perf: Enable branch record for software events
[linux-2.6-microblaze.git] / arch / x86 / events / intel / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24
25 #include "../perf_event.h"
26
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
33         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
34         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
35         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
36         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
37         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
38         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
39         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
40 };
41
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50         EVENT_CONSTRAINT_END
51 };
52
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68         EVENT_CONSTRAINT_END
69 };
70
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84         EVENT_CONSTRAINT_END
85 };
86
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92         EVENT_EXTRA_END
93 };
94
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104         EVENT_CONSTRAINT_END
105 };
106
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121
122         /*
123          * When HT is off these events can only run on the bottom 4 counters
124          * When HT is on, they are impacted by the HT bug and require EXCL access
125          */
126         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130
131         EVENT_CONSTRAINT_END
132 };
133
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
141         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149
150         /*
151          * When HT is off these events can only run on the bottom 4 counters
152          * When HT is on, they are impacted by the HT bug and require EXCL access
153          */
154         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158
159         EVENT_CONSTRAINT_END
160 };
161
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168         EVENT_EXTRA_END
169 };
170
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173         EVENT_CONSTRAINT_END
174 };
175
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181         EVENT_CONSTRAINT_END
182 };
183
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189         EVENT_CONSTRAINT_END
190 };
191
192 static struct event_constraint intel_skl_event_constraints[] = {
193         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
194         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
195         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
196         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
197
198         /*
199          * when HT is off, these can only run on the bottom 4 counters
200          */
201         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
203         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
204         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
205         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
206
207         EVENT_CONSTRAINT_END
208 };
209
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213         EVENT_EXTRA_END
214 };
215
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221         EVENT_EXTRA_END
222 };
223
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229         EVENT_EXTRA_END
230 };
231
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236         /*
237          * Note the low 8 bits eventsel code is not a continuous field, containing
238          * some #GPing bits. These are masked out.
239          */
240         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241         EVENT_EXTRA_END
242 };
243
244 static struct event_constraint intel_icl_event_constraints[] = {
245         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
246         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* INST_RETIRED.PREC_DIST */
247         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
248         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
249         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
250         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
251         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
252         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
253         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
254         INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
255         INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
256         INTEL_EVENT_CONSTRAINT(0x32, 0xf),      /* SW_PREFETCH_ACCESS.* */
257         INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x54, 0xf),
258         INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
259         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
260         INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
261         INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
262         INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
263         INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
264         INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
265         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
266         INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
267         EVENT_CONSTRAINT_END
268 };
269
270 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
271         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
272         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
273         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
274         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
275         EVENT_EXTRA_END
276 };
277
278 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
279         INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
280         INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
281         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
282         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
283         INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
284         INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
285         EVENT_EXTRA_END
286 };
287
288 static struct event_constraint intel_spr_event_constraints[] = {
289         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
290         FIXED_EVENT_CONSTRAINT(0x01c0, 0),      /* INST_RETIRED.PREC_DIST */
291         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
292         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
293         FIXED_EVENT_CONSTRAINT(0x0400, 3),      /* SLOTS */
294         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
295         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
296         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
297         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
298         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
299         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
300         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
301         METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
302
303         INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
304         INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
305         /*
306          * Generally event codes < 0x90 are restricted to counters 0-3.
307          * The 0x2E and 0x3C are exception, which has no restriction.
308          */
309         INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
310
311         INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
312         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
313         INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
314         INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
315         INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
316         INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
317         INTEL_EVENT_CONSTRAINT(0xce, 0x1),
318         INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
319         /*
320          * Generally event codes >= 0x90 are likely to have no restrictions.
321          * The exception are defined as above.
322          */
323         INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
324
325         EVENT_CONSTRAINT_END
326 };
327
328
329 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
330 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
331 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
332
333 static struct attribute *nhm_mem_events_attrs[] = {
334         EVENT_PTR(mem_ld_nhm),
335         NULL,
336 };
337
338 /*
339  * topdown events for Intel Core CPUs.
340  *
341  * The events are all in slots, which is a free slot in a 4 wide
342  * pipeline. Some events are already reported in slots, for cycle
343  * events we multiply by the pipeline width (4).
344  *
345  * With Hyper Threading on, topdown metrics are either summed or averaged
346  * between the threads of a core: (count_t0 + count_t1).
347  *
348  * For the average case the metric is always scaled to pipeline width,
349  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
350  */
351
352 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
353         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
354         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
355 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
356 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
357         "event=0xe,umask=0x1");                 /* uops_issued.any */
358 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
359         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
360 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
361         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
362 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
363         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
364         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
365 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
366         "4", "2");
367
368 EVENT_ATTR_STR(slots,                   slots,                  "event=0x00,umask=0x4");
369 EVENT_ATTR_STR(topdown-retiring,        td_retiring,            "event=0x00,umask=0x80");
370 EVENT_ATTR_STR(topdown-bad-spec,        td_bad_spec,            "event=0x00,umask=0x81");
371 EVENT_ATTR_STR(topdown-fe-bound,        td_fe_bound,            "event=0x00,umask=0x82");
372 EVENT_ATTR_STR(topdown-be-bound,        td_be_bound,            "event=0x00,umask=0x83");
373 EVENT_ATTR_STR(topdown-heavy-ops,       td_heavy_ops,           "event=0x00,umask=0x84");
374 EVENT_ATTR_STR(topdown-br-mispredict,   td_br_mispredict,       "event=0x00,umask=0x85");
375 EVENT_ATTR_STR(topdown-fetch-lat,       td_fetch_lat,           "event=0x00,umask=0x86");
376 EVENT_ATTR_STR(topdown-mem-bound,       td_mem_bound,           "event=0x00,umask=0x87");
377
378 static struct attribute *snb_events_attrs[] = {
379         EVENT_PTR(td_slots_issued),
380         EVENT_PTR(td_slots_retired),
381         EVENT_PTR(td_fetch_bubbles),
382         EVENT_PTR(td_total_slots),
383         EVENT_PTR(td_total_slots_scale),
384         EVENT_PTR(td_recovery_bubbles),
385         EVENT_PTR(td_recovery_bubbles_scale),
386         NULL,
387 };
388
389 static struct attribute *snb_mem_events_attrs[] = {
390         EVENT_PTR(mem_ld_snb),
391         EVENT_PTR(mem_st_snb),
392         NULL,
393 };
394
395 static struct event_constraint intel_hsw_event_constraints[] = {
396         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
397         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
398         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
399         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
400         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
401         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
402         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
403         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
404         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
405         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
406         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
407         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
408
409         /*
410          * When HT is off these events can only run on the bottom 4 counters
411          * When HT is on, they are impacted by the HT bug and require EXCL access
412          */
413         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
414         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
415         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
416         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
417
418         EVENT_CONSTRAINT_END
419 };
420
421 static struct event_constraint intel_bdw_event_constraints[] = {
422         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
423         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
424         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
425         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
426         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
427         /*
428          * when HT is off, these can only run on the bottom 4 counters
429          */
430         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
431         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
432         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
433         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
434         EVENT_CONSTRAINT_END
435 };
436
437 static u64 intel_pmu_event_map(int hw_event)
438 {
439         return intel_perfmon_event_map[hw_event];
440 }
441
442 static __initconst const u64 spr_hw_cache_event_ids
443                                 [PERF_COUNT_HW_CACHE_MAX]
444                                 [PERF_COUNT_HW_CACHE_OP_MAX]
445                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
446 {
447  [ C(L1D ) ] = {
448         [ C(OP_READ) ] = {
449                 [ C(RESULT_ACCESS) ] = 0x81d0,
450                 [ C(RESULT_MISS)   ] = 0xe124,
451         },
452         [ C(OP_WRITE) ] = {
453                 [ C(RESULT_ACCESS) ] = 0x82d0,
454         },
455  },
456  [ C(L1I ) ] = {
457         [ C(OP_READ) ] = {
458                 [ C(RESULT_MISS)   ] = 0xe424,
459         },
460         [ C(OP_WRITE) ] = {
461                 [ C(RESULT_ACCESS) ] = -1,
462                 [ C(RESULT_MISS)   ] = -1,
463         },
464  },
465  [ C(LL  ) ] = {
466         [ C(OP_READ) ] = {
467                 [ C(RESULT_ACCESS) ] = 0x12a,
468                 [ C(RESULT_MISS)   ] = 0x12a,
469         },
470         [ C(OP_WRITE) ] = {
471                 [ C(RESULT_ACCESS) ] = 0x12a,
472                 [ C(RESULT_MISS)   ] = 0x12a,
473         },
474  },
475  [ C(DTLB) ] = {
476         [ C(OP_READ) ] = {
477                 [ C(RESULT_ACCESS) ] = 0x81d0,
478                 [ C(RESULT_MISS)   ] = 0xe12,
479         },
480         [ C(OP_WRITE) ] = {
481                 [ C(RESULT_ACCESS) ] = 0x82d0,
482                 [ C(RESULT_MISS)   ] = 0xe13,
483         },
484  },
485  [ C(ITLB) ] = {
486         [ C(OP_READ) ] = {
487                 [ C(RESULT_ACCESS) ] = -1,
488                 [ C(RESULT_MISS)   ] = 0xe11,
489         },
490         [ C(OP_WRITE) ] = {
491                 [ C(RESULT_ACCESS) ] = -1,
492                 [ C(RESULT_MISS)   ] = -1,
493         },
494         [ C(OP_PREFETCH) ] = {
495                 [ C(RESULT_ACCESS) ] = -1,
496                 [ C(RESULT_MISS)   ] = -1,
497         },
498  },
499  [ C(BPU ) ] = {
500         [ C(OP_READ) ] = {
501                 [ C(RESULT_ACCESS) ] = 0x4c4,
502                 [ C(RESULT_MISS)   ] = 0x4c5,
503         },
504         [ C(OP_WRITE) ] = {
505                 [ C(RESULT_ACCESS) ] = -1,
506                 [ C(RESULT_MISS)   ] = -1,
507         },
508         [ C(OP_PREFETCH) ] = {
509                 [ C(RESULT_ACCESS) ] = -1,
510                 [ C(RESULT_MISS)   ] = -1,
511         },
512  },
513  [ C(NODE) ] = {
514         [ C(OP_READ) ] = {
515                 [ C(RESULT_ACCESS) ] = 0x12a,
516                 [ C(RESULT_MISS)   ] = 0x12a,
517         },
518  },
519 };
520
521 static __initconst const u64 spr_hw_cache_extra_regs
522                                 [PERF_COUNT_HW_CACHE_MAX]
523                                 [PERF_COUNT_HW_CACHE_OP_MAX]
524                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
525 {
526  [ C(LL  ) ] = {
527         [ C(OP_READ) ] = {
528                 [ C(RESULT_ACCESS) ] = 0x10001,
529                 [ C(RESULT_MISS)   ] = 0x3fbfc00001,
530         },
531         [ C(OP_WRITE) ] = {
532                 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
533                 [ C(RESULT_MISS)   ] = 0x3f3fc00002,
534         },
535  },
536  [ C(NODE) ] = {
537         [ C(OP_READ) ] = {
538                 [ C(RESULT_ACCESS) ] = 0x10c000001,
539                 [ C(RESULT_MISS)   ] = 0x3fb3000001,
540         },
541  },
542 };
543
544 /*
545  * Notes on the events:
546  * - data reads do not include code reads (comparable to earlier tables)
547  * - data counts include speculative execution (except L1 write, dtlb, bpu)
548  * - remote node access includes remote memory, remote cache, remote mmio.
549  * - prefetches are not included in the counts.
550  * - icache miss does not include decoded icache
551  */
552
553 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
554 #define SKL_DEMAND_RFO                  BIT_ULL(1)
555 #define SKL_ANY_RESPONSE                BIT_ULL(16)
556 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
557 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
558 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
559 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
560 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
561 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
562                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
563                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
564                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
565 #define SKL_SPL_HIT                     BIT_ULL(30)
566 #define SKL_SNOOP_NONE                  BIT_ULL(31)
567 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
568 #define SKL_SNOOP_MISS                  BIT_ULL(33)
569 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
570 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
571 #define SKL_SNOOP_HITM                  BIT_ULL(36)
572 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
573 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
574                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
575                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
576                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
577 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
578 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
579                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
580                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
581                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
582 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
583 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
584 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
585                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
586                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
587
588 static __initconst const u64 skl_hw_cache_event_ids
589                                 [PERF_COUNT_HW_CACHE_MAX]
590                                 [PERF_COUNT_HW_CACHE_OP_MAX]
591                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
592 {
593  [ C(L1D ) ] = {
594         [ C(OP_READ) ] = {
595                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
596                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
597         },
598         [ C(OP_WRITE) ] = {
599                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
600                 [ C(RESULT_MISS)   ] = 0x0,
601         },
602         [ C(OP_PREFETCH) ] = {
603                 [ C(RESULT_ACCESS) ] = 0x0,
604                 [ C(RESULT_MISS)   ] = 0x0,
605         },
606  },
607  [ C(L1I ) ] = {
608         [ C(OP_READ) ] = {
609                 [ C(RESULT_ACCESS) ] = 0x0,
610                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
611         },
612         [ C(OP_WRITE) ] = {
613                 [ C(RESULT_ACCESS) ] = -1,
614                 [ C(RESULT_MISS)   ] = -1,
615         },
616         [ C(OP_PREFETCH) ] = {
617                 [ C(RESULT_ACCESS) ] = 0x0,
618                 [ C(RESULT_MISS)   ] = 0x0,
619         },
620  },
621  [ C(LL  ) ] = {
622         [ C(OP_READ) ] = {
623                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
624                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
625         },
626         [ C(OP_WRITE) ] = {
627                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
628                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
629         },
630         [ C(OP_PREFETCH) ] = {
631                 [ C(RESULT_ACCESS) ] = 0x0,
632                 [ C(RESULT_MISS)   ] = 0x0,
633         },
634  },
635  [ C(DTLB) ] = {
636         [ C(OP_READ) ] = {
637                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
638                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
639         },
640         [ C(OP_WRITE) ] = {
641                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
642                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
643         },
644         [ C(OP_PREFETCH) ] = {
645                 [ C(RESULT_ACCESS) ] = 0x0,
646                 [ C(RESULT_MISS)   ] = 0x0,
647         },
648  },
649  [ C(ITLB) ] = {
650         [ C(OP_READ) ] = {
651                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
652                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
653         },
654         [ C(OP_WRITE) ] = {
655                 [ C(RESULT_ACCESS) ] = -1,
656                 [ C(RESULT_MISS)   ] = -1,
657         },
658         [ C(OP_PREFETCH) ] = {
659                 [ C(RESULT_ACCESS) ] = -1,
660                 [ C(RESULT_MISS)   ] = -1,
661         },
662  },
663  [ C(BPU ) ] = {
664         [ C(OP_READ) ] = {
665                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
666                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
667         },
668         [ C(OP_WRITE) ] = {
669                 [ C(RESULT_ACCESS) ] = -1,
670                 [ C(RESULT_MISS)   ] = -1,
671         },
672         [ C(OP_PREFETCH) ] = {
673                 [ C(RESULT_ACCESS) ] = -1,
674                 [ C(RESULT_MISS)   ] = -1,
675         },
676  },
677  [ C(NODE) ] = {
678         [ C(OP_READ) ] = {
679                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
680                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
681         },
682         [ C(OP_WRITE) ] = {
683                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
684                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
685         },
686         [ C(OP_PREFETCH) ] = {
687                 [ C(RESULT_ACCESS) ] = 0x0,
688                 [ C(RESULT_MISS)   ] = 0x0,
689         },
690  },
691 };
692
693 static __initconst const u64 skl_hw_cache_extra_regs
694                                 [PERF_COUNT_HW_CACHE_MAX]
695                                 [PERF_COUNT_HW_CACHE_OP_MAX]
696                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
697 {
698  [ C(LL  ) ] = {
699         [ C(OP_READ) ] = {
700                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
701                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
702                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
703                                        SKL_L3_MISS|SKL_ANY_SNOOP|
704                                        SKL_SUPPLIER_NONE,
705         },
706         [ C(OP_WRITE) ] = {
707                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
708                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
709                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
710                                        SKL_L3_MISS|SKL_ANY_SNOOP|
711                                        SKL_SUPPLIER_NONE,
712         },
713         [ C(OP_PREFETCH) ] = {
714                 [ C(RESULT_ACCESS) ] = 0x0,
715                 [ C(RESULT_MISS)   ] = 0x0,
716         },
717  },
718  [ C(NODE) ] = {
719         [ C(OP_READ) ] = {
720                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
721                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
722                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
723                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
724         },
725         [ C(OP_WRITE) ] = {
726                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
727                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
728                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
729                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
730         },
731         [ C(OP_PREFETCH) ] = {
732                 [ C(RESULT_ACCESS) ] = 0x0,
733                 [ C(RESULT_MISS)   ] = 0x0,
734         },
735  },
736 };
737
738 #define SNB_DMND_DATA_RD        (1ULL << 0)
739 #define SNB_DMND_RFO            (1ULL << 1)
740 #define SNB_DMND_IFETCH         (1ULL << 2)
741 #define SNB_DMND_WB             (1ULL << 3)
742 #define SNB_PF_DATA_RD          (1ULL << 4)
743 #define SNB_PF_RFO              (1ULL << 5)
744 #define SNB_PF_IFETCH           (1ULL << 6)
745 #define SNB_LLC_DATA_RD         (1ULL << 7)
746 #define SNB_LLC_RFO             (1ULL << 8)
747 #define SNB_LLC_IFETCH          (1ULL << 9)
748 #define SNB_BUS_LOCKS           (1ULL << 10)
749 #define SNB_STRM_ST             (1ULL << 11)
750 #define SNB_OTHER               (1ULL << 15)
751 #define SNB_RESP_ANY            (1ULL << 16)
752 #define SNB_NO_SUPP             (1ULL << 17)
753 #define SNB_LLC_HITM            (1ULL << 18)
754 #define SNB_LLC_HITE            (1ULL << 19)
755 #define SNB_LLC_HITS            (1ULL << 20)
756 #define SNB_LLC_HITF            (1ULL << 21)
757 #define SNB_LOCAL               (1ULL << 22)
758 #define SNB_REMOTE              (0xffULL << 23)
759 #define SNB_SNP_NONE            (1ULL << 31)
760 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
761 #define SNB_SNP_MISS            (1ULL << 33)
762 #define SNB_NO_FWD              (1ULL << 34)
763 #define SNB_SNP_FWD             (1ULL << 35)
764 #define SNB_HITM                (1ULL << 36)
765 #define SNB_NON_DRAM            (1ULL << 37)
766
767 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
768 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
769 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
770
771 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
772                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
773                                  SNB_HITM)
774
775 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
776 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
777
778 #define SNB_L3_ACCESS           SNB_RESP_ANY
779 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
780
781 static __initconst const u64 snb_hw_cache_extra_regs
782                                 [PERF_COUNT_HW_CACHE_MAX]
783                                 [PERF_COUNT_HW_CACHE_OP_MAX]
784                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
785 {
786  [ C(LL  ) ] = {
787         [ C(OP_READ) ] = {
788                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
789                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
790         },
791         [ C(OP_WRITE) ] = {
792                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
793                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
794         },
795         [ C(OP_PREFETCH) ] = {
796                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
797                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
798         },
799  },
800  [ C(NODE) ] = {
801         [ C(OP_READ) ] = {
802                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
803                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
804         },
805         [ C(OP_WRITE) ] = {
806                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
807                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
808         },
809         [ C(OP_PREFETCH) ] = {
810                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
811                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
812         },
813  },
814 };
815
816 static __initconst const u64 snb_hw_cache_event_ids
817                                 [PERF_COUNT_HW_CACHE_MAX]
818                                 [PERF_COUNT_HW_CACHE_OP_MAX]
819                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
820 {
821  [ C(L1D) ] = {
822         [ C(OP_READ) ] = {
823                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
824                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
825         },
826         [ C(OP_WRITE) ] = {
827                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
828                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
829         },
830         [ C(OP_PREFETCH) ] = {
831                 [ C(RESULT_ACCESS) ] = 0x0,
832                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
833         },
834  },
835  [ C(L1I ) ] = {
836         [ C(OP_READ) ] = {
837                 [ C(RESULT_ACCESS) ] = 0x0,
838                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
839         },
840         [ C(OP_WRITE) ] = {
841                 [ C(RESULT_ACCESS) ] = -1,
842                 [ C(RESULT_MISS)   ] = -1,
843         },
844         [ C(OP_PREFETCH) ] = {
845                 [ C(RESULT_ACCESS) ] = 0x0,
846                 [ C(RESULT_MISS)   ] = 0x0,
847         },
848  },
849  [ C(LL  ) ] = {
850         [ C(OP_READ) ] = {
851                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
852                 [ C(RESULT_ACCESS) ] = 0x01b7,
853                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
854                 [ C(RESULT_MISS)   ] = 0x01b7,
855         },
856         [ C(OP_WRITE) ] = {
857                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
858                 [ C(RESULT_ACCESS) ] = 0x01b7,
859                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
860                 [ C(RESULT_MISS)   ] = 0x01b7,
861         },
862         [ C(OP_PREFETCH) ] = {
863                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
864                 [ C(RESULT_ACCESS) ] = 0x01b7,
865                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
866                 [ C(RESULT_MISS)   ] = 0x01b7,
867         },
868  },
869  [ C(DTLB) ] = {
870         [ C(OP_READ) ] = {
871                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
872                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
873         },
874         [ C(OP_WRITE) ] = {
875                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
876                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
877         },
878         [ C(OP_PREFETCH) ] = {
879                 [ C(RESULT_ACCESS) ] = 0x0,
880                 [ C(RESULT_MISS)   ] = 0x0,
881         },
882  },
883  [ C(ITLB) ] = {
884         [ C(OP_READ) ] = {
885                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
886                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
887         },
888         [ C(OP_WRITE) ] = {
889                 [ C(RESULT_ACCESS) ] = -1,
890                 [ C(RESULT_MISS)   ] = -1,
891         },
892         [ C(OP_PREFETCH) ] = {
893                 [ C(RESULT_ACCESS) ] = -1,
894                 [ C(RESULT_MISS)   ] = -1,
895         },
896  },
897  [ C(BPU ) ] = {
898         [ C(OP_READ) ] = {
899                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
900                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
901         },
902         [ C(OP_WRITE) ] = {
903                 [ C(RESULT_ACCESS) ] = -1,
904                 [ C(RESULT_MISS)   ] = -1,
905         },
906         [ C(OP_PREFETCH) ] = {
907                 [ C(RESULT_ACCESS) ] = -1,
908                 [ C(RESULT_MISS)   ] = -1,
909         },
910  },
911  [ C(NODE) ] = {
912         [ C(OP_READ) ] = {
913                 [ C(RESULT_ACCESS) ] = 0x01b7,
914                 [ C(RESULT_MISS)   ] = 0x01b7,
915         },
916         [ C(OP_WRITE) ] = {
917                 [ C(RESULT_ACCESS) ] = 0x01b7,
918                 [ C(RESULT_MISS)   ] = 0x01b7,
919         },
920         [ C(OP_PREFETCH) ] = {
921                 [ C(RESULT_ACCESS) ] = 0x01b7,
922                 [ C(RESULT_MISS)   ] = 0x01b7,
923         },
924  },
925
926 };
927
928 /*
929  * Notes on the events:
930  * - data reads do not include code reads (comparable to earlier tables)
931  * - data counts include speculative execution (except L1 write, dtlb, bpu)
932  * - remote node access includes remote memory, remote cache, remote mmio.
933  * - prefetches are not included in the counts because they are not
934  *   reliably counted.
935  */
936
937 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
938 #define HSW_DEMAND_RFO                  BIT_ULL(1)
939 #define HSW_ANY_RESPONSE                BIT_ULL(16)
940 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
941 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
942 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
943 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
944 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
945 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
946                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
947                                          HSW_L3_MISS_REMOTE_HOP2P)
948 #define HSW_SNOOP_NONE                  BIT_ULL(31)
949 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
950 #define HSW_SNOOP_MISS                  BIT_ULL(33)
951 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
952 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
953 #define HSW_SNOOP_HITM                  BIT_ULL(36)
954 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
955 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
956                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
957                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
958                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
959 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
960 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
961 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
962 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
963                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
964 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
965
966 #define BDW_L3_MISS_LOCAL               BIT(26)
967 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
968                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
969                                          HSW_L3_MISS_REMOTE_HOP2P)
970
971
972 static __initconst const u64 hsw_hw_cache_event_ids
973                                 [PERF_COUNT_HW_CACHE_MAX]
974                                 [PERF_COUNT_HW_CACHE_OP_MAX]
975                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
976 {
977  [ C(L1D ) ] = {
978         [ C(OP_READ) ] = {
979                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
980                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
981         },
982         [ C(OP_WRITE) ] = {
983                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
984                 [ C(RESULT_MISS)   ] = 0x0,
985         },
986         [ C(OP_PREFETCH) ] = {
987                 [ C(RESULT_ACCESS) ] = 0x0,
988                 [ C(RESULT_MISS)   ] = 0x0,
989         },
990  },
991  [ C(L1I ) ] = {
992         [ C(OP_READ) ] = {
993                 [ C(RESULT_ACCESS) ] = 0x0,
994                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
995         },
996         [ C(OP_WRITE) ] = {
997                 [ C(RESULT_ACCESS) ] = -1,
998                 [ C(RESULT_MISS)   ] = -1,
999         },
1000         [ C(OP_PREFETCH) ] = {
1001                 [ C(RESULT_ACCESS) ] = 0x0,
1002                 [ C(RESULT_MISS)   ] = 0x0,
1003         },
1004  },
1005  [ C(LL  ) ] = {
1006         [ C(OP_READ) ] = {
1007                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1008                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1009         },
1010         [ C(OP_WRITE) ] = {
1011                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1012                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1013         },
1014         [ C(OP_PREFETCH) ] = {
1015                 [ C(RESULT_ACCESS) ] = 0x0,
1016                 [ C(RESULT_MISS)   ] = 0x0,
1017         },
1018  },
1019  [ C(DTLB) ] = {
1020         [ C(OP_READ) ] = {
1021                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
1022                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1023         },
1024         [ C(OP_WRITE) ] = {
1025                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
1026                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1027         },
1028         [ C(OP_PREFETCH) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x0,
1030                 [ C(RESULT_MISS)   ] = 0x0,
1031         },
1032  },
1033  [ C(ITLB) ] = {
1034         [ C(OP_READ) ] = {
1035                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
1036                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1037         },
1038         [ C(OP_WRITE) ] = {
1039                 [ C(RESULT_ACCESS) ] = -1,
1040                 [ C(RESULT_MISS)   ] = -1,
1041         },
1042         [ C(OP_PREFETCH) ] = {
1043                 [ C(RESULT_ACCESS) ] = -1,
1044                 [ C(RESULT_MISS)   ] = -1,
1045         },
1046  },
1047  [ C(BPU ) ] = {
1048         [ C(OP_READ) ] = {
1049                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
1050                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
1051         },
1052         [ C(OP_WRITE) ] = {
1053                 [ C(RESULT_ACCESS) ] = -1,
1054                 [ C(RESULT_MISS)   ] = -1,
1055         },
1056         [ C(OP_PREFETCH) ] = {
1057                 [ C(RESULT_ACCESS) ] = -1,
1058                 [ C(RESULT_MISS)   ] = -1,
1059         },
1060  },
1061  [ C(NODE) ] = {
1062         [ C(OP_READ) ] = {
1063                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1064                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1065         },
1066         [ C(OP_WRITE) ] = {
1067                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
1068                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
1069         },
1070         [ C(OP_PREFETCH) ] = {
1071                 [ C(RESULT_ACCESS) ] = 0x0,
1072                 [ C(RESULT_MISS)   ] = 0x0,
1073         },
1074  },
1075 };
1076
1077 static __initconst const u64 hsw_hw_cache_extra_regs
1078                                 [PERF_COUNT_HW_CACHE_MAX]
1079                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1080                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1081 {
1082  [ C(LL  ) ] = {
1083         [ C(OP_READ) ] = {
1084                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1085                                        HSW_LLC_ACCESS,
1086                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1087                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1088         },
1089         [ C(OP_WRITE) ] = {
1090                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1091                                        HSW_LLC_ACCESS,
1092                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1093                                        HSW_L3_MISS|HSW_ANY_SNOOP,
1094         },
1095         [ C(OP_PREFETCH) ] = {
1096                 [ C(RESULT_ACCESS) ] = 0x0,
1097                 [ C(RESULT_MISS)   ] = 0x0,
1098         },
1099  },
1100  [ C(NODE) ] = {
1101         [ C(OP_READ) ] = {
1102                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1103                                        HSW_L3_MISS_LOCAL_DRAM|
1104                                        HSW_SNOOP_DRAM,
1105                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1106                                        HSW_L3_MISS_REMOTE|
1107                                        HSW_SNOOP_DRAM,
1108         },
1109         [ C(OP_WRITE) ] = {
1110                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1111                                        HSW_L3_MISS_LOCAL_DRAM|
1112                                        HSW_SNOOP_DRAM,
1113                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1114                                        HSW_L3_MISS_REMOTE|
1115                                        HSW_SNOOP_DRAM,
1116         },
1117         [ C(OP_PREFETCH) ] = {
1118                 [ C(RESULT_ACCESS) ] = 0x0,
1119                 [ C(RESULT_MISS)   ] = 0x0,
1120         },
1121  },
1122 };
1123
1124 static __initconst const u64 westmere_hw_cache_event_ids
1125                                 [PERF_COUNT_HW_CACHE_MAX]
1126                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1127                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1128 {
1129  [ C(L1D) ] = {
1130         [ C(OP_READ) ] = {
1131                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1132                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1133         },
1134         [ C(OP_WRITE) ] = {
1135                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1136                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1137         },
1138         [ C(OP_PREFETCH) ] = {
1139                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1140                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1141         },
1142  },
1143  [ C(L1I ) ] = {
1144         [ C(OP_READ) ] = {
1145                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1146                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1147         },
1148         [ C(OP_WRITE) ] = {
1149                 [ C(RESULT_ACCESS) ] = -1,
1150                 [ C(RESULT_MISS)   ] = -1,
1151         },
1152         [ C(OP_PREFETCH) ] = {
1153                 [ C(RESULT_ACCESS) ] = 0x0,
1154                 [ C(RESULT_MISS)   ] = 0x0,
1155         },
1156  },
1157  [ C(LL  ) ] = {
1158         [ C(OP_READ) ] = {
1159                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1160                 [ C(RESULT_ACCESS) ] = 0x01b7,
1161                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1162                 [ C(RESULT_MISS)   ] = 0x01b7,
1163         },
1164         /*
1165          * Use RFO, not WRITEBACK, because a write miss would typically occur
1166          * on RFO.
1167          */
1168         [ C(OP_WRITE) ] = {
1169                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1170                 [ C(RESULT_ACCESS) ] = 0x01b7,
1171                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1172                 [ C(RESULT_MISS)   ] = 0x01b7,
1173         },
1174         [ C(OP_PREFETCH) ] = {
1175                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1176                 [ C(RESULT_ACCESS) ] = 0x01b7,
1177                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1178                 [ C(RESULT_MISS)   ] = 0x01b7,
1179         },
1180  },
1181  [ C(DTLB) ] = {
1182         [ C(OP_READ) ] = {
1183                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1184                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1185         },
1186         [ C(OP_WRITE) ] = {
1187                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1188                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1189         },
1190         [ C(OP_PREFETCH) ] = {
1191                 [ C(RESULT_ACCESS) ] = 0x0,
1192                 [ C(RESULT_MISS)   ] = 0x0,
1193         },
1194  },
1195  [ C(ITLB) ] = {
1196         [ C(OP_READ) ] = {
1197                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1198                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1199         },
1200         [ C(OP_WRITE) ] = {
1201                 [ C(RESULT_ACCESS) ] = -1,
1202                 [ C(RESULT_MISS)   ] = -1,
1203         },
1204         [ C(OP_PREFETCH) ] = {
1205                 [ C(RESULT_ACCESS) ] = -1,
1206                 [ C(RESULT_MISS)   ] = -1,
1207         },
1208  },
1209  [ C(BPU ) ] = {
1210         [ C(OP_READ) ] = {
1211                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1212                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1213         },
1214         [ C(OP_WRITE) ] = {
1215                 [ C(RESULT_ACCESS) ] = -1,
1216                 [ C(RESULT_MISS)   ] = -1,
1217         },
1218         [ C(OP_PREFETCH) ] = {
1219                 [ C(RESULT_ACCESS) ] = -1,
1220                 [ C(RESULT_MISS)   ] = -1,
1221         },
1222  },
1223  [ C(NODE) ] = {
1224         [ C(OP_READ) ] = {
1225                 [ C(RESULT_ACCESS) ] = 0x01b7,
1226                 [ C(RESULT_MISS)   ] = 0x01b7,
1227         },
1228         [ C(OP_WRITE) ] = {
1229                 [ C(RESULT_ACCESS) ] = 0x01b7,
1230                 [ C(RESULT_MISS)   ] = 0x01b7,
1231         },
1232         [ C(OP_PREFETCH) ] = {
1233                 [ C(RESULT_ACCESS) ] = 0x01b7,
1234                 [ C(RESULT_MISS)   ] = 0x01b7,
1235         },
1236  },
1237 };
1238
1239 /*
1240  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1241  * See IA32 SDM Vol 3B 30.6.1.3
1242  */
1243
1244 #define NHM_DMND_DATA_RD        (1 << 0)
1245 #define NHM_DMND_RFO            (1 << 1)
1246 #define NHM_DMND_IFETCH         (1 << 2)
1247 #define NHM_DMND_WB             (1 << 3)
1248 #define NHM_PF_DATA_RD          (1 << 4)
1249 #define NHM_PF_DATA_RFO         (1 << 5)
1250 #define NHM_PF_IFETCH           (1 << 6)
1251 #define NHM_OFFCORE_OTHER       (1 << 7)
1252 #define NHM_UNCORE_HIT          (1 << 8)
1253 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1254 #define NHM_OTHER_CORE_HITM     (1 << 10)
1255                                 /* reserved */
1256 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1257 #define NHM_REMOTE_DRAM         (1 << 13)
1258 #define NHM_LOCAL_DRAM          (1 << 14)
1259 #define NHM_NON_DRAM            (1 << 15)
1260
1261 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1262 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1263
1264 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1265 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1266 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1267
1268 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1269 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1270 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1271
1272 static __initconst const u64 nehalem_hw_cache_extra_regs
1273                                 [PERF_COUNT_HW_CACHE_MAX]
1274                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1275                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1276 {
1277  [ C(LL  ) ] = {
1278         [ C(OP_READ) ] = {
1279                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1280                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1281         },
1282         [ C(OP_WRITE) ] = {
1283                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1284                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1285         },
1286         [ C(OP_PREFETCH) ] = {
1287                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1288                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1289         },
1290  },
1291  [ C(NODE) ] = {
1292         [ C(OP_READ) ] = {
1293                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1294                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1295         },
1296         [ C(OP_WRITE) ] = {
1297                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1298                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1299         },
1300         [ C(OP_PREFETCH) ] = {
1301                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1302                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1303         },
1304  },
1305 };
1306
1307 static __initconst const u64 nehalem_hw_cache_event_ids
1308                                 [PERF_COUNT_HW_CACHE_MAX]
1309                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1310                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1311 {
1312  [ C(L1D) ] = {
1313         [ C(OP_READ) ] = {
1314                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1315                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1316         },
1317         [ C(OP_WRITE) ] = {
1318                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1319                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1320         },
1321         [ C(OP_PREFETCH) ] = {
1322                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1323                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1324         },
1325  },
1326  [ C(L1I ) ] = {
1327         [ C(OP_READ) ] = {
1328                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1329                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1330         },
1331         [ C(OP_WRITE) ] = {
1332                 [ C(RESULT_ACCESS) ] = -1,
1333                 [ C(RESULT_MISS)   ] = -1,
1334         },
1335         [ C(OP_PREFETCH) ] = {
1336                 [ C(RESULT_ACCESS) ] = 0x0,
1337                 [ C(RESULT_MISS)   ] = 0x0,
1338         },
1339  },
1340  [ C(LL  ) ] = {
1341         [ C(OP_READ) ] = {
1342                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1343                 [ C(RESULT_ACCESS) ] = 0x01b7,
1344                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1345                 [ C(RESULT_MISS)   ] = 0x01b7,
1346         },
1347         /*
1348          * Use RFO, not WRITEBACK, because a write miss would typically occur
1349          * on RFO.
1350          */
1351         [ C(OP_WRITE) ] = {
1352                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1353                 [ C(RESULT_ACCESS) ] = 0x01b7,
1354                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1355                 [ C(RESULT_MISS)   ] = 0x01b7,
1356         },
1357         [ C(OP_PREFETCH) ] = {
1358                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1359                 [ C(RESULT_ACCESS) ] = 0x01b7,
1360                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1361                 [ C(RESULT_MISS)   ] = 0x01b7,
1362         },
1363  },
1364  [ C(DTLB) ] = {
1365         [ C(OP_READ) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1367                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1368         },
1369         [ C(OP_WRITE) ] = {
1370                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1371                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1372         },
1373         [ C(OP_PREFETCH) ] = {
1374                 [ C(RESULT_ACCESS) ] = 0x0,
1375                 [ C(RESULT_MISS)   ] = 0x0,
1376         },
1377  },
1378  [ C(ITLB) ] = {
1379         [ C(OP_READ) ] = {
1380                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1381                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1382         },
1383         [ C(OP_WRITE) ] = {
1384                 [ C(RESULT_ACCESS) ] = -1,
1385                 [ C(RESULT_MISS)   ] = -1,
1386         },
1387         [ C(OP_PREFETCH) ] = {
1388                 [ C(RESULT_ACCESS) ] = -1,
1389                 [ C(RESULT_MISS)   ] = -1,
1390         },
1391  },
1392  [ C(BPU ) ] = {
1393         [ C(OP_READ) ] = {
1394                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1395                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1396         },
1397         [ C(OP_WRITE) ] = {
1398                 [ C(RESULT_ACCESS) ] = -1,
1399                 [ C(RESULT_MISS)   ] = -1,
1400         },
1401         [ C(OP_PREFETCH) ] = {
1402                 [ C(RESULT_ACCESS) ] = -1,
1403                 [ C(RESULT_MISS)   ] = -1,
1404         },
1405  },
1406  [ C(NODE) ] = {
1407         [ C(OP_READ) ] = {
1408                 [ C(RESULT_ACCESS) ] = 0x01b7,
1409                 [ C(RESULT_MISS)   ] = 0x01b7,
1410         },
1411         [ C(OP_WRITE) ] = {
1412                 [ C(RESULT_ACCESS) ] = 0x01b7,
1413                 [ C(RESULT_MISS)   ] = 0x01b7,
1414         },
1415         [ C(OP_PREFETCH) ] = {
1416                 [ C(RESULT_ACCESS) ] = 0x01b7,
1417                 [ C(RESULT_MISS)   ] = 0x01b7,
1418         },
1419  },
1420 };
1421
1422 static __initconst const u64 core2_hw_cache_event_ids
1423                                 [PERF_COUNT_HW_CACHE_MAX]
1424                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1425                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1426 {
1427  [ C(L1D) ] = {
1428         [ C(OP_READ) ] = {
1429                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1430                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1431         },
1432         [ C(OP_WRITE) ] = {
1433                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1434                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1435         },
1436         [ C(OP_PREFETCH) ] = {
1437                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1438                 [ C(RESULT_MISS)   ] = 0,
1439         },
1440  },
1441  [ C(L1I ) ] = {
1442         [ C(OP_READ) ] = {
1443                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1444                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1445         },
1446         [ C(OP_WRITE) ] = {
1447                 [ C(RESULT_ACCESS) ] = -1,
1448                 [ C(RESULT_MISS)   ] = -1,
1449         },
1450         [ C(OP_PREFETCH) ] = {
1451                 [ C(RESULT_ACCESS) ] = 0,
1452                 [ C(RESULT_MISS)   ] = 0,
1453         },
1454  },
1455  [ C(LL  ) ] = {
1456         [ C(OP_READ) ] = {
1457                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1458                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1459         },
1460         [ C(OP_WRITE) ] = {
1461                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1462                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1463         },
1464         [ C(OP_PREFETCH) ] = {
1465                 [ C(RESULT_ACCESS) ] = 0,
1466                 [ C(RESULT_MISS)   ] = 0,
1467         },
1468  },
1469  [ C(DTLB) ] = {
1470         [ C(OP_READ) ] = {
1471                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1472                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1473         },
1474         [ C(OP_WRITE) ] = {
1475                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1476                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1477         },
1478         [ C(OP_PREFETCH) ] = {
1479                 [ C(RESULT_ACCESS) ] = 0,
1480                 [ C(RESULT_MISS)   ] = 0,
1481         },
1482  },
1483  [ C(ITLB) ] = {
1484         [ C(OP_READ) ] = {
1485                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1486                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1487         },
1488         [ C(OP_WRITE) ] = {
1489                 [ C(RESULT_ACCESS) ] = -1,
1490                 [ C(RESULT_MISS)   ] = -1,
1491         },
1492         [ C(OP_PREFETCH) ] = {
1493                 [ C(RESULT_ACCESS) ] = -1,
1494                 [ C(RESULT_MISS)   ] = -1,
1495         },
1496  },
1497  [ C(BPU ) ] = {
1498         [ C(OP_READ) ] = {
1499                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1500                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1501         },
1502         [ C(OP_WRITE) ] = {
1503                 [ C(RESULT_ACCESS) ] = -1,
1504                 [ C(RESULT_MISS)   ] = -1,
1505         },
1506         [ C(OP_PREFETCH) ] = {
1507                 [ C(RESULT_ACCESS) ] = -1,
1508                 [ C(RESULT_MISS)   ] = -1,
1509         },
1510  },
1511 };
1512
1513 static __initconst const u64 atom_hw_cache_event_ids
1514                                 [PERF_COUNT_HW_CACHE_MAX]
1515                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1516                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1517 {
1518  [ C(L1D) ] = {
1519         [ C(OP_READ) ] = {
1520                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1521                 [ C(RESULT_MISS)   ] = 0,
1522         },
1523         [ C(OP_WRITE) ] = {
1524                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1525                 [ C(RESULT_MISS)   ] = 0,
1526         },
1527         [ C(OP_PREFETCH) ] = {
1528                 [ C(RESULT_ACCESS) ] = 0x0,
1529                 [ C(RESULT_MISS)   ] = 0,
1530         },
1531  },
1532  [ C(L1I ) ] = {
1533         [ C(OP_READ) ] = {
1534                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1535                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1536         },
1537         [ C(OP_WRITE) ] = {
1538                 [ C(RESULT_ACCESS) ] = -1,
1539                 [ C(RESULT_MISS)   ] = -1,
1540         },
1541         [ C(OP_PREFETCH) ] = {
1542                 [ C(RESULT_ACCESS) ] = 0,
1543                 [ C(RESULT_MISS)   ] = 0,
1544         },
1545  },
1546  [ C(LL  ) ] = {
1547         [ C(OP_READ) ] = {
1548                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1549                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1550         },
1551         [ C(OP_WRITE) ] = {
1552                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1553                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1554         },
1555         [ C(OP_PREFETCH) ] = {
1556                 [ C(RESULT_ACCESS) ] = 0,
1557                 [ C(RESULT_MISS)   ] = 0,
1558         },
1559  },
1560  [ C(DTLB) ] = {
1561         [ C(OP_READ) ] = {
1562                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1563                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1564         },
1565         [ C(OP_WRITE) ] = {
1566                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1567                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1568         },
1569         [ C(OP_PREFETCH) ] = {
1570                 [ C(RESULT_ACCESS) ] = 0,
1571                 [ C(RESULT_MISS)   ] = 0,
1572         },
1573  },
1574  [ C(ITLB) ] = {
1575         [ C(OP_READ) ] = {
1576                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1577                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1578         },
1579         [ C(OP_WRITE) ] = {
1580                 [ C(RESULT_ACCESS) ] = -1,
1581                 [ C(RESULT_MISS)   ] = -1,
1582         },
1583         [ C(OP_PREFETCH) ] = {
1584                 [ C(RESULT_ACCESS) ] = -1,
1585                 [ C(RESULT_MISS)   ] = -1,
1586         },
1587  },
1588  [ C(BPU ) ] = {
1589         [ C(OP_READ) ] = {
1590                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1591                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1592         },
1593         [ C(OP_WRITE) ] = {
1594                 [ C(RESULT_ACCESS) ] = -1,
1595                 [ C(RESULT_MISS)   ] = -1,
1596         },
1597         [ C(OP_PREFETCH) ] = {
1598                 [ C(RESULT_ACCESS) ] = -1,
1599                 [ C(RESULT_MISS)   ] = -1,
1600         },
1601  },
1602 };
1603
1604 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1605 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1606 /* no_alloc_cycles.not_delivered */
1607 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1608                "event=0xca,umask=0x50");
1609 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1610 /* uops_retired.all */
1611 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1612                "event=0xc2,umask=0x10");
1613 /* uops_retired.all */
1614 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1615                "event=0xc2,umask=0x10");
1616
1617 static struct attribute *slm_events_attrs[] = {
1618         EVENT_PTR(td_total_slots_slm),
1619         EVENT_PTR(td_total_slots_scale_slm),
1620         EVENT_PTR(td_fetch_bubbles_slm),
1621         EVENT_PTR(td_fetch_bubbles_scale_slm),
1622         EVENT_PTR(td_slots_issued_slm),
1623         EVENT_PTR(td_slots_retired_slm),
1624         NULL
1625 };
1626
1627 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1628 {
1629         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1630         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1631         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1632         EVENT_EXTRA_END
1633 };
1634
1635 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1636 #define SLM_DMND_WRITE          SNB_DMND_RFO
1637 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1638
1639 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1640 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1641 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1642
1643 static __initconst const u64 slm_hw_cache_extra_regs
1644                                 [PERF_COUNT_HW_CACHE_MAX]
1645                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1646                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1647 {
1648  [ C(LL  ) ] = {
1649         [ C(OP_READ) ] = {
1650                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1651                 [ C(RESULT_MISS)   ] = 0,
1652         },
1653         [ C(OP_WRITE) ] = {
1654                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1655                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1656         },
1657         [ C(OP_PREFETCH) ] = {
1658                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1659                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1660         },
1661  },
1662 };
1663
1664 static __initconst const u64 slm_hw_cache_event_ids
1665                                 [PERF_COUNT_HW_CACHE_MAX]
1666                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1667                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1668 {
1669  [ C(L1D) ] = {
1670         [ C(OP_READ) ] = {
1671                 [ C(RESULT_ACCESS) ] = 0,
1672                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1673         },
1674         [ C(OP_WRITE) ] = {
1675                 [ C(RESULT_ACCESS) ] = 0,
1676                 [ C(RESULT_MISS)   ] = 0,
1677         },
1678         [ C(OP_PREFETCH) ] = {
1679                 [ C(RESULT_ACCESS) ] = 0,
1680                 [ C(RESULT_MISS)   ] = 0,
1681         },
1682  },
1683  [ C(L1I ) ] = {
1684         [ C(OP_READ) ] = {
1685                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1686                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1687         },
1688         [ C(OP_WRITE) ] = {
1689                 [ C(RESULT_ACCESS) ] = -1,
1690                 [ C(RESULT_MISS)   ] = -1,
1691         },
1692         [ C(OP_PREFETCH) ] = {
1693                 [ C(RESULT_ACCESS) ] = 0,
1694                 [ C(RESULT_MISS)   ] = 0,
1695         },
1696  },
1697  [ C(LL  ) ] = {
1698         [ C(OP_READ) ] = {
1699                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1700                 [ C(RESULT_ACCESS) ] = 0x01b7,
1701                 [ C(RESULT_MISS)   ] = 0,
1702         },
1703         [ C(OP_WRITE) ] = {
1704                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1705                 [ C(RESULT_ACCESS) ] = 0x01b7,
1706                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1707                 [ C(RESULT_MISS)   ] = 0x01b7,
1708         },
1709         [ C(OP_PREFETCH) ] = {
1710                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1711                 [ C(RESULT_ACCESS) ] = 0x01b7,
1712                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1713                 [ C(RESULT_MISS)   ] = 0x01b7,
1714         },
1715  },
1716  [ C(DTLB) ] = {
1717         [ C(OP_READ) ] = {
1718                 [ C(RESULT_ACCESS) ] = 0,
1719                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1720         },
1721         [ C(OP_WRITE) ] = {
1722                 [ C(RESULT_ACCESS) ] = 0,
1723                 [ C(RESULT_MISS)   ] = 0,
1724         },
1725         [ C(OP_PREFETCH) ] = {
1726                 [ C(RESULT_ACCESS) ] = 0,
1727                 [ C(RESULT_MISS)   ] = 0,
1728         },
1729  },
1730  [ C(ITLB) ] = {
1731         [ C(OP_READ) ] = {
1732                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1733                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1734         },
1735         [ C(OP_WRITE) ] = {
1736                 [ C(RESULT_ACCESS) ] = -1,
1737                 [ C(RESULT_MISS)   ] = -1,
1738         },
1739         [ C(OP_PREFETCH) ] = {
1740                 [ C(RESULT_ACCESS) ] = -1,
1741                 [ C(RESULT_MISS)   ] = -1,
1742         },
1743  },
1744  [ C(BPU ) ] = {
1745         [ C(OP_READ) ] = {
1746                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1747                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1748         },
1749         [ C(OP_WRITE) ] = {
1750                 [ C(RESULT_ACCESS) ] = -1,
1751                 [ C(RESULT_MISS)   ] = -1,
1752         },
1753         [ C(OP_PREFETCH) ] = {
1754                 [ C(RESULT_ACCESS) ] = -1,
1755                 [ C(RESULT_MISS)   ] = -1,
1756         },
1757  },
1758 };
1759
1760 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1761 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1762 /* UOPS_NOT_DELIVERED.ANY */
1763 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1764 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1765 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1766 /* UOPS_RETIRED.ANY */
1767 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1768 /* UOPS_ISSUED.ANY */
1769 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1770
1771 static struct attribute *glm_events_attrs[] = {
1772         EVENT_PTR(td_total_slots_glm),
1773         EVENT_PTR(td_total_slots_scale_glm),
1774         EVENT_PTR(td_fetch_bubbles_glm),
1775         EVENT_PTR(td_recovery_bubbles_glm),
1776         EVENT_PTR(td_slots_issued_glm),
1777         EVENT_PTR(td_slots_retired_glm),
1778         NULL
1779 };
1780
1781 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1782         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1783         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1784         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1785         EVENT_EXTRA_END
1786 };
1787
1788 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1789 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1790 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1791 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1792 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1793 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1794 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1795 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1796 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1797 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1798
1799 static __initconst const u64 glm_hw_cache_event_ids
1800                                 [PERF_COUNT_HW_CACHE_MAX]
1801                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1802                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1803         [C(L1D)] = {
1804                 [C(OP_READ)] = {
1805                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1806                         [C(RESULT_MISS)]        = 0x0,
1807                 },
1808                 [C(OP_WRITE)] = {
1809                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1810                         [C(RESULT_MISS)]        = 0x0,
1811                 },
1812                 [C(OP_PREFETCH)] = {
1813                         [C(RESULT_ACCESS)]      = 0x0,
1814                         [C(RESULT_MISS)]        = 0x0,
1815                 },
1816         },
1817         [C(L1I)] = {
1818                 [C(OP_READ)] = {
1819                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1820                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1821                 },
1822                 [C(OP_WRITE)] = {
1823                         [C(RESULT_ACCESS)]      = -1,
1824                         [C(RESULT_MISS)]        = -1,
1825                 },
1826                 [C(OP_PREFETCH)] = {
1827                         [C(RESULT_ACCESS)]      = 0x0,
1828                         [C(RESULT_MISS)]        = 0x0,
1829                 },
1830         },
1831         [C(LL)] = {
1832                 [C(OP_READ)] = {
1833                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1834                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1835                 },
1836                 [C(OP_WRITE)] = {
1837                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1838                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1839                 },
1840                 [C(OP_PREFETCH)] = {
1841                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1842                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1843                 },
1844         },
1845         [C(DTLB)] = {
1846                 [C(OP_READ)] = {
1847                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1848                         [C(RESULT_MISS)]        = 0x0,
1849                 },
1850                 [C(OP_WRITE)] = {
1851                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1852                         [C(RESULT_MISS)]        = 0x0,
1853                 },
1854                 [C(OP_PREFETCH)] = {
1855                         [C(RESULT_ACCESS)]      = 0x0,
1856                         [C(RESULT_MISS)]        = 0x0,
1857                 },
1858         },
1859         [C(ITLB)] = {
1860                 [C(OP_READ)] = {
1861                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1862                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1863                 },
1864                 [C(OP_WRITE)] = {
1865                         [C(RESULT_ACCESS)]      = -1,
1866                         [C(RESULT_MISS)]        = -1,
1867                 },
1868                 [C(OP_PREFETCH)] = {
1869                         [C(RESULT_ACCESS)]      = -1,
1870                         [C(RESULT_MISS)]        = -1,
1871                 },
1872         },
1873         [C(BPU)] = {
1874                 [C(OP_READ)] = {
1875                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1876                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1877                 },
1878                 [C(OP_WRITE)] = {
1879                         [C(RESULT_ACCESS)]      = -1,
1880                         [C(RESULT_MISS)]        = -1,
1881                 },
1882                 [C(OP_PREFETCH)] = {
1883                         [C(RESULT_ACCESS)]      = -1,
1884                         [C(RESULT_MISS)]        = -1,
1885                 },
1886         },
1887 };
1888
1889 static __initconst const u64 glm_hw_cache_extra_regs
1890                                 [PERF_COUNT_HW_CACHE_MAX]
1891                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1892                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1893         [C(LL)] = {
1894                 [C(OP_READ)] = {
1895                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1896                                                   GLM_LLC_ACCESS,
1897                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1898                                                   GLM_LLC_MISS,
1899                 },
1900                 [C(OP_WRITE)] = {
1901                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1902                                                   GLM_LLC_ACCESS,
1903                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1904                                                   GLM_LLC_MISS,
1905                 },
1906                 [C(OP_PREFETCH)] = {
1907                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1908                                                   GLM_LLC_ACCESS,
1909                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1910                                                   GLM_LLC_MISS,
1911                 },
1912         },
1913 };
1914
1915 static __initconst const u64 glp_hw_cache_event_ids
1916                                 [PERF_COUNT_HW_CACHE_MAX]
1917                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1918                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1919         [C(L1D)] = {
1920                 [C(OP_READ)] = {
1921                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1922                         [C(RESULT_MISS)]        = 0x0,
1923                 },
1924                 [C(OP_WRITE)] = {
1925                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1926                         [C(RESULT_MISS)]        = 0x0,
1927                 },
1928                 [C(OP_PREFETCH)] = {
1929                         [C(RESULT_ACCESS)]      = 0x0,
1930                         [C(RESULT_MISS)]        = 0x0,
1931                 },
1932         },
1933         [C(L1I)] = {
1934                 [C(OP_READ)] = {
1935                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1936                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1937                 },
1938                 [C(OP_WRITE)] = {
1939                         [C(RESULT_ACCESS)]      = -1,
1940                         [C(RESULT_MISS)]        = -1,
1941                 },
1942                 [C(OP_PREFETCH)] = {
1943                         [C(RESULT_ACCESS)]      = 0x0,
1944                         [C(RESULT_MISS)]        = 0x0,
1945                 },
1946         },
1947         [C(LL)] = {
1948                 [C(OP_READ)] = {
1949                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1950                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1951                 },
1952                 [C(OP_WRITE)] = {
1953                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1954                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1955                 },
1956                 [C(OP_PREFETCH)] = {
1957                         [C(RESULT_ACCESS)]      = 0x0,
1958                         [C(RESULT_MISS)]        = 0x0,
1959                 },
1960         },
1961         [C(DTLB)] = {
1962                 [C(OP_READ)] = {
1963                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1964                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1965                 },
1966                 [C(OP_WRITE)] = {
1967                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1968                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1969                 },
1970                 [C(OP_PREFETCH)] = {
1971                         [C(RESULT_ACCESS)]      = 0x0,
1972                         [C(RESULT_MISS)]        = 0x0,
1973                 },
1974         },
1975         [C(ITLB)] = {
1976                 [C(OP_READ)] = {
1977                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1978                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1979                 },
1980                 [C(OP_WRITE)] = {
1981                         [C(RESULT_ACCESS)]      = -1,
1982                         [C(RESULT_MISS)]        = -1,
1983                 },
1984                 [C(OP_PREFETCH)] = {
1985                         [C(RESULT_ACCESS)]      = -1,
1986                         [C(RESULT_MISS)]        = -1,
1987                 },
1988         },
1989         [C(BPU)] = {
1990                 [C(OP_READ)] = {
1991                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1992                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1993                 },
1994                 [C(OP_WRITE)] = {
1995                         [C(RESULT_ACCESS)]      = -1,
1996                         [C(RESULT_MISS)]        = -1,
1997                 },
1998                 [C(OP_PREFETCH)] = {
1999                         [C(RESULT_ACCESS)]      = -1,
2000                         [C(RESULT_MISS)]        = -1,
2001                 },
2002         },
2003 };
2004
2005 static __initconst const u64 glp_hw_cache_extra_regs
2006                                 [PERF_COUNT_HW_CACHE_MAX]
2007                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2008                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2009         [C(LL)] = {
2010                 [C(OP_READ)] = {
2011                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
2012                                                   GLM_LLC_ACCESS,
2013                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
2014                                                   GLM_LLC_MISS,
2015                 },
2016                 [C(OP_WRITE)] = {
2017                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
2018                                                   GLM_LLC_ACCESS,
2019                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
2020                                                   GLM_LLC_MISS,
2021                 },
2022                 [C(OP_PREFETCH)] = {
2023                         [C(RESULT_ACCESS)]      = 0x0,
2024                         [C(RESULT_MISS)]        = 0x0,
2025                 },
2026         },
2027 };
2028
2029 #define TNT_LOCAL_DRAM                  BIT_ULL(26)
2030 #define TNT_DEMAND_READ                 GLM_DEMAND_DATA_RD
2031 #define TNT_DEMAND_WRITE                GLM_DEMAND_RFO
2032 #define TNT_LLC_ACCESS                  GLM_ANY_RESPONSE
2033 #define TNT_SNP_ANY                     (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2034                                          SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2035 #define TNT_LLC_MISS                    (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2036
2037 static __initconst const u64 tnt_hw_cache_extra_regs
2038                                 [PERF_COUNT_HW_CACHE_MAX]
2039                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2040                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2041         [C(LL)] = {
2042                 [C(OP_READ)] = {
2043                         [C(RESULT_ACCESS)]      = TNT_DEMAND_READ|
2044                                                   TNT_LLC_ACCESS,
2045                         [C(RESULT_MISS)]        = TNT_DEMAND_READ|
2046                                                   TNT_LLC_MISS,
2047                 },
2048                 [C(OP_WRITE)] = {
2049                         [C(RESULT_ACCESS)]      = TNT_DEMAND_WRITE|
2050                                                   TNT_LLC_ACCESS,
2051                         [C(RESULT_MISS)]        = TNT_DEMAND_WRITE|
2052                                                   TNT_LLC_MISS,
2053                 },
2054                 [C(OP_PREFETCH)] = {
2055                         [C(RESULT_ACCESS)]      = 0x0,
2056                         [C(RESULT_MISS)]        = 0x0,
2057                 },
2058         },
2059 };
2060
2061 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2062 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2063 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2064 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2065
2066 static struct attribute *tnt_events_attrs[] = {
2067         EVENT_PTR(td_fe_bound_tnt),
2068         EVENT_PTR(td_retiring_tnt),
2069         EVENT_PTR(td_bad_spec_tnt),
2070         EVENT_PTR(td_be_bound_tnt),
2071         NULL,
2072 };
2073
2074 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2075         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2076         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2077         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2078         EVENT_EXTRA_END
2079 };
2080
2081 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2082         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2083         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2084         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2085         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2086         EVENT_EXTRA_END
2087 };
2088
2089 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
2090 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
2091 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
2092 #define KNL_MCDRAM_FAR          BIT_ULL(22)
2093 #define KNL_DDR_LOCAL           BIT_ULL(23)
2094 #define KNL_DDR_FAR             BIT_ULL(24)
2095 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2096                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
2097 #define KNL_L2_READ             SLM_DMND_READ
2098 #define KNL_L2_WRITE            SLM_DMND_WRITE
2099 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
2100 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
2101 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2102                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
2103                                                   SNB_NON_DRAM)
2104
2105 static __initconst const u64 knl_hw_cache_extra_regs
2106                                 [PERF_COUNT_HW_CACHE_MAX]
2107                                 [PERF_COUNT_HW_CACHE_OP_MAX]
2108                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2109         [C(LL)] = {
2110                 [C(OP_READ)] = {
2111                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2112                         [C(RESULT_MISS)]   = 0,
2113                 },
2114                 [C(OP_WRITE)] = {
2115                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2116                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2117                 },
2118                 [C(OP_PREFETCH)] = {
2119                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2120                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2121                 },
2122         },
2123 };
2124
2125 /*
2126  * Used from PMIs where the LBRs are already disabled.
2127  *
2128  * This function could be called consecutively. It is required to remain in
2129  * disabled state if called consecutively.
2130  *
2131  * During consecutive calls, the same disable value will be written to related
2132  * registers, so the PMU state remains unchanged.
2133  *
2134  * intel_bts events don't coexist with intel PMU's BTS events because of
2135  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2136  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2137  *
2138  * Avoid PEBS_ENABLE MSR access in PMIs.
2139  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2140  * It doesn't matter if the PEBS is enabled or not.
2141  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2142  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2143  * However, there are some cases which may change PEBS status, e.g. PMI
2144  * throttle. The PEBS_ENABLE should be updated where the status changes.
2145  */
2146 static __always_inline void __intel_pmu_disable_all(bool bts)
2147 {
2148         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2149
2150         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2151
2152         if (bts && test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2153                 intel_pmu_disable_bts();
2154 }
2155
2156 static __always_inline void intel_pmu_disable_all(void)
2157 {
2158         __intel_pmu_disable_all(true);
2159         intel_pmu_pebs_disable_all();
2160         intel_pmu_lbr_disable_all();
2161 }
2162
2163 static void __intel_pmu_enable_all(int added, bool pmi)
2164 {
2165         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2166         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2167
2168         intel_pmu_lbr_enable_all(pmi);
2169         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2170                intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2171
2172         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2173                 struct perf_event *event =
2174                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2175
2176                 if (WARN_ON_ONCE(!event))
2177                         return;
2178
2179                 intel_pmu_enable_bts(event->hw.config);
2180         }
2181 }
2182
2183 static void intel_pmu_enable_all(int added)
2184 {
2185         intel_pmu_pebs_enable_all();
2186         __intel_pmu_enable_all(added, false);
2187 }
2188
2189 static noinline int
2190 __intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries,
2191                                   unsigned int cnt, unsigned long flags)
2192 {
2193         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2194
2195         intel_pmu_lbr_read();
2196         cnt = min_t(unsigned int, cnt, x86_pmu.lbr_nr);
2197
2198         memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);
2199         intel_pmu_enable_all(0);
2200         local_irq_restore(flags);
2201         return cnt;
2202 }
2203
2204 static int
2205 intel_pmu_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2206 {
2207         unsigned long flags;
2208
2209         /* must not have branches... */
2210         local_irq_save(flags);
2211         __intel_pmu_disable_all(false); /* we don't care about BTS */
2212         __intel_pmu_pebs_disable_all();
2213         __intel_pmu_lbr_disable();
2214         /*            ... until here */
2215         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2216 }
2217
2218 static int
2219 intel_pmu_snapshot_arch_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
2220 {
2221         unsigned long flags;
2222
2223         /* must not have branches... */
2224         local_irq_save(flags);
2225         __intel_pmu_disable_all(false); /* we don't care about BTS */
2226         __intel_pmu_pebs_disable_all();
2227         __intel_pmu_arch_lbr_disable();
2228         /*            ... until here */
2229         return __intel_pmu_snapshot_branch_stack(entries, cnt, flags);
2230 }
2231
2232 /*
2233  * Workaround for:
2234  *   Intel Errata AAK100 (model 26)
2235  *   Intel Errata AAP53  (model 30)
2236  *   Intel Errata BD53   (model 44)
2237  *
2238  * The official story:
2239  *   These chips need to be 'reset' when adding counters by programming the
2240  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2241  *   in sequence on the same PMC or on different PMCs.
2242  *
2243  * In practice it appears some of these events do in fact count, and
2244  * we need to program all 4 events.
2245  */
2246 static void intel_pmu_nhm_workaround(void)
2247 {
2248         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2249         static const unsigned long nhm_magic[4] = {
2250                 0x4300B5,
2251                 0x4300D2,
2252                 0x4300B1,
2253                 0x4300B1
2254         };
2255         struct perf_event *event;
2256         int i;
2257
2258         /*
2259          * The Errata requires below steps:
2260          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2261          * 2) Configure 4 PERFEVTSELx with the magic events and clear
2262          *    the corresponding PMCx;
2263          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2264          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2265          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2266          */
2267
2268         /*
2269          * The real steps we choose are a little different from above.
2270          * A) To reduce MSR operations, we don't run step 1) as they
2271          *    are already cleared before this function is called;
2272          * B) Call x86_perf_event_update to save PMCx before configuring
2273          *    PERFEVTSELx with magic number;
2274          * C) With step 5), we do clear only when the PERFEVTSELx is
2275          *    not used currently.
2276          * D) Call x86_perf_event_set_period to restore PMCx;
2277          */
2278
2279         /* We always operate 4 pairs of PERF Counters */
2280         for (i = 0; i < 4; i++) {
2281                 event = cpuc->events[i];
2282                 if (event)
2283                         x86_perf_event_update(event);
2284         }
2285
2286         for (i = 0; i < 4; i++) {
2287                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2288                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2289         }
2290
2291         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2292         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2293
2294         for (i = 0; i < 4; i++) {
2295                 event = cpuc->events[i];
2296
2297                 if (event) {
2298                         x86_perf_event_set_period(event);
2299                         __x86_pmu_enable_event(&event->hw,
2300                                         ARCH_PERFMON_EVENTSEL_ENABLE);
2301                 } else
2302                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2303         }
2304 }
2305
2306 static void intel_pmu_nhm_enable_all(int added)
2307 {
2308         if (added)
2309                 intel_pmu_nhm_workaround();
2310         intel_pmu_enable_all(added);
2311 }
2312
2313 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2314 {
2315         u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2316
2317         if (cpuc->tfa_shadow != val) {
2318                 cpuc->tfa_shadow = val;
2319                 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2320         }
2321 }
2322
2323 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2324 {
2325         /*
2326          * We're going to use PMC3, make sure TFA is set before we touch it.
2327          */
2328         if (cntr == 3)
2329                 intel_set_tfa(cpuc, true);
2330 }
2331
2332 static void intel_tfa_pmu_enable_all(int added)
2333 {
2334         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2335
2336         /*
2337          * If we find PMC3 is no longer used when we enable the PMU, we can
2338          * clear TFA.
2339          */
2340         if (!test_bit(3, cpuc->active_mask))
2341                 intel_set_tfa(cpuc, false);
2342
2343         intel_pmu_enable_all(added);
2344 }
2345
2346 static inline u64 intel_pmu_get_status(void)
2347 {
2348         u64 status;
2349
2350         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2351
2352         return status;
2353 }
2354
2355 static inline void intel_pmu_ack_status(u64 ack)
2356 {
2357         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2358 }
2359
2360 static inline bool event_is_checkpointed(struct perf_event *event)
2361 {
2362         return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2363 }
2364
2365 static inline void intel_set_masks(struct perf_event *event, int idx)
2366 {
2367         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2368
2369         if (event->attr.exclude_host)
2370                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2371         if (event->attr.exclude_guest)
2372                 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2373         if (event_is_checkpointed(event))
2374                 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2375 }
2376
2377 static inline void intel_clear_masks(struct perf_event *event, int idx)
2378 {
2379         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2380
2381         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2382         __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2383         __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2384 }
2385
2386 static void intel_pmu_disable_fixed(struct perf_event *event)
2387 {
2388         struct hw_perf_event *hwc = &event->hw;
2389         u64 ctrl_val, mask;
2390         int idx = hwc->idx;
2391
2392         if (is_topdown_idx(idx)) {
2393                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2394
2395                 /*
2396                  * When there are other active TopDown events,
2397                  * don't disable the fixed counter 3.
2398                  */
2399                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2400                         return;
2401                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2402         }
2403
2404         intel_clear_masks(event, idx);
2405
2406         mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2407         rdmsrl(hwc->config_base, ctrl_val);
2408         ctrl_val &= ~mask;
2409         wrmsrl(hwc->config_base, ctrl_val);
2410 }
2411
2412 static void intel_pmu_disable_event(struct perf_event *event)
2413 {
2414         struct hw_perf_event *hwc = &event->hw;
2415         int idx = hwc->idx;
2416
2417         switch (idx) {
2418         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2419                 intel_clear_masks(event, idx);
2420                 x86_pmu_disable_event(event);
2421                 break;
2422         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2423         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2424                 intel_pmu_disable_fixed(event);
2425                 break;
2426         case INTEL_PMC_IDX_FIXED_BTS:
2427                 intel_pmu_disable_bts();
2428                 intel_pmu_drain_bts_buffer();
2429                 return;
2430         case INTEL_PMC_IDX_FIXED_VLBR:
2431                 intel_clear_masks(event, idx);
2432                 break;
2433         default:
2434                 intel_clear_masks(event, idx);
2435                 pr_warn("Failed to disable the event with invalid index %d\n",
2436                         idx);
2437                 return;
2438         }
2439
2440         /*
2441          * Needs to be called after x86_pmu_disable_event,
2442          * so we don't trigger the event without PEBS bit set.
2443          */
2444         if (unlikely(event->attr.precise_ip))
2445                 intel_pmu_pebs_disable(event);
2446 }
2447
2448 static void intel_pmu_del_event(struct perf_event *event)
2449 {
2450         if (needs_branch_stack(event))
2451                 intel_pmu_lbr_del(event);
2452         if (event->attr.precise_ip)
2453                 intel_pmu_pebs_del(event);
2454 }
2455
2456 static int icl_set_topdown_event_period(struct perf_event *event)
2457 {
2458         struct hw_perf_event *hwc = &event->hw;
2459         s64 left = local64_read(&hwc->period_left);
2460
2461         /*
2462          * The values in PERF_METRICS MSR are derived from fixed counter 3.
2463          * Software should start both registers, PERF_METRICS and fixed
2464          * counter 3, from zero.
2465          * Clear PERF_METRICS and Fixed counter 3 in initialization.
2466          * After that, both MSRs will be cleared for each read.
2467          * Don't need to clear them again.
2468          */
2469         if (left == x86_pmu.max_period) {
2470                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2471                 wrmsrl(MSR_PERF_METRICS, 0);
2472                 hwc->saved_slots = 0;
2473                 hwc->saved_metric = 0;
2474         }
2475
2476         if ((hwc->saved_slots) && is_slots_event(event)) {
2477                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2478                 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2479         }
2480
2481         perf_event_update_userpage(event);
2482
2483         return 0;
2484 }
2485
2486 static int adl_set_topdown_event_period(struct perf_event *event)
2487 {
2488         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2489
2490         if (pmu->cpu_type != hybrid_big)
2491                 return 0;
2492
2493         return icl_set_topdown_event_period(event);
2494 }
2495
2496 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2497 {
2498         u32 val;
2499
2500         /*
2501          * The metric is reported as an 8bit integer fraction
2502          * summing up to 0xff.
2503          * slots-in-metric = (Metric / 0xff) * slots
2504          */
2505         val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2506         return  mul_u64_u32_div(slots, val, 0xff);
2507 }
2508
2509 static u64 icl_get_topdown_value(struct perf_event *event,
2510                                        u64 slots, u64 metrics)
2511 {
2512         int idx = event->hw.idx;
2513         u64 delta;
2514
2515         if (is_metric_idx(idx))
2516                 delta = icl_get_metrics_event_value(metrics, slots, idx);
2517         else
2518                 delta = slots;
2519
2520         return delta;
2521 }
2522
2523 static void __icl_update_topdown_event(struct perf_event *event,
2524                                        u64 slots, u64 metrics,
2525                                        u64 last_slots, u64 last_metrics)
2526 {
2527         u64 delta, last = 0;
2528
2529         delta = icl_get_topdown_value(event, slots, metrics);
2530         if (last_slots)
2531                 last = icl_get_topdown_value(event, last_slots, last_metrics);
2532
2533         /*
2534          * The 8bit integer fraction of metric may be not accurate,
2535          * especially when the changes is very small.
2536          * For example, if only a few bad_spec happens, the fraction
2537          * may be reduced from 1 to 0. If so, the bad_spec event value
2538          * will be 0 which is definitely less than the last value.
2539          * Avoid update event->count for this case.
2540          */
2541         if (delta > last) {
2542                 delta -= last;
2543                 local64_add(delta, &event->count);
2544         }
2545 }
2546
2547 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2548                                       u64 metrics, int metric_end)
2549 {
2550         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2551         struct perf_event *other;
2552         int idx;
2553
2554         event->hw.saved_slots = slots;
2555         event->hw.saved_metric = metrics;
2556
2557         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2558                 if (!is_topdown_idx(idx))
2559                         continue;
2560                 other = cpuc->events[idx];
2561                 other->hw.saved_slots = slots;
2562                 other->hw.saved_metric = metrics;
2563         }
2564 }
2565
2566 /*
2567  * Update all active Topdown events.
2568  *
2569  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2570  * modify by a NMI. PMU has to be disabled before calling this function.
2571  */
2572
2573 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2574 {
2575         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2576         struct perf_event *other;
2577         u64 slots, metrics;
2578         bool reset = true;
2579         int idx;
2580
2581         /* read Fixed counter 3 */
2582         rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2583         if (!slots)
2584                 return 0;
2585
2586         /* read PERF_METRICS */
2587         rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2588
2589         for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2590                 if (!is_topdown_idx(idx))
2591                         continue;
2592                 other = cpuc->events[idx];
2593                 __icl_update_topdown_event(other, slots, metrics,
2594                                            event ? event->hw.saved_slots : 0,
2595                                            event ? event->hw.saved_metric : 0);
2596         }
2597
2598         /*
2599          * Check and update this event, which may have been cleared
2600          * in active_mask e.g. x86_pmu_stop()
2601          */
2602         if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2603                 __icl_update_topdown_event(event, slots, metrics,
2604                                            event->hw.saved_slots,
2605                                            event->hw.saved_metric);
2606
2607                 /*
2608                  * In x86_pmu_stop(), the event is cleared in active_mask first,
2609                  * then drain the delta, which indicates context switch for
2610                  * counting.
2611                  * Save metric and slots for context switch.
2612                  * Don't need to reset the PERF_METRICS and Fixed counter 3.
2613                  * Because the values will be restored in next schedule in.
2614                  */
2615                 update_saved_topdown_regs(event, slots, metrics, metric_end);
2616                 reset = false;
2617         }
2618
2619         if (reset) {
2620                 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2621                 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2622                 wrmsrl(MSR_PERF_METRICS, 0);
2623                 if (event)
2624                         update_saved_topdown_regs(event, 0, 0, metric_end);
2625         }
2626
2627         return slots;
2628 }
2629
2630 static u64 icl_update_topdown_event(struct perf_event *event)
2631 {
2632         return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2633                                                  x86_pmu.num_topdown_events - 1);
2634 }
2635
2636 static u64 adl_update_topdown_event(struct perf_event *event)
2637 {
2638         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2639
2640         if (pmu->cpu_type != hybrid_big)
2641                 return 0;
2642
2643         return icl_update_topdown_event(event);
2644 }
2645
2646
2647 static void intel_pmu_read_topdown_event(struct perf_event *event)
2648 {
2649         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2650
2651         /* Only need to call update_topdown_event() once for group read. */
2652         if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2653             !is_slots_event(event))
2654                 return;
2655
2656         perf_pmu_disable(event->pmu);
2657         x86_pmu.update_topdown_event(event);
2658         perf_pmu_enable(event->pmu);
2659 }
2660
2661 static void intel_pmu_read_event(struct perf_event *event)
2662 {
2663         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2664                 intel_pmu_auto_reload_read(event);
2665         else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2666                 intel_pmu_read_topdown_event(event);
2667         else
2668                 x86_perf_event_update(event);
2669 }
2670
2671 static void intel_pmu_enable_fixed(struct perf_event *event)
2672 {
2673         struct hw_perf_event *hwc = &event->hw;
2674         u64 ctrl_val, mask, bits = 0;
2675         int idx = hwc->idx;
2676
2677         if (is_topdown_idx(idx)) {
2678                 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2679                 /*
2680                  * When there are other active TopDown events,
2681                  * don't enable the fixed counter 3 again.
2682                  */
2683                 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2684                         return;
2685
2686                 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2687         }
2688
2689         intel_set_masks(event, idx);
2690
2691         /*
2692          * Enable IRQ generation (0x8), if not PEBS,
2693          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2694          * if requested:
2695          */
2696         if (!event->attr.precise_ip)
2697                 bits |= 0x8;
2698         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2699                 bits |= 0x2;
2700         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2701                 bits |= 0x1;
2702
2703         /*
2704          * ANY bit is supported in v3 and up
2705          */
2706         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2707                 bits |= 0x4;
2708
2709         idx -= INTEL_PMC_IDX_FIXED;
2710         bits <<= (idx * 4);
2711         mask = 0xfULL << (idx * 4);
2712
2713         if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2714                 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2715                 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2716         }
2717
2718         rdmsrl(hwc->config_base, ctrl_val);
2719         ctrl_val &= ~mask;
2720         ctrl_val |= bits;
2721         wrmsrl(hwc->config_base, ctrl_val);
2722 }
2723
2724 static void intel_pmu_enable_event(struct perf_event *event)
2725 {
2726         struct hw_perf_event *hwc = &event->hw;
2727         int idx = hwc->idx;
2728
2729         if (unlikely(event->attr.precise_ip))
2730                 intel_pmu_pebs_enable(event);
2731
2732         switch (idx) {
2733         case 0 ... INTEL_PMC_IDX_FIXED - 1:
2734                 intel_set_masks(event, idx);
2735                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2736                 break;
2737         case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2738         case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2739                 intel_pmu_enable_fixed(event);
2740                 break;
2741         case INTEL_PMC_IDX_FIXED_BTS:
2742                 if (!__this_cpu_read(cpu_hw_events.enabled))
2743                         return;
2744                 intel_pmu_enable_bts(hwc->config);
2745                 break;
2746         case INTEL_PMC_IDX_FIXED_VLBR:
2747                 intel_set_masks(event, idx);
2748                 break;
2749         default:
2750                 pr_warn("Failed to enable the event with invalid index %d\n",
2751                         idx);
2752         }
2753 }
2754
2755 static void intel_pmu_add_event(struct perf_event *event)
2756 {
2757         if (event->attr.precise_ip)
2758                 intel_pmu_pebs_add(event);
2759         if (needs_branch_stack(event))
2760                 intel_pmu_lbr_add(event);
2761 }
2762
2763 /*
2764  * Save and restart an expired event. Called by NMI contexts,
2765  * so it has to be careful about preempting normal event ops:
2766  */
2767 int intel_pmu_save_and_restart(struct perf_event *event)
2768 {
2769         x86_perf_event_update(event);
2770         /*
2771          * For a checkpointed counter always reset back to 0.  This
2772          * avoids a situation where the counter overflows, aborts the
2773          * transaction and is then set back to shortly before the
2774          * overflow, and overflows and aborts again.
2775          */
2776         if (unlikely(event_is_checkpointed(event))) {
2777                 /* No race with NMIs because the counter should not be armed */
2778                 wrmsrl(event->hw.event_base, 0);
2779                 local64_set(&event->hw.prev_count, 0);
2780         }
2781         return x86_perf_event_set_period(event);
2782 }
2783
2784 static void intel_pmu_reset(void)
2785 {
2786         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2787         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2788         int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2789         int num_counters = hybrid(cpuc->pmu, num_counters);
2790         unsigned long flags;
2791         int idx;
2792
2793         if (!num_counters)
2794                 return;
2795
2796         local_irq_save(flags);
2797
2798         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2799
2800         for (idx = 0; idx < num_counters; idx++) {
2801                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2802                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2803         }
2804         for (idx = 0; idx < num_counters_fixed; idx++) {
2805                 if (fixed_counter_disabled(idx, cpuc->pmu))
2806                         continue;
2807                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2808         }
2809
2810         if (ds)
2811                 ds->bts_index = ds->bts_buffer_base;
2812
2813         /* Ack all overflows and disable fixed counters */
2814         if (x86_pmu.version >= 2) {
2815                 intel_pmu_ack_status(intel_pmu_get_status());
2816                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2817         }
2818
2819         /* Reset LBRs and LBR freezing */
2820         if (x86_pmu.lbr_nr) {
2821                 update_debugctlmsr(get_debugctlmsr() &
2822                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2823         }
2824
2825         local_irq_restore(flags);
2826 }
2827
2828 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2829 {
2830         struct perf_sample_data data;
2831         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2832         int bit;
2833         int handled = 0;
2834         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2835
2836         inc_irq_stat(apic_perf_irqs);
2837
2838         /*
2839          * Ignore a range of extra bits in status that do not indicate
2840          * overflow by themselves.
2841          */
2842         status &= ~(GLOBAL_STATUS_COND_CHG |
2843                     GLOBAL_STATUS_ASIF |
2844                     GLOBAL_STATUS_LBRS_FROZEN);
2845         if (!status)
2846                 return 0;
2847         /*
2848          * In case multiple PEBS events are sampled at the same time,
2849          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2850          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2851          * having their bits set in the status register. This is a sign
2852          * that there was at least one PEBS record pending at the time
2853          * of the PMU interrupt. PEBS counters must only be processed
2854          * via the drain_pebs() calls and not via the regular sample
2855          * processing loop coming after that the function, otherwise
2856          * phony regular samples may be generated in the sampling buffer
2857          * not marked with the EXACT tag. Another possibility is to have
2858          * one PEBS event and at least one non-PEBS event which overflows
2859          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2860          * not be set, yet the overflow status bit for the PEBS counter will
2861          * be on Skylake.
2862          *
2863          * To avoid this problem, we systematically ignore the PEBS-enabled
2864          * counters from the GLOBAL_STATUS mask and we always process PEBS
2865          * events via drain_pebs().
2866          */
2867         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2868                 status &= ~cpuc->pebs_enabled;
2869         else
2870                 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2871
2872         /*
2873          * PEBS overflow sets bit 62 in the global status register
2874          */
2875         if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2876                 u64 pebs_enabled = cpuc->pebs_enabled;
2877
2878                 handled++;
2879                 x86_pmu.drain_pebs(regs, &data);
2880                 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2881
2882                 /*
2883                  * PMI throttle may be triggered, which stops the PEBS event.
2884                  * Although cpuc->pebs_enabled is updated accordingly, the
2885                  * MSR_IA32_PEBS_ENABLE is not updated. Because the
2886                  * cpuc->enabled has been forced to 0 in PMI.
2887                  * Update the MSR if pebs_enabled is changed.
2888                  */
2889                 if (pebs_enabled != cpuc->pebs_enabled)
2890                         wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2891         }
2892
2893         /*
2894          * Intel PT
2895          */
2896         if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2897                 handled++;
2898                 if (unlikely(perf_guest_cbs && perf_guest_cbs->is_in_guest() &&
2899                         perf_guest_cbs->handle_intel_pt_intr))
2900                         perf_guest_cbs->handle_intel_pt_intr();
2901                 else
2902                         intel_pt_interrupt();
2903         }
2904
2905         /*
2906          * Intel Perf metrics
2907          */
2908         if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2909                 handled++;
2910                 if (x86_pmu.update_topdown_event)
2911                         x86_pmu.update_topdown_event(NULL);
2912         }
2913
2914         /*
2915          * Checkpointed counters can lead to 'spurious' PMIs because the
2916          * rollback caused by the PMI will have cleared the overflow status
2917          * bit. Therefore always force probe these counters.
2918          */
2919         status |= cpuc->intel_cp_status;
2920
2921         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2922                 struct perf_event *event = cpuc->events[bit];
2923
2924                 handled++;
2925
2926                 if (!test_bit(bit, cpuc->active_mask))
2927                         continue;
2928
2929                 if (!intel_pmu_save_and_restart(event))
2930                         continue;
2931
2932                 perf_sample_data_init(&data, 0, event->hw.last_period);
2933
2934                 if (has_branch_stack(event))
2935                         data.br_stack = &cpuc->lbr_stack;
2936
2937                 if (perf_event_overflow(event, &data, regs))
2938                         x86_pmu_stop(event, 0);
2939         }
2940
2941         return handled;
2942 }
2943
2944 /*
2945  * This handler is triggered by the local APIC, so the APIC IRQ handling
2946  * rules apply:
2947  */
2948 static int intel_pmu_handle_irq(struct pt_regs *regs)
2949 {
2950         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2951         bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
2952         bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
2953         int loops;
2954         u64 status;
2955         int handled;
2956         int pmu_enabled;
2957
2958         /*
2959          * Save the PMU state.
2960          * It needs to be restored when leaving the handler.
2961          */
2962         pmu_enabled = cpuc->enabled;
2963         /*
2964          * In general, the early ACK is only applied for old platforms.
2965          * For the big core starts from Haswell, the late ACK should be
2966          * applied.
2967          * For the small core after Tremont, we have to do the ACK right
2968          * before re-enabling counters, which is in the middle of the
2969          * NMI handler.
2970          */
2971         if (!late_ack && !mid_ack)
2972                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2973         intel_bts_disable_local();
2974         cpuc->enabled = 0;
2975         __intel_pmu_disable_all(true);
2976         handled = intel_pmu_drain_bts_buffer();
2977         handled += intel_bts_interrupt();
2978         status = intel_pmu_get_status();
2979         if (!status)
2980                 goto done;
2981
2982         loops = 0;
2983 again:
2984         intel_pmu_lbr_read();
2985         intel_pmu_ack_status(status);
2986         if (++loops > 100) {
2987                 static bool warned;
2988
2989                 if (!warned) {
2990                         WARN(1, "perfevents: irq loop stuck!\n");
2991                         perf_event_print_debug();
2992                         warned = true;
2993                 }
2994                 intel_pmu_reset();
2995                 goto done;
2996         }
2997
2998         handled += handle_pmi_common(regs, status);
2999
3000         /*
3001          * Repeat if there is more work to be done:
3002          */
3003         status = intel_pmu_get_status();
3004         if (status)
3005                 goto again;
3006
3007 done:
3008         if (mid_ack)
3009                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3010         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
3011         cpuc->enabled = pmu_enabled;
3012         if (pmu_enabled)
3013                 __intel_pmu_enable_all(0, true);
3014         intel_bts_enable_local();
3015
3016         /*
3017          * Only unmask the NMI after the overflow counters
3018          * have been reset. This avoids spurious NMIs on
3019          * Haswell CPUs.
3020          */
3021         if (late_ack)
3022                 apic_write(APIC_LVTPC, APIC_DM_NMI);
3023         return handled;
3024 }
3025
3026 static struct event_constraint *
3027 intel_bts_constraints(struct perf_event *event)
3028 {
3029         if (unlikely(intel_pmu_has_bts(event)))
3030                 return &bts_constraint;
3031
3032         return NULL;
3033 }
3034
3035 /*
3036  * Note: matches a fake event, like Fixed2.
3037  */
3038 static struct event_constraint *
3039 intel_vlbr_constraints(struct perf_event *event)
3040 {
3041         struct event_constraint *c = &vlbr_constraint;
3042
3043         if (unlikely(constraint_match(c, event->hw.config)))
3044                 return c;
3045
3046         return NULL;
3047 }
3048
3049 static int intel_alt_er(struct cpu_hw_events *cpuc,
3050                         int idx, u64 config)
3051 {
3052         struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3053         int alt_idx = idx;
3054
3055         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3056                 return idx;
3057
3058         if (idx == EXTRA_REG_RSP_0)
3059                 alt_idx = EXTRA_REG_RSP_1;
3060
3061         if (idx == EXTRA_REG_RSP_1)
3062                 alt_idx = EXTRA_REG_RSP_0;
3063
3064         if (config & ~extra_regs[alt_idx].valid_mask)
3065                 return idx;
3066
3067         return alt_idx;
3068 }
3069
3070 static void intel_fixup_er(struct perf_event *event, int idx)
3071 {
3072         struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3073         event->hw.extra_reg.idx = idx;
3074
3075         if (idx == EXTRA_REG_RSP_0) {
3076                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3077                 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3078                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3079         } else if (idx == EXTRA_REG_RSP_1) {
3080                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3081                 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3082                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3083         }
3084 }
3085
3086 /*
3087  * manage allocation of shared extra msr for certain events
3088  *
3089  * sharing can be:
3090  * per-cpu: to be shared between the various events on a single PMU
3091  * per-core: per-cpu + shared by HT threads
3092  */
3093 static struct event_constraint *
3094 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3095                                    struct perf_event *event,
3096                                    struct hw_perf_event_extra *reg)
3097 {
3098         struct event_constraint *c = &emptyconstraint;
3099         struct er_account *era;
3100         unsigned long flags;
3101         int idx = reg->idx;
3102
3103         /*
3104          * reg->alloc can be set due to existing state, so for fake cpuc we
3105          * need to ignore this, otherwise we might fail to allocate proper fake
3106          * state for this extra reg constraint. Also see the comment below.
3107          */
3108         if (reg->alloc && !cpuc->is_fake)
3109                 return NULL; /* call x86_get_event_constraint() */
3110
3111 again:
3112         era = &cpuc->shared_regs->regs[idx];
3113         /*
3114          * we use spin_lock_irqsave() to avoid lockdep issues when
3115          * passing a fake cpuc
3116          */
3117         raw_spin_lock_irqsave(&era->lock, flags);
3118
3119         if (!atomic_read(&era->ref) || era->config == reg->config) {
3120
3121                 /*
3122                  * If its a fake cpuc -- as per validate_{group,event}() we
3123                  * shouldn't touch event state and we can avoid doing so
3124                  * since both will only call get_event_constraints() once
3125                  * on each event, this avoids the need for reg->alloc.
3126                  *
3127                  * Not doing the ER fixup will only result in era->reg being
3128                  * wrong, but since we won't actually try and program hardware
3129                  * this isn't a problem either.
3130                  */
3131                 if (!cpuc->is_fake) {
3132                         if (idx != reg->idx)
3133                                 intel_fixup_er(event, idx);
3134
3135                         /*
3136                          * x86_schedule_events() can call get_event_constraints()
3137                          * multiple times on events in the case of incremental
3138                          * scheduling(). reg->alloc ensures we only do the ER
3139                          * allocation once.
3140                          */
3141                         reg->alloc = 1;
3142                 }
3143
3144                 /* lock in msr value */
3145                 era->config = reg->config;
3146                 era->reg = reg->reg;
3147
3148                 /* one more user */
3149                 atomic_inc(&era->ref);
3150
3151                 /*
3152                  * need to call x86_get_event_constraint()
3153                  * to check if associated event has constraints
3154                  */
3155                 c = NULL;
3156         } else {
3157                 idx = intel_alt_er(cpuc, idx, reg->config);
3158                 if (idx != reg->idx) {
3159                         raw_spin_unlock_irqrestore(&era->lock, flags);
3160                         goto again;
3161                 }
3162         }
3163         raw_spin_unlock_irqrestore(&era->lock, flags);
3164
3165         return c;
3166 }
3167
3168 static void
3169 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3170                                    struct hw_perf_event_extra *reg)
3171 {
3172         struct er_account *era;
3173
3174         /*
3175          * Only put constraint if extra reg was actually allocated. Also takes
3176          * care of event which do not use an extra shared reg.
3177          *
3178          * Also, if this is a fake cpuc we shouldn't touch any event state
3179          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3180          * either since it'll be thrown out.
3181          */
3182         if (!reg->alloc || cpuc->is_fake)
3183                 return;
3184
3185         era = &cpuc->shared_regs->regs[reg->idx];
3186
3187         /* one fewer user */
3188         atomic_dec(&era->ref);
3189
3190         /* allocate again next time */
3191         reg->alloc = 0;
3192 }
3193
3194 static struct event_constraint *
3195 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3196                               struct perf_event *event)
3197 {
3198         struct event_constraint *c = NULL, *d;
3199         struct hw_perf_event_extra *xreg, *breg;
3200
3201         xreg = &event->hw.extra_reg;
3202         if (xreg->idx != EXTRA_REG_NONE) {
3203                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3204                 if (c == &emptyconstraint)
3205                         return c;
3206         }
3207         breg = &event->hw.branch_reg;
3208         if (breg->idx != EXTRA_REG_NONE) {
3209                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3210                 if (d == &emptyconstraint) {
3211                         __intel_shared_reg_put_constraints(cpuc, xreg);
3212                         c = d;
3213                 }
3214         }
3215         return c;
3216 }
3217
3218 struct event_constraint *
3219 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3220                           struct perf_event *event)
3221 {
3222         struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3223         struct event_constraint *c;
3224
3225         if (event_constraints) {
3226                 for_each_event_constraint(c, event_constraints) {
3227                         if (constraint_match(c, event->hw.config)) {
3228                                 event->hw.flags |= c->flags;
3229                                 return c;
3230                         }
3231                 }
3232         }
3233
3234         return &hybrid_var(cpuc->pmu, unconstrained);
3235 }
3236
3237 static struct event_constraint *
3238 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3239                             struct perf_event *event)
3240 {
3241         struct event_constraint *c;
3242
3243         c = intel_vlbr_constraints(event);
3244         if (c)
3245                 return c;
3246
3247         c = intel_bts_constraints(event);
3248         if (c)
3249                 return c;
3250
3251         c = intel_shared_regs_constraints(cpuc, event);
3252         if (c)
3253                 return c;
3254
3255         c = intel_pebs_constraints(event);
3256         if (c)
3257                 return c;
3258
3259         return x86_get_event_constraints(cpuc, idx, event);
3260 }
3261
3262 static void
3263 intel_start_scheduling(struct cpu_hw_events *cpuc)
3264 {
3265         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3266         struct intel_excl_states *xl;
3267         int tid = cpuc->excl_thread_id;
3268
3269         /*
3270          * nothing needed if in group validation mode
3271          */
3272         if (cpuc->is_fake || !is_ht_workaround_enabled())
3273                 return;
3274
3275         /*
3276          * no exclusion needed
3277          */
3278         if (WARN_ON_ONCE(!excl_cntrs))
3279                 return;
3280
3281         xl = &excl_cntrs->states[tid];
3282
3283         xl->sched_started = true;
3284         /*
3285          * lock shared state until we are done scheduling
3286          * in stop_event_scheduling()
3287          * makes scheduling appear as a transaction
3288          */
3289         raw_spin_lock(&excl_cntrs->lock);
3290 }
3291
3292 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3293 {
3294         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3295         struct event_constraint *c = cpuc->event_constraint[idx];
3296         struct intel_excl_states *xl;
3297         int tid = cpuc->excl_thread_id;
3298
3299         if (cpuc->is_fake || !is_ht_workaround_enabled())
3300                 return;
3301
3302         if (WARN_ON_ONCE(!excl_cntrs))
3303                 return;
3304
3305         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3306                 return;
3307
3308         xl = &excl_cntrs->states[tid];
3309
3310         lockdep_assert_held(&excl_cntrs->lock);
3311
3312         if (c->flags & PERF_X86_EVENT_EXCL)
3313                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3314         else
3315                 xl->state[cntr] = INTEL_EXCL_SHARED;
3316 }
3317
3318 static void
3319 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3320 {
3321         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3322         struct intel_excl_states *xl;
3323         int tid = cpuc->excl_thread_id;
3324
3325         /*
3326          * nothing needed if in group validation mode
3327          */
3328         if (cpuc->is_fake || !is_ht_workaround_enabled())
3329                 return;
3330         /*
3331          * no exclusion needed
3332          */
3333         if (WARN_ON_ONCE(!excl_cntrs))
3334                 return;
3335
3336         xl = &excl_cntrs->states[tid];
3337
3338         xl->sched_started = false;
3339         /*
3340          * release shared state lock (acquired in intel_start_scheduling())
3341          */
3342         raw_spin_unlock(&excl_cntrs->lock);
3343 }
3344
3345 static struct event_constraint *
3346 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3347 {
3348         WARN_ON_ONCE(!cpuc->constraint_list);
3349
3350         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3351                 struct event_constraint *cx;
3352
3353                 /*
3354                  * grab pre-allocated constraint entry
3355                  */
3356                 cx = &cpuc->constraint_list[idx];
3357
3358                 /*
3359                  * initialize dynamic constraint
3360                  * with static constraint
3361                  */
3362                 *cx = *c;
3363
3364                 /*
3365                  * mark constraint as dynamic
3366                  */
3367                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3368                 c = cx;
3369         }
3370
3371         return c;
3372 }
3373
3374 static struct event_constraint *
3375 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3376                            int idx, struct event_constraint *c)
3377 {
3378         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3379         struct intel_excl_states *xlo;
3380         int tid = cpuc->excl_thread_id;
3381         int is_excl, i, w;
3382
3383         /*
3384          * validating a group does not require
3385          * enforcing cross-thread  exclusion
3386          */
3387         if (cpuc->is_fake || !is_ht_workaround_enabled())
3388                 return c;
3389
3390         /*
3391          * no exclusion needed
3392          */
3393         if (WARN_ON_ONCE(!excl_cntrs))
3394                 return c;
3395
3396         /*
3397          * because we modify the constraint, we need
3398          * to make a copy. Static constraints come
3399          * from static const tables.
3400          *
3401          * only needed when constraint has not yet
3402          * been cloned (marked dynamic)
3403          */
3404         c = dyn_constraint(cpuc, c, idx);
3405
3406         /*
3407          * From here on, the constraint is dynamic.
3408          * Either it was just allocated above, or it
3409          * was allocated during a earlier invocation
3410          * of this function
3411          */
3412
3413         /*
3414          * state of sibling HT
3415          */
3416         xlo = &excl_cntrs->states[tid ^ 1];
3417
3418         /*
3419          * event requires exclusive counter access
3420          * across HT threads
3421          */
3422         is_excl = c->flags & PERF_X86_EVENT_EXCL;
3423         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3424                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3425                 if (!cpuc->n_excl++)
3426                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3427         }
3428
3429         /*
3430          * Modify static constraint with current dynamic
3431          * state of thread
3432          *
3433          * EXCLUSIVE: sibling counter measuring exclusive event
3434          * SHARED   : sibling counter measuring non-exclusive event
3435          * UNUSED   : sibling counter unused
3436          */
3437         w = c->weight;
3438         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3439                 /*
3440                  * exclusive event in sibling counter
3441                  * our corresponding counter cannot be used
3442                  * regardless of our event
3443                  */
3444                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3445                         __clear_bit(i, c->idxmsk);
3446                         w--;
3447                         continue;
3448                 }
3449                 /*
3450                  * if measuring an exclusive event, sibling
3451                  * measuring non-exclusive, then counter cannot
3452                  * be used
3453                  */
3454                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3455                         __clear_bit(i, c->idxmsk);
3456                         w--;
3457                         continue;
3458                 }
3459         }
3460
3461         /*
3462          * if we return an empty mask, then switch
3463          * back to static empty constraint to avoid
3464          * the cost of freeing later on
3465          */
3466         if (!w)
3467                 c = &emptyconstraint;
3468
3469         c->weight = w;
3470
3471         return c;
3472 }
3473
3474 static struct event_constraint *
3475 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3476                             struct perf_event *event)
3477 {
3478         struct event_constraint *c1, *c2;
3479
3480         c1 = cpuc->event_constraint[idx];
3481
3482         /*
3483          * first time only
3484          * - static constraint: no change across incremental scheduling calls
3485          * - dynamic constraint: handled by intel_get_excl_constraints()
3486          */
3487         c2 = __intel_get_event_constraints(cpuc, idx, event);
3488         if (c1) {
3489                 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3490                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3491                 c1->weight = c2->weight;
3492                 c2 = c1;
3493         }
3494
3495         if (cpuc->excl_cntrs)
3496                 return intel_get_excl_constraints(cpuc, event, idx, c2);
3497
3498         return c2;
3499 }
3500
3501 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3502                 struct perf_event *event)
3503 {
3504         struct hw_perf_event *hwc = &event->hw;
3505         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3506         int tid = cpuc->excl_thread_id;
3507         struct intel_excl_states *xl;
3508
3509         /*
3510          * nothing needed if in group validation mode
3511          */
3512         if (cpuc->is_fake)
3513                 return;
3514
3515         if (WARN_ON_ONCE(!excl_cntrs))
3516                 return;
3517
3518         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3519                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3520                 if (!--cpuc->n_excl)
3521                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3522         }
3523
3524         /*
3525          * If event was actually assigned, then mark the counter state as
3526          * unused now.
3527          */
3528         if (hwc->idx >= 0) {
3529                 xl = &excl_cntrs->states[tid];
3530
3531                 /*
3532                  * put_constraint may be called from x86_schedule_events()
3533                  * which already has the lock held so here make locking
3534                  * conditional.
3535                  */
3536                 if (!xl->sched_started)
3537                         raw_spin_lock(&excl_cntrs->lock);
3538
3539                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3540
3541                 if (!xl->sched_started)
3542                         raw_spin_unlock(&excl_cntrs->lock);
3543         }
3544 }
3545
3546 static void
3547 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3548                                         struct perf_event *event)
3549 {
3550         struct hw_perf_event_extra *reg;
3551
3552         reg = &event->hw.extra_reg;
3553         if (reg->idx != EXTRA_REG_NONE)
3554                 __intel_shared_reg_put_constraints(cpuc, reg);
3555
3556         reg = &event->hw.branch_reg;
3557         if (reg->idx != EXTRA_REG_NONE)
3558                 __intel_shared_reg_put_constraints(cpuc, reg);
3559 }
3560
3561 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3562                                         struct perf_event *event)
3563 {
3564         intel_put_shared_regs_event_constraints(cpuc, event);
3565
3566         /*
3567          * is PMU has exclusive counter restrictions, then
3568          * all events are subject to and must call the
3569          * put_excl_constraints() routine
3570          */
3571         if (cpuc->excl_cntrs)
3572                 intel_put_excl_constraints(cpuc, event);
3573 }
3574
3575 static void intel_pebs_aliases_core2(struct perf_event *event)
3576 {
3577         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3578                 /*
3579                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3580                  * (0x003c) so that we can use it with PEBS.
3581                  *
3582                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3583                  * PEBS capable. However we can use INST_RETIRED.ANY_P
3584                  * (0x00c0), which is a PEBS capable event, to get the same
3585                  * count.
3586                  *
3587                  * INST_RETIRED.ANY_P counts the number of cycles that retires
3588                  * CNTMASK instructions. By setting CNTMASK to a value (16)
3589                  * larger than the maximum number of instructions that can be
3590                  * retired per cycle (4) and then inverting the condition, we
3591                  * count all cycles that retire 16 or less instructions, which
3592                  * is every cycle.
3593                  *
3594                  * Thereby we gain a PEBS capable cycle counter.
3595                  */
3596                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3597
3598                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3599                 event->hw.config = alt_config;
3600         }
3601 }
3602
3603 static void intel_pebs_aliases_snb(struct perf_event *event)
3604 {
3605         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3606                 /*
3607                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3608                  * (0x003c) so that we can use it with PEBS.
3609                  *
3610                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3611                  * PEBS capable. However we can use UOPS_RETIRED.ALL
3612                  * (0x01c2), which is a PEBS capable event, to get the same
3613                  * count.
3614                  *
3615                  * UOPS_RETIRED.ALL counts the number of cycles that retires
3616                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3617                  * larger than the maximum number of micro-ops that can be
3618                  * retired per cycle (4) and then inverting the condition, we
3619                  * count all cycles that retire 16 or less micro-ops, which
3620                  * is every cycle.
3621                  *
3622                  * Thereby we gain a PEBS capable cycle counter.
3623                  */
3624                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3625
3626                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3627                 event->hw.config = alt_config;
3628         }
3629 }
3630
3631 static void intel_pebs_aliases_precdist(struct perf_event *event)
3632 {
3633         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3634                 /*
3635                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3636                  * (0x003c) so that we can use it with PEBS.
3637                  *
3638                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3639                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3640                  * (0x01c0), which is a PEBS capable event, to get the same
3641                  * count.
3642                  *
3643                  * The PREC_DIST event has special support to minimize sample
3644                  * shadowing effects. One drawback is that it can be
3645                  * only programmed on counter 1, but that seems like an
3646                  * acceptable trade off.
3647                  */
3648                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3649
3650                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3651                 event->hw.config = alt_config;
3652         }
3653 }
3654
3655 static void intel_pebs_aliases_ivb(struct perf_event *event)
3656 {
3657         if (event->attr.precise_ip < 3)
3658                 return intel_pebs_aliases_snb(event);
3659         return intel_pebs_aliases_precdist(event);
3660 }
3661
3662 static void intel_pebs_aliases_skl(struct perf_event *event)
3663 {
3664         if (event->attr.precise_ip < 3)
3665                 return intel_pebs_aliases_core2(event);
3666         return intel_pebs_aliases_precdist(event);
3667 }
3668
3669 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3670 {
3671         unsigned long flags = x86_pmu.large_pebs_flags;
3672
3673         if (event->attr.use_clockid)
3674                 flags &= ~PERF_SAMPLE_TIME;
3675         if (!event->attr.exclude_kernel)
3676                 flags &= ~PERF_SAMPLE_REGS_USER;
3677         if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3678                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3679         return flags;
3680 }
3681
3682 static int intel_pmu_bts_config(struct perf_event *event)
3683 {
3684         struct perf_event_attr *attr = &event->attr;
3685
3686         if (unlikely(intel_pmu_has_bts(event))) {
3687                 /* BTS is not supported by this architecture. */
3688                 if (!x86_pmu.bts_active)
3689                         return -EOPNOTSUPP;
3690
3691                 /* BTS is currently only allowed for user-mode. */
3692                 if (!attr->exclude_kernel)
3693                         return -EOPNOTSUPP;
3694
3695                 /* BTS is not allowed for precise events. */
3696                 if (attr->precise_ip)
3697                         return -EOPNOTSUPP;
3698
3699                 /* disallow bts if conflicting events are present */
3700                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3701                         return -EBUSY;
3702
3703                 event->destroy = hw_perf_lbr_event_destroy;
3704         }
3705
3706         return 0;
3707 }
3708
3709 static int core_pmu_hw_config(struct perf_event *event)
3710 {
3711         int ret = x86_pmu_hw_config(event);
3712
3713         if (ret)
3714                 return ret;
3715
3716         return intel_pmu_bts_config(event);
3717 }
3718
3719 #define INTEL_TD_METRIC_AVAILABLE_MAX   (INTEL_TD_METRIC_RETIRING + \
3720                                          ((x86_pmu.num_topdown_events - 1) << 8))
3721
3722 static bool is_available_metric_event(struct perf_event *event)
3723 {
3724         return is_metric_event(event) &&
3725                 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3726 }
3727
3728 static inline bool is_mem_loads_event(struct perf_event *event)
3729 {
3730         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3731 }
3732
3733 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3734 {
3735         return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3736 }
3737
3738 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3739 {
3740         if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3741                 return false;
3742
3743         if (is_hybrid())
3744                 return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3745
3746         return true;
3747 }
3748
3749 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3750 {
3751         union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3752
3753         return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3754 }
3755
3756 static int intel_pmu_hw_config(struct perf_event *event)
3757 {
3758         int ret = x86_pmu_hw_config(event);
3759
3760         if (ret)
3761                 return ret;
3762
3763         ret = intel_pmu_bts_config(event);
3764         if (ret)
3765                 return ret;
3766
3767         if (event->attr.precise_ip) {
3768                 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3769                         return -EINVAL;
3770
3771                 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3772                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3773                         if (!(event->attr.sample_type &
3774                               ~intel_pmu_large_pebs_flags(event))) {
3775                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3776                                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3777                         }
3778                 }
3779                 if (x86_pmu.pebs_aliases)
3780                         x86_pmu.pebs_aliases(event);
3781
3782                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3783                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3784         }
3785
3786         if (needs_branch_stack(event)) {
3787                 ret = intel_pmu_setup_lbr_filter(event);
3788                 if (ret)
3789                         return ret;
3790                 event->attach_state |= PERF_ATTACH_SCHED_CB;
3791
3792                 /*
3793                  * BTS is set up earlier in this path, so don't account twice
3794                  */
3795                 if (!unlikely(intel_pmu_has_bts(event))) {
3796                         /* disallow lbr if conflicting events are present */
3797                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3798                                 return -EBUSY;
3799
3800                         event->destroy = hw_perf_lbr_event_destroy;
3801                 }
3802         }
3803
3804         if (event->attr.aux_output) {
3805                 if (!event->attr.precise_ip)
3806                         return -EINVAL;
3807
3808                 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3809         }
3810
3811         if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3812             (event->attr.type == PERF_TYPE_HW_CACHE))
3813                 return 0;
3814
3815         /*
3816          * Config Topdown slots and metric events
3817          *
3818          * The slots event on Fixed Counter 3 can support sampling,
3819          * which will be handled normally in x86_perf_event_update().
3820          *
3821          * Metric events don't support sampling and require being paired
3822          * with a slots event as group leader. When the slots event
3823          * is used in a metrics group, it too cannot support sampling.
3824          */
3825         if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3826                 if (event->attr.config1 || event->attr.config2)
3827                         return -EINVAL;
3828
3829                 /*
3830                  * The TopDown metrics events and slots event don't
3831                  * support any filters.
3832                  */
3833                 if (event->attr.config & X86_ALL_EVENT_FLAGS)
3834                         return -EINVAL;
3835
3836                 if (is_available_metric_event(event)) {
3837                         struct perf_event *leader = event->group_leader;
3838
3839                         /* The metric events don't support sampling. */
3840                         if (is_sampling_event(event))
3841                                 return -EINVAL;
3842
3843                         /* The metric events require a slots group leader. */
3844                         if (!is_slots_event(leader))
3845                                 return -EINVAL;
3846
3847                         /*
3848                          * The leader/SLOTS must not be a sampling event for
3849                          * metric use; hardware requires it starts at 0 when used
3850                          * in conjunction with MSR_PERF_METRICS.
3851                          */
3852                         if (is_sampling_event(leader))
3853                                 return -EINVAL;
3854
3855                         event->event_caps |= PERF_EV_CAP_SIBLING;
3856                         /*
3857                          * Only once we have a METRICs sibling do we
3858                          * need TopDown magic.
3859                          */
3860                         leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3861                         event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3862                 }
3863         }
3864
3865         /*
3866          * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3867          * doesn't function quite right. As a work-around it needs to always be
3868          * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3869          * The actual count of this second event is irrelevant it just needs
3870          * to be active to make the first event function correctly.
3871          *
3872          * In a group, the auxiliary event must be in front of the load latency
3873          * event. The rule is to simplify the implementation of the check.
3874          * That's because perf cannot have a complete group at the moment.
3875          */
3876         if (require_mem_loads_aux_event(event) &&
3877             (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3878             is_mem_loads_event(event)) {
3879                 struct perf_event *leader = event->group_leader;
3880                 struct perf_event *sibling = NULL;
3881
3882                 if (!is_mem_loads_aux_event(leader)) {
3883                         for_each_sibling_event(sibling, leader) {
3884                                 if (is_mem_loads_aux_event(sibling))
3885                                         break;
3886                         }
3887                         if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3888                                 return -ENODATA;
3889                 }
3890         }
3891
3892         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3893                 return 0;
3894
3895         if (x86_pmu.version < 3)
3896                 return -EINVAL;
3897
3898         ret = perf_allow_cpu(&event->attr);
3899         if (ret)
3900                 return ret;
3901
3902         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3903
3904         return 0;
3905 }
3906
3907 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3908 {
3909         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3910         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3911         u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3912
3913         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3914         arr[0].host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3915         arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3916         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3917                 arr[0].guest &= ~cpuc->pebs_enabled;
3918         else
3919                 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3920         *nr = 1;
3921
3922         if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3923                 /*
3924                  * If PMU counter has PEBS enabled it is not enough to
3925                  * disable counter on a guest entry since PEBS memory
3926                  * write can overshoot guest entry and corrupt guest
3927                  * memory. Disabling PEBS solves the problem.
3928                  *
3929                  * Don't do this if the CPU already enforces it.
3930                  */
3931                 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3932                 arr[1].host = cpuc->pebs_enabled;
3933                 arr[1].guest = 0;
3934                 *nr = 2;
3935         }
3936
3937         return arr;
3938 }
3939
3940 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3941 {
3942         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3943         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3944         int idx;
3945
3946         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3947                 struct perf_event *event = cpuc->events[idx];
3948
3949                 arr[idx].msr = x86_pmu_config_addr(idx);
3950                 arr[idx].host = arr[idx].guest = 0;
3951
3952                 if (!test_bit(idx, cpuc->active_mask))
3953                         continue;
3954
3955                 arr[idx].host = arr[idx].guest =
3956                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3957
3958                 if (event->attr.exclude_host)
3959                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3960                 else if (event->attr.exclude_guest)
3961                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3962         }
3963
3964         *nr = x86_pmu.num_counters;
3965         return arr;
3966 }
3967
3968 static void core_pmu_enable_event(struct perf_event *event)
3969 {
3970         if (!event->attr.exclude_host)
3971                 x86_pmu_enable_event(event);
3972 }
3973
3974 static void core_pmu_enable_all(int added)
3975 {
3976         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3977         int idx;
3978
3979         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3980                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3981
3982                 if (!test_bit(idx, cpuc->active_mask) ||
3983                                 cpuc->events[idx]->attr.exclude_host)
3984                         continue;
3985
3986                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3987         }
3988 }
3989
3990 static int hsw_hw_config(struct perf_event *event)
3991 {
3992         int ret = intel_pmu_hw_config(event);
3993
3994         if (ret)
3995                 return ret;
3996         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3997                 return 0;
3998         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3999
4000         /*
4001          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
4002          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
4003          * this combination.
4004          */
4005         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
4006              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
4007               event->attr.precise_ip > 0))
4008                 return -EOPNOTSUPP;
4009
4010         if (event_is_checkpointed(event)) {
4011                 /*
4012                  * Sampling of checkpointed events can cause situations where
4013                  * the CPU constantly aborts because of a overflow, which is
4014                  * then checkpointed back and ignored. Forbid checkpointing
4015                  * for sampling.
4016                  *
4017                  * But still allow a long sampling period, so that perf stat
4018                  * from KVM works.
4019                  */
4020                 if (event->attr.sample_period > 0 &&
4021                     event->attr.sample_period < 0x7fffffff)
4022                         return -EOPNOTSUPP;
4023         }
4024         return 0;
4025 }
4026
4027 static struct event_constraint counter0_constraint =
4028                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
4029
4030 static struct event_constraint counter2_constraint =
4031                         EVENT_CONSTRAINT(0, 0x4, 0);
4032
4033 static struct event_constraint fixed0_constraint =
4034                         FIXED_EVENT_CONSTRAINT(0x00c0, 0);
4035
4036 static struct event_constraint fixed0_counter0_constraint =
4037                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4038
4039 static struct event_constraint *
4040 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4041                           struct perf_event *event)
4042 {
4043         struct event_constraint *c;
4044
4045         c = intel_get_event_constraints(cpuc, idx, event);
4046
4047         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4048         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4049                 if (c->idxmsk64 & (1U << 2))
4050                         return &counter2_constraint;
4051                 return &emptyconstraint;
4052         }
4053
4054         return c;
4055 }
4056
4057 static struct event_constraint *
4058 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4059                           struct perf_event *event)
4060 {
4061         /*
4062          * Fixed counter 0 has less skid.
4063          * Force instruction:ppp in Fixed counter 0
4064          */
4065         if ((event->attr.precise_ip == 3) &&
4066             constraint_match(&fixed0_constraint, event->hw.config))
4067                 return &fixed0_constraint;
4068
4069         return hsw_get_event_constraints(cpuc, idx, event);
4070 }
4071
4072 static struct event_constraint *
4073 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4074                           struct perf_event *event)
4075 {
4076         struct event_constraint *c;
4077
4078         c = icl_get_event_constraints(cpuc, idx, event);
4079
4080         /*
4081          * The :ppp indicates the Precise Distribution (PDist) facility, which
4082          * is only supported on the GP counter 0. If a :ppp event which is not
4083          * available on the GP counter 0, error out.
4084          * Exception: Instruction PDIR is only available on the fixed counter 0.
4085          */
4086         if ((event->attr.precise_ip == 3) &&
4087             !constraint_match(&fixed0_constraint, event->hw.config)) {
4088                 if (c->idxmsk64 & BIT_ULL(0))
4089                         return &counter0_constraint;
4090
4091                 return &emptyconstraint;
4092         }
4093
4094         return c;
4095 }
4096
4097 static struct event_constraint *
4098 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4099                           struct perf_event *event)
4100 {
4101         struct event_constraint *c;
4102
4103         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4104         if (event->attr.precise_ip == 3)
4105                 return &counter0_constraint;
4106
4107         c = intel_get_event_constraints(cpuc, idx, event);
4108
4109         return c;
4110 }
4111
4112 static struct event_constraint *
4113 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4114                           struct perf_event *event)
4115 {
4116         struct event_constraint *c;
4117
4118         /*
4119          * :ppp means to do reduced skid PEBS,
4120          * which is available on PMC0 and fixed counter 0.
4121          */
4122         if (event->attr.precise_ip == 3) {
4123                 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4124                 if (constraint_match(&fixed0_constraint, event->hw.config))
4125                         return &fixed0_counter0_constraint;
4126
4127                 return &counter0_constraint;
4128         }
4129
4130         c = intel_get_event_constraints(cpuc, idx, event);
4131
4132         return c;
4133 }
4134
4135 static bool allow_tsx_force_abort = true;
4136
4137 static struct event_constraint *
4138 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4139                           struct perf_event *event)
4140 {
4141         struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4142
4143         /*
4144          * Without TFA we must not use PMC3.
4145          */
4146         if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4147                 c = dyn_constraint(cpuc, c, idx);
4148                 c->idxmsk64 &= ~(1ULL << 3);
4149                 c->weight--;
4150         }
4151
4152         return c;
4153 }
4154
4155 static struct event_constraint *
4156 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4157                           struct perf_event *event)
4158 {
4159         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4160
4161         if (pmu->cpu_type == hybrid_big)
4162                 return spr_get_event_constraints(cpuc, idx, event);
4163         else if (pmu->cpu_type == hybrid_small)
4164                 return tnt_get_event_constraints(cpuc, idx, event);
4165
4166         WARN_ON(1);
4167         return &emptyconstraint;
4168 }
4169
4170 static int adl_hw_config(struct perf_event *event)
4171 {
4172         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4173
4174         if (pmu->cpu_type == hybrid_big)
4175                 return hsw_hw_config(event);
4176         else if (pmu->cpu_type == hybrid_small)
4177                 return intel_pmu_hw_config(event);
4178
4179         WARN_ON(1);
4180         return -EOPNOTSUPP;
4181 }
4182
4183 static u8 adl_get_hybrid_cpu_type(void)
4184 {
4185         return hybrid_big;
4186 }
4187
4188 /*
4189  * Broadwell:
4190  *
4191  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4192  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4193  * the two to enforce a minimum period of 128 (the smallest value that has bits
4194  * 0-5 cleared and >= 100).
4195  *
4196  * Because of how the code in x86_perf_event_set_period() works, the truncation
4197  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4198  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4199  *
4200  * Therefore the effective (average) period matches the requested period,
4201  * despite coarser hardware granularity.
4202  */
4203 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4204 {
4205         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4206                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
4207                 if (left < 128)
4208                         left = 128;
4209                 left &= ~0x3fULL;
4210         }
4211         return left;
4212 }
4213
4214 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4215 {
4216         return max(left, 32ULL);
4217 }
4218
4219 static u64 spr_limit_period(struct perf_event *event, u64 left)
4220 {
4221         if (event->attr.precise_ip == 3)
4222                 return max(left, 128ULL);
4223
4224         return left;
4225 }
4226
4227 PMU_FORMAT_ATTR(event,  "config:0-7"    );
4228 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
4229 PMU_FORMAT_ATTR(edge,   "config:18"     );
4230 PMU_FORMAT_ATTR(pc,     "config:19"     );
4231 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
4232 PMU_FORMAT_ATTR(inv,    "config:23"     );
4233 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
4234 PMU_FORMAT_ATTR(in_tx,  "config:32");
4235 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4236
4237 static struct attribute *intel_arch_formats_attr[] = {
4238         &format_attr_event.attr,
4239         &format_attr_umask.attr,
4240         &format_attr_edge.attr,
4241         &format_attr_pc.attr,
4242         &format_attr_inv.attr,
4243         &format_attr_cmask.attr,
4244         NULL,
4245 };
4246
4247 ssize_t intel_event_sysfs_show(char *page, u64 config)
4248 {
4249         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4250
4251         return x86_event_sysfs_show(page, config, event);
4252 }
4253
4254 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4255 {
4256         struct intel_shared_regs *regs;
4257         int i;
4258
4259         regs = kzalloc_node(sizeof(struct intel_shared_regs),
4260                             GFP_KERNEL, cpu_to_node(cpu));
4261         if (regs) {
4262                 /*
4263                  * initialize the locks to keep lockdep happy
4264                  */
4265                 for (i = 0; i < EXTRA_REG_MAX; i++)
4266                         raw_spin_lock_init(&regs->regs[i].lock);
4267
4268                 regs->core_id = -1;
4269         }
4270         return regs;
4271 }
4272
4273 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4274 {
4275         struct intel_excl_cntrs *c;
4276
4277         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4278                          GFP_KERNEL, cpu_to_node(cpu));
4279         if (c) {
4280                 raw_spin_lock_init(&c->lock);
4281                 c->core_id = -1;
4282         }
4283         return c;
4284 }
4285
4286
4287 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4288 {
4289         cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4290
4291         if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4292                 cpuc->shared_regs = allocate_shared_regs(cpu);
4293                 if (!cpuc->shared_regs)
4294                         goto err;
4295         }
4296
4297         if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4298                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4299
4300                 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4301                 if (!cpuc->constraint_list)
4302                         goto err_shared_regs;
4303         }
4304
4305         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4306                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4307                 if (!cpuc->excl_cntrs)
4308                         goto err_constraint_list;
4309
4310                 cpuc->excl_thread_id = 0;
4311         }
4312
4313         return 0;
4314
4315 err_constraint_list:
4316         kfree(cpuc->constraint_list);
4317         cpuc->constraint_list = NULL;
4318
4319 err_shared_regs:
4320         kfree(cpuc->shared_regs);
4321         cpuc->shared_regs = NULL;
4322
4323 err:
4324         return -ENOMEM;
4325 }
4326
4327 static int intel_pmu_cpu_prepare(int cpu)
4328 {
4329         return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4330 }
4331
4332 static void flip_smm_bit(void *data)
4333 {
4334         unsigned long set = *(unsigned long *)data;
4335
4336         if (set > 0) {
4337                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4338                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4339         } else {
4340                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4341                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4342         }
4343 }
4344
4345 static bool init_hybrid_pmu(int cpu)
4346 {
4347         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4348         u8 cpu_type = get_this_hybrid_cpu_type();
4349         struct x86_hybrid_pmu *pmu = NULL;
4350         int i;
4351
4352         if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4353                 cpu_type = x86_pmu.get_hybrid_cpu_type();
4354
4355         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4356                 if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4357                         pmu = &x86_pmu.hybrid_pmu[i];
4358                         break;
4359                 }
4360         }
4361         if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4362                 cpuc->pmu = NULL;
4363                 return false;
4364         }
4365
4366         /* Only check and dump the PMU information for the first CPU */
4367         if (!cpumask_empty(&pmu->supported_cpus))
4368                 goto end;
4369
4370         if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4371                 return false;
4372
4373         pr_info("%s PMU driver: ", pmu->name);
4374
4375         if (pmu->intel_cap.pebs_output_pt_available)
4376                 pr_cont("PEBS-via-PT ");
4377
4378         pr_cont("\n");
4379
4380         x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4381                              pmu->intel_ctrl);
4382
4383 end:
4384         cpumask_set_cpu(cpu, &pmu->supported_cpus);
4385         cpuc->pmu = &pmu->pmu;
4386
4387         x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4388
4389         return true;
4390 }
4391
4392 static void intel_pmu_cpu_starting(int cpu)
4393 {
4394         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4395         int core_id = topology_core_id(cpu);
4396         int i;
4397
4398         if (is_hybrid() && !init_hybrid_pmu(cpu))
4399                 return;
4400
4401         init_debug_store_on_cpu(cpu);
4402         /*
4403          * Deal with CPUs that don't clear their LBRs on power-up.
4404          */
4405         intel_pmu_lbr_reset();
4406
4407         cpuc->lbr_sel = NULL;
4408
4409         if (x86_pmu.flags & PMU_FL_TFA) {
4410                 WARN_ON_ONCE(cpuc->tfa_shadow);
4411                 cpuc->tfa_shadow = ~0ULL;
4412                 intel_set_tfa(cpuc, false);
4413         }
4414
4415         if (x86_pmu.version > 1)
4416                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4417
4418         /*
4419          * Disable perf metrics if any added CPU doesn't support it.
4420          *
4421          * Turn off the check for a hybrid architecture, because the
4422          * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4423          * the architecture features. The perf metrics is a model-specific
4424          * feature for now. The corresponding bit should always be 0 on
4425          * a hybrid platform, e.g., Alder Lake.
4426          */
4427         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4428                 union perf_capabilities perf_cap;
4429
4430                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4431                 if (!perf_cap.perf_metrics) {
4432                         x86_pmu.intel_cap.perf_metrics = 0;
4433                         x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4434                 }
4435         }
4436
4437         if (!cpuc->shared_regs)
4438                 return;
4439
4440         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4441                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4442                         struct intel_shared_regs *pc;
4443
4444                         pc = per_cpu(cpu_hw_events, i).shared_regs;
4445                         if (pc && pc->core_id == core_id) {
4446                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4447                                 cpuc->shared_regs = pc;
4448                                 break;
4449                         }
4450                 }
4451                 cpuc->shared_regs->core_id = core_id;
4452                 cpuc->shared_regs->refcnt++;
4453         }
4454
4455         if (x86_pmu.lbr_sel_map)
4456                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4457
4458         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4459                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4460                         struct cpu_hw_events *sibling;
4461                         struct intel_excl_cntrs *c;
4462
4463                         sibling = &per_cpu(cpu_hw_events, i);
4464                         c = sibling->excl_cntrs;
4465                         if (c && c->core_id == core_id) {
4466                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4467                                 cpuc->excl_cntrs = c;
4468                                 if (!sibling->excl_thread_id)
4469                                         cpuc->excl_thread_id = 1;
4470                                 break;
4471                         }
4472                 }
4473                 cpuc->excl_cntrs->core_id = core_id;
4474                 cpuc->excl_cntrs->refcnt++;
4475         }
4476 }
4477
4478 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4479 {
4480         struct intel_excl_cntrs *c;
4481
4482         c = cpuc->excl_cntrs;
4483         if (c) {
4484                 if (c->core_id == -1 || --c->refcnt == 0)
4485                         kfree(c);
4486                 cpuc->excl_cntrs = NULL;
4487         }
4488
4489         kfree(cpuc->constraint_list);
4490         cpuc->constraint_list = NULL;
4491 }
4492
4493 static void intel_pmu_cpu_dying(int cpu)
4494 {
4495         fini_debug_store_on_cpu(cpu);
4496 }
4497
4498 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4499 {
4500         struct intel_shared_regs *pc;
4501
4502         pc = cpuc->shared_regs;
4503         if (pc) {
4504                 if (pc->core_id == -1 || --pc->refcnt == 0)
4505                         kfree(pc);
4506                 cpuc->shared_regs = NULL;
4507         }
4508
4509         free_excl_cntrs(cpuc);
4510 }
4511
4512 static void intel_pmu_cpu_dead(int cpu)
4513 {
4514         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4515
4516         intel_cpuc_finish(cpuc);
4517
4518         if (is_hybrid() && cpuc->pmu)
4519                 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4520 }
4521
4522 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4523                                  bool sched_in)
4524 {
4525         intel_pmu_pebs_sched_task(ctx, sched_in);
4526         intel_pmu_lbr_sched_task(ctx, sched_in);
4527 }
4528
4529 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4530                                     struct perf_event_context *next)
4531 {
4532         intel_pmu_lbr_swap_task_ctx(prev, next);
4533 }
4534
4535 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4536 {
4537         return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4538 }
4539
4540 static int intel_pmu_aux_output_match(struct perf_event *event)
4541 {
4542         if (!x86_pmu.intel_cap.pebs_output_pt_available)
4543                 return 0;
4544
4545         return is_intel_pt_event(event);
4546 }
4547
4548 static int intel_pmu_filter_match(struct perf_event *event)
4549 {
4550         struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4551         unsigned int cpu = smp_processor_id();
4552
4553         return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4554 }
4555
4556 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4557
4558 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4559
4560 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4561
4562 static struct attribute *intel_arch3_formats_attr[] = {
4563         &format_attr_event.attr,
4564         &format_attr_umask.attr,
4565         &format_attr_edge.attr,
4566         &format_attr_pc.attr,
4567         &format_attr_any.attr,
4568         &format_attr_inv.attr,
4569         &format_attr_cmask.attr,
4570         NULL,
4571 };
4572
4573 static struct attribute *hsw_format_attr[] = {
4574         &format_attr_in_tx.attr,
4575         &format_attr_in_tx_cp.attr,
4576         &format_attr_offcore_rsp.attr,
4577         &format_attr_ldlat.attr,
4578         NULL
4579 };
4580
4581 static struct attribute *nhm_format_attr[] = {
4582         &format_attr_offcore_rsp.attr,
4583         &format_attr_ldlat.attr,
4584         NULL
4585 };
4586
4587 static struct attribute *slm_format_attr[] = {
4588         &format_attr_offcore_rsp.attr,
4589         NULL
4590 };
4591
4592 static struct attribute *skl_format_attr[] = {
4593         &format_attr_frontend.attr,
4594         NULL,
4595 };
4596
4597 static __initconst const struct x86_pmu core_pmu = {
4598         .name                   = "core",
4599         .handle_irq             = x86_pmu_handle_irq,
4600         .disable_all            = x86_pmu_disable_all,
4601         .enable_all             = core_pmu_enable_all,
4602         .enable                 = core_pmu_enable_event,
4603         .disable                = x86_pmu_disable_event,
4604         .hw_config              = core_pmu_hw_config,
4605         .schedule_events        = x86_schedule_events,
4606         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4607         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4608         .event_map              = intel_pmu_event_map,
4609         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4610         .apic                   = 1,
4611         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4612
4613         /*
4614          * Intel PMCs cannot be accessed sanely above 32-bit width,
4615          * so we install an artificial 1<<31 period regardless of
4616          * the generic event period:
4617          */
4618         .max_period             = (1ULL<<31) - 1,
4619         .get_event_constraints  = intel_get_event_constraints,
4620         .put_event_constraints  = intel_put_event_constraints,
4621         .event_constraints      = intel_core_event_constraints,
4622         .guest_get_msrs         = core_guest_get_msrs,
4623         .format_attrs           = intel_arch_formats_attr,
4624         .events_sysfs_show      = intel_event_sysfs_show,
4625
4626         /*
4627          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4628          * together with PMU version 1 and thus be using core_pmu with
4629          * shared_regs. We need following callbacks here to allocate
4630          * it properly.
4631          */
4632         .cpu_prepare            = intel_pmu_cpu_prepare,
4633         .cpu_starting           = intel_pmu_cpu_starting,
4634         .cpu_dying              = intel_pmu_cpu_dying,
4635         .cpu_dead               = intel_pmu_cpu_dead,
4636
4637         .check_period           = intel_pmu_check_period,
4638
4639         .lbr_reset              = intel_pmu_lbr_reset_64,
4640         .lbr_read               = intel_pmu_lbr_read_64,
4641         .lbr_save               = intel_pmu_lbr_save,
4642         .lbr_restore            = intel_pmu_lbr_restore,
4643 };
4644
4645 static __initconst const struct x86_pmu intel_pmu = {
4646         .name                   = "Intel",
4647         .handle_irq             = intel_pmu_handle_irq,
4648         .disable_all            = intel_pmu_disable_all,
4649         .enable_all             = intel_pmu_enable_all,
4650         .enable                 = intel_pmu_enable_event,
4651         .disable                = intel_pmu_disable_event,
4652         .add                    = intel_pmu_add_event,
4653         .del                    = intel_pmu_del_event,
4654         .read                   = intel_pmu_read_event,
4655         .hw_config              = intel_pmu_hw_config,
4656         .schedule_events        = x86_schedule_events,
4657         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
4658         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
4659         .event_map              = intel_pmu_event_map,
4660         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
4661         .apic                   = 1,
4662         .large_pebs_flags       = LARGE_PEBS_FLAGS,
4663         /*
4664          * Intel PMCs cannot be accessed sanely above 32 bit width,
4665          * so we install an artificial 1<<31 period regardless of
4666          * the generic event period:
4667          */
4668         .max_period             = (1ULL << 31) - 1,
4669         .get_event_constraints  = intel_get_event_constraints,
4670         .put_event_constraints  = intel_put_event_constraints,
4671         .pebs_aliases           = intel_pebs_aliases_core2,
4672
4673         .format_attrs           = intel_arch3_formats_attr,
4674         .events_sysfs_show      = intel_event_sysfs_show,
4675
4676         .cpu_prepare            = intel_pmu_cpu_prepare,
4677         .cpu_starting           = intel_pmu_cpu_starting,
4678         .cpu_dying              = intel_pmu_cpu_dying,
4679         .cpu_dead               = intel_pmu_cpu_dead,
4680
4681         .guest_get_msrs         = intel_guest_get_msrs,
4682         .sched_task             = intel_pmu_sched_task,
4683         .swap_task_ctx          = intel_pmu_swap_task_ctx,
4684
4685         .check_period           = intel_pmu_check_period,
4686
4687         .aux_output_match       = intel_pmu_aux_output_match,
4688
4689         .lbr_reset              = intel_pmu_lbr_reset_64,
4690         .lbr_read               = intel_pmu_lbr_read_64,
4691         .lbr_save               = intel_pmu_lbr_save,
4692         .lbr_restore            = intel_pmu_lbr_restore,
4693 };
4694
4695 static __init void intel_clovertown_quirk(void)
4696 {
4697         /*
4698          * PEBS is unreliable due to:
4699          *
4700          *   AJ67  - PEBS may experience CPL leaks
4701          *   AJ68  - PEBS PMI may be delayed by one event
4702          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4703          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4704          *
4705          * AJ67 could be worked around by restricting the OS/USR flags.
4706          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4707          *
4708          * AJ106 could possibly be worked around by not allowing LBR
4709          *       usage from PEBS, including the fixup.
4710          * AJ68  could possibly be worked around by always programming
4711          *       a pebs_event_reset[0] value and coping with the lost events.
4712          *
4713          * But taken together it might just make sense to not enable PEBS on
4714          * these chips.
4715          */
4716         pr_warn("PEBS disabled due to CPU errata\n");
4717         x86_pmu.pebs = 0;
4718         x86_pmu.pebs_constraints = NULL;
4719 }
4720
4721 static const struct x86_cpu_desc isolation_ucodes[] = {
4722         INTEL_CPU_DESC(INTEL_FAM6_HASWELL,               3, 0x0000001f),
4723         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,             1, 0x0000001e),
4724         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,             1, 0x00000015),
4725         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             2, 0x00000037),
4726         INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,             4, 0x0000000a),
4727         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,             4, 0x00000023),
4728         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,           1, 0x00000014),
4729         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           2, 0x00000010),
4730         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           3, 0x07000009),
4731         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           4, 0x0f000009),
4732         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,           5, 0x0e000002),
4733         INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,           1, 0x0b000014),
4734         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             3, 0x00000021),
4735         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             4, 0x00000000),
4736         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             5, 0x00000000),
4737         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             6, 0x00000000),
4738         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,             7, 0x00000000),
4739         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,             3, 0x0000007c),
4740         INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,               3, 0x0000007c),
4741         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,              9, 0x0000004e),
4742         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,            9, 0x0000004e),
4743         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           10, 0x0000004e),
4744         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           11, 0x0000004e),
4745         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,           12, 0x0000004e),
4746         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             10, 0x0000004e),
4747         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             11, 0x0000004e),
4748         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             12, 0x0000004e),
4749         INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,             13, 0x0000004e),
4750         {}
4751 };
4752
4753 static void intel_check_pebs_isolation(void)
4754 {
4755         x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4756 }
4757
4758 static __init void intel_pebs_isolation_quirk(void)
4759 {
4760         WARN_ON_ONCE(x86_pmu.check_microcode);
4761         x86_pmu.check_microcode = intel_check_pebs_isolation;
4762         intel_check_pebs_isolation();
4763 }
4764
4765 static const struct x86_cpu_desc pebs_ucodes[] = {
4766         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,          7, 0x00000028),
4767         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        6, 0x00000618),
4768         INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,        7, 0x0000070c),
4769         {}
4770 };
4771
4772 static bool intel_snb_pebs_broken(void)
4773 {
4774         return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4775 }
4776
4777 static void intel_snb_check_microcode(void)
4778 {
4779         if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4780                 return;
4781
4782         /*
4783          * Serialized by the microcode lock..
4784          */
4785         if (x86_pmu.pebs_broken) {
4786                 pr_info("PEBS enabled due to microcode update\n");
4787                 x86_pmu.pebs_broken = 0;
4788         } else {
4789                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4790                 x86_pmu.pebs_broken = 1;
4791         }
4792 }
4793
4794 static bool is_lbr_from(unsigned long msr)
4795 {
4796         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4797
4798         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4799 }
4800
4801 /*
4802  * Under certain circumstances, access certain MSR may cause #GP.
4803  * The function tests if the input MSR can be safely accessed.
4804  */
4805 static bool check_msr(unsigned long msr, u64 mask)
4806 {
4807         u64 val_old, val_new, val_tmp;
4808
4809         /*
4810          * Disable the check for real HW, so we don't
4811          * mess with potentially enabled registers:
4812          */
4813         if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4814                 return true;
4815
4816         /*
4817          * Read the current value, change it and read it back to see if it
4818          * matches, this is needed to detect certain hardware emulators
4819          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4820          */
4821         if (rdmsrl_safe(msr, &val_old))
4822                 return false;
4823
4824         /*
4825          * Only change the bits which can be updated by wrmsrl.
4826          */
4827         val_tmp = val_old ^ mask;
4828
4829         if (is_lbr_from(msr))
4830                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4831
4832         if (wrmsrl_safe(msr, val_tmp) ||
4833             rdmsrl_safe(msr, &val_new))
4834                 return false;
4835
4836         /*
4837          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4838          * should equal rdmsrl()'s even with the quirk.
4839          */
4840         if (val_new != val_tmp)
4841                 return false;
4842
4843         if (is_lbr_from(msr))
4844                 val_old = lbr_from_signext_quirk_wr(val_old);
4845
4846         /* Here it's sure that the MSR can be safely accessed.
4847          * Restore the old value and return.
4848          */
4849         wrmsrl(msr, val_old);
4850
4851         return true;
4852 }
4853
4854 static __init void intel_sandybridge_quirk(void)
4855 {
4856         x86_pmu.check_microcode = intel_snb_check_microcode;
4857         cpus_read_lock();
4858         intel_snb_check_microcode();
4859         cpus_read_unlock();
4860 }
4861
4862 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4863         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4864         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4865         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4866         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4867         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4868         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4869         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4870 };
4871
4872 static __init void intel_arch_events_quirk(void)
4873 {
4874         int bit;
4875
4876         /* disable event that reported as not present by cpuid */
4877         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4878                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4879                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4880                         intel_arch_events_map[bit].name);
4881         }
4882 }
4883
4884 static __init void intel_nehalem_quirk(void)
4885 {
4886         union cpuid10_ebx ebx;
4887
4888         ebx.full = x86_pmu.events_maskl;
4889         if (ebx.split.no_branch_misses_retired) {
4890                 /*
4891                  * Erratum AAJ80 detected, we work it around by using
4892                  * the BR_MISP_EXEC.ANY event. This will over-count
4893                  * branch-misses, but it's still much better than the
4894                  * architectural event which is often completely bogus:
4895                  */
4896                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4897                 ebx.split.no_branch_misses_retired = 0;
4898                 x86_pmu.events_maskl = ebx.full;
4899                 pr_info("CPU erratum AAJ80 worked around\n");
4900         }
4901 }
4902
4903 /*
4904  * enable software workaround for errata:
4905  * SNB: BJ122
4906  * IVB: BV98
4907  * HSW: HSD29
4908  *
4909  * Only needed when HT is enabled. However detecting
4910  * if HT is enabled is difficult (model specific). So instead,
4911  * we enable the workaround in the early boot, and verify if
4912  * it is needed in a later initcall phase once we have valid
4913  * topology information to check if HT is actually enabled
4914  */
4915 static __init void intel_ht_bug(void)
4916 {
4917         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4918
4919         x86_pmu.start_scheduling = intel_start_scheduling;
4920         x86_pmu.commit_scheduling = intel_commit_scheduling;
4921         x86_pmu.stop_scheduling = intel_stop_scheduling;
4922 }
4923
4924 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
4925 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
4926
4927 /* Haswell special events */
4928 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
4929 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
4930 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
4931 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
4932 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
4933 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
4934 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
4935 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
4936 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
4937 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
4938 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
4939 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
4940
4941 static struct attribute *hsw_events_attrs[] = {
4942         EVENT_PTR(td_slots_issued),
4943         EVENT_PTR(td_slots_retired),
4944         EVENT_PTR(td_fetch_bubbles),
4945         EVENT_PTR(td_total_slots),
4946         EVENT_PTR(td_total_slots_scale),
4947         EVENT_PTR(td_recovery_bubbles),
4948         EVENT_PTR(td_recovery_bubbles_scale),
4949         NULL
4950 };
4951
4952 static struct attribute *hsw_mem_events_attrs[] = {
4953         EVENT_PTR(mem_ld_hsw),
4954         EVENT_PTR(mem_st_hsw),
4955         NULL,
4956 };
4957
4958 static struct attribute *hsw_tsx_events_attrs[] = {
4959         EVENT_PTR(tx_start),
4960         EVENT_PTR(tx_commit),
4961         EVENT_PTR(tx_abort),
4962         EVENT_PTR(tx_capacity),
4963         EVENT_PTR(tx_conflict),
4964         EVENT_PTR(el_start),
4965         EVENT_PTR(el_commit),
4966         EVENT_PTR(el_abort),
4967         EVENT_PTR(el_capacity),
4968         EVENT_PTR(el_conflict),
4969         EVENT_PTR(cycles_t),
4970         EVENT_PTR(cycles_ct),
4971         NULL
4972 };
4973
4974 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4975 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4976 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4977 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4978
4979 static struct attribute *icl_events_attrs[] = {
4980         EVENT_PTR(mem_ld_hsw),
4981         EVENT_PTR(mem_st_hsw),
4982         NULL,
4983 };
4984
4985 static struct attribute *icl_td_events_attrs[] = {
4986         EVENT_PTR(slots),
4987         EVENT_PTR(td_retiring),
4988         EVENT_PTR(td_bad_spec),
4989         EVENT_PTR(td_fe_bound),
4990         EVENT_PTR(td_be_bound),
4991         NULL,
4992 };
4993
4994 static struct attribute *icl_tsx_events_attrs[] = {
4995         EVENT_PTR(tx_start),
4996         EVENT_PTR(tx_abort),
4997         EVENT_PTR(tx_commit),
4998         EVENT_PTR(tx_capacity_read),
4999         EVENT_PTR(tx_capacity_write),
5000         EVENT_PTR(tx_conflict),
5001         EVENT_PTR(el_start),
5002         EVENT_PTR(el_abort),
5003         EVENT_PTR(el_commit),
5004         EVENT_PTR(el_capacity_read),
5005         EVENT_PTR(el_capacity_write),
5006         EVENT_PTR(el_conflict),
5007         EVENT_PTR(cycles_t),
5008         EVENT_PTR(cycles_ct),
5009         NULL,
5010 };
5011
5012
5013 EVENT_ATTR_STR(mem-stores,      mem_st_spr,     "event=0xcd,umask=0x2");
5014 EVENT_ATTR_STR(mem-loads-aux,   mem_ld_aux,     "event=0x03,umask=0x82");
5015
5016 static struct attribute *spr_events_attrs[] = {
5017         EVENT_PTR(mem_ld_hsw),
5018         EVENT_PTR(mem_st_spr),
5019         EVENT_PTR(mem_ld_aux),
5020         NULL,
5021 };
5022
5023 static struct attribute *spr_td_events_attrs[] = {
5024         EVENT_PTR(slots),
5025         EVENT_PTR(td_retiring),
5026         EVENT_PTR(td_bad_spec),
5027         EVENT_PTR(td_fe_bound),
5028         EVENT_PTR(td_be_bound),
5029         EVENT_PTR(td_heavy_ops),
5030         EVENT_PTR(td_br_mispredict),
5031         EVENT_PTR(td_fetch_lat),
5032         EVENT_PTR(td_mem_bound),
5033         NULL,
5034 };
5035
5036 static struct attribute *spr_tsx_events_attrs[] = {
5037         EVENT_PTR(tx_start),
5038         EVENT_PTR(tx_abort),
5039         EVENT_PTR(tx_commit),
5040         EVENT_PTR(tx_capacity_read),
5041         EVENT_PTR(tx_capacity_write),
5042         EVENT_PTR(tx_conflict),
5043         EVENT_PTR(cycles_t),
5044         EVENT_PTR(cycles_ct),
5045         NULL,
5046 };
5047
5048 static ssize_t freeze_on_smi_show(struct device *cdev,
5049                                   struct device_attribute *attr,
5050                                   char *buf)
5051 {
5052         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5053 }
5054
5055 static DEFINE_MUTEX(freeze_on_smi_mutex);
5056
5057 static ssize_t freeze_on_smi_store(struct device *cdev,
5058                                    struct device_attribute *attr,
5059                                    const char *buf, size_t count)
5060 {
5061         unsigned long val;
5062         ssize_t ret;
5063
5064         ret = kstrtoul(buf, 0, &val);
5065         if (ret)
5066                 return ret;
5067
5068         if (val > 1)
5069                 return -EINVAL;
5070
5071         mutex_lock(&freeze_on_smi_mutex);
5072
5073         if (x86_pmu.attr_freeze_on_smi == val)
5074                 goto done;
5075
5076         x86_pmu.attr_freeze_on_smi = val;
5077
5078         cpus_read_lock();
5079         on_each_cpu(flip_smm_bit, &val, 1);
5080         cpus_read_unlock();
5081 done:
5082         mutex_unlock(&freeze_on_smi_mutex);
5083
5084         return count;
5085 }
5086
5087 static void update_tfa_sched(void *ignored)
5088 {
5089         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5090
5091         /*
5092          * check if PMC3 is used
5093          * and if so force schedule out for all event types all contexts
5094          */
5095         if (test_bit(3, cpuc->active_mask))
5096                 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5097 }
5098
5099 static ssize_t show_sysctl_tfa(struct device *cdev,
5100                               struct device_attribute *attr,
5101                               char *buf)
5102 {
5103         return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5104 }
5105
5106 static ssize_t set_sysctl_tfa(struct device *cdev,
5107                               struct device_attribute *attr,
5108                               const char *buf, size_t count)
5109 {
5110         bool val;
5111         ssize_t ret;
5112
5113         ret = kstrtobool(buf, &val);
5114         if (ret)
5115                 return ret;
5116
5117         /* no change */
5118         if (val == allow_tsx_force_abort)
5119                 return count;
5120
5121         allow_tsx_force_abort = val;
5122
5123         cpus_read_lock();
5124         on_each_cpu(update_tfa_sched, NULL, 1);
5125         cpus_read_unlock();
5126
5127         return count;
5128 }
5129
5130
5131 static DEVICE_ATTR_RW(freeze_on_smi);
5132
5133 static ssize_t branches_show(struct device *cdev,
5134                              struct device_attribute *attr,
5135                              char *buf)
5136 {
5137         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5138 }
5139
5140 static DEVICE_ATTR_RO(branches);
5141
5142 static struct attribute *lbr_attrs[] = {
5143         &dev_attr_branches.attr,
5144         NULL
5145 };
5146
5147 static char pmu_name_str[30];
5148
5149 static ssize_t pmu_name_show(struct device *cdev,
5150                              struct device_attribute *attr,
5151                              char *buf)
5152 {
5153         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5154 }
5155
5156 static DEVICE_ATTR_RO(pmu_name);
5157
5158 static struct attribute *intel_pmu_caps_attrs[] = {
5159        &dev_attr_pmu_name.attr,
5160        NULL
5161 };
5162
5163 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5164                    show_sysctl_tfa,
5165                    set_sysctl_tfa);
5166
5167 static struct attribute *intel_pmu_attrs[] = {
5168         &dev_attr_freeze_on_smi.attr,
5169         &dev_attr_allow_tsx_force_abort.attr,
5170         NULL,
5171 };
5172
5173 static umode_t
5174 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5175 {
5176         return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5177 }
5178
5179 static umode_t
5180 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5181 {
5182         return x86_pmu.pebs ? attr->mode : 0;
5183 }
5184
5185 static umode_t
5186 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5187 {
5188         return x86_pmu.lbr_nr ? attr->mode : 0;
5189 }
5190
5191 static umode_t
5192 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5193 {
5194         return x86_pmu.version >= 2 ? attr->mode : 0;
5195 }
5196
5197 static umode_t
5198 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5199 {
5200         if (attr == &dev_attr_allow_tsx_force_abort.attr)
5201                 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5202
5203         return attr->mode;
5204 }
5205
5206 static struct attribute_group group_events_td  = {
5207         .name = "events",
5208 };
5209
5210 static struct attribute_group group_events_mem = {
5211         .name       = "events",
5212         .is_visible = pebs_is_visible,
5213 };
5214
5215 static struct attribute_group group_events_tsx = {
5216         .name       = "events",
5217         .is_visible = tsx_is_visible,
5218 };
5219
5220 static struct attribute_group group_caps_gen = {
5221         .name  = "caps",
5222         .attrs = intel_pmu_caps_attrs,
5223 };
5224
5225 static struct attribute_group group_caps_lbr = {
5226         .name       = "caps",
5227         .attrs      = lbr_attrs,
5228         .is_visible = lbr_is_visible,
5229 };
5230
5231 static struct attribute_group group_format_extra = {
5232         .name       = "format",
5233         .is_visible = exra_is_visible,
5234 };
5235
5236 static struct attribute_group group_format_extra_skl = {
5237         .name       = "format",
5238         .is_visible = exra_is_visible,
5239 };
5240
5241 static struct attribute_group group_default = {
5242         .attrs      = intel_pmu_attrs,
5243         .is_visible = default_is_visible,
5244 };
5245
5246 static const struct attribute_group *attr_update[] = {
5247         &group_events_td,
5248         &group_events_mem,
5249         &group_events_tsx,
5250         &group_caps_gen,
5251         &group_caps_lbr,
5252         &group_format_extra,
5253         &group_format_extra_skl,
5254         &group_default,
5255         NULL,
5256 };
5257
5258 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5259 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5260 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5261 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5262 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5263 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5264 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5265 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5266 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5267
5268 static struct attribute *adl_hybrid_events_attrs[] = {
5269         EVENT_PTR(slots_adl),
5270         EVENT_PTR(td_retiring_adl),
5271         EVENT_PTR(td_bad_spec_adl),
5272         EVENT_PTR(td_fe_bound_adl),
5273         EVENT_PTR(td_be_bound_adl),
5274         EVENT_PTR(td_heavy_ops_adl),
5275         EVENT_PTR(td_br_mis_adl),
5276         EVENT_PTR(td_fetch_lat_adl),
5277         EVENT_PTR(td_mem_bound_adl),
5278         NULL,
5279 };
5280
5281 /* Must be in IDX order */
5282 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5283 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5284 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5285
5286 static struct attribute *adl_hybrid_mem_attrs[] = {
5287         EVENT_PTR(mem_ld_adl),
5288         EVENT_PTR(mem_st_adl),
5289         EVENT_PTR(mem_ld_aux_adl),
5290         NULL,
5291 };
5292
5293 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5294 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5295 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5296 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5297 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5298 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5299 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5300 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5301
5302 static struct attribute *adl_hybrid_tsx_attrs[] = {
5303         EVENT_PTR(tx_start_adl),
5304         EVENT_PTR(tx_abort_adl),
5305         EVENT_PTR(tx_commit_adl),
5306         EVENT_PTR(tx_capacity_read_adl),
5307         EVENT_PTR(tx_capacity_write_adl),
5308         EVENT_PTR(tx_conflict_adl),
5309         EVENT_PTR(cycles_t_adl),
5310         EVENT_PTR(cycles_ct_adl),
5311         NULL,
5312 };
5313
5314 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5315 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5316 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5317 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5318 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5319
5320 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5321         FORMAT_HYBRID_PTR(in_tx),
5322         FORMAT_HYBRID_PTR(in_tx_cp),
5323         FORMAT_HYBRID_PTR(offcore_rsp),
5324         FORMAT_HYBRID_PTR(ldlat),
5325         FORMAT_HYBRID_PTR(frontend),
5326         NULL,
5327 };
5328
5329 static struct attribute *adl_hybrid_extra_attr[] = {
5330         FORMAT_HYBRID_PTR(offcore_rsp),
5331         FORMAT_HYBRID_PTR(ldlat),
5332         FORMAT_HYBRID_PTR(frontend),
5333         NULL,
5334 };
5335
5336 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5337 {
5338         struct device *dev = kobj_to_dev(kobj);
5339         struct x86_hybrid_pmu *pmu =
5340                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5341         struct perf_pmu_events_hybrid_attr *pmu_attr =
5342                 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5343
5344         return pmu->cpu_type & pmu_attr->pmu_type;
5345 }
5346
5347 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5348                                         struct attribute *attr, int i)
5349 {
5350         return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5351 }
5352
5353 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5354 {
5355         int cpu = cpumask_first(&pmu->supported_cpus);
5356
5357         return (cpu >= nr_cpu_ids) ? -1 : cpu;
5358 }
5359
5360 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5361                                      struct attribute *attr, int i)
5362 {
5363         struct device *dev = kobj_to_dev(kobj);
5364         struct x86_hybrid_pmu *pmu =
5365                  container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5366         int cpu = hybrid_find_supported_cpu(pmu);
5367
5368         return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5369 }
5370
5371 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5372                                         struct attribute *attr, int i)
5373 {
5374         struct device *dev = kobj_to_dev(kobj);
5375         struct x86_hybrid_pmu *pmu =
5376                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5377         struct perf_pmu_format_hybrid_attr *pmu_attr =
5378                 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5379         int cpu = hybrid_find_supported_cpu(pmu);
5380
5381         return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5382 }
5383
5384 static struct attribute_group hybrid_group_events_td  = {
5385         .name           = "events",
5386         .is_visible     = hybrid_events_is_visible,
5387 };
5388
5389 static struct attribute_group hybrid_group_events_mem = {
5390         .name           = "events",
5391         .is_visible     = hybrid_events_is_visible,
5392 };
5393
5394 static struct attribute_group hybrid_group_events_tsx = {
5395         .name           = "events",
5396         .is_visible     = hybrid_tsx_is_visible,
5397 };
5398
5399 static struct attribute_group hybrid_group_format_extra = {
5400         .name           = "format",
5401         .is_visible     = hybrid_format_is_visible,
5402 };
5403
5404 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5405                                           struct device_attribute *attr,
5406                                           char *buf)
5407 {
5408         struct x86_hybrid_pmu *pmu =
5409                 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5410
5411         return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5412 }
5413
5414 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5415 static struct attribute *intel_hybrid_cpus_attrs[] = {
5416         &dev_attr_cpus.attr,
5417         NULL,
5418 };
5419
5420 static struct attribute_group hybrid_group_cpus = {
5421         .attrs          = intel_hybrid_cpus_attrs,
5422 };
5423
5424 static const struct attribute_group *hybrid_attr_update[] = {
5425         &hybrid_group_events_td,
5426         &hybrid_group_events_mem,
5427         &hybrid_group_events_tsx,
5428         &group_caps_gen,
5429         &group_caps_lbr,
5430         &hybrid_group_format_extra,
5431         &group_default,
5432         &hybrid_group_cpus,
5433         NULL,
5434 };
5435
5436 static struct attribute *empty_attrs;
5437
5438 static void intel_pmu_check_num_counters(int *num_counters,
5439                                          int *num_counters_fixed,
5440                                          u64 *intel_ctrl, u64 fixed_mask)
5441 {
5442         if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5443                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5444                      *num_counters, INTEL_PMC_MAX_GENERIC);
5445                 *num_counters = INTEL_PMC_MAX_GENERIC;
5446         }
5447         *intel_ctrl = (1ULL << *num_counters) - 1;
5448
5449         if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5450                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5451                      *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5452                 *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5453         }
5454
5455         *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5456 }
5457
5458 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5459                                               int num_counters,
5460                                               int num_counters_fixed,
5461                                               u64 intel_ctrl)
5462 {
5463         struct event_constraint *c;
5464
5465         if (!event_constraints)
5466                 return;
5467
5468         /*
5469          * event on fixed counter2 (REF_CYCLES) only works on this
5470          * counter, so do not extend mask to generic counters
5471          */
5472         for_each_event_constraint(c, event_constraints) {
5473                 /*
5474                  * Don't extend the topdown slots and metrics
5475                  * events to the generic counters.
5476                  */
5477                 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5478                         /*
5479                          * Disable topdown slots and metrics events,
5480                          * if slots event is not in CPUID.
5481                          */
5482                         if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5483                                 c->idxmsk64 = 0;
5484                         c->weight = hweight64(c->idxmsk64);
5485                         continue;
5486                 }
5487
5488                 if (c->cmask == FIXED_EVENT_FLAGS) {
5489                         /* Disabled fixed counters which are not in CPUID */
5490                         c->idxmsk64 &= intel_ctrl;
5491
5492                         if (c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES)
5493                                 c->idxmsk64 |= (1ULL << num_counters) - 1;
5494                 }
5495                 c->idxmsk64 &=
5496                         ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5497                 c->weight = hweight64(c->idxmsk64);
5498         }
5499 }
5500
5501 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5502 {
5503         struct extra_reg *er;
5504
5505         /*
5506          * Access extra MSR may cause #GP under certain circumstances.
5507          * E.g. KVM doesn't support offcore event
5508          * Check all extra_regs here.
5509          */
5510         if (!extra_regs)
5511                 return;
5512
5513         for (er = extra_regs; er->msr; er++) {
5514                 er->extra_msr_access = check_msr(er->msr, 0x11UL);
5515                 /* Disable LBR select mapping */
5516                 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5517                         x86_pmu.lbr_sel_map = NULL;
5518         }
5519 }
5520
5521 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5522 {
5523         struct x86_hybrid_pmu *pmu;
5524         int i;
5525
5526         for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5527                 pmu = &x86_pmu.hybrid_pmu[i];
5528
5529                 intel_pmu_check_num_counters(&pmu->num_counters,
5530                                              &pmu->num_counters_fixed,
5531                                              &pmu->intel_ctrl,
5532                                              fixed_mask);
5533
5534                 if (pmu->intel_cap.perf_metrics) {
5535                         pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5536                         pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5537                 }
5538
5539                 if (pmu->intel_cap.pebs_output_pt_available)
5540                         pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5541
5542                 intel_pmu_check_event_constraints(pmu->event_constraints,
5543                                                   pmu->num_counters,
5544                                                   pmu->num_counters_fixed,
5545                                                   pmu->intel_ctrl);
5546
5547                 intel_pmu_check_extra_regs(pmu->extra_regs);
5548         }
5549 }
5550
5551 __init int intel_pmu_init(void)
5552 {
5553         struct attribute **extra_skl_attr = &empty_attrs;
5554         struct attribute **extra_attr = &empty_attrs;
5555         struct attribute **td_attr    = &empty_attrs;
5556         struct attribute **mem_attr   = &empty_attrs;
5557         struct attribute **tsx_attr   = &empty_attrs;
5558         union cpuid10_edx edx;
5559         union cpuid10_eax eax;
5560         union cpuid10_ebx ebx;
5561         unsigned int fixed_mask;
5562         bool pmem = false;
5563         int version, i;
5564         char *name;
5565         struct x86_hybrid_pmu *pmu;
5566
5567         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5568                 switch (boot_cpu_data.x86) {
5569                 case 0x6:
5570                         return p6_pmu_init();
5571                 case 0xb:
5572                         return knc_pmu_init();
5573                 case 0xf:
5574                         return p4_pmu_init();
5575                 }
5576                 return -ENODEV;
5577         }
5578
5579         /*
5580          * Check whether the Architectural PerfMon supports
5581          * Branch Misses Retired hw_event or not.
5582          */
5583         cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5584         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5585                 return -ENODEV;
5586
5587         version = eax.split.version_id;
5588         if (version < 2)
5589                 x86_pmu = core_pmu;
5590         else
5591                 x86_pmu = intel_pmu;
5592
5593         x86_pmu.version                 = version;
5594         x86_pmu.num_counters            = eax.split.num_counters;
5595         x86_pmu.cntval_bits             = eax.split.bit_width;
5596         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
5597
5598         x86_pmu.events_maskl            = ebx.full;
5599         x86_pmu.events_mask_len         = eax.split.mask_length;
5600
5601         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5602
5603         /*
5604          * Quirk: v2 perfmon does not report fixed-purpose events, so
5605          * assume at least 3 events, when not running in a hypervisor:
5606          */
5607         if (version > 1 && version < 5) {
5608                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5609
5610                 x86_pmu.num_counters_fixed =
5611                         max((int)edx.split.num_counters_fixed, assume);
5612
5613                 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5614         } else if (version >= 5)
5615                 x86_pmu.num_counters_fixed = fls(fixed_mask);
5616
5617         if (boot_cpu_has(X86_FEATURE_PDCM)) {
5618                 u64 capabilities;
5619
5620                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5621                 x86_pmu.intel_cap.capabilities = capabilities;
5622         }
5623
5624         if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5625                 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5626                 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5627         }
5628
5629         if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5630                 intel_pmu_arch_lbr_init();
5631
5632         intel_ds_init();
5633
5634         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5635
5636         if (version >= 5) {
5637                 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5638                 if (x86_pmu.intel_cap.anythread_deprecated)
5639                         pr_cont(" AnyThread deprecated, ");
5640         }
5641
5642         /*
5643          * Install the hw-cache-events table:
5644          */
5645         switch (boot_cpu_data.x86_model) {
5646         case INTEL_FAM6_CORE_YONAH:
5647                 pr_cont("Core events, ");
5648                 name = "core";
5649                 break;
5650
5651         case INTEL_FAM6_CORE2_MEROM:
5652                 x86_add_quirk(intel_clovertown_quirk);
5653                 fallthrough;
5654
5655         case INTEL_FAM6_CORE2_MEROM_L:
5656         case INTEL_FAM6_CORE2_PENRYN:
5657         case INTEL_FAM6_CORE2_DUNNINGTON:
5658                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5659                        sizeof(hw_cache_event_ids));
5660
5661                 intel_pmu_lbr_init_core();
5662
5663                 x86_pmu.event_constraints = intel_core2_event_constraints;
5664                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5665                 pr_cont("Core2 events, ");
5666                 name = "core2";
5667                 break;
5668
5669         case INTEL_FAM6_NEHALEM:
5670         case INTEL_FAM6_NEHALEM_EP:
5671         case INTEL_FAM6_NEHALEM_EX:
5672                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5673                        sizeof(hw_cache_event_ids));
5674                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5675                        sizeof(hw_cache_extra_regs));
5676
5677                 intel_pmu_lbr_init_nhm();
5678
5679                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
5680                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5681                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5682                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
5683                 x86_pmu.limit_period = nhm_limit_period;
5684
5685                 mem_attr = nhm_mem_events_attrs;
5686
5687                 /* UOPS_ISSUED.STALLED_CYCLES */
5688                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5689                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5690                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5691                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5692                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5693
5694                 intel_pmu_pebs_data_source_nhm();
5695                 x86_add_quirk(intel_nehalem_quirk);
5696                 x86_pmu.pebs_no_tlb = 1;
5697                 extra_attr = nhm_format_attr;
5698
5699                 pr_cont("Nehalem events, ");
5700                 name = "nehalem";
5701                 break;
5702
5703         case INTEL_FAM6_ATOM_BONNELL:
5704         case INTEL_FAM6_ATOM_BONNELL_MID:
5705         case INTEL_FAM6_ATOM_SALTWELL:
5706         case INTEL_FAM6_ATOM_SALTWELL_MID:
5707         case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5708                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5709                        sizeof(hw_cache_event_ids));
5710
5711                 intel_pmu_lbr_init_atom();
5712
5713                 x86_pmu.event_constraints = intel_gen_event_constraints;
5714                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5715                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5716                 pr_cont("Atom events, ");
5717                 name = "bonnell";
5718                 break;
5719
5720         case INTEL_FAM6_ATOM_SILVERMONT:
5721         case INTEL_FAM6_ATOM_SILVERMONT_D:
5722         case INTEL_FAM6_ATOM_SILVERMONT_MID:
5723         case INTEL_FAM6_ATOM_AIRMONT:
5724         case INTEL_FAM6_ATOM_AIRMONT_MID:
5725                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5726                         sizeof(hw_cache_event_ids));
5727                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5728                        sizeof(hw_cache_extra_regs));
5729
5730                 intel_pmu_lbr_init_slm();
5731
5732                 x86_pmu.event_constraints = intel_slm_event_constraints;
5733                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5734                 x86_pmu.extra_regs = intel_slm_extra_regs;
5735                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5736                 td_attr = slm_events_attrs;
5737                 extra_attr = slm_format_attr;
5738                 pr_cont("Silvermont events, ");
5739                 name = "silvermont";
5740                 break;
5741
5742         case INTEL_FAM6_ATOM_GOLDMONT:
5743         case INTEL_FAM6_ATOM_GOLDMONT_D:
5744                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5745                        sizeof(hw_cache_event_ids));
5746                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5747                        sizeof(hw_cache_extra_regs));
5748
5749                 intel_pmu_lbr_init_skl();
5750
5751                 x86_pmu.event_constraints = intel_slm_event_constraints;
5752                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5753                 x86_pmu.extra_regs = intel_glm_extra_regs;
5754                 /*
5755                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5756                  * for precise cycles.
5757                  * :pp is identical to :ppp
5758                  */
5759                 x86_pmu.pebs_aliases = NULL;
5760                 x86_pmu.pebs_prec_dist = true;
5761                 x86_pmu.lbr_pt_coexist = true;
5762                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5763                 td_attr = glm_events_attrs;
5764                 extra_attr = slm_format_attr;
5765                 pr_cont("Goldmont events, ");
5766                 name = "goldmont";
5767                 break;
5768
5769         case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5770                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5771                        sizeof(hw_cache_event_ids));
5772                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5773                        sizeof(hw_cache_extra_regs));
5774
5775                 intel_pmu_lbr_init_skl();
5776
5777                 x86_pmu.event_constraints = intel_slm_event_constraints;
5778                 x86_pmu.extra_regs = intel_glm_extra_regs;
5779                 /*
5780                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5781                  * for precise cycles.
5782                  */
5783                 x86_pmu.pebs_aliases = NULL;
5784                 x86_pmu.pebs_prec_dist = true;
5785                 x86_pmu.lbr_pt_coexist = true;
5786                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5787                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
5788                 x86_pmu.get_event_constraints = glp_get_event_constraints;
5789                 td_attr = glm_events_attrs;
5790                 /* Goldmont Plus has 4-wide pipeline */
5791                 event_attr_td_total_slots_scale_glm.event_str = "4";
5792                 extra_attr = slm_format_attr;
5793                 pr_cont("Goldmont plus events, ");
5794                 name = "goldmont_plus";
5795                 break;
5796
5797         case INTEL_FAM6_ATOM_TREMONT_D:
5798         case INTEL_FAM6_ATOM_TREMONT:
5799         case INTEL_FAM6_ATOM_TREMONT_L:
5800                 x86_pmu.late_ack = true;
5801                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5802                        sizeof(hw_cache_event_ids));
5803                 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5804                        sizeof(hw_cache_extra_regs));
5805                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5806
5807                 intel_pmu_lbr_init_skl();
5808
5809                 x86_pmu.event_constraints = intel_slm_event_constraints;
5810                 x86_pmu.extra_regs = intel_tnt_extra_regs;
5811                 /*
5812                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5813                  * for precise cycles.
5814                  */
5815                 x86_pmu.pebs_aliases = NULL;
5816                 x86_pmu.pebs_prec_dist = true;
5817                 x86_pmu.lbr_pt_coexist = true;
5818                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5819                 x86_pmu.get_event_constraints = tnt_get_event_constraints;
5820                 td_attr = tnt_events_attrs;
5821                 extra_attr = slm_format_attr;
5822                 pr_cont("Tremont events, ");
5823                 name = "Tremont";
5824                 break;
5825
5826         case INTEL_FAM6_WESTMERE:
5827         case INTEL_FAM6_WESTMERE_EP:
5828         case INTEL_FAM6_WESTMERE_EX:
5829                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5830                        sizeof(hw_cache_event_ids));
5831                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5832                        sizeof(hw_cache_extra_regs));
5833
5834                 intel_pmu_lbr_init_nhm();
5835
5836                 x86_pmu.event_constraints = intel_westmere_event_constraints;
5837                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5838                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5839                 x86_pmu.extra_regs = intel_westmere_extra_regs;
5840                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5841
5842                 mem_attr = nhm_mem_events_attrs;
5843
5844                 /* UOPS_ISSUED.STALLED_CYCLES */
5845                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5846                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5847                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5848                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5849                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5850
5851                 intel_pmu_pebs_data_source_nhm();
5852                 extra_attr = nhm_format_attr;
5853                 pr_cont("Westmere events, ");
5854                 name = "westmere";
5855                 break;
5856
5857         case INTEL_FAM6_SANDYBRIDGE:
5858         case INTEL_FAM6_SANDYBRIDGE_X:
5859                 x86_add_quirk(intel_sandybridge_quirk);
5860                 x86_add_quirk(intel_ht_bug);
5861                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5862                        sizeof(hw_cache_event_ids));
5863                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5864                        sizeof(hw_cache_extra_regs));
5865
5866                 intel_pmu_lbr_init_snb();
5867
5868                 x86_pmu.event_constraints = intel_snb_event_constraints;
5869                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5870                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5871                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5872                         x86_pmu.extra_regs = intel_snbep_extra_regs;
5873                 else
5874                         x86_pmu.extra_regs = intel_snb_extra_regs;
5875
5876
5877                 /* all extra regs are per-cpu when HT is on */
5878                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5879                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5880
5881                 td_attr  = snb_events_attrs;
5882                 mem_attr = snb_mem_events_attrs;
5883
5884                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5885                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5886                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5887                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5888                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5889                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5890
5891                 extra_attr = nhm_format_attr;
5892
5893                 pr_cont("SandyBridge events, ");
5894                 name = "sandybridge";
5895                 break;
5896
5897         case INTEL_FAM6_IVYBRIDGE:
5898         case INTEL_FAM6_IVYBRIDGE_X:
5899                 x86_add_quirk(intel_ht_bug);
5900                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5901                        sizeof(hw_cache_event_ids));
5902                 /* dTLB-load-misses on IVB is different than SNB */
5903                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5904
5905                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5906                        sizeof(hw_cache_extra_regs));
5907
5908                 intel_pmu_lbr_init_snb();
5909
5910                 x86_pmu.event_constraints = intel_ivb_event_constraints;
5911                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5912                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5913                 x86_pmu.pebs_prec_dist = true;
5914                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5915                         x86_pmu.extra_regs = intel_snbep_extra_regs;
5916                 else
5917                         x86_pmu.extra_regs = intel_snb_extra_regs;
5918                 /* all extra regs are per-cpu when HT is on */
5919                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5920                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5921
5922                 td_attr  = snb_events_attrs;
5923                 mem_attr = snb_mem_events_attrs;
5924
5925                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5926                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5927                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5928
5929                 extra_attr = nhm_format_attr;
5930
5931                 pr_cont("IvyBridge events, ");
5932                 name = "ivybridge";
5933                 break;
5934
5935
5936         case INTEL_FAM6_HASWELL:
5937         case INTEL_FAM6_HASWELL_X:
5938         case INTEL_FAM6_HASWELL_L:
5939         case INTEL_FAM6_HASWELL_G:
5940                 x86_add_quirk(intel_ht_bug);
5941                 x86_add_quirk(intel_pebs_isolation_quirk);
5942                 x86_pmu.late_ack = true;
5943                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5944                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5945
5946                 intel_pmu_lbr_init_hsw();
5947
5948                 x86_pmu.event_constraints = intel_hsw_event_constraints;
5949                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5950                 x86_pmu.extra_regs = intel_snbep_extra_regs;
5951                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5952                 x86_pmu.pebs_prec_dist = true;
5953                 /* all extra regs are per-cpu when HT is on */
5954                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5955                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5956
5957                 x86_pmu.hw_config = hsw_hw_config;
5958                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5959                 x86_pmu.lbr_double_abort = true;
5960                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5961                         hsw_format_attr : nhm_format_attr;
5962                 td_attr  = hsw_events_attrs;
5963                 mem_attr = hsw_mem_events_attrs;
5964                 tsx_attr = hsw_tsx_events_attrs;
5965                 pr_cont("Haswell events, ");
5966                 name = "haswell";
5967                 break;
5968
5969         case INTEL_FAM6_BROADWELL:
5970         case INTEL_FAM6_BROADWELL_D:
5971         case INTEL_FAM6_BROADWELL_G:
5972         case INTEL_FAM6_BROADWELL_X:
5973                 x86_add_quirk(intel_pebs_isolation_quirk);
5974                 x86_pmu.late_ack = true;
5975                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5976                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5977
5978                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5979                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5980                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
5981                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5982                                                                           HSW_SNOOP_DRAM;
5983                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5984                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5985                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5986                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5987
5988                 intel_pmu_lbr_init_hsw();
5989
5990                 x86_pmu.event_constraints = intel_bdw_event_constraints;
5991                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5992                 x86_pmu.extra_regs = intel_snbep_extra_regs;
5993                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5994                 x86_pmu.pebs_prec_dist = true;
5995                 /* all extra regs are per-cpu when HT is on */
5996                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5997                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5998
5999                 x86_pmu.hw_config = hsw_hw_config;
6000                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6001                 x86_pmu.limit_period = bdw_limit_period;
6002                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6003                         hsw_format_attr : nhm_format_attr;
6004                 td_attr  = hsw_events_attrs;
6005                 mem_attr = hsw_mem_events_attrs;
6006                 tsx_attr = hsw_tsx_events_attrs;
6007                 pr_cont("Broadwell events, ");
6008                 name = "broadwell";
6009                 break;
6010
6011         case INTEL_FAM6_XEON_PHI_KNL:
6012         case INTEL_FAM6_XEON_PHI_KNM:
6013                 memcpy(hw_cache_event_ids,
6014                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6015                 memcpy(hw_cache_extra_regs,
6016                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6017                 intel_pmu_lbr_init_knl();
6018
6019                 x86_pmu.event_constraints = intel_slm_event_constraints;
6020                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6021                 x86_pmu.extra_regs = intel_knl_extra_regs;
6022
6023                 /* all extra regs are per-cpu when HT is on */
6024                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6025                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6026                 extra_attr = slm_format_attr;
6027                 pr_cont("Knights Landing/Mill events, ");
6028                 name = "knights-landing";
6029                 break;
6030
6031         case INTEL_FAM6_SKYLAKE_X:
6032                 pmem = true;
6033                 fallthrough;
6034         case INTEL_FAM6_SKYLAKE_L:
6035         case INTEL_FAM6_SKYLAKE:
6036         case INTEL_FAM6_KABYLAKE_L:
6037         case INTEL_FAM6_KABYLAKE:
6038         case INTEL_FAM6_COMETLAKE_L:
6039         case INTEL_FAM6_COMETLAKE:
6040                 x86_add_quirk(intel_pebs_isolation_quirk);
6041                 x86_pmu.late_ack = true;
6042                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6043                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6044                 intel_pmu_lbr_init_skl();
6045
6046                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6047                 event_attr_td_recovery_bubbles.event_str_noht =
6048                         "event=0xd,umask=0x1,cmask=1";
6049                 event_attr_td_recovery_bubbles.event_str_ht =
6050                         "event=0xd,umask=0x1,cmask=1,any=1";
6051
6052                 x86_pmu.event_constraints = intel_skl_event_constraints;
6053                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6054                 x86_pmu.extra_regs = intel_skl_extra_regs;
6055                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6056                 x86_pmu.pebs_prec_dist = true;
6057                 /* all extra regs are per-cpu when HT is on */
6058                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6059                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6060
6061                 x86_pmu.hw_config = hsw_hw_config;
6062                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6063                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6064                         hsw_format_attr : nhm_format_attr;
6065                 extra_skl_attr = skl_format_attr;
6066                 td_attr  = hsw_events_attrs;
6067                 mem_attr = hsw_mem_events_attrs;
6068                 tsx_attr = hsw_tsx_events_attrs;
6069                 intel_pmu_pebs_data_source_skl(pmem);
6070
6071                 /*
6072                  * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6073                  * TSX force abort hooks are not required on these systems. Only deploy
6074                  * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6075                  */
6076                 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6077                    !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6078                         x86_pmu.flags |= PMU_FL_TFA;
6079                         x86_pmu.get_event_constraints = tfa_get_event_constraints;
6080                         x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6081                         x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6082                 }
6083
6084                 pr_cont("Skylake events, ");
6085                 name = "skylake";
6086                 break;
6087
6088         case INTEL_FAM6_ICELAKE_X:
6089         case INTEL_FAM6_ICELAKE_D:
6090                 pmem = true;
6091                 fallthrough;
6092         case INTEL_FAM6_ICELAKE_L:
6093         case INTEL_FAM6_ICELAKE:
6094         case INTEL_FAM6_TIGERLAKE_L:
6095         case INTEL_FAM6_TIGERLAKE:
6096         case INTEL_FAM6_ROCKETLAKE:
6097                 x86_pmu.late_ack = true;
6098                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6099                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6100                 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6101                 intel_pmu_lbr_init_skl();
6102
6103                 x86_pmu.event_constraints = intel_icl_event_constraints;
6104                 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6105                 x86_pmu.extra_regs = intel_icl_extra_regs;
6106                 x86_pmu.pebs_aliases = NULL;
6107                 x86_pmu.pebs_prec_dist = true;
6108                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6109                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6110
6111                 x86_pmu.hw_config = hsw_hw_config;
6112                 x86_pmu.get_event_constraints = icl_get_event_constraints;
6113                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6114                         hsw_format_attr : nhm_format_attr;
6115                 extra_skl_attr = skl_format_attr;
6116                 mem_attr = icl_events_attrs;
6117                 td_attr = icl_td_events_attrs;
6118                 tsx_attr = icl_tsx_events_attrs;
6119                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6120                 x86_pmu.lbr_pt_coexist = true;
6121                 intel_pmu_pebs_data_source_skl(pmem);
6122                 x86_pmu.num_topdown_events = 4;
6123                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6124                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6125                 pr_cont("Icelake events, ");
6126                 name = "icelake";
6127                 break;
6128
6129         case INTEL_FAM6_SAPPHIRERAPIDS_X:
6130                 pmem = true;
6131                 x86_pmu.late_ack = true;
6132                 memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6133                 memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6134
6135                 x86_pmu.event_constraints = intel_spr_event_constraints;
6136                 x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6137                 x86_pmu.extra_regs = intel_spr_extra_regs;
6138                 x86_pmu.limit_period = spr_limit_period;
6139                 x86_pmu.pebs_aliases = NULL;
6140                 x86_pmu.pebs_prec_dist = true;
6141                 x86_pmu.pebs_block = true;
6142                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6143                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6144                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6145                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6146                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6147
6148                 x86_pmu.hw_config = hsw_hw_config;
6149                 x86_pmu.get_event_constraints = spr_get_event_constraints;
6150                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6151                         hsw_format_attr : nhm_format_attr;
6152                 extra_skl_attr = skl_format_attr;
6153                 mem_attr = spr_events_attrs;
6154                 td_attr = spr_td_events_attrs;
6155                 tsx_attr = spr_tsx_events_attrs;
6156                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6157                 x86_pmu.lbr_pt_coexist = true;
6158                 intel_pmu_pebs_data_source_skl(pmem);
6159                 x86_pmu.num_topdown_events = 8;
6160                 x86_pmu.update_topdown_event = icl_update_topdown_event;
6161                 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6162                 pr_cont("Sapphire Rapids events, ");
6163                 name = "sapphire_rapids";
6164                 break;
6165
6166         case INTEL_FAM6_ALDERLAKE:
6167         case INTEL_FAM6_ALDERLAKE_L:
6168                 /*
6169                  * Alder Lake has 2 types of CPU, core and atom.
6170                  *
6171                  * Initialize the common PerfMon capabilities here.
6172                  */
6173                 x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6174                                              sizeof(struct x86_hybrid_pmu),
6175                                              GFP_KERNEL);
6176                 if (!x86_pmu.hybrid_pmu)
6177                         return -ENOMEM;
6178                 static_branch_enable(&perf_is_hybrid);
6179                 x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6180
6181                 x86_pmu.pebs_aliases = NULL;
6182                 x86_pmu.pebs_prec_dist = true;
6183                 x86_pmu.pebs_block = true;
6184                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6185                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6186                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6187                 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6188                 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6189                 x86_pmu.lbr_pt_coexist = true;
6190                 intel_pmu_pebs_data_source_skl(false);
6191                 x86_pmu.num_topdown_events = 8;
6192                 x86_pmu.update_topdown_event = adl_update_topdown_event;
6193                 x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6194
6195                 x86_pmu.filter_match = intel_pmu_filter_match;
6196                 x86_pmu.get_event_constraints = adl_get_event_constraints;
6197                 x86_pmu.hw_config = adl_hw_config;
6198                 x86_pmu.limit_period = spr_limit_period;
6199                 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6200                 /*
6201                  * The rtm_abort_event is used to check whether to enable GPRs
6202                  * for the RTM abort event. Atom doesn't have the RTM abort
6203                  * event. There is no harmful to set it in the common
6204                  * x86_pmu.rtm_abort_event.
6205                  */
6206                 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6207
6208                 td_attr = adl_hybrid_events_attrs;
6209                 mem_attr = adl_hybrid_mem_attrs;
6210                 tsx_attr = adl_hybrid_tsx_attrs;
6211                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6212                         adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6213
6214                 /* Initialize big core specific PerfMon capabilities.*/
6215                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6216                 pmu->name = "cpu_core";
6217                 pmu->cpu_type = hybrid_big;
6218                 pmu->late_ack = true;
6219                 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6220                         pmu->num_counters = x86_pmu.num_counters + 2;
6221                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6222                 } else {
6223                         pmu->num_counters = x86_pmu.num_counters;
6224                         pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6225                 }
6226                 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6227                 pmu->unconstrained = (struct event_constraint)
6228                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6229                                                            0, pmu->num_counters, 0, 0);
6230                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6231                 pmu->intel_cap.perf_metrics = 1;
6232                 pmu->intel_cap.pebs_output_pt_available = 0;
6233
6234                 memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6235                 memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6236                 pmu->event_constraints = intel_spr_event_constraints;
6237                 pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6238                 pmu->extra_regs = intel_spr_extra_regs;
6239
6240                 /* Initialize Atom core specific PerfMon capabilities.*/
6241                 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6242                 pmu->name = "cpu_atom";
6243                 pmu->cpu_type = hybrid_small;
6244                 pmu->mid_ack = true;
6245                 pmu->num_counters = x86_pmu.num_counters;
6246                 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6247                 pmu->max_pebs_events = x86_pmu.max_pebs_events;
6248                 pmu->unconstrained = (struct event_constraint)
6249                                         __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6250                                                            0, pmu->num_counters, 0, 0);
6251                 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6252                 pmu->intel_cap.perf_metrics = 0;
6253                 pmu->intel_cap.pebs_output_pt_available = 1;
6254
6255                 memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6256                 memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6257                 pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6258                 pmu->event_constraints = intel_slm_event_constraints;
6259                 pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6260                 pmu->extra_regs = intel_grt_extra_regs;
6261                 pr_cont("Alderlake Hybrid events, ");
6262                 name = "alderlake_hybrid";
6263                 break;
6264
6265         default:
6266                 switch (x86_pmu.version) {
6267                 case 1:
6268                         x86_pmu.event_constraints = intel_v1_event_constraints;
6269                         pr_cont("generic architected perfmon v1, ");
6270                         name = "generic_arch_v1";
6271                         break;
6272                 default:
6273                         /*
6274                          * default constraints for v2 and up
6275                          */
6276                         x86_pmu.event_constraints = intel_gen_event_constraints;
6277                         pr_cont("generic architected perfmon, ");
6278                         name = "generic_arch_v2+";
6279                         break;
6280                 }
6281         }
6282
6283         snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6284
6285         if (!is_hybrid()) {
6286                 group_events_td.attrs  = td_attr;
6287                 group_events_mem.attrs = mem_attr;
6288                 group_events_tsx.attrs = tsx_attr;
6289                 group_format_extra.attrs = extra_attr;
6290                 group_format_extra_skl.attrs = extra_skl_attr;
6291
6292                 x86_pmu.attr_update = attr_update;
6293         } else {
6294                 hybrid_group_events_td.attrs  = td_attr;
6295                 hybrid_group_events_mem.attrs = mem_attr;
6296                 hybrid_group_events_tsx.attrs = tsx_attr;
6297                 hybrid_group_format_extra.attrs = extra_attr;
6298
6299                 x86_pmu.attr_update = hybrid_attr_update;
6300         }
6301
6302         intel_pmu_check_num_counters(&x86_pmu.num_counters,
6303                                      &x86_pmu.num_counters_fixed,
6304                                      &x86_pmu.intel_ctrl,
6305                                      (u64)fixed_mask);
6306
6307         /* AnyThread may be deprecated on arch perfmon v5 or later */
6308         if (x86_pmu.intel_cap.anythread_deprecated)
6309                 x86_pmu.format_attrs = intel_arch_formats_attr;
6310
6311         intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6312                                           x86_pmu.num_counters,
6313                                           x86_pmu.num_counters_fixed,
6314                                           x86_pmu.intel_ctrl);
6315         /*
6316          * Access LBR MSR may cause #GP under certain circumstances.
6317          * E.g. KVM doesn't support LBR MSR
6318          * Check all LBT MSR here.
6319          * Disable LBR access if any LBR MSRs can not be accessed.
6320          */
6321         if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6322                 x86_pmu.lbr_nr = 0;
6323         for (i = 0; i < x86_pmu.lbr_nr; i++) {
6324                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6325                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6326                         x86_pmu.lbr_nr = 0;
6327         }
6328
6329         if (x86_pmu.lbr_nr) {
6330                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6331
6332                 /* only support branch_stack snapshot for perfmon >= v2 */
6333                 if (x86_pmu.disable_all == intel_pmu_disable_all) {
6334                         if (boot_cpu_has(X86_FEATURE_ARCH_LBR)) {
6335                                 static_call_update(perf_snapshot_branch_stack,
6336                                                    intel_pmu_snapshot_arch_branch_stack);
6337                         } else {
6338                                 static_call_update(perf_snapshot_branch_stack,
6339                                                    intel_pmu_snapshot_branch_stack);
6340                         }
6341                 }
6342         }
6343
6344         intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6345
6346         /* Support full width counters using alternative MSR range */
6347         if (x86_pmu.intel_cap.full_width_write) {
6348                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6349                 x86_pmu.perfctr = MSR_IA32_PMC0;
6350                 pr_cont("full-width counters, ");
6351         }
6352
6353         if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6354                 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6355
6356         if (is_hybrid())
6357                 intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6358
6359         return 0;
6360 }
6361
6362 /*
6363  * HT bug: phase 2 init
6364  * Called once we have valid topology information to check
6365  * whether or not HT is enabled
6366  * If HT is off, then we disable the workaround
6367  */
6368 static __init int fixup_ht_bug(void)
6369 {
6370         int c;
6371         /*
6372          * problem not present on this CPU model, nothing to do
6373          */
6374         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6375                 return 0;
6376
6377         if (topology_max_smt_threads() > 1) {
6378                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6379                 return 0;
6380         }
6381
6382         cpus_read_lock();
6383
6384         hardlockup_detector_perf_stop();
6385
6386         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6387
6388         x86_pmu.start_scheduling = NULL;
6389         x86_pmu.commit_scheduling = NULL;
6390         x86_pmu.stop_scheduling = NULL;
6391
6392         hardlockup_detector_perf_restart();
6393
6394         for_each_online_cpu(c)
6395                 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6396
6397         cpus_read_unlock();
6398         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6399         return 0;
6400 }
6401 subsys_initcall(fixup_ht_bug)