0x01b7,
943         },
944         [ C(OP_PREFETCH) ] = {
945                 [ C(RESULT_ACCESS) ] = 0x01b7,
946                 [ C(RESULT_MISS)   ] = 0x01b7,
947         },
948  },
949
950 };
951
952 /*
953  * Notes on the events:
954  * - data reads do not include code reads (comparable to earlier tables)
955  * - data counts include speculative execution (except L1 write, dtlb, bpu)
956  * - remote node access includes remote memory, remote cache, remote mmio.
957  * - prefetches are not included in the counts because they are not
958  *   reliably counted.
959  */
960
961 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
962 #define HSW_DEMAND_RFO                  BIT_ULL(1)
963 #define HSW_ANY_RESPONSE                BIT_ULL(16)
964 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
965 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
966 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
967 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
968 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
969 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
970                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
971                                          HSW_L3_MISS_REMOTE_HOP2P)
972 #define HSW_SNOOP_NONE                  BIT_ULL(31)
973 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
974 #define HSW_SNOOP_MISS                  BIT_ULL(33)
975 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
976 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
977 #define HSW_SNOOP_HITM                  BIT_ULL(36)
978 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
979 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
980                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
981                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
982                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
983 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
984 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
985 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
986 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
987                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
988 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
989
990 #define BDW_L3_MISS_LOCAL               BIT(26)
991 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
992                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
993                                          HSW_L3_MISS_REMOTE_HOP2P)
994
995
996 static __initconst const u64 hsw_hw_cache_event_ids
997                                 [PERF_COUNT_HW_CACHE_MAX]
998                                 [PERF_COUNT_HW_CACHE_OP_MAX]
999                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1000 {
1001  [ C(L1D ) ] = {
1002         [ C(OP_READ) ] = {
1003                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1004                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
1005         },
1006         [ C(OP_WRITE) ] = {
1007                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1008                 [ C(RESULT_MISS)   ] = 0x0,
1009         },
1010         [ C(OP_PREFETCH) ] = {
1011                 [ C(RESULT_ACCESS) ] = 0x0,
1012                 [ C(RESULT_MISS)   ] = 0x0,
1013         },
1014  },
1015  [ C(L1I ) ] = {
1016         [ C(OP_READ) ] = {
1017                 [ C(RESULT_ACCESS) ] = 0x0,
1018                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
1019         },
1020         [ C(OP_WRITE) ] = {
1021                 [ C(RESULT_ACCESS) ] = -1,
1022                 [ C(RESULT_MISS)   ] = -1,
1023         },
1024         [ C(OP_PREFETCH) ] = {
1025                 [ C(RESULT_ACCESS) ] = 0x0,
1026                 [ C(RESULT_MISS)   ] = 0x0,
1027         },
1028  },
1029  [ C(LL  ) ] = {
1030         [ C(OP_READ) ] = {
1031                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1032                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1033         },
1034         [ C(OP_WRITE) ] = {
1035                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1036                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1037         },
1038         [ C(OP_PREFETCH) ] = {
1039                 [ C(RESULT_ACCESS) ] = 0x0,
1040                 [ C(RESULT_MISS)   ] = 0x0,
1041         },
1042  },
1043  [ C(DTLB) ] = {
1044         [ C(OP_READ) ] = {
1045                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1046                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1047         },
1048         [ C(OP_WRITE) ] = {
1049                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1050                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1051         },
1052         [ C(OP_PREFETCH) ] = {
1053                 [ C(RESULT_ACCESS) ] = 0x0,
1054                 [ C(RESULT_MISS)   ] = 0x0,
1055         },
1056  },
1057  [ C(ITLB) ] = {
1058         [ C(OP_READ) ] = {
1059                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
1060                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1061         },
1062         [ C(OP_WRITE) ] = {
1063                 [ C(RESULT_ACCESS) ] = -1,
1064                 [ C(RESULT_MISS)   ] = -1,
1065         },
1066         [ C(OP_PREFETCH) ] = {
1067                 [ C(RESULT_ACCESS) ] = -1,
1068                 [ C(RESULT_MISS)   ] = -1,
1069         },
1070  },
1071  [ C(BPU ) ] = {
1072         [ C(OP_READ) ] = {
1073                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
1074                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
1075         },
1076         [ C(OP_WRITE) ] = {
1077                 [ C(RESULT_ACCESS) ] = -1,
1078                 [ C(RESULT_MISS)   ] = -1,
1079         },
1080         [ C(OP_PREFETCH) ] = {
1081                 [ C(RESULT_ACCESS) ] = -1,
1082                 [ C(RESULT_MISS)   ] = -1,
1083         },
1084  },
1085  [ C(NODE) ] = {
1086         [ C(OP_READ) ] = {
1087                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1088                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1089         },
1090         [ C(OP_WRITE) ] = {
1091                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1092                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1093         },
1094         [ C(OP_PREFETCH) ] = {
1095                 [ C(RESULT_ACCESS) ] = 0x0,
1096                 [ C(RESULT_MISS)   ] = 0x0,
1097         },
1098  },
1099 };
1100
1101 static __initconst const u64 hsw_hw_cache_extra_regs
1102                                 [PERF_COUNT_HW_CACHE_MAX]
1103                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1104                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1105 {
1106  [ C(LL  ) ] = {
1107         [ C(OP_READ) ] = {
1108                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1109                                        HSW_LLC_ACCESS,
1110                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1111                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1112         },
1113         [ C(OP_WRITE) ] = {
1114                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1115                                        HSW_LLC_ACCESS,
1116                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1117                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1118         },
1119         [ C(OP_PREFETCH) ] = {
1120                 [ C(RESULT_ACCESS) ] = 0x0,
1121                 [ C(RESULT_MISS)   ] = 0x0,
1122         },
1123  },
1124  [ C(NODE) ] = {
1125         [ C(OP_READ) ] = {
1126                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1127                                        HSW_L3_MISS_LOCAL_DRAM|
1128                                        HSW_SNOOP_DRAM,
1129                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1130                                        HSW_L3_MISS_REMOTE|
1131                                        HSW_SNOOP_DRAM,
1132         },
1133         [ C(OP_WRITE) ] = {
1134                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1135                                        HSW_L3_MISS_LOCAL_DRAM|
1136                                        HSW_SNOOP_DRAM,
1137                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1138                                        HSW_L3_MISS_REMOTE|
1139                                        HSW_SNOOP_DRAM,
1140         },
1141         [ C(OP_PREFETCH) ] = {
1142                 [ C(RESULT_ACCESS) ] = 0x0,
1143                 [ C(RESULT_MISS)   ] = 0x0,
1144         },
1145  },
1146 };
1147
1148 static __initconst const u64 westmere_hw_cache_event_ids
1149                                 [PERF_COUNT_HW_CACHE_MAX]
1150                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1151                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1152 {
1153  [ C(L1D) ] = {
1154         [ C(OP_READ) ] = {
1155                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1156                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1157         },
1158         [ C(OP_WRITE) ] = {
1159                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1160                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1161         },
1162         [ C(OP_PREFETCH) ] = {
1163                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1164                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1165         },
1166  },
1167  [ C(L1I ) ] = {
1168         [ C(OP_READ) ] = {
1169                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1170                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1171         },
1172         [ C(OP_WRITE) ] = {
1173                 [ C(RESULT_ACCESS) ] = -1,
1174                 [ C(RESULT_MISS)   ] = -1,
1175         },
1176         [ C(OP_PREFETCH) ] = {
1177                 [ C(RESULT_ACCESS) ] = 0x0,
1178                 [ C(RESULT_MISS)   ] = 0x0,
1179         },
1180  },
1181  [ C(LL  ) ] = {
1182         [ C(OP_READ) ] = {
1183                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1184                 [ C(RESULT_ACCESS) ] = 0x01b7,
1185                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1186                 [ C(RESULT_MISS)   ] = 0x01b7,
1187         },
1188         /*
1189          * Use RFO, not WRITEBACK, because a write miss would typically occur
1190          * on RFO.
1191          */
1192         [ C(OP_WRITE) ] = {
1193                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1194                 [ C(RESULT_ACCESS) ] = 0x01b7,
1195                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1196                 [ C(RESULT_MISS)   ] = 0x01b7,
1197         },
1198         [ C(OP_PREFETCH) ] = {
1199                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1200                 [ C(RESULT_ACCESS) ] = 0x01b7,
1201                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1202                 [ C(RESULT_MISS)   ] = 0x01b7,
1203         },
1204  },
1205  [ C(DTLB) ] = {
1206         [ C(OP_READ) ] = {
1207                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1208                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1209         },
1210         [ C(OP_WRITE) ] = {
1211                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1212                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1213         },
1214         [ C(OP_PREFETCH) ] = {
1215                 [ C(RESULT_ACCESS) ] = 0x0,
1216                 [ C(RESULT_MISS)   ] = 0x0,
1217         },
1218  },
1219  [ C(ITLB) ] = {
1220         [ C(OP_READ) ] = {
1221                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1222                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1223         },
1224         [ C(OP_WRITE) ] = {
1225                 [ C(RESULT_ACCESS) ] = -1,
1226                 [ C(RESULT_MISS)   ] = -1,
1227         },
1228         [ C(OP_PREFETCH) ] = {
1229                 [ C(RESULT_ACCESS) ] = -1,
1230                 [ C(RESULT_MISS)   ] = -1,
1231         },
1232  },
1233  [ C(BPU ) ] = {
1234         [ C(OP_READ) ] = {
1235                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1236                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1237         },
1238         [ C(OP_WRITE) ] = {
1239                 [ C(RESULT_ACCESS) ] = -1,
1240                 [ C(RESULT_MISS)   ] = -1,
1241         },
1242         [ C(OP_PREFETCH) ] = {
1243                 [ C(RESULT_ACCESS) ] = -1,
1244                 [ C(RESULT_MISS)   ] = -1,
1245         },
1246  },
1247  [ C(NODE) ] = {
1248         [ C(OP_READ) ] = {
1249                 [ C(RESULT_ACCESS) ] = 0x01b7,
1250                 [ C(RESULT_MISS)   ] = 0x01b7,
1251         },
1252         [ C(OP_WRITE) ] = {
1253                 [ C(RESULT_ACCESS) ] = 0x01b7,
1254                 [ C(RESULT_MISS)   ] = 0x01b7,
1255         },
1256         [ C(OP_PREFETCH) ] = {
1257                 [ C(RESULT_ACCESS) ] = 0x01b7,
1258                 [ C(RESULT_MISS)   ] = 0x01b7,
1259         },
1260  },
1261 };
1262
1263 /*
1264  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1265  * See IA32 SDM Vol 3B 30.6.1.3
1266  */
1267
1268 #define NHM_DMND_DATA_RD        (1 << 0)
1269 #define NHM_DMND_RFO            (1 << 1)
1270 #define NHM_DMND_IFETCH         (1 << 2)
1271 #define NHM_DMND_WB             (1 << 3)
1272 #define NHM_PF_DATA_RD          (1 << 4)
1273 #define NHM_PF_DATA_RFO         (1 << 5)
1274 #define NHM_PF_IFETCH           (1 << 6)
1275 #define NHM_OFFCORE_OTHER       (1 << 7)
1276 #define NHM_UNCORE_HIT          (1 << 8)
1277 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1278 #define NHM_OTHER_CORE_HITM     (1 << 10)
1279                                 /* reserved */
1280 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1281 #define NHM_REMOTE_DRAM         (1 << 13)
1282 #define NHM_LOCAL_DRAM          (1 << 14)
1283 #define NHM_NON_DRAM            (1 << 15)
1284
1285 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1286 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1287
1288 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1289 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1290 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1291
1292 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1293 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1294 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1295
1296 static __initconst const u64 nehalem_hw_cache_extra_regs
1297                                 [PERF_COUNT_HW_CACHE_MAX]
1298                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1299                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1300 {
1301  [ C(LL  ) ] = {
1302         [ C(OP_READ) ] = {
1303                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1304                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1305         },
1306         [ C(OP_WRITE) ] = {
1307                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1308                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1309         },
1310         [ C(OP_PREFETCH) ] = {
1311                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1312                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1313         },
1314  },
1315  [ C(NODE) ] = {
1316         [ C(OP_READ) ] = {
1317                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1318                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1319         },
1320         [ C(OP_WRITE) ] = {
1321                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1322                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1323         },
1324         [ C(OP_PREFETCH) ] = {
1325                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1326                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1327         },
1328  },
1329 };
1330
1331 static __initconst const u64 nehalem_hw_cache_event_ids
1332                                 [PERF_COUNT_HW_CACHE_MAX]
1333                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1334                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1335 {
1336  [ C(L1D) ] = {
1337         [ C(OP_READ) ] = {
1338                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1339                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1340         },
1341         [ C(OP_WRITE) ] = {
1342                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1343                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1344         },
1345         [ C(OP_PREFETCH) ] = {
1346                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1347                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1348         },
1349  },
1350  [ C(L1I ) ] = {
1351         [ C(OP_READ) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1353                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1354         },
1355         [ C(OP_WRITE) ] = {
1356                 [ C(RESULT_ACCESS) ] = -1,
1357                 [ C(RESULT_MISS)   ] = -1,
1358         },
1359         [ C(OP_PREFETCH) ] = {
1360                 [ C(RESULT_ACCESS) ] = 0x0,
1361                 [ C(RESULT_MISS)   ] = 0x0,
1362         },
1363  },
1364  [ C(LL  ) ] = {
1365         [ C(OP_READ) ] = {
1366                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1367                 [ C(RESULT_ACCESS) ] = 0x01b7,
1368                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1369                 [ C(RESULT_MISS)   ] = 0x01b7,
1370         },
1371         /*
1372          * Use RFO, not WRITEBACK, because a write miss would typically occur
1373          * on RFO.
1374          */
1375         [ C(OP_WRITE) ] = {
1376                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1377                 [ C(RESULT_ACCESS) ] = 0x01b7,
1378                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1379                 [ C(RESULT_MISS)   ] = 0x01b7,
1380         },
1381         [ C(OP_PREFETCH) ] = {
1382                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1383                 [ C(RESULT_ACCESS) ] = 0x01b7,
1384                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1385                 [ C(RESULT_MISS)   ] = 0x01b7,
1386         },
1387  },
1388  [ C(DTLB) ] = {
1389         [ C(OP_READ) ] = {
1390                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1391                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1392         },
1393         [ C(OP_WRITE) ] = {
1394                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1395                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1396         },
1397         [ C(OP_PREFETCH) ] = {
1398                 [ C(RESULT_ACCESS) ] = 0x0,
1399                 [ C(RESULT_MISS)   ] = 0x0,
1400         },
1401  },
1402  [ C(ITLB) ] = {
1403         [ C(OP_READ) ] = {
1404                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1405                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1406         },
1407         [ C(OP_WRITE) ] = {
1408                 [ C(RESULT_ACCESS) ] = -1,
1409                 [ C(RESULT_MISS)   ] = -1,
1410         },
1411         [ C(OP_PREFETCH) ] = {
1412                 [ C(RESULT_ACCESS) ] = -1,
1413                 [ C(RESULT_MISS)   ] = -1,
1414         },
1415  },
1416  [ C(BPU ) ] = {
1417         [ C(OP_READ) ] = {
1418                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1419                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1420         },
1421         [ C(OP_WRITE) ] = {
1422                 [ C(RESULT_ACCESS) ] = -1,
1423                 [ C(RESULT_MISS)   ] = -1,
1424         },
1425         [ C(OP_PREFETCH) ] = {
1426                 [ C(RESULT_ACCESS) ] = -1,
1427                 [ C(RESULT_MISS)   ] = -1,
1428         },
1429  },
1430  [ C(NODE) ] = {
1431         [ C(OP_READ) ] = {
1432                 [ C(RESULT_ACCESS) ] = 0x01b7,
1433                 [ C(RESULT_MISS)   ] = 0x01b7,
1434         },
1435         [ C(OP_WRITE) ] = {
1436                 [ C(RESULT_ACCESS) ] = 0x01b7,
1437                 [ C(RESULT_MISS)   ] = 0x01b7,
1438         },
1439         [ C(OP_PREFETCH) ] = {
1440                 [ C(RESULT_ACCESS) ] = 0x01b7,
1441                 [ C(RESULT_MISS)   ] = 0x01b7,
1442         },
1443  },
1444 };
1445
1446 static __initconst const u64 core2_hw_cache_event_ids
1447                                 [PERF_COUNT_HW_CACHE_MAX]
1448                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1449                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1450 {
1451  [ C(L1D) ] = {
1452         [ C(OP_READ) ] = {
1453                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1454                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1455         },
1456         [ C(OP_WRITE) ] = {
1457                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1458                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1459         },
1460         [ C(OP_PREFETCH) ] = {
1461                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1462                 [ C(RESULT_MISS)   ] = 0,
1463         },
1464  },
1465  [ C(L1I ) ] = {
1466         [ C(OP_READ) ] = {
1467                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1468                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1469         },
1470         [ C(OP_WRITE) ] = {
1471                 [ C(RESULT_ACCESS) ] = -1,
1472                 [ C(RESULT_MISS)   ] = -1,
1473         },
1474         [ C(OP_PREFETCH) ] = {
1475                 [ C(RESULT_ACCESS) ] = 0,
1476                 [ C(RESULT_MISS)   ] = 0,
1477         },
1478  },
1479  [ C(LL  ) ] = {
1480         [ C(OP_READ) ] = {
1481                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1482                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1483         },
1484         [ C(OP_WRITE) ] = {
1485                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1486                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1487         },
1488         [ C(OP_PREFETCH) ] = {
1489                 [ C(RESULT_ACCESS) ] = 0,
1490                 [ C(RESULT_MISS)   ] = 0,
1491         },
1492  },
1493  [ C(DTLB) ] = {
1494         [ C(OP_READ) ] = {
1495                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1496                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1497         },
1498         [ C(OP_WRITE) ] = {
1499                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1500                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1501         },
1502         [ C(OP_PREFETCH) ] = {
1503                 [ C(RESULT_ACCESS) ] = 0,
1504                 [ C(RESULT_MISS)   ] = 0,
1505         },
1506  },
1507  [ C(ITLB) ] = {
1508         [ C(OP_READ) ] = {
1509                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1510                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1511         },
1512         [ C(OP_WRITE) ] = {
1513                 [ C(RESULT_ACCESS) ] = -1,
1514                 [ C(RESULT_MISS)   ] = -1,
1515         },
1516         [ C(OP_PREFETCH) ] = {
1517                 [ C(RESULT_ACCESS) ] = -1,
1518                 [ C(RESULT_MISS)   ] = -1,
1519         },
1520  },
1521  [ C(BPU ) ] = {
1522         [ C(OP_READ) ] = {
1523                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1524                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1525         },
1526         [ C(OP_WRITE) ] = {
1527                 [ C(RESULT_ACCESS) ] = -1,
1528                 [ C(RESULT_MISS)   ] = -1,
1529         },
1530         [ C(OP_PREFETCH) ] = {
1531                 [ C(RESULT_ACCESS) ] = -1,
1532                 [ C(RESULT_MISS)   ] = -1,
1533         },
1534  },
1535 };
1536
1537 static __initconst const u64 atom_hw_cache_event_ids
1538                                 [PERF_COUNT_HW_CACHE_MAX]
1539                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1540                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1541 {
1542  [ C(L1D) ] = {
1543         [ C(OP_READ) ] = {
1544                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1545                 [ C(RESULT_MISS)   ] = 0,
1546         },
1547         [ C(OP_WRITE) ] = {
1548                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1549                 [ C(RESULT_MISS)   ] = 0,
1550         },
1551         [ C(OP_PREFETCH) ] = {
1552                 [ C(RESULT_ACCESS) ] = 0x0,
1553                 [ C(RESULT_MISS)   ] = 0,
1554         },
1555  },
1556  [ C(L1I ) ] = {
1557         [ C(OP_READ) ] = {
1558                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1559                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1560         },
1561         [ C(OP_WRITE) ] = {
1562                 [ C(RESULT_ACCESS) ] = -1,
1563                 [ C(RESULT_MISS)   ] = -1,
1564         },
1565         [ C(OP_PREFETCH) ] = {
1566                 [ C(RESULT_ACCESS) ] = 0,
1567                 [ C(RESULT_MISS)   ] = 0,
1568         },
1569  },
1570  [ C(LL  ) ] = {
1571         [ C(OP_READ) ] = {
1572                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1573                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1574         },
1575         [ C(OP_WRITE) ] = {
1576                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1577                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1578         },
1579         [ C(OP_PREFETCH) ] = {
1580                 [ C(RESULT_ACCESS) ] = 0,
1581                 [ C(RESULT_MISS)   ] = 0,
1582         },
1583  },
1584  [ C(DTLB) ] = {
1585         [ C(OP_READ) ] = {
1586                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1587                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1588         },
1589         [ C(OP_WRITE) ] = {
1590                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1591                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1592         },
1593         [ C(OP_PREFETCH) ] = {
1594                 [ C(RESULT_ACCESS) ] = 0,
1595                 [ C(RESULT_MISS)   ] = 0,
1596         },
1597  },
1598  [ C(ITLB) ] = {
1599         [ C(OP_READ) ] = {
1600                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1601                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1602         },
1603         [ C(OP_WRITE) ] = {
1604                 [ C(RESULT_ACCESS) ] = -1,
1605                 [ C(RESULT_MISS)   ] = -1,
1606         },
1607         [ C(OP_PREFETCH) ] = {
1608                 [ C(RESULT_ACCESS) ] = -1,
1609                 [ C(RESULT_MISS)   ] = -1,
1610         },
1611  },
1612  [ C(BPU ) ] = {
1613         [ C(OP_READ) ] = {
1614                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1615                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1616         },
1617         [ C(OP_WRITE) ] = {
1618                 [ C(RESULT_ACCESS) ] = -1,
1619                 [ C(RESULT_MISS)   ] = -1,
1620         },
1621         [ C(OP_PREFETCH) ] = {
1622                 [ C(RESULT_ACCESS) ] = -1,
1623                 [ C(RESULT_MISS)   ] = -1,
1624         },
1625  },
1626 };
1627
1628 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1629 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1630 /* no_alloc_cycles.not_delivered */
1631 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1632                "event=0xca,umask=0x50");
1633 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1634 /* uops_retired.all */
1635 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1636                "event=0xc2,umask=0x10");
1637 /* uops_retired.all */
1638 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1639                "event=0xc2,umask=0x10");
1640
1641 static struct attribute *slm_events_attrs[] = {
1642         EVENT_PTR(td_total_slots_slm),
1643         EVENT_PTR(td_total_slots_scale_slm),
1644         EVENT_PTR(td_fetch_bubbles_slm),
1645         EVENT_PTR(td_fetch_bubbles_scale_slm),
1646         EVENT_PTR(td_slots_issued_slm),
1647         EVENT_PTR(td_slots_retired_slm),
1648         NULL
1649 };
1650
1651 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1652 {
1653         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1654         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1655         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1656         EVENT_EXTRA_END
1657 };
1658
1659 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1660 #define SLM_DMND_WRITE          SNB_DMND_RFO
1661 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1662
1663 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1664 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1665 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1666
1667 static __initconst const u64 slm_hw_cache_extra_regs
1668                                 [PERF_COUNT_HW_CACHE_MAX]
1669                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1670                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1671 {
1672  [ C(LL  ) ] = {
1673         [ C(OP_READ) ] = {
1674                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1675                 [ C(RESULT_MISS)   ] = 0,
1676         },
1677         [ C(OP_WRITE) ] = {
1678                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1679                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1680         },
1681         [ C(OP_PREFETCH) ] = {
1682                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1683                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1684         },
1685  },
1686 };
1687
1688 static __initconst const u64 slm_hw_cache_event_ids
1689                                 [PERF_COUNT_HW_CACHE_MAX]
1690                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1691                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1692 {
1693  [ C(L1D) ] = {
1694         [ C(OP_READ) ] = {
1695                 [ C(RESULT_ACCESS) ] = 0,
1696                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1697         },
1698         [ C(OP_WRITE) ] = {
1699                 [ C(RESULT_ACCESS) ] = 0,
1700                 [ C(RESULT_MISS)   ] = 0,
1701         },
1702         [ C(OP_PREFETCH) ] = {
1703                 [ C(RESULT_ACCESS) ] = 0,
1704                 [ C(RESULT_MISS)   ] = 0,
1705         },
1706  },
1707  [ C(L1I ) ] = {
1708         [ C(OP_READ) ] = {
1709                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1710                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1711         },
1712         [ C(OP_WRITE) ] = {
1713                 [ C(RESULT_ACCESS) ] = -1,
1714                 [ C(RESULT_MISS)   ] = -1,
1715         },
1716         [ C(OP_PREFETCH) ] = {
1717                 [ C(RESULT_ACCESS) ] = 0,
1718                 [ C(RESULT_MISS)   ] = 0,
1719         },
1720  },
1721  [ C(LL  ) ] = {
1722         [ C(OP_READ) ] = {
1723                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1724                 [ C(RESULT_ACCESS) ] = 0x01b7,
1725                 [ C(RESULT_MISS)   ] = 0,
1726         },
1727         [ C(OP_WRITE) ] = {
1728                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1729                 [ C(RESULT_ACCESS) ] = 0x01b7,
1730                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1731                 [ C(RESULT_MISS)   ] = 0x01b7,
1732         },
1733         [ C(OP_PREFETCH) ] = {
1734                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1735                 [ C(RESULT_ACCESS) ] = 0x01b7,
1736                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1737                 [ C(RESULT_MISS)   ] = 0x01b7,
1738         },
1739  },
1740  [ C(DTLB) ] = {
1741         [ C(OP_READ) ] = {
1742                 [ C(RESULT_ACCESS) ] = 0,
1743                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1744         },
1745         [ C(OP_WRITE) ] = {
1746                 [ C(RESULT_ACCESS) ] = 0,
1747                 [ C(RESULT_MISS)   ] = 0,
1748         },
1749         [ C(OP_PREFETCH) ] = {
1750                 [ C(RESULT_ACCESS) ] = 0,
1751                 [ C(RESULT_MISS)   ] = 0,
1752         },
1753  },
1754  [ C(ITLB) ] = {
1755         [ C(OP_READ) ] = {
1756                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1757                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1758         },
1759         [ C(OP_WRITE) ] = {
1760                 [ C(RESULT_ACCESS) ] = -1,
1761                 [ C(RESULT_MISS)   ] = -1,
1762         },
1763         [ C(OP_PREFETCH) ] = {
1764                 [ C(RESULT_ACCESS) ] = -1,
1765                 [ C(RESULT_MISS)   ] = -1,
1766         },
1767  },
1768  [ C(BPU ) ] = {
1769         [ C(OP_READ) ] = {
1770                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1771                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1772         },
1773         [ C(OP_WRITE) ] = {
1774                 [ C(RESULT_ACCESS) ] = -1,
1775                 [ C(RESULT_MISS)   ] = -1,
1776         },
1777         [ C(OP_PREFETCH) ] = {
1778                 [ C(RESULT_ACCESS) ] = -1,
1779                 [ C(RESULT_MISS)   ] = -1,
1780         },
1781  },
1782 };
1783
1784 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1785 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1786 /* UOPS_NOT_DELIVERED.ANY */
1787 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1788 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1789 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1790 /* UOPS_RETIRED.ANY */
1791 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1792 /* UOPS_ISSUED.ANY */
1793 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1794
1795 static struct attribute *glm_events_attrs[] = {
1796         EVENT_PTR(td_total_slots_glm),
1797         EVENT_PTR(td_total_slots_scale_glm),
1798         EVENT_PTR(td_fetch_bubbles_glm),
1799         EVENT_PTR(td_recovery_bubbles_glm),
1800         EVENT_PTR(td_slots_issued_glm),
1801         EVENT_PTR(td_slots_retired_glm),
1802         NULL
1803 };
1804
1805 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1806         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1807         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1808         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1809         EVENT_EXTRA_END
1810 };
1811
1812 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1813 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1814 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1815 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1816 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1817 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1818 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1819 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1820 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1821 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1822
1823 static __initconst const u64 glm_hw_cache_event_ids
1824                                 [PERF_COUNT_HW_CACHE_MAX]
1825                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1826                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1827         [C(L1D)] = {
1828                 [C(OP_READ)] = {
1829                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1830                         [C(RESULT_MISS)]        = 0x0,
1831                 },
1832                 [C(OP_WRITE)] = {
1833                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1834                         [C(RESULT_MISS)]        = 0x0,
1835                 },
1836                 [C(OP_PREFETCH)] = {
1837                         [C(RESULT_ACCESS)]      = 0x0,
1838                         [C(RESULT_MISS)]        = 0x0,
1839                 },
1840         },
1841         [C(L1I)] = {
1842                 [C(OP_READ)] = {
1843                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1844                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1845                 },
1846                 [C(OP_WRITE)] = {
1847                         [C(RESULT_ACCESS)]      = -1,
1848                         [C(RESULT_MISS)]        = -1,
1849                 },
1850                 [C(OP_PREFETCH)] = {
1851                         [C(RESULT_ACCESS)]      = 0x0,
1852                         [C(RESULT_MISS)]        = 0x0,
1853                 },
1854         },
1855         [C(LL)] = {
1856                 [C(OP_READ)] = {
1857                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1858                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1859                 },
1860                 [C(OP_WRITE)] = {
1861                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1862                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1863                 },
1864                 [C(OP_PREFETCH)] = {
1865                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1866                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1867                 },
1868         },
1869         [C(DTLB)] = {
1870                 [C(OP_READ)] = {
1871                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1872                         [C(RESULT_MISS)]        = 0x0,
1873                 },
1874                 [C(OP_WRITE)] = {
1875                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1876                         [C(RESULT_MISS)]        = 0x0,
1877                 },
1878                 [C(OP_PREFETCH)] = {
1879                         [C(RESULT_ACCESS)]      = 0x0,
1880                         [C(RESULT_MISS)]        = 0x0,
1881                 },
1882         },
1883         [C(ITLB)] = {
1884                 [C(OP_READ)] = {
1885                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1886                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1887                 },
1888                 [C(OP_WRITE)] = {
1889                         [C(RESULT_ACCESS)]      = -1,
1890                         [C(RESULT_MISS)]        = -1,
1891                 },
1892                 [C(OP_PREFETCH)] = {
1893                         [C(RESULT_ACCESS)]      = -1,
1894                         [C(RESULT_MISS)]        = -1,
1895                 },
1896         },
1897         [C(BPU)] = {
1898                 [C(OP_READ)] = {
1899                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1900                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1901                 },
1902                 [C(OP_WRITE)] = {
1903                         [C(RESULT_ACCESS)]      = -1,
1904                         [C(RESULT_MISS)]        = -1,
1905                 },
1906                 [C(OP_PREFETCH)] = {
1907                         [C(RESULT_ACCESS)]      = -1,
1908                         [C(RESULT_MISS)]        = -1,
1909                 },
1910         },
1911 };
1912
1913 static __initconst const u64 glm_hw_cache_extra_regs
1914                                 [PERF_COUNT_HW_CACHE_MAX]
1915                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1916                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1917         [C(LL)] = {
1918                 [C(OP_READ)] = {
1919                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1920                                                   GLM_LLC_ACCESS,
1921                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1922                                                   GLM_LLC_MISS,
1923                 },
1924                 [C(OP_WRITE)] = {
1925                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1926                                                   GLM_LLC_ACCESS,
1927                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1928                                                   GLM_LLC_MISS,
1929                 },
1930                 [C(OP_PREFETCH)] = {
1931                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1932                                                   GLM_LLC_ACCESS,
1933                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1934                                                   GLM_LLC_MISS,
1935                 },
1936         },
1937 };
1938
1939 static __initconst const u64 glp_hw_cache_event_ids
1940                                 [PERF_COUNT_HW_CACHE_MAX]
1941                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1942                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1943         [C(L1D)] = {
1944                 [C(OP_READ)] = {
1945                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1946                         [C(RESULT_MISS)]        = 0x0,
1947                 },
1948                 [C(OP_WRITE)] = {
1949                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1950                         [C(RESULT_MISS)]        = 0x0,
1951                 },
1952                 [C(OP_PREFETCH)] = {
1953                         [C(RESULT_ACCESS)]      = 0x0,
1954                         [C(RESULT_MISS)]        = 0x0,
1955                 },
1956         },
1957         [C(L1I)] = {
1958                 [C(OP_READ)] = {
1959                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1960                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1961                 },
1962                 [C(OP_WRITE)] = {
1963                         [C(RESULT_ACCESS)]      = -1,
1964                         [C(RESULT_MISS)]        = -1,
1965                 },
1966                 [C(OP_PREFETCH)] = {
1967                         [C(RESULT_ACCESS)]      = 0x0,
1968                         [C(RESULT_MISS)]        = 0x0,
1969                 },
1970         },
1971         [C(LL)] = {
1972                 [C(OP_READ)] = {
1973                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1974                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1975                 },
1976                 [C(OP_WRITE)] = {
1977                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1978                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1979                 },
1980                 [C(OP_PREFETCH)] = {
1981                         [C(RESULT_ACCESS)]      = 0x0,
1982                         [C(RESULT_MISS)]        = 0x0,
1983                 },
1984         },
1985         [C(DTLB)] = {
1986                 [C(OP_READ)] = {
1987                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1988                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1989                 },
1990                 [C(OP_WRITE)] = {
1991                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1992                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1993                 },
1994                 [C(OP_PREFETCH)] = {
1995                         [C(RESULT_ACCESS)]      = 0x0,
1996                         [C(RESULT_MISS)]        = 0x0,
1997                 },
1998         },
1999         [C(ITLB)] = {
2000                 [C(OP_READ)] = {
2001                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
2002                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
2003                 },
2004                 [C(OP_WRITE)] = {
2005                         [C(RESULT_ACCESS)]      = -1,
2006                         [C(RESULT_MISS)]        = -1,
2007                 },
2008                 [C(OP_PREFETCH)] = {
2009                         [C(RESULT_ACCESS)]      = -1,
2010                         [C(RESULT_MISS)]        = -1,
2011                 },
2012         },
2013         [C(BPU)] = {
2014                 [C(OP_READ)] = {
2015                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
2016                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
2017                 },
2018                 [C(OP_WRITE)] = {
2019                         [C(RESULT_ACCESS)]      = -1,
2020                         [C(RESULT_MISS)]        = -1,
2021                 },
2022                 [C(OP_PREFETCH)] = {
2023                         [C(RESULT_ACCESS)]      = -1,
2024                         [C(RESULT_MISS)]        = -1,
2025                 },
2026         },
2027 };
2028
2029 static __initconst const u64 glp_hw_cache_extra_regs
2030                                 [PERF_COUNT_HW_CACHE_MAX]
2031                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2032                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2033         [C(LL)] = {
2034                 [C(OP_READ)] = {
2035                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
2036                                                   GLM_LLC_ACCESS,
2037                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
2038                                                   GLM_LLC_MISS,
2039                 },
2040                 [C(OP_WRITE)] = {
2041                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
2042                                                   GLM_LLC_ACCESS,
2043                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
2044                                                   GLM_LLC_MISS,
2045                 },
2046                 [C(OP_PREFETCH)] = {
2047                         [C(RESULT_ACCESS)]      = 0x0,
2048                         [C(RESULT_MISS)]        = 0x0,
2049                 },
2050         },
2051 };
2052
2053 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
2054 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
2055 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
2056 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
2057 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2058                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2059 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2060
2061 static __initconst const u64 tnt_hw_cache_extra_regs
2062                                 [PERF_COUNT_HW_CACHE_MAX]
2063                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2064                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2065         [C(LL)] = {
2066                 [C(OP_READ)] = {
2067                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
2068                                                   TNT_LLC_ACCESS,
2069                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
2070                                                   TNT_LLC_MISS,
2071                 },
2072                 [C(OP_WRITE)] = {
2073                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
2074                                                   TNT_LLC_ACCESS,
2075                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
2076                                                   TNT_LLC_MISS,
2077                 },
2078                 [C(OP_PREFETCH)] = {
2079                         [C(RESULT_ACCESS)]      = 0x0,
2080                         [C(RESULT_MISS)]        = 0x0,
2081                 },
2082         },
2083 };
2084
2085 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2086 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2087 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2088 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2089
2090 static struct attribute *tnt_events_attrs[] = {
2091         EVENT_PTR(td_fe_bound_tnt),
2092         EVENT_PTR(td_retiring_tnt),
2093         EVENT_PTR(td_bad_spec_tnt),
2094         EVENT_PTR(td_be_bound_tnt),
2095         NULL,
2096 };
2097
2098 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2099         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2100         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2101         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2102         EVENT_EXTRA_END
2103 };
2104
2105 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2106         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2107         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2108         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2109         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2110         EVENT_EXTRA_END
2111 };
2112
2113 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
2114 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
2115 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
2116 #define KNL_MCDRAM_FAR          BIT_ULL(22)
2117 #define KNL_DDR_LOCAL           BIT_ULL(23)
2118 #define KNL_DDR_FAR             BIT_ULL(24)
2119 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2120                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
2121 #define KNL_L2_READ             SLM_DMND_READ
2122 #define KNL_L2_WRITE            SLM_DMND_WRITE
2123 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
2124 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
2125 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2126                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
2127                                                   SNB_NON_DRAM)
2128
2129 static __initconst const u64 knl_hw_cache_extra_regs
2130                                 [PERF_COUNT_HW_CACHE_MAX]
2131                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2132                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2133         [C(LL)] = {
2134                 [C(OP_READ)] = {
2135                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2136                         [C(RESULT_MISS)]   = 0,
2137                 },
2138                 [C(OP_WRITE)] = {
2139                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2140                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2141                 },
2142                 [C(OP_PREFETCH)] = {
2143                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2144                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2145                 },
2146         },
2147 };
2148
2149 /*
2150  * Used from PMIs where the LBRs are already disabled.
2151  *
2152  * This function could be called consecutively. It is required to remain in
2153  * disabled state if called consecutively.
2154  *
2155  * During consecutive calls, the same disable value will be written to related
2156  * registers, so the PMU state remains unchanged.
2157  *
2158  * intel_bts events don't coexist with intel PMU's BTS events because of
2159  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2160  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2161  *
2162  * Avoid PEBS_ENABLE MSR access in PMIs.
2163  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2164  * It doesn't matter if the PEBS is enabled or not.
2165  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2166  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2167  * However, there are some cases which may change PEBS status, e.g. PMI
2168  * throttle. The PEBS_ENABLE should be updated where the status changes.
2169  */
2170 static __always_inline void __intel_pmu_disable_all(bool bts)
2171 {
2172         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2173
2174         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2175
2176         if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2177                 intel_pmu_disable_bts();
2178 }
2179
2180 static __always_inline void intel_pmu_disable_all(void)
2181 {
2182         __intel_pmu_disable_all(true);
2183         intel_pmu_pebs_disable_all();
2184         intel_pmu_lbr_disable_all();
2185 }
2186
2187 static void __intel_pmu_enable_all(int added, bool pmi)
2188 {
2189         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2190         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2191
2192         intel_pmu_lbr_enable_all(pmi);
2193         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2194                intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2195
2196         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2197                 struct perf_event *event =
2198                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2199
2200                 if (WARN_ON_ONCE(!event))
2201                         return;
2202
2203                 intel_pmu_enable_bts(event->hw.config);
2204         }
2205 }
2206
2207 static void intel_pmu_enable_all(int added)
2208 {
2209         intel_pmu_pebs_enable_all();
2210         __intel_pmu_enable_all(added, false);
2211 }
2212
2213 static noinline int
2214 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2215                                   unsigned int cnt, unsigned long flags)
2216 {
2217         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2218
2219         intel_pmu_lbr_read();
2220         cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2221
2222         memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2223         intel_pmu_enable_all(0);
2224         local_irq_restore(flags);
2225         return cnt;
2226 }
2227
2228 static int
2229 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2230 {
2231         unsigned long flags;
2232
2233         /* must not have branches... */
2234         local_irq_save(flags);
2235         __intel_pmu_disable_all(false); /* we don't care about BTS */
2236         __intel_pmu_lbr_disable();
2237         /*            ... until here */
2238         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2239 }
2240
2241 static int
2242 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2243 {
2244         unsigned long flags;
2245
2246         /* must not have branches... */
2247         local_irq_save(flags);
2248         __intel_pmu_disable_all(false); /* we don't care about BTS */
2249         __intel_pmu_arch_lbr_disable();
2250         /*            ... until here */
2251         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2252 }
2253
2254 /*
2255  * Workaround for:
2256  *   Intel Errata AAK100 (model 26)
2257  *   Intel Errata AAP53  (model 30)
2258  *   Intel Errata BD53   (model 44)
2259  *
2260  * The official story:
2261  *   These chips need to be 'reset' when adding counters by programming the
2262  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2263  *   in sequence on the same PMC or on different PMCs.
2264  *
2265  * In practice it appears some of these events do in fact count, and
2266  * we need to program all 4 events.
2267  */
2268 static void intel_pmu_nhm_workaround(void)
2269 {
2270         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2271         static const unsigned long nhm_magic[4] = {
2272                 0x4300B5,
2273                 0x4300D2,
2274                 0x4300B1,
2275                 0x4300B1
2276         };
2277         struct perf_event *event;
2278         int i;
2279
2280         /*
2281          * The Errata requires below steps:
2282          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2283          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2284          *    the corresponding PMCx;
2285          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2286          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2287          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2288          */
2289
2290         /*
2291          * The real steps we choose are a little different from above.
2292          * A) To reduce MSR operations, we don't run step 1) as they
2293          *    are already cleared before this function is called;
2294          * B) Call x86_perf_event_update to save PMCx before configuring
2295          *    PERFEVTSELx with magic number;
2296          * C) With step 5), we do clear only when the PERFEVTSELx is
2297          *    not used currently.
2298          * D) Call x86_perf_event_set_period to restore PMCx;
2299          */
2300
2301         /* We always operate 4 pairs of PERF Counters */
2302         for (i = 0; i < 4; i++) {
2303                 event = cpuc->events[i];
2304                 if (event)
2305                         x86_perf_event_update(event);
2306         }
2307
2308         for (i = 0; i < 4; i++) {
2309                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2310                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2311         }
2312
2313         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2314         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2315
2316         for (i = 0; i < 4; i++) {
2317                 event = cpuc->events[i];
2318
2319                 if (event) {
2320                         x86_perf_event_set_period(event);
2321                         __x86_pmu_enable_event(&event->hw,
2322                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2323                 } else
2324                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2325         }
2326 }
2327
2328 static void intel_pmu_nhm_enable_all(int added)
2329 {
2330         if (added)
2331                 intel_pmu_nhm_workaround();
2332         intel_pmu_enable_all(added);
2333 }
2334
2335 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2336 {
2337         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2338
2339         if (cpuc->tfa_shadow != val) {
2340                 cpuc->tfa_shadow = val;
2341                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2342         }
2343 }
2344
2345 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2346 {
2347         /*
2348          * We're going to use PMC3, make sure TFA is set before we touch it.
2349          */
2350         if (cntr == 3)
2351                 intel_set_tfa(cpuc, true);
2352 }
2353
2354 static void intel_tfa_pmu_enable_all(int added)
2355 {
2356         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2357
2358         /*
2359          * If we find PMC3 is no longer used when we enable the PMU, we can
2360          * clear TFA.
2361          */
2362         if (!test_bit(3, cpuc->active_mask))
2363                 intel_set_tfa(cpuc, false);
2364
2365         intel_pmu_enable_all(added);
2366 }
2367
2368 static inline u64 intel_pmu_get_status(void)
2369 {
2370         u64 status;
2371
2372         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2373
2374         return status;
2375 }
2376
2377 static inline void intel_pmu_ack_status(u64 ack)
2378 {
2379         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2380 }
2381
2382 static inline bool event_is_checkpointed(struct perf_event *event)
2383 {
2384         return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2385 }
2386
2387 static inline void intel_set_masks(struct perf_event *event, int idx)
2388 {
2389         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2390
2391         if (event->attr.exclude_host)
2392                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2393         if (event->attr.exclude_guest)
2394                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2395         if (event_is_checkpointed(event))
2396                 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2397 }
2398
2399 static inline void intel_clear_masks(struct perf_event *event, int idx)
2400 {
2401         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2402
2403         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2404         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2405         __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2406 }
2407
2408 static void intel_pmu_disable_fixed(struct perf_event *event)
2409 {
2410         struct hw_perf_event *hwc = &event->hw;
2411         u64 ctrl_val, mask;
2412         int idx = hwc->idx;
2413
2414         if (is_topdown_idx(idx)) {
2415                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2416
2417                 /*
2418                  * When there are other active TopDown events,
2419                  * don't disable the fixed counter 3.
2420                  */
2421                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2422                         return;
2423                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2424         }
2425
2426         intel_clear_masks(event, idx);
2427
2428         mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2429         rdmsrl(hwc->config_base, ctrl_val);
2430         ctrl_val &= ~mask;
2431         wrmsrl(hwc->config_base, ctrl_val);
2432 }
2433
2434 static void intel_pmu_disable_event(struct perf_event *event)
2435 {
2436         struct hw_perf_event *hwc = &event->hw;
2437         int idx = hwc->idx;
2438
2439         switch (idx) {
2440         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2441                 intel_clear_masks(event, idx);
2442                 x86_pmu_disable_event(event);
2443                 break;
2444         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2445         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2446                 intel_pmu_disable_fixed(event);
2447                 break;
2448         case INTEL_PMC_IDX_FIXED_BTS:
2449                 intel_pmu_disable_bts();
2450                 intel_pmu_drain_bts_buffer();
2451                 return;
2452         case INTEL_PMC_IDX_FIXED_VLBR:
2453                 intel_clear_masks(event, idx);
2454                 break;
2455         default:
2456                 intel_clear_masks(event, idx);
2457                 pr_warn("Failed to disable the event with invalid index %d\n",
2458                         idx);
2459                 return;
2460         }
2461
2462         /*
2463          * Needs to be called after x86_pmu_disable_event,
2464          * so we don't trigger the event without PEBS bit set.
2465          */
2466         if (unlikely(event->attr.precise_ip))
2467                 intel_pmu_pebs_disable(event);
2468 }
2469
2470 static void intel_pmu_assign_event(struct perf_event *event, int idx)
2471 {
2472         if (is_pebs_pt(event))
2473                 perf_report_aux_output_id(event, idx);
2474 }
2475
2476 static void intel_pmu_del_event(struct perf_event *event)
2477 {
2478         if (needs_branch_stack(event))
2479                 intel_pmu_lbr_del(event);
2480         if (event->attr.precise_ip)
2481                 intel_pmu_pebs_del(event);
2482 }
2483
2484 static int icl_set_topdown_event_period(struct perf_event *event)
2485 {
2486         struct hw_perf_event *hwc = &event->hw;
2487         s64 left = local64_read(&hwc->period_left);
2488
2489         /*
2490          * The values in PERF_METRICS MSR are derived from fixed counter 3.
2491          * Software should start both registers, PERF_METRICS and fixed
2492          * counter 3, from zero.
2493          * Clear PERF_METRICS and Fixed counter 3 in initialization.
2494          * After that, both MSRs will be cleared for each read.
2495          * Don't need to clear them again.
2496          */
2497         if (left == x86_pmu.max_period) {
2498                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2499                 wrmsrl(MSR_PERF_METRICS, 0);
2500                 hwc->saved_slots = 0;
2501                 hwc->saved_metric = 0;
2502         }
2503
2504         if ((hwc->saved_slots) && is_slots_event(event)) {
2505                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2506                 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2507         }
2508
2509         perf_event_update_userpage(event);
2510
2511         return 0;
2512 }
2513
2514 static int adl_set_topdown_event_period(struct perf_event *event)
2515 {
2516         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2517
2518         if (pmu->cpu_type != hybrid_big)
2519                 return 0;
2520
2521         return icl_set_topdown_event_period(event);
2522 }
2523
2524 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2525 {
2526         u32 val;
2527
2528         /*
2529          * The metric is reported as an 8bit integer fraction
2530          * summing up to 0xff.
2531          * slots-in-metric = (Metric / 0xff) * slots
2532          */
2533         val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2534         return  mul_u64_u32_div(slots, val, 0xff);
2535 }
2536
2537 static u64 icl_get_topdown_value(struct perf_event *event,
2538                                        u64 slots, u64 metrics)
2539 {
2540         int idx = event->hw.idx;
2541         u64 delta;
2542
2543         if (is_metric_idx(idx))
2544                 delta = icl_get_metrics_event_value(metrics, slots, idx);
2545         else
2546                 delta = slots;
2547
2548         return delta;
2549 }
2550
2551 static void __icl_update_topdown_event(struct perf_event *event,
2552                                        u64 slots, u64 metrics,
2553                                        u64 last_slots, u64 last_metrics)
2554 {
2555         u64 delta, last = 0;
2556
2557         delta = icl_get_topdown_value(event, slots, metrics);
2558         if (last_slots)
2559                 last = icl_get_topdown_value(event, last_slots, last_metrics);
2560
2561         /*
2562          * The 8bit integer fraction of metric may be not accurate,
2563          * especially when the changes is very small.
2564          * For example, if only a few bad_spec happens, the fraction
2565          * may be reduced from 1 to 0. If so, the bad_spec event value
2566          * will be 0 which is definitely less than the last value.
2567          * Avoid update event->count for this case.
2568          */
2569         if (delta > last) {
2570                 delta -= last;
2571                 local64_add(delta, &event->count);
2572         }
2573 }
2574
2575 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2576                                       u64 metrics, int metric_end)
2577 {
2578         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2579         struct perf_event *other;
2580         int idx;
2581
2582         event->hw.saved_slots = slots;
2583         event->hw.saved_metric = metrics;
2584
2585         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2586                 if (!is_topdown_idx(idx))
2587                         continue;
2588                 other = cpuc->events[idx];
2589                 other->hw.saved_slots = slots;
2590                 other->hw.saved_metric = metrics;
2591         }
2592 }
2593
2594 /*
2595  * Update all active Topdown events.
2596  *
2597  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2598  * modify by a NMI. PMU has to be disabled before calling this function.
2599  */
2600
2601 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2602 {
2603         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2604         struct perf_event *other;
2605         u64 slots, metrics;
2606         bool reset = true;
2607         int idx;
2608
2609         /* read Fixed counter 3 */
2610         rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2611         if (!slots)
2612                 return 0;
2613
2614         /* read PERF_METRICS */
2615         rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2616
2617         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2618                 if (!is_topdown_idx(idx))
2619                         continue;
2620                 other = cpuc->events[idx];
2621                 __icl_update_topdown_event(other, slots, metrics,
2622                                            event ? event->hw.saved_slots : 0,
2623                                            event ? event->hw.saved_metric : 0);
2624         }
2625
2626         /*
2627          * Check and update this event, which may have been cleared
2628          * in active_mask e.g. x86_pmu_stop()
2629          */
2630         if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2631                 __icl_update_topdown_event(event, slots, metrics,
2632                                            event->hw.saved_slots,
2633                                            event->hw.saved_metric);
2634
2635                 /*
2636                  * In x86_pmu_stop(), the event is cleared in active_mask first,
2637                  * then drain the delta, which indicates context switch for
2638                  * counting.
2639                  * Save metric and slots for context switch.
2640                  * Don't need to reset the PERF_METRICS and Fixed counter 3.
2641                  * Because the values will be restored in next schedule in.
2642                  */
2643                 update_saved_topdown_regs(event, slots, metrics, metric_end);
2644                 reset = false;
2645         }
2646
2647         if (reset) {
2648                 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2649                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2650                 wrmsrl(MSR_PERF_METRICS, 0);
2651                 if (event)
2652                         update_saved_topdown_regs(event, 0, 0, metric_end);
2653         }
2654
2655         return slots;
2656 }
2657
2658 static u64 icl_update_topdown_event(struct perf_event *event)
2659 {
2660         return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2661                                                  x86_pmu.num_topdown_events - 1);
2662 }
2663
2664 static u64 adl_update_topdown_event(struct perf_event *event)
2665 {
2666         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2667
2668         if (pmu->cpu_type != hybrid_big)
2669                 return 0;
2670
2671         return icl_update_topdown_event(event);
2672 }
2673
2674
2675 static void intel_pmu_read_topdown_event(struct perf_event *event)
2676 {
2677         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2678
2679         /* Only need to call update_topdown_event() once for group read. */
2680         if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2681             !is_slots_event(event))
2682                 return;
2683
2684         perf_pmu_disable(event->pmu);
2685         x86_pmu.update_topdown_event(event);
2686         perf_pmu_enable(event->pmu);
2687 }
2688
2689 static void intel_pmu_read_event(struct perf_event *event)
2690 {
2691         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2692                 intel_pmu_auto_reload_read(event);
2693         else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2694                 intel_pmu_read_topdown_event(event);
2695         else
2696                 x86_perf_event_update(event);
2697 }
2698
2699 static void intel_pmu_enable_fixed(struct perf_event *event)
2700 {
2701         struct hw_perf_event *hwc = &event->hw;
2702         u64 ctrl_val, mask, bits = 0;
2703         int idx = hwc->idx;
2704
2705         if (is_topdown_idx(idx)) {
2706                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2707                 /*
2708                  * When there are other active TopDown events,
2709                  * don't enable the fixed counter 3 again.
2710                  */
2711                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2712                         return;
2713
2714                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2715         }
2716
2717         intel_set_masks(event, idx);
2718
2719         /*
2720          * Enable IRQ generation (0x8), if not PEBS,
2721          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2722          * if requested:
2723          */
2724         if (!event->attr.precise_ip)
2725                 bits |= 0x8;
2726         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2727                 bits |= 0x2;
2728         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2729                 bits |= 0x1;
2730
2731         /*
2732          * ANY bit is supported in v3 and up
2733          */
2734         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2735                 bits |= 0x4;
2736
2737         idx -= INTEL_PMC_IDX_FIXED;
2738         bits <<= (idx * 4);
2739         mask = 0xfULL << (idx * 4);
2740
2741         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2742                 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2743                 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2744         }
2745
2746         rdmsrl(hwc->config_base, ctrl_val);
2747         ctrl_val &= ~mask;
2748         ctrl_val |= bits;
2749         wrmsrl(hwc->config_base, ctrl_val);
2750 }
2751
2752 static void intel_pmu_enable_event(struct perf_event *event)
2753 {
2754         struct hw_perf_event *hwc = &event->hw;
2755         int idx = hwc->idx;
2756
2757         if (unlikely(event->attr.precise_ip))
2758                 intel_pmu_pebs_enable(event);
2759
2760         switch (idx) {
2761         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2762                 intel_set_masks(event, idx);
2763                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2764                 break;
2765         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2766         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2767                 intel_pmu_enable_fixed(event);
2768                 break;
2769         case INTEL_PMC_IDX_FIXED_BTS:
2770                 if (!__this_cpu_read(cpu_hw_events.enabled))
2771                         return;
2772                 intel_pmu_enable_bts(hwc->config);
2773                 break;
2774         case INTEL_PMC_IDX_FIXED_VLBR:
2775                 intel_set_masks(event, idx);
2776                 break;
2777         default:
2778                 pr_warn("Failed to enable the event with invalid index %d\n",
2779                         idx);
2780         }
2781 }
2782
2783 static void intel_pmu_add_event(struct perf_event *event)
2784 {
2785         if (event->attr.precise_ip)
2786                 intel_pmu_pebs_add(event);
2787         if (needs_branch_stack(event))
2788                 intel_pmu_lbr_add(event);
2789 }
2790
2791 /*
2792  * Save and restart an expired event. Called by NMI contexts,
2793  * so it has to be careful about preempting normal event ops:
2794  */
2795 int intel_pmu_save_and_restart(struct perf_event *event)
2796 {
2797         x86_perf_event_update(event);
2798         /*
2799          * For a checkpointed counter always reset back to 0.  This
2800          * avoids a situation where the counter overflows, aborts the
2801          * transaction and is then set back to shortly before the
2802          * overflow, and overflows and aborts again.
2803          */
2804         if (unlikely(event_is_checkpointed(event))) {
2805                 /* No race with NMIs because the counter should not be armed */
2806                 wrmsrl(event->hw.event_base, 0);
2807                 local64_set(&event->hw.prev_count, 0);
2808         }
2809         return x86_perf_event_set_period(event);
2810 }
2811
2812 static void intel_pmu_reset(void)
2813 {
2814         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2815         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2816         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2817         int num_counters = hybrid(cpuc->pmu, num_counters);
2818         unsigned long flags;
2819         int idx;
2820
2821         if (!num_counters)
2822                 return;
2823
2824         local_irq_save(flags);
2825
2826         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2827
2828         for (idx = 0; idx < num_counters; idx++) {
2829                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2830                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2831         }
2832         for (idx = 0; idx < num_counters_fixed; idx++) {
2833                 if (fixed_counter_disabled(idx, cpuc->pmu))
2834                         continue;
2835                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2836         }
2837
2838         if (ds)
2839                 ds->bts_index = ds->bts_buffer_base;
2840
2841         /* Ack all overflows and disable fixed counters */
2842         if (x86_pmu.version >= 2) {
2843                 intel_pmu_ack_status(intel_pmu_get_status());
2844                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2845         }
2846
2847         /* Reset LBRs and LBR freezing */
2848         if (x86_pmu.lbr_nr) {
2849                 update_debugctlmsr(get_debugctlmsr() &
2850                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2851         }
2852
2853         local_irq_restore(flags);
2854 }
2855
2856 /*
2857  * We may be running with guest PEBS events created by KVM, and the
2858  * PEBS records are logged into the guest's DS and invisible to host.
2859  *
2860  * In the case of guest PEBS overflow, we only trigger a fake event
2861  * to emulate the PEBS overflow PMI for guest PEBS counters in KVM.
2862  * The guest will then vm-entry and check the guest DS area to read
2863  * the guest PEBS records.
2864  *
2865  * The contents and other behavior of the guest event do not matter.
2866  */
2867 static void x86_pmu_handle_guest_pebs(struct pt_regs *regs,
2868                                       struct perf_sample_data *data)
2869 {
2870         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2871         u64 guest_pebs_idxs = cpuc->pebs_enabled & ~cpuc->intel_ctrl_host_mask;
2872         struct perf_event *event = NULL;
2873         int bit;
2874
2875         if (!unlikely(perf_guest_state()))
2876                 return;
2877
2878         if (!x86_pmu.pebs_ept || !x86_pmu.pebs_active ||
2879             !guest_pebs_idxs)
2880                 return;
2881
2882         for_each_set_bit(bit, (unsigned long *)&guest_pebs_idxs,
2883                          INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed) {
2884                 event = cpuc->events[bit];
2885                 if (!event->attr.precise_ip)
2886                         continue;
2887
2888                 perf_sample_data_init(data, 0, event->hw.last_period);
2889                 if (perf_event_overflow(event, data, regs))
2890                         x86_pmu_stop(event, 0);
2891
2892                 /* Inject one fake event is enough. */
2893                 break;
2894         }
2895 }
2896
2897 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2898 {
2899         struct perf_sample_data data;
2900         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2901         int bit;
2902         int handled = 0;
2903         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2904
2905         inc_irq_stat(apic_perf_irqs);
2906
2907         /*
2908          * Ignore a range of extra bits in status that do not indicate
2909          * overflow by themselves.
2910          */
2911         status &= ~(GLOBAL_STATUS_COND_CHG |
2912                     GLOBAL_STATUS_ASIF |
2913                     GLOBAL_STATUS_LBRS_FROZEN);
2914         if (!status)
2915                 return 0;
2916         /*
2917          * In case multiple PEBS events are sampled at the same time,
2918          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2919          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2920          * having their bits set in the status register. This is a sign
2921          * that there was at least one PEBS record pending at the time
2922          * of the PMU interrupt. PEBS counters must only be processed
2923          * via the drain_pebs() calls and not via the regular sample
2924          * processing loop coming after that the function, otherwise
2925          * phony regular samples may be generated in the sampling buffer
2926          * not marked with the EXACT tag. Another possibility is to have
2927          * one PEBS event and at least one non-PEBS event which overflows
2928          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2929          * not be set, yet the overflow status bit for the PEBS counter will
2930          * be on Skylake.
2931          *
2932          * To avoid this problem, we systematically ignore the PEBS-enabled
2933          * counters from the GLOBAL_STATUS mask and we always process PEBS
2934          * events via drain_pebs().
2935          */
2936         status &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
2937
2938         /*
2939          * PEBS overflow sets bit 62 in the global status register
2940          */
2941         if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2942                 u64 pebs_enabled = cpuc->pebs_enabled;
2943
2944                 handled++;
2945                 x86_pmu_handle_guest_pebs(regs, &data);
2946                 x86_pmu.drain_pebs(regs, &data);
2947                 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2948
2949                 /*
2950                  * PMI throttle may be triggered, which stops the PEBS event.
2951                  * Although cpuc->pebs_enabled is updated accordingly, the
2952                  * MSR_IA32_PEBS_ENABLE is not updated. Because the
2953                  * cpuc->enabled has been forced to 0 in PMI.
2954                  * Update the MSR if pebs_enabled is changed.
2955                  */
2956                 if (pebs_enabled != cpuc->pebs_enabled)
2957                         wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2958         }
2959
2960         /*
2961          * Intel PT
2962          */
2963         if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2964                 handled++;
2965                 if (!perf_guest_handle_intel_pt_intr())
2966                         intel_pt_interrupt();
2967         }
2968
2969         /*
2970          * Intel Perf metrics
2971          */
2972         if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2973                 handled++;
2974                 if (x86_pmu.update_topdown_event)
2975                         x86_pmu.update_topdown_event(NULL);
2976         }
2977
2978         /*
2979          * Checkpointed counters can lead to 'spurious' PMIs because the
2980          * rollback caused by the PMI will have cleared the overflow status
2981          * bit. Therefore always force probe these counters.
2982          */
2983         status |= cpuc->intel_cp_status;
2984
2985         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2986                 struct perf_event *event = cpuc->events[bit];
2987
2988                 handled++;
2989
2990                 if (!test_bit(bit, cpuc->active_mask))
2991                         continue;
2992
2993                 if (!intel_pmu_save_and_restart(event))
2994                         continue;
2995
2996                 perf_sample_data_init(&data, 0, event->hw.last_period);
2997
2998                 if (has_branch_stack(event))
2999                         data.br_stack = &cpuc->lbr_stack;
3000
3001                 if (perf_event_overflow(event, &data, regs))
3002                         x86_pmu_stop(event, 0);
3003         }
3004
3005         return handled;
3006 }
3007
3008 /*
3009  * This handler is triggered by the local APIC, so the APIC IRQ handling
3010  * rules apply:
3011  */
3012 static int intel_pmu_handle_irq(struct pt_regs *regs)
3013 {
3014         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3015         bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
3016         bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
3017         int loops;
3018         u64 status;
3019         int handled;
3020         int pmu_enabled;
3021
3022         /*
3023          * Save the PMU state.
3024          * It needs to be restored when leaving the handler.
3025          */
3026         pmu_enabled = cpuc->enabled;
3027         /*
3028          * In general, the early ACK is only applied for old platforms.
3029          * For the big core starts from Haswell, the late ACK should be
3030          * applied.
3031          * For the small core after Tremont, we have to do the ACK right
3032          * before re-enabling counters, which is in the middle of the
3033          * NMI handler.
3034          */
3035         if (!late_ack && !mid_ack)
3036                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3037         intel_bts_disable_local();
3038         cpuc->enabled = 0;
3039         __intel_pmu_disable_all(true);
3040         handled = intel_pmu_drain_bts_buffer();
3041         handled += intel_bts_interrupt();
3042         status = intel_pmu_get_status();
3043         if (!status)
3044                 goto done;
3045
3046         loops = 0;
3047 again:
3048         intel_pmu_lbr_read();
3049         intel_pmu_ack_status(status);
3050         if (++loops > 100) {
3051                 static bool warned;
3052
3053                 if (!warned) {
3054                         WARN(1, "perfevents: irq loop stuck!\n");
3055                         perf_event_print_debug();
3056                         warned = true;
3057                 }
3058                 intel_pmu_reset();
3059                 goto done;
3060         }
3061
3062         handled += handle_pmi_common(regs, status);
3063
3064         /*
3065          * Repeat if there is more work to be done:
3066          */
3067         status = intel_pmu_get_status();
3068         if (status)
3069                 goto again;
3070
3071 done:
3072         if (mid_ack)
3073                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3074         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3075         cpuc->enabled = pmu_enabled;
3076         if (pmu_enabled)
3077                 __intel_pmu_enable_all(0, true);
3078         intel_bts_enable_local();
3079
3080         /*
3081          * Only unmask the NMI after the overflow counters
3082          * have been reset. This avoids spurious NMIs on
3083          * Haswell CPUs.
3084          */
3085         if (late_ack)
3086                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3087         return handled;
3088 }
3089
3090 static struct event_constraint *
3091 intel_bts_constraints(struct perf_event *event)
3092 {
3093         if (unlikely(intel_pmu_has_bts(event)))
3094                 return &bts_constraint;
3095
3096         return NULL;
3097 }
3098
3099 /*
3100  * Note: matches a fake event, like Fixed2.
3101  */
3102 static struct event_constraint *
3103 intel_vlbr_constraints(struct perf_event *event)
3104 {
3105         struct event_constraint *c = &vlbr_constraint;
3106
3107         if (unlikely(constraint_match(c, event->hw.config))) {
3108                 event->hw.flags |= c->flags;
3109                 return c;
3110         }
3111
3112         return NULL;
3113 }
3114
3115 static int intel_alt_er(struct cpu_hw_events *cpuc,
3116                         int idx, u64 config)
3117 {
3118         struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3119         int alt_idx = idx;
3120
3121         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3122                 return idx;
3123
3124         if (idx == EXTRA_REG_RSP_0)
3125                 alt_idx = EXTRA_REG_RSP_1;
3126
3127         if (idx == EXTRA_REG_RSP_1)
3128                 alt_idx = EXTRA_REG_RSP_0;
3129
3130         if (config & ~extra_regs[alt_idx].valid_mask)
3131                 return idx;
3132
3133         return alt_idx;
3134 }
3135
3136 static void intel_fixup_er(struct perf_event *event, int idx)
3137 {
3138         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3139         event->hw.extra_reg.idx = idx;
3140
3141         if (idx == EXTRA_REG_RSP_0) {
3142                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3143                 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3144                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3145         } else if (idx == EXTRA_REG_RSP_1) {
3146                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3147                 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3148                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3149         }
3150 }
3151
3152 /*
3153  * manage allocation of shared extra msr for certain events
3154  *
3155  * sharing can be:
3156  * per-cpu: to be shared between the various events on a single PMU
3157  * per-core: per-cpu + shared by HT threads
3158  */
3159 static struct event_constraint *
3160 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3161                                    struct perf_event *event,
3162                                    struct hw_perf_event_extra *reg)
3163 {
3164         struct event_constraint *c = &emptyconstraint;
3165         struct er_account *era;
3166         unsigned long flags;
3167         int idx = reg->idx;
3168
3169         /*
3170          * reg->alloc can be set due to existing state, so for fake cpuc we
3171          * need to ignore this, otherwise we might fail to allocate proper fake
3172          * state for this extra reg constraint. Also see the comment below.
3173          */
3174         if (reg->alloc && !cpuc->is_fake)
3175                 return NULL; /* call x86_get_event_constraint() */
3176
3177 again:
3178         era = &cpuc->shared_regs->regs[idx];
3179         /*
3180          * we use spin_lock_irqsave() to avoid lockdep issues when
3181          * passing a fake cpuc
3182          */
3183         raw_spin_lock_irqsave(&era->lock, flags);
3184
3185         if (!atomic_read(&era->ref) || era->config == reg->config) {
3186
3187                 /*
3188                  * If its a fake cpuc -- as per validate_{group,event}() we
3189                  * shouldn't touch event state and we can avoid doing so
3190                  * since both will only call get_event_constraints() once
3191                  * on each event, this avoids the need for reg->alloc.
3192                  *
3193                  * Not doing the ER fixup will only result in era->reg being
3194                  * wrong, but since we won't actually try and program hardware
3195                  * this isn't a problem either.
3196                  */
3197                 if (!cpuc->is_fake) {
3198                         if (idx != reg->idx)
3199                                 intel_fixup_er(event, idx);
3200
3201                         /*
3202                          * x86_schedule_events() can call get_event_constraints()
3203                          * multiple times on events in the case of incremental
3204                          * scheduling(). reg->alloc ensures we only do the ER
3205                          * allocation once.
3206                          */
3207                         reg->alloc = 1;
3208                 }
3209
3210                 /* lock in msr value */
3211                 era->config = reg->config;
3212                 era->reg = reg->reg;
3213
3214                 /* one more user */
3215                 atomic_inc(&era->ref);
3216
3217                 /*
3218                  * need to call x86_get_event_constraint()
3219                  * to check if associated event has constraints
3220                  */
3221                 c = NULL;
3222         } else {
3223                 idx = intel_alt_er(cpuc, idx, reg->config);
3224                 if (idx != reg->idx) {
3225                         raw_spin_unlock_irqrestore(&era->lock, flags);
3226                         goto again;
3227                 }
3228         }
3229         raw_spin_unlock_irqrestore(&era->lock, flags);
3230
3231         return c;
3232 }
3233
3234 static void
3235 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3236                                    struct hw_perf_event_extra *reg)
3237 {
3238         struct er_account *era;
3239
3240         /*
3241          * Only put constraint if extra reg was actually allocated. Also takes
3242          * care of event which do not use an extra shared reg.
3243          *
3244          * Also, if this is a fake cpuc we shouldn't touch any event state
3245          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3246          * either since it'll be thrown out.
3247          */
3248         if (!reg->alloc || cpuc->is_fake)
3249                 return;
3250
3251         era = &cpuc->shared_regs->regs[reg->idx];
3252
3253         /* one fewer user */
3254         atomic_dec(&era->ref);
3255
3256         /* allocate again next time */
3257         reg->alloc = 0;
3258 }
3259
3260 static struct event_constraint *
3261 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3262                               struct perf_event *event)
3263 {
3264         struct event_constraint *c = NULL, *d;
3265         struct hw_perf_event_extra *xreg, *breg;
3266
3267         xreg = &event->hw.extra_reg;
3268         if (xreg->idx != EXTRA_REG_NONE) {
3269                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3270                 if (c == &emptyconstraint)
3271                         return c;
3272         }
3273         breg = &event->hw.branch_reg;
3274         if (breg->idx != EXTRA_REG_NONE) {
3275                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3276                 if (d == &emptyconstraint) {
3277                         __intel_shared_reg_put_constraints(cpuc, xreg);
3278                         c = d;
3279                 }
3280         }
3281         return c;
3282 }
3283
3284 struct event_constraint *
3285 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3286                           struct perf_event *event)
3287 {
3288         struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3289         struct event_constraint *c;
3290
3291         if (event_constraints) {
3292                 for_each_event_constraint(c, event_constraints) {
3293                         if (constraint_match(c, event->hw.config)) {
3294                                 event->hw.flags |= c->flags;
3295                                 return c;
3296                         }
3297                 }
3298         }
3299
3300         return &hybrid_var(cpuc->pmu, unconstrained);
3301 }
3302
3303 static struct event_constraint *
3304 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3305                             struct perf_event *event)
3306 {
3307         struct event_constraint *c;
3308
3309         c = intel_vlbr_constraints(event);
3310         if (c)
3311                 return c;
3312
3313         c = intel_bts_constraints(event);
3314         if (c)
3315                 return c;
3316
3317         c = intel_shared_regs_constraints(cpuc, event);
3318         if (c)
3319                 return c;
3320
3321         c = intel_pebs_constraints(event);
3322         if (c)
3323                 return c;
3324
3325         return x86_get_event_constraints(cpuc, idx, event);
3326 }
3327
3328 static void
3329 intel_start_scheduling(struct cpu_hw_events *cpuc)
3330 {
3331         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3332         struct intel_excl_states *xl;
3333         int tid = cpuc->excl_thread_id;
3334
3335         /*
3336          * nothing needed if in group validation mode
3337          */
3338         if (cpuc->is_fake || !is_ht_workaround_enabled())
3339                 return;
3340
3341         /*
3342          * no exclusion needed
3343          */
3344         if (WARN_ON_ONCE(!excl_cntrs))
3345                 return;
3346
3347         xl = &excl_cntrs->states[tid];
3348
3349         xl->sched_started = true;
3350         /*
3351          * lock shared state until we are done scheduling
3352          * in stop_event_scheduling()
3353          * makes scheduling appear as a transaction
3354          */
3355         raw_spin_lock(&excl_cntrs->lock);
3356 }
3357
3358 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3359 {
3360         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3361         struct event_constraint *c = cpuc->event_constraint[idx];
3362         struct intel_excl_states *xl;
3363         int tid = cpuc->excl_thread_id;
3364
3365         if (cpuc->is_fake || !is_ht_workaround_enabled())
3366                 return;
3367
3368         if (WARN_ON_ONCE(!excl_cntrs))
3369                 return;
3370
3371         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3372                 return;
3373
3374         xl = &excl_cntrs->states[tid];
3375
3376         lockdep_assert_held(&excl_cntrs->lock);
3377
3378         if (c->flags & PERF_X86_EVENT_EXCL)
3379                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3380         else
3381                 xl->state[cntr] = INTEL_EXCL_SHARED;
3382 }
3383
3384 static void
3385 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3386 {
3387         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3388         struct intel_excl_states *xl;
3389         int tid = cpuc->excl_thread_id;
3390
3391         /*
3392          * nothing needed if in group validation mode
3393          */
3394         if (cpuc->is_fake || !is_ht_workaround_enabled())
3395                 return;
3396         /*
3397          * no exclusion needed
3398          */
3399         if (WARN_ON_ONCE(!excl_cntrs))
3400                 return;
3401
3402         xl = &excl_cntrs->states[tid];
3403
3404         xl->sched_started = false;
3405         /*
3406          * release shared state lock (acquired in intel_start_scheduling())
3407          */
3408         raw_spin_unlock(&excl_cntrs->lock);
3409 }
3410
3411 static struct event_constraint *
3412 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3413 {
3414         WARN_ON_ONCE(!cpuc->constraint_list);
3415
3416         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3417                 struct event_constraint *cx;
3418
3419                 /*
3420                  * grab pre-allocated constraint entry
3421                  */
3422                 cx = &cpuc->constraint_list[idx];
3423
3424                 /*
3425                  * initialize dynamic constraint
3426                  * with static constraint
3427                  */
3428                 *cx = *c;
3429
3430                 /*
3431                  * mark constraint as dynamic
3432                  */
3433                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3434                 c = cx;
3435         }
3436
3437         return c;
3438 }
3439
3440 static struct event_constraint *
3441 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3442                            int idx, struct event_constraint *c)
3443 {
3444         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3445         struct intel_excl_states *xlo;
3446         int tid = cpuc->excl_thread_id;
3447         int is_excl, i, w;
3448
3449         /*
3450          * validating a group does not require
3451          * enforcing cross-thread  exclusion
3452          */
3453         if (cpuc->is_fake || !is_ht_workaround_enabled())
3454                 return c;
3455
3456         /*
3457          * no exclusion needed
3458          */
3459         if (WARN_ON_ONCE(!excl_cntrs))
3460                 return c;
3461
3462         /*
3463          * because we modify the constraint, we need
3464          * to make a copy. Static constraints come
3465          * from static const tables.
3466          *
3467          * only needed when constraint has not yet
3468          * been cloned (marked dynamic)
3469          */
3470         c = dyn_constraint(cpuc, c, idx);
3471
3472         /*
3473          * From here on, the constraint is dynamic.
3474          * Either it was just allocated above, or it
3475          * was allocated during a earlier invocation
3476          * of this function
3477          */
3478
3479         /*
3480          * state of sibling HT
3481          */
3482         xlo = &excl_cntrs->states[tid ^ 1];
3483
3484         /*
3485          * event requires exclusive counter access
3486          * across HT threads
3487          */
3488         is_excl = c->flags & PERF_X86_EVENT_EXCL;
3489         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3490                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3491                 if (!cpuc->n_excl++)
3492                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3493         }
3494
3495         /*
3496          * Modify static constraint with current dynamic
3497          * state of thread
3498          *
3499          * EXCLUSIVE: sibling counter measuring exclusive event
3500          * SHARED   : sibling counter measuring non-exclusive event
3501          * UNUSED   : sibling counter unused
3502          */
3503         w = c->weight;
3504         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3505                 /*
3506                  * exclusive event in sibling counter
3507                  * our corresponding counter cannot be used
3508                  * regardless of our event
3509                  */
3510                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3511                         __clear_bit(i, c->idxmsk);
3512                         w--;
3513                         continue;
3514                 }
3515                 /*
3516                  * if measuring an exclusive event, sibling
3517                  * measuring non-exclusive, then counter cannot
3518                  * be used
3519                  */
3520                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3521                         __clear_bit(i, c->idxmsk);
3522                         w--;
3523                         continue;
3524                 }
3525         }
3526
3527         /*
3528          * if we return an empty mask, then switch
3529          * back to static empty constraint to avoid
3530          * the cost of freeing later on
3531          */
3532         if (!w)
3533                 c = &emptyconstraint;
3534
3535         c->weight = w;
3536
3537         return c;
3538 }
3539
3540 static struct event_constraint *
3541 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3542                             struct perf_event *event)
3543 {
3544         struct event_constraint *c1, *c2;
3545
3546         c1 = cpuc->event_constraint[idx];
3547
3548         /*
3549          * first time only
3550          * - static constraint: no change across incremental scheduling calls
3551          * - dynamic constraint: handled by intel_get_excl_constraints()
3552          */
3553         c2 = __intel_get_event_constraints(cpuc, idx, event);
3554         if (c1) {
3555                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3556                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3557                 c1->weight = c2->weight;
3558                 c2 = c1;
3559         }
3560
3561         if (cpuc->excl_cntrs)
3562                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3563
3564         return c2;
3565 }
3566
3567 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3568                 struct perf_event *event)
3569 {
3570         struct hw_perf_event *hwc = &event->hw;
3571         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3572         int tid = cpuc->excl_thread_id;
3573         struct intel_excl_states *xl;
3574
3575         /*
3576          * nothing needed if in group validation mode
3577          */
3578         if (cpuc->is_fake)
3579                 return;
3580
3581         if (WARN_ON_ONCE(!excl_cntrs))
3582                 return;
3583
3584         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3585                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3586                 if (!--cpuc->n_excl)
3587                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3588         }
3589
3590         /*
3591          * If event was actually assigned, then mark the counter state as
3592          * unused now.
3593          */
3594         if (hwc->idx >= 0) {
3595                 xl = &excl_cntrs->states[tid];
3596
3597                 /*
3598                  * put_constraint may be called from x86_schedule_events()
3599                  * which already has the lock held so here make locking
3600                  * conditional.
3601                  */
3602                 if (!xl->sched_started)
3603                         raw_spin_lock(&excl_cntrs->lock);
3604
3605                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3606
3607                 if (!xl->sched_started)
3608                         raw_spin_unlock(&excl_cntrs->lock);
3609         }
3610 }
3611
3612 static void
3613 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3614                                         struct perf_event *event)
3615 {
3616         struct hw_perf_event_extra *reg;
3617
3618         reg = &event->hw.extra_reg;
3619         if (reg->idx != EXTRA_REG_NONE)
3620                 __intel_shared_reg_put_constraints(cpuc, reg);
3621
3622         reg = &event->hw.branch_reg;
3623         if (reg->idx != EXTRA_REG_NONE)
3624                 __intel_shared_reg_put_constraints(cpuc, reg);
3625 }
3626
3627 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3628                                         struct perf_event *event)
3629 {
3630         intel_put_shared_regs_event_constraints(cpuc, event);
3631
3632         /*
3633          * is PMU has exclusive counter restrictions, then
3634          * all events are subject to and must call the
3635          * put_excl_constraints() routine
3636          */
3637         if (cpuc->excl_cntrs)
3638                 intel_put_excl_constraints(cpuc, event);
3639 }
3640
3641 static void intel_pebs_aliases_core2(struct perf_event *event)
3642 {
3643         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3644                 /*
3645                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3646                  * (0x003c) so that we can use it with PEBS.
3647                  *
3648                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3649                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3650                  * (0x00c0), which is a PEBS capable event, to get the same
3651                  * count.
3652                  *
3653                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3654                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3655                  * larger than the maximum number of instructions that can be
3656                  * retired per cycle (4) and then inverting the condition, we
3657                  * count all cycles that retire 16 or less instructions, which
3658                  * is every cycle.
3659                  *
3660                  * Thereby we gain a PEBS capable cycle counter.
3661                  */
3662                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3663
3664                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3665                 event->hw.config = alt_config;
3666         }
3667 }
3668
3669 static void intel_pebs_aliases_snb(struct perf_event *event)
3670 {
3671         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3672                 /*
3673                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3674                  * (0x003c) so that we can use it with PEBS.
3675                  *
3676                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3677                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3678                  * (0x01c2), which is a PEBS capable event, to get the same
3679                  * count.
3680                  *
3681                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3682                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3683                  * larger than the maximum number of micro-ops that can be
3684                  * retired per cycle (4) and then inverting the condition, we
3685                  * count all cycles that retire 16 or less micro-ops, which
3686                  * is every cycle.
3687                  *
3688                  * Thereby we gain a PEBS capable cycle counter.
3689                  */
3690                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3691
3692                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3693                 event->hw.config = alt_config;
3694         }
3695 }
3696
3697 static void intel_pebs_aliases_precdist(struct perf_event *event)
3698 {
3699         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3700                 /*
3701                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3702                  * (0x003c) so that we can use it with PEBS.
3703                  *
3704                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3705                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3706                  * (0x01c0), which is a PEBS capable event, to get the same
3707                  * count.
3708                  *
3709                  * The PREC_DIST event has special support to minimize sample
3710                  * shadowing effects. One drawback is that it can be
3711                  * only programmed on counter 1, but that seems like an
3712                  * acceptable trade off.
3713                  */
3714                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3715
3716                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3717                 event->hw.config = alt_config;
3718         }
3719 }
3720
3721 static void intel_pebs_aliases_ivb(struct perf_event *event)
3722 {
3723         if (event->attr.precise_ip < 3)
3724                 return intel_pebs_aliases_snb(event);
3725         return intel_pebs_aliases_precdist(event);
3726 }
3727
3728 static void intel_pebs_aliases_skl(struct perf_event *event)
3729 {
3730         if (event->attr.precise_ip < 3)
3731                 return intel_pebs_aliases_core2(event);
3732         return intel_pebs_aliases_precdist(event);
3733 }
3734
3735 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3736 {
3737         unsigned long flags = x86_pmu.large_pebs_flags;
3738
3739         if (event->attr.use_clockid)
3740                 flags &= ~PERF_SAMPLE_TIME;
3741         if (!event->attr.exclude_kernel)
3742                 flags &= ~PERF_SAMPLE_REGS_USER;
3743         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3744                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3745         return flags;
3746 }
3747
3748 static int intel_pmu_bts_config(struct perf_event *event)
3749 {
3750         struct perf_event_attr *attr = &event->attr;
3751
3752         if (unlikely(intel_pmu_has_bts(event))) {
3753                 /* BTS is not supported by this architecture. */
3754                 if (!x86_pmu.bts_active)
3755                         return -EOPNOTSUPP;
3756
3757                 /* BTS is currently only allowed for user-mode. */
3758                 if (!attr->exclude_kernel)
3759                         return -EOPNOTSUPP;
3760
3761                 /* BTS is not allowed for precise events. */
3762                 if (attr->precise_ip)
3763                         return -EOPNOTSUPP;
3764
3765                 /* disallow bts if conflicting events are present */
3766                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3767                         return -EBUSY;
3768
3769                 event->destroy = hw_perf_lbr_event_destroy;
3770         }
3771
3772         return 0;
3773 }
3774
3775 static int core_pmu_hw_config(struct perf_event *event)
3776 {
3777         int ret = x86_pmu_hw_config(event);
3778
3779         if (ret)
3780                 return ret;
3781
3782         return intel_pmu_bts_config(event);
3783 }
3784
3785 #define INTEL_TD_METRIC_AVAILABLE_MAX   (INTEL_TD_METRIC_RETIRING + \
3786                                          ((x86_pmu.num_topdown_events - 1) << 8))
3787
3788 static bool is_available_metric_event(struct perf_event *event)
3789 {
3790         return is_metric_event(event) &&
3791                 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3792 }
3793
3794 static inline bool is_mem_loads_event(struct perf_event *event)
3795 {
3796         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3797 }
3798
3799 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3800 {
3801         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3802 }
3803
3804 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3805 {
3806         if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3807                 return false;
3808
3809         if (is_hybrid())
3810                 return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3811
3812         return true;
3813 }
3814
3815 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3816 {
3817         union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3818
3819         return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3820 }
3821
3822 static int intel_pmu_hw_config(struct perf_event *event)
3823 {
3824         int ret = x86_pmu_hw_config(event);
3825
3826         if (ret)
3827                 return ret;
3828
3829         ret = intel_pmu_bts_config(event);
3830         if (ret)
3831                 return ret;
3832
3833         if (event->attr.precise_ip) {
3834                 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3835                         return -EINVAL;
3836
3837                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3838                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3839                         if (!(event->attr.sample_type &
3840                               ~intel_pmu_large_pebs_flags(event))) {
3841                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3842                                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3843                         }
3844                 }
3845                 if (x86_pmu.pebs_aliases)
3846                         x86_pmu.pebs_aliases(event);
3847
3848                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3849                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3850         }
3851
3852         if (needs_branch_stack(event)) {
3853                 ret = intel_pmu_setup_lbr_filter(event);
3854                 if (ret)
3855                         return ret;
3856                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3857
3858                 /*
3859                  * BTS is set up earlier in this path, so don't account twice
3860                  */
3861                 if (!unlikely(intel_pmu_has_bts(event))) {
3862                         /* disallow lbr if conflicting events are present */
3863                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3864                                 return -EBUSY;
3865
3866                         event->destroy = hw_perf_lbr_event_destroy;
3867                 }
3868         }
3869
3870         if (event->attr.aux_output) {
3871                 if (!event->attr.precise_ip)
3872                         return -EINVAL;
3873
3874                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3875         }
3876
3877         if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3878             (event->attr.type == PERF_TYPE_HW_CACHE))
3879                 return 0;
3880
3881         /*
3882          * Config Topdown slots and metric events
3883          *
3884          * The slots event on Fixed Counter 3 can support sampling,
3885          * which will be handled normally in x86_perf_event_update().
3886          *
3887          * Metric events don't support sampling and require being paired
3888          * with a slots event as group leader. When the slots event
3889          * is used in a metrics group, it too cannot support sampling.
3890          */
3891         if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3892                 if (event->attr.config1 || event->attr.config2)
3893                         return -EINVAL;
3894
3895                 /*
3896                  * The TopDown metrics events and slots event don't
3897                  * support any filters.
3898                  */
3899                 if (event->attr.config & X86_ALL_EVENT_FLAGS)
3900                         return -EINVAL;
3901
3902                 if (is_available_metric_event(event)) {
3903                         struct perf_event *leader = event->group_leader;
3904
3905                         /* The metric events don't support sampling. */
3906                         if (is_sampling_event(event))
3907                                 return -EINVAL;
3908
3909                         /* The metric events require a slots group leader. */
3910                         if (!is_slots_event(leader))
3911                                 return -EINVAL;
3912
3913                         /*
3914                          * The leader/SLOTS must not be a sampling event for
3915                          * metric use; hardware requires it starts at 0 when used
3916                          * in conjunction with MSR_PERF_METRICS.
3917                          */
3918                         if (is_sampling_event(leader))
3919                                 return -EINVAL;
3920
3921                         event->event_caps |= PERF_EV_CAP_SIBLING;
3922                         /*
3923                          * Only once we have a METRICs sibling do we
3924                          * need TopDown magic.
3925                          */
3926                         leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3927                         event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3928                 }
3929         }
3930
3931         /*
3932          * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3933          * doesn't function quite right. As a work-around it needs to always be
3934          * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3935          * The actual count of this second event is irrelevant it just needs
3936          * to be active to make the first event function correctly.
3937          *
3938          * In a group, the auxiliary event must be in front of the load latency
3939          * event. The rule is to simplify the implementation of the check.
3940          * That's because perf cannot have a complete group at the moment.
3941          */
3942         if (require_mem_loads_aux_event(event) &&
3943             (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3944             is_mem_loads_event(event)) {
3945                 struct perf_event *leader = event->group_leader;
3946                 struct perf_event *sibling = NULL;
3947
3948                 if (!is_mem_loads_aux_event(leader)) {
3949                         for_each_sibling_event(sibling, leader) {
3950                                 if (is_mem_loads_aux_event(sibling))
3951                                         break;
3952                         }
3953                         if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3954                                 return -ENODATA;
3955                 }
3956         }
3957
3958         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3959                 return 0;
3960
3961         if (x86_pmu.version < 3)
3962                 return -EINVAL;
3963
3964         ret = perf_allow_cpu(&event->attr);
3965         if (ret)
3966                 return ret;
3967
3968         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3969
3970         return 0;
3971 }
3972
3973 /*
3974  * Currently, the only caller of this function is the atomic_switch_perf_msrs().
3975  * The host perf conext helps to prepare the values of the real hardware for
3976  * a set of msrs that need to be switched atomically in a vmx transaction.
3977  *
3978  * For example, the pseudocode needed to add a new msr should look like:
3979  *
3980  * arr[(*nr)++] = (struct perf_guest_switch_msr){
3981  *      .msr = the hardware msr address,
3982  *      .host = the value the hardware has when it doesn't run a guest,
3983  *      .guest = the value the hardware has when it runs a guest,
3984  * };
3985  *
3986  * These values have nothing to do with the emulated values the guest sees
3987  * when it uses {RD,WR}MSR, which should be handled by the KVM context,
3988  * specifically in the intel_pmu_{get,set}_msr().
3989  */
3990 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr, void *data)
3991 {
3992         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3993         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3994         struct kvm_pmu *kvm_pmu = (struct kvm_pmu *)data;
3995         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3996         u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
3997         int global_ctrl, pebs_enable;
3998
3999         *nr = 0;
4000         global_ctrl = (*nr)++;
4001         arr[global_ctrl] = (struct perf_guest_switch_msr){
4002                 .msr = MSR_CORE_PERF_GLOBAL_CTRL,
4003                 .host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask,
4004                 .guest = intel_ctrl & (~cpuc->intel_ctrl_host_mask | ~pebs_mask),
4005         };
4006
4007         if (!x86_pmu.pebs)
4008                 return arr;
4009
4010         /*
4011          * If PMU counter has PEBS enabled it is not enough to
4012          * disable counter on a guest entry since PEBS memory
4013          * write can overshoot guest entry and corrupt guest
4014          * memory. Disabling PEBS solves the problem.
4015          *
4016          * Don't do this if the CPU already enforces it.
4017          */
4018         if (x86_pmu.pebs_no_isolation) {
4019                 arr[(*nr)++] = (struct perf_guest_switch_msr){
4020                         .msr = MSR_IA32_PEBS_ENABLE,
4021                         .host = cpuc->pebs_enabled,
4022                         .guest = 0,
4023                 };
4024                 return arr;
4025         }
4026
4027         if (!kvm_pmu || !x86_pmu.pebs_ept)
4028                 return arr;
4029
4030         arr[(*nr)++] = (struct perf_guest_switch_msr){
4031                 .msr = MSR_IA32_DS_AREA,
4032                 .host = (unsigned long)cpuc->ds,
4033                 .guest = kvm_pmu->ds_area,
4034         };
4035
4036         if (x86_pmu.intel_cap.pebs_baseline) {
4037                 arr[(*nr)++] = (struct perf_guest_switch_msr){
4038                         .msr = MSR_PEBS_DATA_CFG,
4039                         .host = cpuc->pebs_data_cfg,
4040                         .guest = kvm_pmu->pebs_data_cfg,
4041                 };
4042         }
4043
4044         pebs_enable = (*nr)++;
4045         arr[pebs_enable] = (struct perf_guest_switch_msr){
4046                 .msr = MSR_IA32_PEBS_ENABLE,
4047                 .host = cpuc->pebs_enabled & ~cpuc->intel_ctrl_guest_mask,
4048                 .guest = pebs_mask & ~cpuc->intel_ctrl_host_mask,
4049         };
4050
4051         if (arr[pebs_enable].host) {
4052                 /* Disable guest PEBS if host PEBS is enabled. */
4053                 arr[pebs_enable].guest = 0;
4054         } else {
4055                 /* Disable guest PEBS for cross-mapped PEBS counters. */
4056                 arr[pebs_enable].guest &= ~kvm_pmu->host_cross_mapped_mask;
4057                 /* Set hw GLOBAL_CTRL bits for PEBS counter when it runs for guest */
4058                 arr[global_ctrl].guest |= arr[pebs_enable].guest;
4059         }
4060
4061         return arr;
4062 }
4063
4064 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr, void *data)
4065 {
4066         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4067         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
4068         int idx;
4069
4070         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
4071                 struct perf_event *event = cpuc->events[idx];
4072
4073                 arr[idx].msr = x86_pmu_config_addr(idx);
4074                 arr[idx].host = arr[idx].guest = 0;
4075
4076                 if (!test_bit(idx, cpuc->active_mask))
4077                         continue;
4078
4079                 arr[idx].host = arr[idx].guest =
4080                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
4081
4082                 if (event->attr.exclude_host)
4083                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4084                 else if (event->attr.exclude_guest)
4085                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
4086         }
4087
4088         *nr = x86_pmu.num_counters;
4089         return arr;
4090 }
4091
4092 static void core_pmu_enable_event(struct perf_event *event)
4093 {
4094         if (!event->attr.exclude_host)
4095                 x86_pmu_enable_event(event);
4096 }
4097
4098 static void core_pmu_enable_all(int added)
4099 {
4100         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4101         int idx;
4102
4103         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
4104                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
4105
4106                 if (!test_bit(idx, cpuc->active_mask) ||
4107                                 cpuc->events[idx]->attr.exclude_host)
4108                         continue;
4109
4110                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
4111         }
4112 }
4113
4114 static int hsw_hw_config(struct perf_event *event)
4115 {
4116         int ret = intel_pmu_hw_config(event);
4117
4118         if (ret)
4119                 return ret;
4120         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
4121                 return 0;
4122         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
4123
4124         /*
4125          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4126          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4127          * this combination.
4128          */
4129         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4130              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4131               event->attr.precise_ip > 0))
4132                 return -EOPNOTSUPP;
4133
4134         if (event_is_checkpointed(event)) {
4135                 /*
4136                  * Sampling of checkpointed events can cause situations where
4137                  * the CPU constantly aborts because of a overflow, which is
4138                  * then checkpointed back and ignored. Forbid checkpointing
4139                  * for sampling.
4140                  *
4141                  * But still allow a long sampling period, so that perf stat
4142                  * from KVM works.
4143                  */
4144                 if (event->attr.sample_period > 0 &&
4145                     event->attr.sample_period < 0x7fffffff)
4146                         return -EOPNOTSUPP;
4147         }
4148         return 0;
4149 }
4150
4151 static struct event_constraint counter0_constraint =
4152                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4153
4154 static struct event_constraint counter2_constraint =
4155                         EVENT_CONSTRAINT(0, 0x4, 0);
4156
4157 static struct event_constraint fixed0_constraint =
4158                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4159
4160 static struct event_constraint fixed0_counter0_constraint =
4161                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4162
4163 static struct event_constraint *
4164 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4165                           struct perf_event *event)
4166 {
4167         struct event_constraint *c;
4168
4169         c = intel_get_event_constraints(cpuc, idx, event);
4170
4171         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4172         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4173                 if (c->idxmsk64 & (1U << 2))
4174                         return &counter2_constraint;
4175                 return &emptyconstraint;
4176         }
4177
4178         return c;
4179 }
4180
4181 static struct event_constraint *
4182 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4183                           struct perf_event *event)
4184 {
4185         /*
4186          * Fixed counter 0 has less skid.
4187          * Force instruction:ppp in Fixed counter 0
4188          */
4189         if ((event->attr.precise_ip == 3) &&
4190             constraint_match(&fixed0_constraint, event->hw.config))
4191                 return &fixed0_constraint;
4192
4193         return hsw_get_event_constraints(cpuc, idx, event);
4194 }
4195
4196 static struct event_constraint *
4197 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4198                           struct perf_event *event)
4199 {
4200         struct event_constraint *c;
4201
4202         c = icl_get_event_constraints(cpuc, idx, event);
4203
4204         /*
4205          * The :ppp indicates the Precise Distribution (PDist) facility, which
4206          * is only supported on the GP counter 0. If a :ppp event which is not
4207          * available on the GP counter 0, error out.
4208          * Exception: Instruction PDIR is only available on the fixed counter 0.
4209          */
4210         if ((event->attr.precise_ip == 3) &&
4211             !constraint_match(&fixed0_constraint, event->hw.config)) {
4212                 if (c->idxmsk64 & BIT_ULL(0))
4213                         return &counter0_constraint;
4214
4215                 return &emptyconstraint;
4216         }
4217
4218         return c;
4219 }
4220
4221 static struct event_constraint *
4222 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4223                           struct perf_event *event)
4224 {
4225         struct event_constraint *c;
4226
4227         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4228         if (event->attr.precise_ip == 3)
4229                 return &counter0_constraint;
4230
4231         c = intel_get_event_constraints(cpuc, idx, event);
4232
4233         return c;
4234 }
4235
4236 static struct event_constraint *
4237 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4238                           struct perf_event *event)
4239 {
4240         struct event_constraint *c;
4241
4242         /*
4243          * :ppp means to do reduced skid PEBS,
4244          * which is available on PMC0 and fixed counter 0.
4245          */
4246         if (event->attr.precise_ip == 3) {
4247                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4248                 if (constraint_match(&fixed0_constraint, event->hw.config))
4249                         return &fixed0_counter0_constraint;
4250
4251                 return &counter0_constraint;
4252         }
4253
4254         c = intel_get_event_constraints(cpuc, idx, event);
4255
4256         return c;
4257 }
4258
4259 static bool allow_tsx_force_abort = true;
4260
4261 static struct event_constraint *
4262 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4263                           struct perf_event *event)
4264 {
4265         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4266
4267         /*
4268          * Without TFA we must not use PMC3.
4269          */
4270         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4271                 c = dyn_constraint(cpuc, c, idx);
4272                 c->idxmsk64 &= ~(1ULL << 3);
4273                 c->weight--;
4274         }
4275
4276         return c;
4277 }
4278
4279 static struct event_constraint *
4280 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4281                           struct perf_event *event)
4282 {
4283         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4284
4285         if (pmu->cpu_type == hybrid_big)
4286                 return spr_get_event_constraints(cpuc, idx, event);
4287         else if (pmu->cpu_type == hybrid_small)
4288                 return tnt_get_event_constraints(cpuc, idx, event);
4289
4290         WARN_ON(1);
4291         return &emptyconstraint;
4292 }
4293
4294 static int adl_hw_config(struct perf_event *event)
4295 {
4296         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4297
4298         if (pmu->cpu_type == hybrid_big)
4299                 return hsw_hw_config(event);
4300         else if (pmu->cpu_type == hybrid_small)
4301                 return intel_pmu_hw_config(event);
4302
4303         WARN_ON(1);
4304         return -EOPNOTSUPP;
4305 }
4306
4307 static u8 adl_get_hybrid_cpu_type(void)
4308 {
4309         return hybrid_big;
4310 }
4311
4312 /*
4313  * Broadwell:
4314  *
4315  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4316  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4317  * the two to enforce a minimum period of 128 (the smallest value that has bits
4318  * 0-5 cleared and >= 100).
4319  *
4320  * Because of how the code in x86_perf_event_set_period() works, the truncation
4321  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4322  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4323  *
4324  * Therefore the effective (average) period matches the requested period,
4325  * despite coarser hardware granularity.
4326  */
4327 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4328 {
4329         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4330                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
4331                 if (left < 128)
4332                         left = 128;
4333                 left &= ~0x3fULL;
4334         }
4335         return left;
4336 }
4337
4338 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4339 {
4340         return max(left, 32ULL);
4341 }
4342
4343 static u64 spr_limit_period(struct perf_event *event, u64 left)
4344 {
4345         if (event->attr.precise_ip == 3)
4346                 return max(left, 128ULL);
4347
4348         return left;
4349 }
4350
4351 PMU_FORMAT_ATTR(event,  "config:0-7"    );
4352 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
4353 PMU_FORMAT_ATTR(edge,   "config:18"     );
4354 PMU_FORMAT_ATTR(pc,     "config:19"     );
4355 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
4356 PMU_FORMAT_ATTR(inv,    "config:23"     );
4357 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
4358 PMU_FORMAT_ATTR(in_tx,  "config:32");
4359 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4360
4361 static struct attribute *intel_arch_formats_attr[] = {
4362         &format_attr_event.attr,
4363         &format_attr_umask.attr,
4364         &format_attr_edge.attr,
4365         &format_attr_pc.attr,
4366         &format_attr_inv.attr,
4367         &format_attr_cmask.attr,
4368         NULL,
4369 };
4370
4371 ssize_t intel_event_sysfs_show(char *page, u64 config)
4372 {
4373         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4374
4375         return x86_event_sysfs_show(page, config, event);
4376 }
4377
4378 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4379 {
4380         struct intel_shared_regs *regs;
4381         int i;
4382
4383         regs = kzalloc_node(sizeof(struct intel_shared_regs),
4384                             GFP_KERNEL, cpu_to_node(cpu));
4385         if (regs) {
4386                 /*
4387                  * initialize the locks to keep lockdep happy
4388                  */
4389                 for (i = 0; i < EXTRA_REG_MAX; i++)
4390                         raw_spin_lock_init(&regs->regs[i].lock);
4391
4392                 regs->core_id = -1;
4393         }
4394         return regs;
4395 }
4396
4397 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4398 {
4399         struct intel_excl_cntrs *c;
4400
4401         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4402                          GFP_KERNEL, cpu_to_node(cpu));
4403         if (c) {
4404                 raw_spin_lock_init(&c->lock);
4405                 c->core_id = -1;
4406         }
4407         return c;
4408 }
4409
4410
4411 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4412 {
4413         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4414
4415         if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4416                 cpuc->shared_regs = allocate_shared_regs(cpu);
4417                 if (!cpuc->shared_regs)
4418                         goto err;
4419         }
4420
4421         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4422                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4423
4424                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4425                 if (!cpuc->constraint_list)
4426                         goto err_shared_regs;
4427         }
4428
4429         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4430                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4431                 if (!cpuc->excl_cntrs)
4432                         goto err_constraint_list;
4433
4434                 cpuc->excl_thread_id = 0;
4435         }
4436
4437         return 0;
4438
4439 err_constraint_list:
4440         kfree(cpuc->constraint_list);
4441         cpuc->constraint_list = NULL;
4442
4443 err_shared_regs:
4444         kfree(cpuc->shared_regs);
4445         cpuc->shared_regs = NULL;
4446
4447 err:
4448         return -ENOMEM;
4449 }
4450
4451 static int intel_pmu_cpu_prepare(int cpu)
4452 {
4453         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4454 }
4455
4456 static void flip_smm_bit(void *data)
4457 {
4458         unsigned long set = *(unsigned long *)data;
4459
4460         if (set > 0) {
4461                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4462                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4463         } else {
4464                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4465                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4466         }
4467 }
4468
4469 static bool init_hybrid_pmu(int cpu)
4470 {
4471         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4472         u8 cpu_type = get_this_hybrid_cpu_type();
4473         struct x86_hybrid_pmu *pmu = NULL;
4474         int i;
4475
4476         if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4477                 cpu_type = x86_pmu.get_hybrid_cpu_type();
4478
4479         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4480                 if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4481                         pmu = &x86_pmu.hybrid_pmu[i];
4482                         break;
4483                 }
4484         }
4485         if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4486                 cpuc->pmu = NULL;
4487                 return false;
4488         }
4489
4490         /* Only check and dump the PMU information for the first CPU */
4491         if (!cpumask_empty(&pmu->supported_cpus))
4492                 goto end;
4493
4494         if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4495                 return false;
4496
4497         pr_info("%s PMU driver: ", pmu->name);
4498
4499         if (pmu->intel_cap.pebs_output_pt_available)
4500                 pr_cont("PEBS-via-PT ");
4501
4502         pr_cont("\n");
4503
4504         x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4505                              pmu->intel_ctrl);
4506
4507 end:
4508         cpumask_set_cpu(cpu, &pmu->supported_cpus);
4509         cpuc->pmu = &pmu->pmu;
4510
4511         x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4512
4513         return true;
4514 }
4515
4516 static void intel_pmu_cpu_starting(int cpu)
4517 {
4518         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4519         int core_id = topology_core_id(cpu);
4520         int i;
4521
4522         if (is_hybrid() && !init_hybrid_pmu(cpu))
4523                 return;
4524
4525         init_debug_store_on_cpu(cpu);
4526         /*
4527          * Deal with CPUs that don't clear their LBRs on power-up.
4528          */
4529         intel_pmu_lbr_reset();
4530
4531         cpuc->lbr_sel = NULL;
4532
4533         if (x86_pmu.flags & PMU_FL_TFA) {
4534                 WARN_ON_ONCE(cpuc->tfa_shadow);
4535                 cpuc->tfa_shadow = ~0ULL;
4536                 intel_set_tfa(cpuc, false);
4537         }
4538
4539         if (x86_pmu.version > 1)
4540                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4541
4542         /*
4543          * Disable perf metrics if any added CPU doesn't support it.
4544          *
4545          * Turn off the check for a hybrid architecture, because the
4546          * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4547          * the architecture features. The perf metrics is a model-specific
4548          * feature for now. The corresponding bit should always be 0 on
4549          * a hybrid platform, e.g., Alder Lake.
4550          */
4551         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4552                 union perf_capabilities perf_cap;
4553
4554                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4555                 if (!perf_cap.perf_metrics) {
4556                         x86_pmu.intel_cap.perf_metrics = 0;
4557                         x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4558                 }
4559         }
4560
4561         if (!cpuc->shared_regs)
4562                 return;
4563
4564         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4565                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4566                         struct intel_shared_regs *pc;
4567
4568                         pc = per_cpu(cpu_hw_events, i).shared_regs;
4569                         if (pc && pc->core_id == core_id) {
4570                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4571                                 cpuc->shared_regs = pc;
4572                                 break;
4573                         }
4574                 }
4575                 cpuc->shared_regs->core_id = core_id;
4576                 cpuc->shared_regs->refcnt++;
4577         }
4578
4579         if (x86_pmu.lbr_sel_map)
4580                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4581
4582         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4583                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4584                         struct cpu_hw_events *sibling;
4585                         struct intel_excl_cntrs *c;
4586
4587                         sibling = &per_cpu(cpu_hw_events, i);
4588                         c = sibling->excl_cntrs;
4589                         if (c && c->core_id == core_id) {
4590                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4591                                 cpuc->excl_cntrs = c;
4592                                 if (!sibling->excl_thread_id)
4593                                         cpuc->excl_thread_id = 1;
4594                                 break;
4595                         }
4596                 }
4597                 cpuc->excl_cntrs->core_id = core_id;
4598                 cpuc->excl_cntrs->refcnt++;
4599         }
4600 }
4601
4602 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4603 {
4604         struct intel_excl_cntrs *c;
4605
4606         c = cpuc->excl_cntrs;
4607         if (c) {
4608                 if (c->core_id == -1 || --c->refcnt == 0)
4609                         kfree(c);
4610                 cpuc->excl_cntrs = NULL;
4611         }
4612
4613         kfree(cpuc->constraint_list);
4614         cpuc->constraint_list = NULL;
4615 }
4616
4617 static void intel_pmu_cpu_dying(int cpu)
4618 {
4619         fini_debug_store_on_cpu(cpu);
4620 }
4621
4622 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4623 {
4624         struct intel_shared_regs *pc;
4625
4626         pc = cpuc->shared_regs;
4627         if (pc) {
4628                 if (pc->core_id == -1 || --pc->refcnt == 0)
4629                         kfree(pc);
4630                 cpuc->shared_regs = NULL;
4631         }
4632
4633         free_excl_cntrs(cpuc);
4634 }
4635
4636 static void intel_pmu_cpu_dead(int cpu)
4637 {
4638         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4639
4640         intel_cpuc_finish(cpuc);
4641
4642         if (is_hybrid() && cpuc->pmu)
4643                 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4644 }
4645
4646 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4647                                  bool sched_in)
4648 {
4649         intel_pmu_pebs_sched_task(ctx, sched_in);
4650         intel_pmu_lbr_sched_task(ctx, sched_in);
4651 }
4652
4653 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4654                                     struct perf_event_context *next)
4655 {
4656         intel_pmu_lbr_swap_task_ctx(prev, next);
4657 }
4658
4659 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4660 {
4661         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4662 }
4663
4664 static void intel_aux_output_init(void)
4665 {
4666         /* Refer also intel_pmu_aux_output_match() */
4667         if (x86_pmu.intel_cap.pebs_output_pt_available)
4668                 x86_pmu.assign = intel_pmu_assign_event;
4669 }
4670
4671 static int intel_pmu_aux_output_match(struct perf_event *event)
4672 {
4673         /* intel_pmu_assign_event() is needed, refer intel_aux_output_init() */
4674         if (!x86_pmu.intel_cap.pebs_output_pt_available)
4675                 return 0;
4676
4677         return is_intel_pt_event(event);
4678 }
4679
4680 static int intel_pmu_filter_match(struct perf_event *event)
4681 {
4682         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4683         unsigned int cpu = smp_processor_id();
4684
4685         return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4686 }
4687
4688 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4689
4690 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4691
4692 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4693
4694 static struct attribute *intel_arch3_formats_attr[] = {
4695         &format_attr_event.attr,
4696         &format_attr_umask.attr,
4697         &format_attr_edge.attr,
4698         &format_attr_pc.attr,
4699         &format_attr_any.attr,
4700         &format_attr_inv.attr,
4701         &format_attr_cmask.attr,
4702         NULL,
4703 };
4704
4705 static struct attribute *hsw_format_attr[] = {
4706         &format_attr_in_tx.attr,
4707         &format_attr_in_tx_cp.attr,
4708         &format_attr_offcore_rsp.attr,
4709         &format_attr_ldlat.attr,
4710         NULL
4711 };
4712
4713 static struct attribute *nhm_format_attr[] = {
4714         &format_attr_offcore_rsp.attr,
4715         &format_attr_ldlat.attr,
4716         NULL
4717 };
4718
4719 static struct attribute *slm_format_attr[] = {
4720         &format_attr_offcore_rsp.attr,
4721         NULL
4722 };
4723
4724 static struct attribute *skl_format_attr[] = {
4725         &format_attr_frontend.attr,
4726         NULL,
4727 };
4728
4729 static __initconst const struct x86_pmu core_pmu = {
4730         .name                   = "core",
4731         .handle_irq             = x86_pmu_handle_irq,
4732         .disable_all            = x86_pmu_disable_all,
4733         .enable_all             = core_pmu_enable_all,
4734         .enable                 = core_pmu_enable_event,
4735         .disable                = x86_pmu_disable_event,
4736         .hw_config              = core_pmu_hw_config,
4737         .schedule_events        = x86_schedule_events,
4738         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4739         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4740         .event_map              = intel_pmu_event_map,
4741         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4742         .apic                   = 1,
4743         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4744
4745         /*
4746          * Intel PMCs cannot be accessed sanely above 32-bit width,
4747          * so we install an artificial 1<<31 period regardless of
4748          * the generic event period:
4749          */
4750         .max_period             = (1ULL<<31) - 1,
4751         .get_event_constraints  = intel_get_event_constraints,
4752         .put_event_constraints  = intel_put_event_constraints,
4753         .event_constraints      = intel_core_event_constraints,
4754         .guest_get_msrs         = core_guest_get_msrs,
4755         .format_attrs           = intel_arch_formats_attr,
4756         .events_sysfs_show      = intel_event_sysfs_show,
4757
4758         /*
4759          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4760          * together with PMU version 1 and thus be using core_pmu with
4761          * shared_regs. We need following callbacks here to allocate
4762          * it properly.
4763          */
4764         .cpu_prepare            = intel_pmu_cpu_prepare,
4765         .cpu_starting           = intel_pmu_cpu_starting,
4766         .cpu_dying              = intel_pmu_cpu_dying,
4767         .cpu_dead               = intel_pmu_cpu_dead,
4768
4769         .check_period           = intel_pmu_check_period,
4770
4771         .lbr_reset              = intel_pmu_lbr_reset_64,
4772         .lbr_read               = intel_pmu_lbr_read_64,
4773         .lbr_save               = intel_pmu_lbr_save,
4774         .lbr_restore            = intel_pmu_lbr_restore,
4775 };
4776
4777 static __initconst const struct x86_pmu intel_pmu = {
4778         .name                   = "Intel",
4779         .handle_irq             = intel_pmu_handle_irq,
4780         .disable_all            = intel_pmu_disable_all,
4781         .enable_all             = intel_pmu_enable_all,
4782         .enable                 = intel_pmu_enable_event,
4783         .disable                = intel_pmu_disable_event,
4784         .add                    = intel_pmu_add_event,
4785         .del                    = intel_pmu_del_event,
4786         .read                   = intel_pmu_read_event,
4787         .hw_config              = intel_pmu_hw_config,
4788         .schedule_events        = x86_schedule_events,
4789         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4790         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4791         .event_map              = intel_pmu_event_map,
4792         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4793         .apic                   = 1,
4794         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4795         /*
4796          * Intel PMCs cannot be accessed sanely above 32 bit width,
4797          * so we install an artificial 1<<31 period regardless of
4798          * the generic event period:
4799          */
4800         .max_period             = (1ULL << 31) - 1,
4801         .get_event_constraints  = intel_get_event_constraints,
4802         .put_event_constraints  = intel_put_event_constraints,
4803         .pebs_aliases           = intel_pebs_aliases_core2,
4804
4805         .format_attrs           = intel_arch3_formats_attr,
4806         .events_sysfs_show      = intel_event_sysfs_show,
4807
4808         .cpu_prepare            = intel_pmu_cpu_prepare,
4809         .cpu_starting           = intel_pmu_cpu_starting,
4810         .cpu_dying              = intel_pmu_cpu_dying,
4811         .cpu_dead               = intel_pmu_cpu_dead,
4812
4813         .guest_get_msrs         = intel_guest_get_msrs,
4814         .sched_task             = intel_pmu_sched_task,
4815         .swap_task_ctx          = intel_pmu_swap_task_ctx,
4816
4817         .check_period           = intel_pmu_check_period,
4818
4819         .aux_output_match       = intel_pmu_aux_output_match,
4820
4821         .lbr_reset              = intel_pmu_lbr_reset_64,
4822         .lbr_read               = intel_pmu_lbr_read_64,
4823         .lbr_save               = intel_pmu_lbr_save,
4824         .lbr_restore            = intel_pmu_lbr_restore,
4825
4826         /*
4827          * SMM has access to all 4 rings and while traditionally SMM code only
4828          * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
4829          *
4830          * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
4831          * between SMM or not, this results in what should be pure userspace
4832          * counters including SMM data.
4833          *
4834          * This is a clear privilege issue, therefore globally disable
4835          * counting SMM by default.
4836          */
4837         .attr_freeze_on_smi     = 1,
4838 };
4839
4840 static __init void intel_clovertown_quirk(void)
4841 {
4842         /*
4843          * PEBS is unreliable due to:
4844          *
4845          *   AJ67  - PEBS may experience CPL leaks
4846          *   AJ68  - PEBS PMI may be delayed by one event
4847          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4848          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4849          *
4850          * AJ67 could be worked around by restricting the OS/USR flags.
4851          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4852          *
4853          * AJ106 could possibly be worked around by not allowing LBR
4854          *       usage from PEBS, including the fixup.
4855          * AJ68  could possibly be worked around by always programming
4856          *       a pebs_event_reset[0] value and coping with the lost events.
4857          *
4858          * But taken together it might just make sense to not enable PEBS on
4859          * these chips.
4860          */
4861         pr_warn("PEBS disabled due to CPU errata\n");
4862         x86_pmu.pebs = 0;
4863         x86_pmu.pebs_constraints = NULL;
4864 }
4865
4866 static const struct x86_cpu_desc isolation_ucodes[] = {
4867         INTEL_CPU_DESC(INTEL_FAM6_HASWELL,               3, 0x0000001f),
4868         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,             1, 0x0000001e),
4869         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,             1, 0x00000015),
4870         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
4871         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
4872         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,             4, 0x00000023),
4873         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,           1, 0x00000014),
4874         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           2, 0x00000010),
4875         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           3, 0x07000009),
4876         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           4, 0x0f000009),
4877         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           5, 0x0e000002),
4878         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           1, 0x0b000014),
4879         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
4880         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
4881         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             5, 0x00000000),
4882         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             6, 0x00000000),
4883         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             7, 0x00000000),
4884         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,             3, 0x0000007c),
4885         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,               3, 0x0000007c),
4886         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,              9, 0x0000004e),
4887         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,            9, 0x0000004e),
4888         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           10, 0x0000004e),
4889         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           11, 0x0000004e),
4890         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           12, 0x0000004e),
4891         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             10, 0x0000004e),
4892         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             11, 0x0000004e),
4893         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             12, 0x0000004e),
4894         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             13, 0x0000004e),
4895         {}
4896 };
4897
4898 static void intel_check_pebs_isolation(void)
4899 {
4900         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4901 }
4902
4903 static __init void intel_pebs_isolation_quirk(void)
4904 {
4905         WARN_ON_ONCE(x86_pmu.check_microcode);
4906         x86_pmu.check_microcode = intel_check_pebs_isolation;
4907         intel_check_pebs_isolation();
4908 }
4909
4910 static const struct x86_cpu_desc pebs_ucodes[] = {
4911         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
4912         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
4913         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
4914         {}
4915 };
4916
4917 static bool intel_snb_pebs_broken(void)
4918 {
4919         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4920 }
4921
4922 static void intel_snb_check_microcode(void)
4923 {
4924         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4925                 return;
4926
4927         /*
4928          * Serialized by the microcode lock..
4929          */
4930         if (x86_pmu.pebs_broken) {
4931                 pr_info("PEBS enabled due to microcode update\n");
4932                 x86_pmu.pebs_broken = 0;
4933         } else {
4934                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4935                 x86_pmu.pebs_broken = 1;
4936         }
4937 }
4938
4939 static bool is_lbr_from(unsigned long msr)
4940 {
4941         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4942
4943         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4944 }
4945
4946 /*
4947  * Under certain circumstances, access certain MSR may cause #GP.
4948  * The function tests if the input MSR can be safely accessed.
4949  */
4950 static bool check_msr(unsigned long msr, u64 mask)
4951 {
4952         u64 val_old, val_new, val_tmp;
4953
4954         /*
4955          * Disable the check for real HW, so we don't
4956          * mess with potentially enabled registers:
4957          */
4958         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4959                 return true;
4960
4961         /*
4962          * Read the current value, change it and read it back to see if it
4963          * matches, this is needed to detect certain hardware emulators
4964          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4965          */
4966         if (rdmsrl_safe(msr, &val_old))
4967                 return false;
4968
4969         /*
4970          * Only change the bits which can be updated by wrmsrl.
4971          */
4972         val_tmp = val_old ^ mask;
4973
4974         if (is_lbr_from(msr))
4975                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4976
4977         if (wrmsrl_safe(msr, val_tmp) ||
4978             rdmsrl_safe(msr, &val_new))
4979                 return false;
4980
4981         /*
4982          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4983          * should equal rdmsrl()'s even with the quirk.
4984          */
4985         if (val_new != val_tmp)
4986                 return false;
4987
4988         if (is_lbr_from(msr))
4989                 val_old = lbr_from_signext_quirk_wr(val_old);
4990
4991         /* Here it's sure that the MSR can be safely accessed.
4992          * Restore the old value and return.
4993          */
4994         wrmsrl(msr, val_old);
4995
4996         return true;
4997 }
4998
4999 static __init void intel_sandybridge_quirk(void)
5000 {
5001         x86_pmu.check_microcode = intel_snb_check_microcode;
5002         cpus_read_lock();
5003         intel_snb_check_microcode();
5004         cpus_read_unlock();
5005 }
5006
5007 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
5008         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
5009         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
5010         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
5011         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
5012         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
5013         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
5014         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
5015 };
5016
5017 static __init void intel_arch_events_quirk(void)
5018 {
5019         int bit;
5020
5021         /* disable event that reported as not present by cpuid */
5022         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
5023                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
5024                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
5025                         intel_arch_events_map[bit].name);
5026         }
5027 }
5028
5029 static __init void intel_nehalem_quirk(void)
5030 {
5031         union cpuid10_ebx ebx;
5032
5033         ebx.full = x86_pmu.events_maskl;
5034         if (ebx.split.no_branch_misses_retired) {
5035                 /*
5036                  * Erratum AAJ80 detected, we work it around by using
5037                  * the BR_MISP_EXEC.ANY event. This will over-count
5038                  * branch-misses, but it's still much better than the
5039                  * architectural event which is often completely bogus:
5040                  */
5041                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
5042                 ebx.split.no_branch_misses_retired = 0;
5043                 x86_pmu.events_maskl = ebx.full;
5044                 pr_info("CPU erratum AAJ80 worked around\n");
5045         }
5046 }
5047
5048 /*
5049  * enable software workaround for errata:
5050  * SNB: BJ122
5051  * IVB: BV98
5052  * HSW: HSD29
5053  *
5054  * Only needed when HT is enabled. However detecting
5055  * if HT is enabled is difficult (model specific). So instead,
5056  * we enable the workaround in the early boot, and verify if
5057  * it is needed in a later initcall phase once we have valid
5058  * topology information to check if HT is actually enabled
5059  */
5060 static __init void intel_ht_bug(void)
5061 {
5062         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
5063
5064         x86_pmu.start_scheduling = intel_start_scheduling;
5065         x86_pmu.commit_scheduling = intel_commit_scheduling;
5066         x86_pmu.stop_scheduling = intel_stop_scheduling;
5067 }
5068
5069 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
5070 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
5071
5072 /* Haswell special events */
5073 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
5074 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
5075 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
5076 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
5077 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
5078 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
5079 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
5080 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
5081 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
5082 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
5083 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
5084 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
5085
5086 static struct attribute *hsw_events_attrs[] = {
5087         EVENT_PTR(td_slots_issued),
5088         EVENT_PTR(td_slots_retired),
5089         EVENT_PTR(td_fetch_bubbles),
5090         EVENT_PTR(td_total_slots),
5091         EVENT_PTR(td_total_slots_scale),
5092         EVENT_PTR(td_recovery_bubbles),
5093         EVENT_PTR(td_recovery_bubbles_scale),
5094         NULL
5095 };
5096
5097 static struct attribute *hsw_mem_events_attrs[] = {
5098         EVENT_PTR(mem_ld_hsw),
5099         EVENT_PTR(mem_st_hsw),
5100         NULL,
5101 };
5102
5103 static struct attribute *hsw_tsx_events_attrs[] = {
5104         EVENT_PTR(tx_start),
5105         EVENT_PTR(tx_commit),
5106         EVENT_PTR(tx_abort),
5107         EVENT_PTR(tx_capacity),
5108         EVENT_PTR(tx_conflict),
5109         EVENT_PTR(el_start),
5110         EVENT_PTR(el_commit),
5111         EVENT_PTR(el_abort),
5112         EVENT_PTR(el_capacity),
5113         EVENT_PTR(el_conflict),
5114         EVENT_PTR(cycles_t),
5115         EVENT_PTR(cycles_ct),
5116         NULL
5117 };
5118
5119 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
5120 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
5121 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
5122 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
5123
5124 static struct attribute *icl_events_attrs[] = {
5125         EVENT_PTR(mem_ld_hsw),
5126         EVENT_PTR(mem_st_hsw),
5127         NULL,
5128 };
5129
5130 static struct attribute *icl_td_events_attrs[] = {
5131         EVENT_PTR(slots),
5132         EVENT_PTR(td_retiring),
5133         EVENT_PTR(td_bad_spec),
5134         EVENT_PTR(td_fe_bound),
5135         EVENT_PTR(td_be_bound),
5136         NULL,
5137 };
5138
5139 static struct attribute *icl_tsx_events_attrs[] = {
5140         EVENT_PTR(tx_start),
5141         EVENT_PTR(tx_abort),
5142         EVENT_PTR(tx_commit),
5143         EVENT_PTR(tx_capacity_read),
5144         EVENT_PTR(tx_capacity_write),
5145         EVENT_PTR(tx_conflict),
5146         EVENT_PTR(el_start),
5147         EVENT_PTR(el_abort),
5148         EVENT_PTR(el_commit),
5149         EVENT_PTR(el_capacity_read),
5150         EVENT_PTR(el_capacity_write),
5151         EVENT_PTR(el_conflict),
5152         EVENT_PTR(cycles_t),
5153         EVENT_PTR(cycles_ct),
5154         NULL,
5155 };
5156
5157
5158 EVENT_ATTR_STR(mem-stores,      mem_st_spr,     "event=0xcd,umask=0x2");
5159 EVENT_ATTR_STR(mem-loads-aux,   mem_ld_aux,     "event=0x03,umask=0x82");
5160
5161 static struct attribute *spr_events_attrs[] = {
5162         EVENT_PTR(mem_ld_hsw),
5163         EVENT_PTR(mem_st_spr),
5164         EVENT_PTR(mem_ld_aux),
5165         NULL,
5166 };
5167
5168 static struct attribute *spr_td_events_attrs[] = {
5169         EVENT_PTR(slots),
5170         EVENT_PTR(td_retiring),
5171         EVENT_PTR(td_bad_spec),
5172         EVENT_PTR(td_fe_bound),
5173         EVENT_PTR(td_be_bound),
5174         EVENT_PTR(td_heavy_ops),
5175         EVENT_PTR(td_br_mispredict),
5176         EVENT_PTR(td_fetch_lat),
5177         EVENT_PTR(td_mem_bound),
5178         NULL,
5179 };
5180
5181 static struct attribute *spr_tsx_events_attrs[] = {
5182         EVENT_PTR(tx_start),
5183         EVENT_PTR(tx_abort),
5184         EVENT_PTR(tx_commit),
5185         EVENT_PTR(tx_capacity_read),
5186         EVENT_PTR(tx_capacity_write),
5187         EVENT_PTR(tx_conflict),
5188         EVENT_PTR(cycles_t),
5189         EVENT_PTR(cycles_ct),
5190         NULL,
5191 };
5192
5193 static ssize_t freeze_on_smi_show(struct device *cdev,
5194                                   struct device_attribute *attr,
5195                                   char *buf)
5196 {
5197         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5198 }
5199
5200 static DEFINE_MUTEX(freeze_on_smi_mutex);
5201
5202 static ssize_t freeze_on_smi_store(struct device *cdev,
5203                                    struct device_attribute *attr,
5204                                    const char *buf, size_t count)
5205 {
5206         unsigned long val;
5207         ssize_t ret;
5208
5209         ret = kstrtoul(buf, 0, &val);
5210         if (ret)
5211                 return ret;
5212
5213         if (val > 1)
5214                 return -EINVAL;
5215
5216         mutex_lock(&freeze_on_smi_mutex);
5217
5218         if (x86_pmu.attr_freeze_on_smi == val)
5219                 goto done;
5220
5221         x86_pmu.attr_freeze_on_smi = val;
5222
5223         cpus_read_lock();
5224         on_each_cpu(flip_smm_bit, &val, 1);
5225         cpus_read_unlock();
5226 done:
5227         mutex_unlock(&freeze_on_smi_mutex);
5228
5229         return count;
5230 }
5231
5232 static void update_tfa_sched(void *ignored)
5233 {
5234         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5235
5236         /*
5237          * check if PMC3 is used
5238          * and if so force schedule out for all event types all contexts
5239          */
5240         if (test_bit(3, cpuc->active_mask))
5241                 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5242 }
5243
5244 static ssize_t show_sysctl_tfa(struct device *cdev,
5245                               struct device_attribute *attr,
5246                               char *buf)
5247 {
5248         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5249 }
5250
5251 static ssize_t set_sysctl_tfa(struct device *cdev,
5252                               struct device_attribute *attr,
5253                               const char *buf, size_t count)
5254 {
5255         bool val;
5256         ssize_t ret;
5257
5258         ret = kstrtobool(buf, &val);
5259         if (ret)
5260                 return ret;
5261
5262         /* no change */
5263         if (val == allow_tsx_force_abort)
5264                 return count;
5265
5266         allow_tsx_force_abort = val;
5267
5268         cpus_read_lock();
5269         on_each_cpu(update_tfa_sched, NULL, 1);
5270         cpus_read_unlock();
5271
5272         return count;
5273 }
5274
5275
5276 static DEVICE_ATTR_RW(freeze_on_smi);
5277
5278 static ssize_t branches_show(struct device *cdev,
5279                              struct device_attribute *attr,
5280                              char *buf)
5281 {
5282         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5283 }
5284
5285 static DEVICE_ATTR_RO(branches);
5286
5287 static struct attribute *lbr_attrs[] = {
5288         &dev_attr_branches.attr,
5289         NULL
5290 };
5291
5292 static char pmu_name_str[30];
5293
5294 static ssize_t pmu_name_show(struct device *cdev,
5295                              struct device_attribute *attr,
5296                              char *buf)
5297 {
5298         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5299 }
5300
5301 static DEVICE_ATTR_RO(pmu_name);
5302
5303 static struct attribute *intel_pmu_caps_attrs[] = {
5304        &dev_attr_pmu_name.attr,
5305        NULL
5306 };
5307
5308 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5309                    show_sysctl_tfa,
5310                    set_sysctl_tfa);
5311
5312 static struct attribute *intel_pmu_attrs[] = {
5313         &dev_attr_freeze_on_smi.attr,
5314         &dev_attr_allow_tsx_force_abort.attr,
5315         NULL,
5316 };
5317
5318 static umode_t
5319 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5320 {
5321         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5322 }
5323
5324 static umode_t
5325 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5326 {
5327         return x86_pmu.pebs ? attr->mode : 0;
5328 }
5329
5330 static umode_t
5331 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5332 {
5333         return x86_pmu.lbr_nr ? attr->mode : 0;
5334 }
5335
5336 static umode_t
5337 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5338 {
5339         return x86_pmu.version >= 2 ? attr->mode : 0;
5340 }
5341
5342 static umode_t
5343 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5344 {
5345         if (attr == &dev_attr_allow_tsx_force_abort.attr)
5346                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5347
5348         return attr->mode;
5349 }
5350
5351 static struct attribute_group group_events_td  = {
5352         .name = "events",
5353 };
5354
5355 static struct attribute_group group_events_mem = {
5356         .name       = "events",
5357         .is_visible = pebs_is_visible,
5358 };
5359
5360 static struct attribute_group group_events_tsx = {
5361         .name       = "events",
5362         .is_visible = tsx_is_visible,
5363 };
5364
5365 static struct attribute_group group_caps_gen = {
5366         .name  = "caps",
5367         .attrs = intel_pmu_caps_attrs,
5368 };
5369
5370 static struct attribute_group group_caps_lbr = {
5371         .name       = "caps",
5372         .attrs      = lbr_attrs,
5373         .is_visible = lbr_is_visible,
5374 };
5375
5376 static struct attribute_group group_format_extra = {
5377         .name       = "format",
5378         .is_visible = exra_is_visible,
5379 };
5380
5381 static struct attribute_group group_format_extra_skl = {
5382         .name       = "format",
5383         .is_visible = exra_is_visible,
5384 };
5385
5386 static struct attribute_group group_default = {
5387         .attrs      = intel_pmu_attrs,
5388         .is_visible = default_is_visible,
5389 };
5390
5391 static const struct attribute_group *attr_update[] = {
5392         &group_events_td,
5393         &group_events_mem,
5394         &group_events_tsx,
5395         &group_caps_gen,
5396         &group_caps_lbr,
5397         &group_format_extra,
5398         &group_format_extra_skl,
5399         &group_default,
5400         NULL,
5401 };
5402
5403 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5404 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5405 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5406 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5407 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5408 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5409 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5410 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5411 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5412
5413 static struct attribute *adl_hybrid_events_attrs[] = {
5414         EVENT_PTR(slots_adl),
5415         EVENT_PTR(td_retiring_adl),
5416         EVENT_PTR(td_bad_spec_adl),
5417         EVENT_PTR(td_fe_bound_adl),
5418         EVENT_PTR(td_be_bound_adl),
5419         EVENT_PTR(td_heavy_ops_adl),
5420         EVENT_PTR(td_br_mis_adl),
5421         EVENT_PTR(td_fetch_lat_adl),
5422         EVENT_PTR(td_mem_bound_adl),
5423         NULL,
5424 };
5425
5426 /* Must be in IDX order */
5427 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5428 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5429 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5430
5431 static struct attribute *adl_hybrid_mem_attrs[] = {
5432         EVENT_PTR(mem_ld_adl),
5433         EVENT_PTR(mem_st_adl),
5434         EVENT_PTR(mem_ld_aux_adl),
5435         NULL,
5436 };
5437
5438 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5439 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5440 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5441 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5442 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5443 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5444 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5445 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5446
5447 static struct attribute *adl_hybrid_tsx_attrs[] = {
5448         EVENT_PTR(tx_start_adl),
5449         EVENT_PTR(tx_abort_adl),
5450         EVENT_PTR(tx_commit_adl),
5451         EVENT_PTR(tx_capacity_read_adl),
5452         EVENT_PTR(tx_capacity_write_adl),
5453         EVENT_PTR(tx_conflict_adl),
5454         EVENT_PTR(cycles_t_adl),
5455         EVENT_PTR(cycles_ct_adl),
5456         NULL,
5457 };
5458
5459 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5460 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5461 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5462 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5463 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5464
5465 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5466         FORMAT_HYBRID_PTR(in_tx),
5467         FORMAT_HYBRID_PTR(in_tx_cp),
5468         FORMAT_HYBRID_PTR(offcore_rsp),
5469         FORMAT_HYBRID_PTR(ldlat),
5470         FORMAT_HYBRID_PTR(frontend),
5471         NULL,
5472 };
5473
5474 static struct attribute *adl_hybrid_extra_attr[] = {
5475         FORMAT_HYBRID_PTR(offcore_rsp),
5476         FORMAT_HYBRID_PTR(ldlat),
5477         FORMAT_HYBRID_PTR(frontend),
5478         NULL,
5479 };
5480
5481 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5482 {
5483         struct device *dev = kobj_to_dev(kobj);
5484         struct x86_hybrid_pmu *pmu =
5485                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5486         struct perf_pmu_events_hybrid_attr *pmu_attr =
5487                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5488
5489         return pmu->cpu_type & pmu_attr->pmu_type;
5490 }
5491
5492 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5493                                         struct attribute *attr, int i)
5494 {
5495         return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5496 }
5497
5498 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5499 {
5500         int cpu = cpumask_first(&pmu->supported_cpus);
5501
5502         return (cpu >= nr_cpu_ids) ? -1 : cpu;
5503 }
5504
5505 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5506                                      struct attribute *attr, int i)
5507 {
5508         struct device *dev = kobj_to_dev(kobj);
5509         struct x86_hybrid_pmu *pmu =
5510                  container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5511         int cpu = hybrid_find_supported_cpu(pmu);
5512
5513         return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5514 }
5515
5516 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5517                                         struct attribute *attr, int i)
5518 {
5519         struct device *dev = kobj_to_dev(kobj);
5520         struct x86_hybrid_pmu *pmu =
5521                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5522         struct perf_pmu_format_hybrid_attr *pmu_attr =
5523                 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5524         int cpu = hybrid_find_supported_cpu(pmu);
5525
5526         return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5527 }
5528
5529 static struct attribute_group hybrid_group_events_td  = {
5530         .name           = "events",
5531         .is_visible     = hybrid_events_is_visible,
5532 };
5533
5534 static struct attribute_group hybrid_group_events_mem = {
5535         .name           = "events",
5536         .is_visible     = hybrid_events_is_visible,
5537 };
5538
5539 static struct attribute_group hybrid_group_events_tsx = {
5540         .name           = "events",
5541         .is_visible     = hybrid_tsx_is_visible,
5542 };
5543
5544 static struct attribute_group hybrid_group_format_extra = {
5545         .name           = "format",
5546         .is_visible     = hybrid_format_is_visible,
5547 };
5548
5549 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5550                                           struct device_attribute *attr,
5551                                           char *buf)
5552 {
5553         struct x86_hybrid_pmu *pmu =
5554                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5555
5556         return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5557 }
5558
5559 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5560 static struct attribute *intel_hybrid_cpus_attrs[] = {
5561         &dev_attr_cpus.attr,
5562         NULL,
5563 };
5564
5565 static struct attribute_group hybrid_group_cpus = {
5566         .attrs          = intel_hybrid_cpus_attrs,
5567 };
5568
5569 static const struct attribute_group *hybrid_attr_update[] = {
5570         &hybrid_group_events_td,
5571         &hybrid_group_events_mem,
5572         &hybrid_group_events_tsx,
5573         &group_caps_gen,
5574         &group_caps_lbr,
5575         &hybrid_group_format_extra,
5576         &group_default,
5577         &hybrid_group_cpus,
5578         NULL,
5579 };
5580
5581 static struct attribute *empty_attrs;
5582
5583 static void intel_pmu_check_num_counters(int *num_counters,
5584                                          int *num_counters_fixed,
5585                                          u64 *intel_ctrl, u64 fixed_mask)
5586 {
5587         if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5588                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5589                      *num_counters, INTEL_PMC_MAX_GENERIC);
5590                 *num_counters = INTEL_PMC_MAX_GENERIC;
5591         }
5592         *intel_ctrl = (1ULL << *num_counters) - 1;
5593
5594         if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5595                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5596                      *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5597                 *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5598         }
5599
5600         *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5601 }
5602
5603 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5604                                               int num_counters,
5605                                               int num_counters_fixed,
5606                                               u64 intel_ctrl)
5607 {
5608         struct event_constraint *c;
5609
5610         if (!event_constraints)
5611                 return;
5612
5613         /*
5614          * event on fixed counter2 (REF_CYCLES) only works on this
5615          * counter, so do not extend mask to generic counters
5616          */
5617         for_each_event_constraint(c, event_constraints) {
5618                 /*
5619                  * Don't extend the topdown slots and metrics
5620                  * events to the generic counters.
5621                  */
5622                 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5623                         /*
5624                          * Disable topdown slots and metrics events,
5625                          * if slots event is not in CPUID.
5626                          */
5627                         if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5628                                 c->idxmsk64 = 0;
5629                         c->weight = hweight64(c->idxmsk64);
5630                         continue;
5631                 }
5632
5633                 if (c->cmask == FIXED_EVENT_FLAGS) {
5634                         /* Disabled fixed counters which are not in CPUID */
5635                         c->idxmsk64 &= intel_ctrl;
5636
5637                         /*
5638                          * Don't extend the pseudo-encoding to the
5639                          * generic counters
5640                          */
5641                         if (!use_fixed_pseudo_encoding(c->code))
5642                                 c->idxmsk64 |= (1ULL << num_counters) - 1;
5643                 }
5644                 c->idxmsk64 &=
5645                         ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5646                 c->weight = hweight64(c->idxmsk64);
5647         }
5648 }
5649
5650 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5651 {
5652         struct extra_reg *er;
5653
5654         /*
5655          * Access extra MSR may cause #GP under certain circumstances.
5656          * E.g. KVM doesn't support offcore event
5657          * Check all extra_regs here.
5658          */
5659         if (!extra_regs)
5660                 return;
5661
5662         for (er = extra_regs; er->msr; er++) {
5663                 er->extra_msr_access = check_msr(er->msr, 0x11UL);
5664                 /* Disable LBR select mapping */
5665                 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5666                         x86_pmu.lbr_sel_map = NULL;
5667         }
5668 }
5669
5670 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5671 {
5672         struct x86_hybrid_pmu *pmu;
5673         int i;
5674
5675         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5676                 pmu = &x86_pmu.hybrid_pmu[i];
5677
5678                 intel_pmu_check_num_counters(&pmu->num_counters,
5679                                              &pmu->num_counters_fixed,
5680                                              &pmu->intel_ctrl,
5681                                              fixed_mask);
5682
5683                 if (pmu->intel_cap.perf_metrics) {
5684                         pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5685                         pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5686                 }
5687
5688                 if (pmu->intel_cap.pebs_output_pt_available)
5689                         pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5690
5691                 intel_pmu_check_event_constraints(pmu->event_constraints,
5692                                                   pmu->num_counters,
5693                                                   pmu->num_counters_fixed,
5694                                                   pmu->intel_ctrl);
5695
5696                 intel_pmu_check_extra_regs(pmu->extra_regs);
5697         }
5698 }
5699
5700 __init int intel_pmu_init(void)
5701 {
5702         struct attribute **extra_skl_attr = &empty_attrs;
5703         struct attribute **extra_attr = &empty_attrs;
5704         struct attribute **td_attr    = &empty_attrs;
5705         struct attribute **mem_attr   = &empty_attrs;
5706         struct attribute **tsx_attr   = &empty_attrs;
5707         union cpuid10_edx edx;
5708         union cpuid10_eax eax;
5709         union cpuid10_ebx ebx;
5710         unsigned int fixed_mask;
5711         bool pmem = false;
5712         int version, i;
5713         char *name;
5714         struct x86_hybrid_pmu *pmu;
5715
5716         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5717                 switch (boot_cpu_data.x86) {
5718                 case 0x6:
5719                         return p6_pmu_init();
5720                 case 0xb:
5721                         return knc_pmu_init();
5722                 case 0xf:
5723                         return p4_pmu_init();
5724                 }
5725                 return -ENODEV;
5726         }
5727
5728         /*
5729          * Check whether the Architectural PerfMon supports
5730          * Branch Misses Retired hw_event or not.
5731          */
5732         cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5733         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5734                 return -ENODEV;
5735
5736         version = eax.split.version_id;
5737         if (version < 2)
5738                 x86_pmu = core_pmu;
5739         else
5740                 x86_pmu = intel_pmu;
5741
5742         x86_pmu.version                 = version;
5743         x86_pmu.num_counters            = eax.split.num_counters;
5744         x86_pmu.cntval_bits             = eax.split.bit_width;
5745         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
5746
5747         x86_pmu.events_maskl            = ebx.full;
5748         x86_pmu.events_mask_len         = eax.split.mask_length;
5749
5750         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5751         x86_pmu.pebs_capable            = PEBS_COUNTER_MASK;
5752
5753         /*
5754          * Quirk: v2 perfmon does not report fixed-purpose events, so
5755          * assume at least 3 events, when not running in a hypervisor:
5756          */
5757         if (version > 1 && version < 5) {
5758                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5759
5760                 x86_pmu.num_counters_fixed =
5761                         max((int)edx.split.num_counters_fixed, assume);
5762
5763                 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5764         } else if (version >= 5)
5765                 x86_pmu.num_counters_fixed = fls(fixed_mask);
5766
5767         if (boot_cpu_has(X86_FEATURE_PDCM)) {
5768                 u64 capabilities;
5769
5770                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5771                 x86_pmu.intel_cap.capabilities = capabilities;
5772         }
5773
5774         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5775                 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5776                 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5777         }
5778
5779         if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5780                 intel_pmu_arch_lbr_init();
5781
5782         intel_ds_init();
5783
5784         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5785
5786         if (version >= 5) {
5787                 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5788                 if (x86_pmu.intel_cap.anythread_deprecated)
5789                         pr_cont(" AnyThread deprecated, ");
5790         }
5791
5792         /*
5793          * Install the hw-cache-events table:
5794          */
5795         switch (boot_cpu_data.x86_model) {
5796         case INTEL_FAM6_CORE_YONAH:
5797                 pr_cont("Core events, ");
5798                 name = "core";
5799                 break;
5800
5801         case INTEL_FAM6_CORE2_MEROM:
5802                 x86_add_quirk(intel_clovertown_quirk);
5803                 fallthrough;
5804
5805         case INTEL_FAM6_CORE2_MEROM_L:
5806         case INTEL_FAM6_CORE2_PENRYN:
5807         case INTEL_FAM6_CORE2_DUNNINGTON:
5808                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5809                        sizeof(hw_cache_event_ids));
5810
5811                 intel_pmu_lbr_init_core();
5812
5813                 x86_pmu.event_constraints = intel_core2_event_constraints;
5814                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5815                 pr_cont("Core2 events, ");
5816                 name = "core2";
5817                 break;
5818
5819         case INTEL_FAM6_NEHALEM:
5820         case INTEL_FAM6_NEHALEM_EP:
5821         case INTEL_FAM6_NEHALEM_EX:
5822                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5823                        sizeof(hw_cache_event_ids));
5824                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5825                        sizeof(hw_cache_extra_regs));
5826
5827                 intel_pmu_lbr_init_nhm();
5828
5829                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
5830                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5831                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5832                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
5833                 x86_pmu.limit_period = nhm_limit_period;
5834
5835                 mem_attr = nhm_mem_events_attrs;
5836
5837                 /* UOPS_ISSUED.STALLED_CYCLES */
5838                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5839                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5840                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5841                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5842                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5843
5844                 intel_pmu_pebs_data_source_nhm();
5845                 x86_add_quirk(intel_nehalem_quirk);
5846                 x86_pmu.pebs_no_tlb = 1;
5847                 extra_attr = nhm_format_attr;
5848
5849                 pr_cont("Nehalem events, ");
5850                 name = "nehalem";
5851                 break;
5852
5853         case INTEL_FAM6_ATOM_BONNELL:
5854         case INTEL_FAM6_ATOM_BONNELL_MID:
5855         case INTEL_FAM6_ATOM_SALTWELL:
5856         case INTEL_FAM6_ATOM_SALTWELL_MID:
5857         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5858                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5859                        sizeof(hw_cache_event_ids));
5860
5861                 intel_pmu_lbr_init_atom();
5862
5863                 x86_pmu.event_constraints = intel_gen_event_constraints;
5864                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5865                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5866                 pr_cont("Atom events, ");
5867                 name = "bonnell";
5868                 break;
5869
5870         case INTEL_FAM6_ATOM_SILVERMONT:
5871         case INTEL_FAM6_ATOM_SILVERMONT_D:
5872         case INTEL_FAM6_ATOM_SILVERMONT_MID:
5873         case INTEL_FAM6_ATOM_AIRMONT:
5874         case INTEL_FAM6_ATOM_AIRMONT_MID:
5875                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5876                         sizeof(hw_cache_event_ids));
5877                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5878                        sizeof(hw_cache_extra_regs));
5879
5880                 intel_pmu_lbr_init_slm();
5881
5882                 x86_pmu.event_constraints = intel_slm_event_constraints;
5883                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5884                 x86_pmu.extra_regs = intel_slm_extra_regs;
5885                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5886                 td_attr = slm_events_attrs;
5887                 extra_attr = slm_format_attr;
5888                 pr_cont("Silvermont events, ");
5889                 name = "silvermont";
5890                 break;
5891
5892         case INTEL_FAM6_ATOM_GOLDMONT:
5893         case INTEL_FAM6_ATOM_GOLDMONT_D:
5894                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5895                        sizeof(hw_cache_event_ids));
5896                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5897                        sizeof(hw_cache_extra_regs));
5898
5899                 intel_pmu_lbr_init_skl();
5900
5901                 x86_pmu.event_constraints = intel_slm_event_constraints;
5902                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5903                 x86_pmu.extra_regs = intel_glm_extra_regs;
5904                 /*
5905                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5906                  * for precise cycles.
5907                  * :pp is identical to :ppp
5908                  */
5909                 x86_pmu.pebs_aliases = NULL;
5910                 x86_pmu.pebs_prec_dist = true;
5911                 x86_pmu.lbr_pt_coexist = true;
5912                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5913                 td_attr = glm_events_attrs;
5914                 extra_attr = slm_format_attr;
5915                 pr_cont("Goldmont events, ");
5916                 name = "goldmont";
5917                 break;
5918
5919         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5920                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5921                        sizeof(hw_cache_event_ids));
5922                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5923                        sizeof(hw_cache_extra_regs));
5924
5925                 intel_pmu_lbr_init_skl();
5926
5927                 x86_pmu.event_constraints = intel_slm_event_constraints;
5928                 x86_pmu.extra_regs = intel_glm_extra_regs;
5929                 /*
5930                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5931                  * for precise cycles.
5932                  */
5933                 x86_pmu.pebs_aliases = NULL;
5934                 x86_pmu.pebs_prec_dist = true;
5935                 x86_pmu.lbr_pt_coexist = true;
5936                 x86_pmu.pebs_capable = ~0ULL;
5937                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5938                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
5939                 x86_pmu.get_event_constraints = glp_get_event_constraints;
5940                 td_attr = glm_events_attrs;
5941                 /* Goldmont Plus has 4-wide pipeline */
5942                 event_attr_td_total_slots_scale_glm.event_str = "4";
5943                 extra_attr = slm_format_attr;
5944                 pr_cont("Goldmont plus events, ");
5945                 name = "goldmont_plus";
5946                 break;
5947
5948         case INTEL_FAM6_ATOM_TREMONT_D:
5949         case INTEL_FAM6_ATOM_TREMONT:
5950         case INTEL_FAM6_ATOM_TREMONT_L:
5951                 x86_pmu.late_ack = true;
5952                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5953                        sizeof(hw_cache_event_ids));
5954                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5955                        sizeof(hw_cache_extra_regs));
5956                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5957
5958                 intel_pmu_lbr_init_skl();
5959
5960                 x86_pmu.event_constraints = intel_slm_event_constraints;
5961                 x86_pmu.extra_regs = intel_tnt_extra_regs;
5962                 /*
5963                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5964                  * for precise cycles.
5965                  */
5966                 x86_pmu.pebs_aliases = NULL;
5967                 x86_pmu.pebs_prec_dist = true;
5968                 x86_pmu.lbr_pt_coexist = true;
5969                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5970                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
5971                 td_attr = tnt_events_attrs;
5972                 extra_attr = slm_format_attr;
5973                 pr_cont("Tremont events, ");
5974                 name = "Tremont";
5975                 break;
5976
5977         case INTEL_FAM6_WESTMERE:
5978         case INTEL_FAM6_WESTMERE_EP:
5979         case INTEL_FAM6_WESTMERE_EX:
5980                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5981                        sizeof(hw_cache_event_ids));
5982                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5983                        sizeof(hw_cache_extra_regs));
5984
5985                 intel_pmu_lbr_init_nhm();
5986
5987                 x86_pmu.event_constraints = intel_westmere_event_constraints;
5988                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5989                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5990                 x86_pmu.extra_regs = intel_westmere_extra_regs;
5991                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5992
5993                 mem_attr = nhm_mem_events_attrs;
5994
5995                 /* UOPS_ISSUED.STALLED_CYCLES */
5996                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5997                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5998                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5999                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6000                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
6001
6002                 intel_pmu_pebs_data_source_nhm();
6003                 extra_attr = nhm_format_attr;
6004                 pr_cont("Westmere events, ");
6005                 name = "westmere";
6006                 break;
6007
6008         case INTEL_FAM6_SANDYBRIDGE:
6009         case INTEL_FAM6_SANDYBRIDGE_X:
6010                 x86_add_quirk(intel_sandybridge_quirk);
6011                 x86_add_quirk(intel_ht_bug);
6012                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6013                        sizeof(hw_cache_event_ids));
6014                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6015                        sizeof(hw_cache_extra_regs));
6016
6017                 intel_pmu_lbr_init_snb();
6018
6019                 x86_pmu.event_constraints = intel_snb_event_constraints;
6020                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
6021                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
6022                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
6023                         x86_pmu.extra_regs = intel_snbep_extra_regs;
6024                 else
6025                         x86_pmu.extra_regs = intel_snb_extra_regs;
6026
6027
6028                 /* all extra regs are per-cpu when HT is on */
6029                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6030                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6031
6032                 td_attr  = snb_events_attrs;
6033                 mem_attr = snb_mem_events_attrs;
6034
6035                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6036                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6037                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6038                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
6039                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
6040                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
6041
6042                 extra_attr = nhm_format_attr;
6043
6044                 pr_cont("SandyBridge events, ");
6045                 name = "sandybridge";
6046                 break;
6047
6048         case INTEL_FAM6_IVYBRIDGE:
6049         case INTEL_FAM6_IVYBRIDGE_X:
6050                 x86_add_quirk(intel_ht_bug);
6051                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
6052                        sizeof(hw_cache_event_ids));
6053                 /* dTLB-load-misses on IVB is different than SNB */
6054                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
6055
6056                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
6057                        sizeof(hw_cache_extra_regs));
6058
6059                 intel_pmu_lbr_init_snb();
6060
6061                 x86_pmu.event_constraints = intel_ivb_event_constraints;
6062                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
6063                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6064                 x86_pmu.pebs_prec_dist = true;
6065                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
6066                         x86_pmu.extra_regs = intel_snbep_extra_regs;
6067                 else
6068                         x86_pmu.extra_regs = intel_snb_extra_regs;
6069                 /* all extra regs are per-cpu when HT is on */
6070                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6071                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6072
6073                 td_attr  = snb_events_attrs;
6074                 mem_attr = snb_mem_events_attrs;
6075
6076                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
6077                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
6078                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
6079
6080                 extra_attr = nhm_format_attr;
6081
6082                 pr_cont("IvyBridge events, ");
6083                 name = "ivybridge";
6084                 break;
6085
6086
6087         case INTEL_FAM6_HASWELL:
6088         case INTEL_FAM6_HASWELL_X:
6089         case INTEL_FAM6_HASWELL_L:
6090         case INTEL_FAM6_HASWELL_G:
6091                 x86_add_quirk(intel_ht_bug);
6092                 x86_add_quirk(intel_pebs_isolation_quirk);
6093                 x86_pmu.late_ack = true;
6094                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6095                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6096
6097                 intel_pmu_lbr_init_hsw();
6098
6099                 x86_pmu.event_constraints = intel_hsw_event_constraints;
6100                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
6101                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6102                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6103                 x86_pmu.pebs_prec_dist = true;
6104                 /* all extra regs are per-cpu when HT is on */
6105                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6106                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6107
6108                 x86_pmu.hw_config = hsw_hw_config;
6109                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6110                 x86_pmu.lbr_double_abort = true;
6111                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6112                         hsw_format_attr : nhm_format_attr;
6113                 td_attr  = hsw_events_attrs;
6114                 mem_attr = hsw_mem_events_attrs;
6115                 tsx_attr = hsw_tsx_events_attrs;
6116                 pr_cont("Haswell events, ");
6117                 name = "haswell";
6118                 break;
6119
6120         case INTEL_FAM6_BROADWELL:
6121         case INTEL_FAM6_BROADWELL_D:
6122         case INTEL_FAM6_BROADWELL_G:
6123         case INTEL_FAM6_BROADWELL_X:
6124                 x86_add_quirk(intel_pebs_isolation_quirk);
6125                 x86_pmu.late_ack = true;
6126                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6127                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6128
6129                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
6130                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
6131                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
6132                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
6133                                                                           HSW_SNOOP_DRAM;
6134                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
6135                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6136                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
6137                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
6138
6139                 intel_pmu_lbr_init_hsw();
6140
6141                 x86_pmu.event_constraints = intel_bdw_event_constraints;
6142                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
6143                 x86_pmu.extra_regs = intel_snbep_extra_regs;
6144                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
6145                 x86_pmu.pebs_prec_dist = true;
6146                 /* all extra regs are per-cpu when HT is on */
6147                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6148                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6149
6150                 x86_pmu.hw_config = hsw_hw_config;
6151                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6152                 x86_pmu.limit_period = bdw_limit_period;
6153                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6154                         hsw_format_attr : nhm_format_attr;
6155                 td_attr  = hsw_events_attrs;
6156                 mem_attr = hsw_mem_events_attrs;
6157                 tsx_attr = hsw_tsx_events_attrs;
6158                 pr_cont("Broadwell events, ");
6159                 name = "broadwell";
6160                 break;
6161
6162         case INTEL_FAM6_XEON_PHI_KNL:
6163         case INTEL_FAM6_XEON_PHI_KNM:
6164                 memcpy(hw_cache_event_ids,
6165                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6166                 memcpy(hw_cache_extra_regs,
6167                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6168                 intel_pmu_lbr_init_knl();
6169
6170                 x86_pmu.event_constraints = intel_slm_event_constraints;
6171                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6172                 x86_pmu.extra_regs = intel_knl_extra_regs;
6173
6174                 /* all extra regs are per-cpu when HT is on */
6175                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6176                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6177                 extra_attr = slm_format_attr;
6178                 pr_cont("Knights Landing/Mill events, ");
6179                 name = "knights-landing";
6180                 break;
6181
6182         case INTEL_FAM6_SKYLAKE_X:
6183                 pmem = true;
6184                 fallthrough;
6185         case INTEL_FAM6_SKYLAKE_L:
6186         case INTEL_FAM6_SKYLAKE:
6187         case INTEL_FAM6_KABYLAKE_L:
6188         case INTEL_FAM6_KABYLAKE:
6189         case INTEL_FAM6_COMETLAKE_L:
6190         case INTEL_FAM6_COMETLAKE:
6191                 x86_add_quirk(intel_pebs_isolation_quirk);
6192                 x86_pmu.late_ack = true;
6193                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6194                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6195                 intel_pmu_lbr_init_skl();
6196
6197                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6198                 event_attr_td_recovery_bubbles.event_str_noht =
6199                         "event=0xd,umask=0x1,cmask=1";
6200                 event_attr_td_recovery_bubbles.event_str_ht =
6201                         "event=0xd,umask=0x1,cmask=1,any=1";
6202
6203                 x86_pmu.event_constraints = intel_skl_event_constraints;
6204                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6205                 x86_pmu.extra_regs = intel_skl_extra_regs;
6206                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6207                 x86_pmu.pebs_prec_dist = true;
6208                 /* all extra regs are per-cpu when HT is on */
6209                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6210                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6211
6212                 x86_pmu.hw_config = hsw_hw_config;
6213                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6214                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6215                         hsw_format_attr : nhm_format_attr;
6216                 extra_skl_attr = skl_format_attr;
6217                 td_attr  = hsw_events_attrs;
6218                 mem_attr = hsw_mem_events_attrs;
6219                 tsx_attr = hsw_tsx_events_attrs;
6220                 intel_pmu_pebs_data_source_skl(pmem);
6221
6222                 /*
6223                  * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6224                  * TSX force abort hooks are not required on these systems. Only deploy
6225                  * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6226                  */
6227                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6228                    !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6229                         x86_pmu.flags |= PMU_FL_TFA;
6230                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
6231                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6232                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6233                 }
6234
6235                 pr_cont("Skylake events, ");
6236                 name = "skylake";
6237                 break;
6238
6239         case INTEL_FAM6_ICELAKE_X:
6240         case INTEL_FAM6_ICELAKE_D:
6241                 x86_pmu.pebs_ept = 1;
6242                 pmem = true;
6243                 fallthrough;
6244         case INTEL_FAM6_ICELAKE_L:
6245         case INTEL_FAM6_ICELAKE:
6246         case INTEL_FAM6_TIGERLAKE_L:
6247         case INTEL_FAM6_TIGERLAKE:
6248         case INTEL_FAM6_ROCKETLAKE:
6249                 x86_pmu.late_ack = true;
6250                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6251                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6252                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6253                 intel_pmu_lbr_init_skl();
6254
6255                 x86_pmu.event_constraints = intel_icl_event_constraints;
6256                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6257                 x86_pmu.extra_regs = intel_icl_extra_regs;
6258                 x86_pmu.pebs_aliases = NULL;
6259                 x86_pmu.pebs_prec_dist = true;
6260                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6261                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6262
6263                 x86_pmu.hw_config = hsw_hw_config;
6264                 x86_pmu.get_event_constraints = icl_get_event_constraints;
6265                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6266                         hsw_format_attr : nhm_format_attr;
6267                 extra_skl_attr = skl_format_attr;
6268                 mem_attr = icl_events_attrs;
6269                 td_attr = icl_td_events_attrs;
6270                 tsx_attr = icl_tsx_events_attrs;
6271                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6272                 x86_pmu.lbr_pt_coexist = true;
6273                 intel_pmu_pebs_data_source_skl(pmem);
6274                 x86_pmu.num_topdown_events = 4;
6275                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6276                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6277                 pr_cont("Icelake events, ");
6278                 name = "icelake";
6279                 break;
6280
6281         case INTEL_FAM6_SAPPHIRERAPIDS_X:
6282                 pmem = true;
6283                 x86_pmu.late_ack = true;
6284                 memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6285                 memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6286
6287                 x86_pmu.event_constraints = intel_spr_event_constraints;
6288                 x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6289                 x86_pmu.extra_regs = intel_spr_extra_regs;
6290                 x86_pmu.limit_period = spr_limit_period;
6291                 x86_pmu.pebs_aliases = NULL;
6292                 x86_pmu.pebs_prec_dist = true;
6293                 x86_pmu.pebs_block = true;
6294                 x86_pmu.pebs_capable = ~0ULL;
6295                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6296                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6297                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6298                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6299                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6300
6301                 x86_pmu.hw_config = hsw_hw_config;
6302                 x86_pmu.get_event_constraints = spr_get_event_constraints;
6303                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6304                         hsw_format_attr : nhm_format_attr;
6305                 extra_skl_attr = skl_format_attr;
6306                 mem_attr = spr_events_attrs;
6307                 td_attr = spr_td_events_attrs;
6308                 tsx_attr = spr_tsx_events_attrs;
6309                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6310                 x86_pmu.lbr_pt_coexist = true;
6311                 intel_pmu_pebs_data_source_skl(pmem);
6312                 x86_pmu.num_topdown_events = 8;
6313                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6314                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6315                 pr_cont("Sapphire Rapids events, ");
6316                 name = "sapphire_rapids";
6317                 break;
6318
6319         case INTEL_FAM6_ALDERLAKE:
6320         case INTEL_FAM6_ALDERLAKE_L:
6321         case INTEL_FAM6_ALDERLAKE_N:
6322         case INTEL_FAM6_RAPTORLAKE:
6323         case INTEL_FAM6_RAPTORLAKE_P:
6324                 /*
6325                  * Alder Lake has 2 types of CPU, core and atom.
6326                  *
6327                  * Initialize the common PerfMon capabilities here.
6328                  */
6329                 x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6330                                              sizeof(struct x86_hybrid_pmu),
6331                                              GFP_KERNEL);
6332                 if (!x86_pmu.hybrid_pmu)
6333                         return -ENOMEM;
6334                 static_branch_enable(&perf_is_hybrid);
6335                 x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6336
6337                 x86_pmu.pebs_aliases = NULL;
6338                 x86_pmu.pebs_prec_dist = true;
6339                 x86_pmu.pebs_block = true;
6340                 x86_pmu.pebs_capable = ~0ULL;
6341                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6342                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6343                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6344                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6345                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6346                 x86_pmu.lbr_pt_coexist = true;
6347                 intel_pmu_pebs_data_source_skl(false);
6348                 x86_pmu.num_topdown_events = 8;
6349                 x86_pmu.update_topdown_event = adl_update_topdown_event;
6350                 x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6351
6352                 x86_pmu.filter_match = intel_pmu_filter_match;
6353                 x86_pmu.get_event_constraints = adl_get_event_constraints;
6354                 x86_pmu.hw_config = adl_hw_config;
6355                 x86_pmu.limit_period = spr_limit_period;
6356                 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6357                 /*
6358                  * The rtm_abort_event is used to check whether to enable GPRs
6359                  * for the RTM abort event. Atom doesn't have the RTM abort
6360                  * event. There is no harmful to set it in the common
6361                  * x86_pmu.rtm_abort_event.
6362                  */
6363                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6364
6365                 td_attr = adl_hybrid_events_attrs;
6366                 mem_attr = adl_hybrid_mem_attrs;
6367                 tsx_attr = adl_hybrid_tsx_attrs;
6368                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6369                         adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6370
6371                 /* Initialize big core specific PerfMon capabilities.*/
6372                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6373                 pmu->name = "cpu_core";
6374                 pmu->cpu_type = hybrid_big;
6375                 pmu->late_ack = true;
6376                 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6377                         pmu->num_counters = x86_pmu.num_counters + 2;
6378                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6379                 } else {
6380                         pmu->num_counters = x86_pmu.num_counters;
6381                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6382                 }
6383
6384                 /*
6385                  * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6386                  * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6387                  * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6388                  * mistakenly add extra counters for P-cores. Correct the number of
6389                  * counters here.
6390                  */
6391                 if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6392                         pmu->num_counters = x86_pmu.num_counters;
6393                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6394                 }
6395
6396                 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6397                 pmu->unconstrained = (struct event_constraint)
6398                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6399                                                            0, pmu->num_counters, 0, 0);
6400                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6401                 pmu->intel_cap.perf_metrics = 1;
6402                 pmu->intel_cap.pebs_output_pt_available = 0;
6403
6404                 memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6405                 memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6406                 pmu->event_constraints = intel_spr_event_constraints;
6407                 pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6408                 pmu->extra_regs = intel_spr_extra_regs;
6409
6410                 /* Initialize Atom core specific PerfMon capabilities.*/
6411                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6412                 pmu->name = "cpu_atom";
6413                 pmu->cpu_type = hybrid_small;
6414                 pmu->mid_ack = true;
6415                 pmu->num_counters = x86_pmu.num_counters;
6416                 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6417                 pmu->max_pebs_events = x86_pmu.max_pebs_events;
6418                 pmu->unconstrained = (struct event_constraint)
6419                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6420                                                            0, pmu->num_counters, 0, 0);
6421                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6422                 pmu->intel_cap.perf_metrics = 0;
6423                 pmu->intel_cap.pebs_output_pt_available = 1;
6424
6425                 memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6426                 memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6427                 pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6428                 pmu->event_constraints = intel_slm_event_constraints;
6429                 pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6430                 pmu->extra_regs = intel_grt_extra_regs;
6431                 pr_cont("Alderlake Hybrid events, ");
6432                 name = "alderlake_hybrid";
6433                 break;
6434
6435         default:
6436                 switch (x86_pmu.version) {
6437                 case 1:
6438                         x86_pmu.event_constraints = intel_v1_event_constraints;
6439                         pr_cont("generic architected perfmon v1, ");
6440                         name = "generic_arch_v1";
6441                         break;
6442                 case 2:
6443                 case 3:
6444                 case 4:
6445                         /*
6446                          * default constraints for v2 and up
6447                          */
6448                         x86_pmu.event_constraints = intel_gen_event_constraints;
6449                         pr_cont("generic architected perfmon, ");
6450                         name = "generic_arch_v2+";
6451                         break;
6452                 default:
6453                         /*
6454                          * The default constraints for v5 and up can support up to
6455                          * 16 fixed counters. For the fixed counters 4 and later,
6456                          * the pseudo-encoding is applied.
6457                          * The constraints may be cut according to the CPUID enumeration
6458                          * by inserting the EVENT_CONSTRAINT_END.
6459                          */
6460                         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED)
6461                                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
6462                         intel_v5_gen_event_constraints[x86_pmu.num_counters_fixed].weight = -1;
6463                         x86_pmu.event_constraints = intel_v5_gen_event_constraints;
6464                         pr_cont("generic architected perfmon, ");
6465                         name = "generic_arch_v5+";
6466                         break;
6467                 }
6468         }
6469
6470         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6471
6472         if (!is_hybrid()) {
6473                 group_events_td.attrs  = td_attr;
6474                 group_events_mem.attrs = mem_attr;
6475                 group_events_tsx.attrs = tsx_attr;
6476                 group_format_extra.attrs = extra_attr;
6477                 group_format_extra_skl.attrs = extra_skl_attr;
6478
6479                 x86_pmu.attr_update = attr_update;
6480         } else {
6481                 hybrid_group_events_td.attrs  = td_attr;
6482                 hybrid_group_events_mem.attrs = mem_attr;
6483                 hybrid_group_events_tsx.attrs = tsx_attr;
6484                 hybrid_group_format_extra.attrs = extra_attr;
6485
6486                 x86_pmu.attr_update = hybrid_attr_update;
6487         }
6488
6489         intel_pmu_check_num_counters(&x86_pmu.num_counters,
6490                                      &x86_pmu.num_counters_fixed,
6491                                      &x86_pmu.intel_ctrl,
6492                                      (u64)fixed_mask);
6493
6494         /* AnyThread may be deprecated on arch perfmon v5 or later */
6495         if (x86_pmu.intel_cap.anythread_deprecated)
6496                 x86_pmu.format_attrs = intel_arch_formats_attr;
6497
6498         intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6499                                           x86_pmu.num_counters,
6500                                           x86_pmu.num_counters_fixed,
6501                                           x86_pmu.intel_ctrl);
6502         /*
6503          * Access LBR MSR may cause #GP under certain circumstances.
6504          * E.g. KVM doesn't support LBR MSR
6505          * Check all LBT MSR here.
6506          * Disable LBR access if any LBR MSRs can not be accessed.
6507          */
6508         if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6509                 x86_pmu.lbr_nr = 0;
6510         for (i = 0; i < x86_pmu.lbr_nr; i++) {
6511                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6512                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6513                         x86_pmu.lbr_nr = 0;
6514         }
6515
6516         if (x86_pmu.lbr_nr) {
6517                 intel_pmu_lbr_init();
6518
6519                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6520
6521                 /* only support branch_stack snapshot for perfmon >= v2 */
6522                 if (x86_pmu.disable_all == intel_pmu_disable_all) {
6523                         if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6524                                 static_call_update(perf_snapshot_branch_stack,
6525                                                    intel_pmu_snapshot_arch_branch_stack);
6526                         } else {
6527                                 static_call_update(perf_snapshot_branch_stack,
6528                                                    intel_pmu_snapshot_branch_stack);
6529                         }
6530                 }
6531         }
6532
6533         intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6534
6535         /* Support full width counters using alternative MSR range */
6536         if (x86_pmu.intel_cap.full_width_write) {
6537                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6538                 x86_pmu.perfctr = MSR_IA32_PMC0;
6539                 pr_cont("full-width counters, ");
6540         }
6541
6542         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6543                 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6544
6545         if (is_hybrid())
6546                 intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6547
6548         intel_aux_output_init();
6549
6550         return 0;
6551 }
6552
6553 /*
6554  * HT bug: phase 2 init
6555  * Called once we have valid topology information to check
6556  * whether or not HT is enabled
6557  * If HT is off, then we disable the workaround
6558  */
6559 static __init int fixup_ht_bug(void)
6560 {
6561         int c;
6562         /*
6563          * problem not present on this CPU model, nothing to do
6564          */
6565         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6566                 return 0;
6567
6568         if (topology_max_smt_threads() > 1) {
6569                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6570                 return 0;
6571         }
6572
6573         cpus_read_lock();
6574
6575         hardlockup_detector_perf_stop();
6576
6577         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6578
6579         x86_pmu.start_scheduling = NULL;
6580         x86_pmu.commit_scheduling = NULL;
6581         x86_pmu.stop_scheduling = NULL;
6582
6583         hardlockup_detector_perf_restart();
6584
6585         for_each_online_cpu(c)
6586                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6587
6588         cpus_read_unlock();
6589         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6590         return 0;
6591 }
6592 subsys_initcall(fixup_ht_bug)