Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched.h>
24 #include <linux/uaccess.h>
25 #include <linux/slab.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28 #include <linux/device.h>
29
30 #include <asm/apic.h>
31 #include <asm/stacktrace.h>
32 #include <asm/nmi.h>
33 #include <asm/smp.h>
34 #include <asm/alternative.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/timer.h>
38 #include <asm/desc.h>
39 #include <asm/ldt.h>
40
41 #include "perf_event.h"
42
43 struct x86_pmu x86_pmu __read_mostly;
44
45 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
46         .enabled = 1,
47 };
48
49 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
50
51 u64 __read_mostly hw_cache_event_ids
52                                 [PERF_COUNT_HW_CACHE_MAX]
53                                 [PERF_COUNT_HW_CACHE_OP_MAX]
54                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
55 u64 __read_mostly hw_cache_extra_regs
56                                 [PERF_COUNT_HW_CACHE_MAX]
57                                 [PERF_COUNT_HW_CACHE_OP_MAX]
58                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
59
60 /*
61  * Propagate event elapsed time into the generic event.
62  * Can only be executed on the CPU where the event is active.
63  * Returns the delta events processed.
64  */
65 u64 x86_perf_event_update(struct perf_event *event)
66 {
67         struct hw_perf_event *hwc = &event->hw;
68         int shift = 64 - x86_pmu.cntval_bits;
69         u64 prev_raw_count, new_raw_count;
70         int idx = hwc->idx;
71         s64 delta;
72
73         if (idx == INTEL_PMC_IDX_FIXED_BTS)
74                 return 0;
75
76         /*
77          * Careful: an NMI might modify the previous event value.
78          *
79          * Our tactic to handle this is to first atomically read and
80          * exchange a new raw count - then add that new-prev delta
81          * count to the generic event atomically:
82          */
83 again:
84         prev_raw_count = local64_read(&hwc->prev_count);
85         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
86
87         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
88                                         new_raw_count) != prev_raw_count)
89                 goto again;
90
91         /*
92          * Now we have the new raw value and have updated the prev
93          * timestamp already. We can now calculate the elapsed delta
94          * (event-)time and add that to the generic event.
95          *
96          * Careful, not all hw sign-extends above the physical width
97          * of the count.
98          */
99         delta = (new_raw_count << shift) - (prev_raw_count << shift);
100         delta >>= shift;
101
102         local64_add(delta, &event->count);
103         local64_sub(delta, &hwc->period_left);
104
105         return new_raw_count;
106 }
107
108 /*
109  * Find and validate any extra registers to set up.
110  */
111 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
112 {
113         struct hw_perf_event_extra *reg;
114         struct extra_reg *er;
115
116         reg = &event->hw.extra_reg;
117
118         if (!x86_pmu.extra_regs)
119                 return 0;
120
121         for (er = x86_pmu.extra_regs; er->msr; er++) {
122                 if (er->event != (config & er->config_mask))
123                         continue;
124                 if (event->attr.config1 & ~er->valid_mask)
125                         return -EINVAL;
126                 /* Check if the extra msrs can be safely accessed*/
127                 if (!er->extra_msr_access)
128                         return -ENXIO;
129
130                 reg->idx = er->idx;
131                 reg->config = event->attr.config1;
132                 reg->reg = er->msr;
133                 break;
134         }
135         return 0;
136 }
137
138 static atomic_t active_events;
139 static atomic_t pmc_refcount;
140 static DEFINE_MUTEX(pmc_reserve_mutex);
141
142 #ifdef CONFIG_X86_LOCAL_APIC
143
144 static bool reserve_pmc_hardware(void)
145 {
146         int i;
147
148         for (i = 0; i < x86_pmu.num_counters; i++) {
149                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
150                         goto perfctr_fail;
151         }
152
153         for (i = 0; i < x86_pmu.num_counters; i++) {
154                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
155                         goto eventsel_fail;
156         }
157
158         return true;
159
160 eventsel_fail:
161         for (i--; i >= 0; i--)
162                 release_evntsel_nmi(x86_pmu_config_addr(i));
163
164         i = x86_pmu.num_counters;
165
166 perfctr_fail:
167         for (i--; i >= 0; i--)
168                 release_perfctr_nmi(x86_pmu_event_addr(i));
169
170         return false;
171 }
172
173 static void release_pmc_hardware(void)
174 {
175         int i;
176
177         for (i = 0; i < x86_pmu.num_counters; i++) {
178                 release_perfctr_nmi(x86_pmu_event_addr(i));
179                 release_evntsel_nmi(x86_pmu_config_addr(i));
180         }
181 }
182
183 #else
184
185 static bool reserve_pmc_hardware(void) { return true; }
186 static void release_pmc_hardware(void) {}
187
188 #endif
189
190 static bool check_hw_exists(void)
191 {
192         u64 val, val_fail, val_new= ~0;
193         int i, reg, reg_fail, ret = 0;
194         int bios_fail = 0;
195         int reg_safe = -1;
196
197         /*
198          * Check to see if the BIOS enabled any of the counters, if so
199          * complain and bail.
200          */
201         for (i = 0; i < x86_pmu.num_counters; i++) {
202                 reg = x86_pmu_config_addr(i);
203                 ret = rdmsrl_safe(reg, &val);
204                 if (ret)
205                         goto msr_fail;
206                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
207                         bios_fail = 1;
208                         val_fail = val;
209                         reg_fail = reg;
210                 } else {
211                         reg_safe = i;
212                 }
213         }
214
215         if (x86_pmu.num_counters_fixed) {
216                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
217                 ret = rdmsrl_safe(reg, &val);
218                 if (ret)
219                         goto msr_fail;
220                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
221                         if (val & (0x03 << i*4)) {
222                                 bios_fail = 1;
223                                 val_fail = val;
224                                 reg_fail = reg;
225                         }
226                 }
227         }
228
229         /*
230          * If all the counters are enabled, the below test will always
231          * fail.  The tools will also become useless in this scenario.
232          * Just fail and disable the hardware counters.
233          */
234
235         if (reg_safe == -1) {
236                 reg = reg_safe;
237                 goto msr_fail;
238         }
239
240         /*
241          * Read the current value, change it and read it back to see if it
242          * matches, this is needed to detect certain hardware emulators
243          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
244          */
245         reg = x86_pmu_event_addr(reg_safe);
246         if (rdmsrl_safe(reg, &val))
247                 goto msr_fail;
248         val ^= 0xffffUL;
249         ret = wrmsrl_safe(reg, val);
250         ret |= rdmsrl_safe(reg, &val_new);
251         if (ret || val != val_new)
252                 goto msr_fail;
253
254         /*
255          * We still allow the PMU driver to operate:
256          */
257         if (bios_fail) {
258                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
259                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
260                               reg_fail, val_fail);
261         }
262
263         return true;
264
265 msr_fail:
266         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
267                 pr_cont("PMU not available due to virtualization, using software events only.\n");
268         } else {
269                 pr_cont("Broken PMU hardware detected, using software events only.\n");
270                 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
271                        reg, val_new);
272         }
273
274         return false;
275 }
276
277 static void hw_perf_event_destroy(struct perf_event *event)
278 {
279         x86_release_hardware();
280         atomic_dec(&active_events);
281 }
282
283 void hw_perf_lbr_event_destroy(struct perf_event *event)
284 {
285         hw_perf_event_destroy(event);
286
287         /* undo the lbr/bts event accounting */
288         x86_del_exclusive(x86_lbr_exclusive_lbr);
289 }
290
291 static inline int x86_pmu_initialized(void)
292 {
293         return x86_pmu.handle_irq != NULL;
294 }
295
296 static inline int
297 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
298 {
299         struct perf_event_attr *attr = &event->attr;
300         unsigned int cache_type, cache_op, cache_result;
301         u64 config, val;
302
303         config = attr->config;
304
305         cache_type = (config >>  0) & 0xff;
306         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
307                 return -EINVAL;
308
309         cache_op = (config >>  8) & 0xff;
310         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
311                 return -EINVAL;
312
313         cache_result = (config >> 16) & 0xff;
314         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
315                 return -EINVAL;
316
317         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
318
319         if (val == 0)
320                 return -ENOENT;
321
322         if (val == -1)
323                 return -EINVAL;
324
325         hwc->config |= val;
326         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
327         return x86_pmu_extra_regs(val, event);
328 }
329
330 int x86_reserve_hardware(void)
331 {
332         int err = 0;
333
334         if (!atomic_inc_not_zero(&pmc_refcount)) {
335                 mutex_lock(&pmc_reserve_mutex);
336                 if (atomic_read(&pmc_refcount) == 0) {
337                         if (!reserve_pmc_hardware())
338                                 err = -EBUSY;
339                         else
340                                 reserve_ds_buffers();
341                 }
342                 if (!err)
343                         atomic_inc(&pmc_refcount);
344                 mutex_unlock(&pmc_reserve_mutex);
345         }
346
347         return err;
348 }
349
350 void x86_release_hardware(void)
351 {
352         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
353                 release_pmc_hardware();
354                 release_ds_buffers();
355                 mutex_unlock(&pmc_reserve_mutex);
356         }
357 }
358
359 /*
360  * Check if we can create event of a certain type (that no conflicting events
361  * are present).
362  */
363 int x86_add_exclusive(unsigned int what)
364 {
365         int i;
366
367         if (x86_pmu.lbr_pt_coexist)
368                 return 0;
369
370         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
371                 mutex_lock(&pmc_reserve_mutex);
372                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
373                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
374                                 goto fail_unlock;
375                 }
376                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
377                 mutex_unlock(&pmc_reserve_mutex);
378         }
379
380         atomic_inc(&active_events);
381         return 0;
382
383 fail_unlock:
384         mutex_unlock(&pmc_reserve_mutex);
385         return -EBUSY;
386 }
387
388 void x86_del_exclusive(unsigned int what)
389 {
390         if (x86_pmu.lbr_pt_coexist)
391                 return;
392
393         atomic_dec(&x86_pmu.lbr_exclusive[what]);
394         atomic_dec(&active_events);
395 }
396
397 int x86_setup_perfctr(struct perf_event *event)
398 {
399         struct perf_event_attr *attr = &event->attr;
400         struct hw_perf_event *hwc = &event->hw;
401         u64 config;
402
403         if (!is_sampling_event(event)) {
404                 hwc->sample_period = x86_pmu.max_period;
405                 hwc->last_period = hwc->sample_period;
406                 local64_set(&hwc->period_left, hwc->sample_period);
407         }
408
409         if (attr->type == PERF_TYPE_RAW)
410                 return x86_pmu_extra_regs(event->attr.config, event);
411
412         if (attr->type == PERF_TYPE_HW_CACHE)
413                 return set_ext_hw_attr(hwc, event);
414
415         if (attr->config >= x86_pmu.max_events)
416                 return -EINVAL;
417
418         /*
419          * The generic map:
420          */
421         config = x86_pmu.event_map(attr->config);
422
423         if (config == 0)
424                 return -ENOENT;
425
426         if (config == -1LL)
427                 return -EINVAL;
428
429         /*
430          * Branch tracing:
431          */
432         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
433             !attr->freq && hwc->sample_period == 1) {
434                 /* BTS is not supported by this architecture. */
435                 if (!x86_pmu.bts_active)
436                         return -EOPNOTSUPP;
437
438                 /* BTS is currently only allowed for user-mode. */
439                 if (!attr->exclude_kernel)
440                         return -EOPNOTSUPP;
441
442                 /* disallow bts if conflicting events are present */
443                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
444                         return -EBUSY;
445
446                 event->destroy = hw_perf_lbr_event_destroy;
447         }
448
449         hwc->config |= config;
450
451         return 0;
452 }
453
454 /*
455  * check that branch_sample_type is compatible with
456  * settings needed for precise_ip > 1 which implies
457  * using the LBR to capture ALL taken branches at the
458  * priv levels of the measurement
459  */
460 static inline int precise_br_compat(struct perf_event *event)
461 {
462         u64 m = event->attr.branch_sample_type;
463         u64 b = 0;
464
465         /* must capture all branches */
466         if (!(m & PERF_SAMPLE_BRANCH_ANY))
467                 return 0;
468
469         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
470
471         if (!event->attr.exclude_user)
472                 b |= PERF_SAMPLE_BRANCH_USER;
473
474         if (!event->attr.exclude_kernel)
475                 b |= PERF_SAMPLE_BRANCH_KERNEL;
476
477         /*
478          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
479          */
480
481         return m == b;
482 }
483
484 int x86_pmu_hw_config(struct perf_event *event)
485 {
486         if (event->attr.precise_ip) {
487                 int precise = 0;
488
489                 /* Support for constant skid */
490                 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
491                         precise++;
492
493                         /* Support for IP fixup */
494                         if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
495                                 precise++;
496
497                         if (x86_pmu.pebs_prec_dist)
498                                 precise++;
499                 }
500
501                 if (event->attr.precise_ip > precise)
502                         return -EOPNOTSUPP;
503         }
504         /*
505          * check that PEBS LBR correction does not conflict with
506          * whatever the user is asking with attr->branch_sample_type
507          */
508         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
509                 u64 *br_type = &event->attr.branch_sample_type;
510
511                 if (has_branch_stack(event)) {
512                         if (!precise_br_compat(event))
513                                 return -EOPNOTSUPP;
514
515                         /* branch_sample_type is compatible */
516
517                 } else {
518                         /*
519                          * user did not specify  branch_sample_type
520                          *
521                          * For PEBS fixups, we capture all
522                          * the branches at the priv level of the
523                          * event.
524                          */
525                         *br_type = PERF_SAMPLE_BRANCH_ANY;
526
527                         if (!event->attr.exclude_user)
528                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
529
530                         if (!event->attr.exclude_kernel)
531                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
532                 }
533         }
534
535         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
536                 event->attach_state |= PERF_ATTACH_TASK_DATA;
537
538         /*
539          * Generate PMC IRQs:
540          * (keep 'enabled' bit clear for now)
541          */
542         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
543
544         /*
545          * Count user and OS events unless requested not to
546          */
547         if (!event->attr.exclude_user)
548                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
549         if (!event->attr.exclude_kernel)
550                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
551
552         if (event->attr.type == PERF_TYPE_RAW)
553                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
554
555         if (event->attr.sample_period && x86_pmu.limit_period) {
556                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
557                                 event->attr.sample_period)
558                         return -EINVAL;
559         }
560
561         return x86_setup_perfctr(event);
562 }
563
564 /*
565  * Setup the hardware configuration for a given attr_type
566  */
567 static int __x86_pmu_event_init(struct perf_event *event)
568 {
569         int err;
570
571         if (!x86_pmu_initialized())
572                 return -ENODEV;
573
574         err = x86_reserve_hardware();
575         if (err)
576                 return err;
577
578         atomic_inc(&active_events);
579         event->destroy = hw_perf_event_destroy;
580
581         event->hw.idx = -1;
582         event->hw.last_cpu = -1;
583         event->hw.last_tag = ~0ULL;
584
585         /* mark unused */
586         event->hw.extra_reg.idx = EXTRA_REG_NONE;
587         event->hw.branch_reg.idx = EXTRA_REG_NONE;
588
589         return x86_pmu.hw_config(event);
590 }
591
592 void x86_pmu_disable_all(void)
593 {
594         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
595         int idx;
596
597         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
598                 u64 val;
599
600                 if (!test_bit(idx, cpuc->active_mask))
601                         continue;
602                 rdmsrl(x86_pmu_config_addr(idx), val);
603                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
604                         continue;
605                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
606                 wrmsrl(x86_pmu_config_addr(idx), val);
607         }
608 }
609
610 /*
611  * There may be PMI landing after enabled=0. The PMI hitting could be before or
612  * after disable_all.
613  *
614  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
615  * It will not be re-enabled in the NMI handler again, because enabled=0. After
616  * handling the NMI, disable_all will be called, which will not change the
617  * state either. If PMI hits after disable_all, the PMU is already disabled
618  * before entering NMI handler. The NMI handler will not change the state
619  * either.
620  *
621  * So either situation is harmless.
622  */
623 static void x86_pmu_disable(struct pmu *pmu)
624 {
625         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
626
627         if (!x86_pmu_initialized())
628                 return;
629
630         if (!cpuc->enabled)
631                 return;
632
633         cpuc->n_added = 0;
634         cpuc->enabled = 0;
635         barrier();
636
637         x86_pmu.disable_all();
638 }
639
640 void x86_pmu_enable_all(int added)
641 {
642         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
643         int idx;
644
645         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
646                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
647
648                 if (!test_bit(idx, cpuc->active_mask))
649                         continue;
650
651                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
652         }
653 }
654
655 static struct pmu pmu;
656
657 static inline int is_x86_event(struct perf_event *event)
658 {
659         return event->pmu == &pmu;
660 }
661
662 /*
663  * Event scheduler state:
664  *
665  * Assign events iterating over all events and counters, beginning
666  * with events with least weights first. Keep the current iterator
667  * state in struct sched_state.
668  */
669 struct sched_state {
670         int     weight;
671         int     event;          /* event index */
672         int     counter;        /* counter index */
673         int     unassigned;     /* number of events to be assigned left */
674         int     nr_gp;          /* number of GP counters used */
675         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
676 };
677
678 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
679 #define SCHED_STATES_MAX        2
680
681 struct perf_sched {
682         int                     max_weight;
683         int                     max_events;
684         int                     max_gp;
685         int                     saved_states;
686         struct event_constraint **constraints;
687         struct sched_state      state;
688         struct sched_state      saved[SCHED_STATES_MAX];
689 };
690
691 /*
692  * Initialize interator that runs through all events and counters.
693  */
694 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
695                             int num, int wmin, int wmax, int gpmax)
696 {
697         int idx;
698
699         memset(sched, 0, sizeof(*sched));
700         sched->max_events       = num;
701         sched->max_weight       = wmax;
702         sched->max_gp           = gpmax;
703         sched->constraints      = constraints;
704
705         for (idx = 0; idx < num; idx++) {
706                 if (constraints[idx]->weight == wmin)
707                         break;
708         }
709
710         sched->state.event      = idx;          /* start with min weight */
711         sched->state.weight     = wmin;
712         sched->state.unassigned = num;
713 }
714
715 static void perf_sched_save_state(struct perf_sched *sched)
716 {
717         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
718                 return;
719
720         sched->saved[sched->saved_states] = sched->state;
721         sched->saved_states++;
722 }
723
724 static bool perf_sched_restore_state(struct perf_sched *sched)
725 {
726         if (!sched->saved_states)
727                 return false;
728
729         sched->saved_states--;
730         sched->state = sched->saved[sched->saved_states];
731
732         /* continue with next counter: */
733         clear_bit(sched->state.counter++, sched->state.used);
734
735         return true;
736 }
737
738 /*
739  * Select a counter for the current event to schedule. Return true on
740  * success.
741  */
742 static bool __perf_sched_find_counter(struct perf_sched *sched)
743 {
744         struct event_constraint *c;
745         int idx;
746
747         if (!sched->state.unassigned)
748                 return false;
749
750         if (sched->state.event >= sched->max_events)
751                 return false;
752
753         c = sched->constraints[sched->state.event];
754         /* Prefer fixed purpose counters */
755         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
756                 idx = INTEL_PMC_IDX_FIXED;
757                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
758                         if (!__test_and_set_bit(idx, sched->state.used))
759                                 goto done;
760                 }
761         }
762
763         /* Grab the first unused counter starting with idx */
764         idx = sched->state.counter;
765         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
766                 if (!__test_and_set_bit(idx, sched->state.used)) {
767                         if (sched->state.nr_gp++ >= sched->max_gp)
768                                 return false;
769
770                         goto done;
771                 }
772         }
773
774         return false;
775
776 done:
777         sched->state.counter = idx;
778
779         if (c->overlap)
780                 perf_sched_save_state(sched);
781
782         return true;
783 }
784
785 static bool perf_sched_find_counter(struct perf_sched *sched)
786 {
787         while (!__perf_sched_find_counter(sched)) {
788                 if (!perf_sched_restore_state(sched))
789                         return false;
790         }
791
792         return true;
793 }
794
795 /*
796  * Go through all unassigned events and find the next one to schedule.
797  * Take events with the least weight first. Return true on success.
798  */
799 static bool perf_sched_next_event(struct perf_sched *sched)
800 {
801         struct event_constraint *c;
802
803         if (!sched->state.unassigned || !--sched->state.unassigned)
804                 return false;
805
806         do {
807                 /* next event */
808                 sched->state.event++;
809                 if (sched->state.event >= sched->max_events) {
810                         /* next weight */
811                         sched->state.event = 0;
812                         sched->state.weight++;
813                         if (sched->state.weight > sched->max_weight)
814                                 return false;
815                 }
816                 c = sched->constraints[sched->state.event];
817         } while (c->weight != sched->state.weight);
818
819         sched->state.counter = 0;       /* start with first counter */
820
821         return true;
822 }
823
824 /*
825  * Assign a counter for each event.
826  */
827 int perf_assign_events(struct event_constraint **constraints, int n,
828                         int wmin, int wmax, int gpmax, int *assign)
829 {
830         struct perf_sched sched;
831
832         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
833
834         do {
835                 if (!perf_sched_find_counter(&sched))
836                         break;  /* failed */
837                 if (assign)
838                         assign[sched.state.event] = sched.state.counter;
839         } while (perf_sched_next_event(&sched));
840
841         return sched.state.unassigned;
842 }
843 EXPORT_SYMBOL_GPL(perf_assign_events);
844
845 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
846 {
847         struct event_constraint *c;
848         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
849         struct perf_event *e;
850         int i, wmin, wmax, unsched = 0;
851         struct hw_perf_event *hwc;
852
853         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
854
855         if (x86_pmu.start_scheduling)
856                 x86_pmu.start_scheduling(cpuc);
857
858         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
859                 cpuc->event_constraint[i] = NULL;
860                 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
861                 cpuc->event_constraint[i] = c;
862
863                 wmin = min(wmin, c->weight);
864                 wmax = max(wmax, c->weight);
865         }
866
867         /*
868          * fastpath, try to reuse previous register
869          */
870         for (i = 0; i < n; i++) {
871                 hwc = &cpuc->event_list[i]->hw;
872                 c = cpuc->event_constraint[i];
873
874                 /* never assigned */
875                 if (hwc->idx == -1)
876                         break;
877
878                 /* constraint still honored */
879                 if (!test_bit(hwc->idx, c->idxmsk))
880                         break;
881
882                 /* not already used */
883                 if (test_bit(hwc->idx, used_mask))
884                         break;
885
886                 __set_bit(hwc->idx, used_mask);
887                 if (assign)
888                         assign[i] = hwc->idx;
889         }
890
891         /* slow path */
892         if (i != n) {
893                 int gpmax = x86_pmu.num_counters;
894
895                 /*
896                  * Do not allow scheduling of more than half the available
897                  * generic counters.
898                  *
899                  * This helps avoid counter starvation of sibling thread by
900                  * ensuring at most half the counters cannot be in exclusive
901                  * mode. There is no designated counters for the limits. Any
902                  * N/2 counters can be used. This helps with events with
903                  * specific counter constraints.
904                  */
905                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
906                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
907                         gpmax /= 2;
908
909                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
910                                              wmax, gpmax, assign);
911         }
912
913         /*
914          * In case of success (unsched = 0), mark events as committed,
915          * so we do not put_constraint() in case new events are added
916          * and fail to be scheduled
917          *
918          * We invoke the lower level commit callback to lock the resource
919          *
920          * We do not need to do all of this in case we are called to
921          * validate an event group (assign == NULL)
922          */
923         if (!unsched && assign) {
924                 for (i = 0; i < n; i++) {
925                         e = cpuc->event_list[i];
926                         e->hw.flags |= PERF_X86_EVENT_COMMITTED;
927                         if (x86_pmu.commit_scheduling)
928                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
929                 }
930         } else {
931                 for (i = 0; i < n; i++) {
932                         e = cpuc->event_list[i];
933                         /*
934                          * do not put_constraint() on comitted events,
935                          * because they are good to go
936                          */
937                         if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
938                                 continue;
939
940                         /*
941                          * release events that failed scheduling
942                          */
943                         if (x86_pmu.put_event_constraints)
944                                 x86_pmu.put_event_constraints(cpuc, e);
945                 }
946         }
947
948         if (x86_pmu.stop_scheduling)
949                 x86_pmu.stop_scheduling(cpuc);
950
951         return unsched ? -EINVAL : 0;
952 }
953
954 /*
955  * dogrp: true if must collect siblings events (group)
956  * returns total number of events and error code
957  */
958 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
959 {
960         struct perf_event *event;
961         int n, max_count;
962
963         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
964
965         /* current number of events already accepted */
966         n = cpuc->n_events;
967
968         if (is_x86_event(leader)) {
969                 if (n >= max_count)
970                         return -EINVAL;
971                 cpuc->event_list[n] = leader;
972                 n++;
973         }
974         if (!dogrp)
975                 return n;
976
977         list_for_each_entry(event, &leader->sibling_list, group_entry) {
978                 if (!is_x86_event(event) ||
979                     event->state <= PERF_EVENT_STATE_OFF)
980                         continue;
981
982                 if (n >= max_count)
983                         return -EINVAL;
984
985                 cpuc->event_list[n] = event;
986                 n++;
987         }
988         return n;
989 }
990
991 static inline void x86_assign_hw_event(struct perf_event *event,
992                                 struct cpu_hw_events *cpuc, int i)
993 {
994         struct hw_perf_event *hwc = &event->hw;
995
996         hwc->idx = cpuc->assign[i];
997         hwc->last_cpu = smp_processor_id();
998         hwc->last_tag = ++cpuc->tags[i];
999
1000         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1001                 hwc->config_base = 0;
1002                 hwc->event_base = 0;
1003         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1004                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1005                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1006                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1007         } else {
1008                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1009                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1010                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1011         }
1012 }
1013
1014 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1015                                         struct cpu_hw_events *cpuc,
1016                                         int i)
1017 {
1018         return hwc->idx == cpuc->assign[i] &&
1019                 hwc->last_cpu == smp_processor_id() &&
1020                 hwc->last_tag == cpuc->tags[i];
1021 }
1022
1023 static void x86_pmu_start(struct perf_event *event, int flags);
1024
1025 static void x86_pmu_enable(struct pmu *pmu)
1026 {
1027         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1028         struct perf_event *event;
1029         struct hw_perf_event *hwc;
1030         int i, added = cpuc->n_added;
1031
1032         if (!x86_pmu_initialized())
1033                 return;
1034
1035         if (cpuc->enabled)
1036                 return;
1037
1038         if (cpuc->n_added) {
1039                 int n_running = cpuc->n_events - cpuc->n_added;
1040                 /*
1041                  * apply assignment obtained either from
1042                  * hw_perf_group_sched_in() or x86_pmu_enable()
1043                  *
1044                  * step1: save events moving to new counters
1045                  */
1046                 for (i = 0; i < n_running; i++) {
1047                         event = cpuc->event_list[i];
1048                         hwc = &event->hw;
1049
1050                         /*
1051                          * we can avoid reprogramming counter if:
1052                          * - assigned same counter as last time
1053                          * - running on same CPU as last time
1054                          * - no other event has used the counter since
1055                          */
1056                         if (hwc->idx == -1 ||
1057                             match_prev_assignment(hwc, cpuc, i))
1058                                 continue;
1059
1060                         /*
1061                          * Ensure we don't accidentally enable a stopped
1062                          * counter simply because we rescheduled.
1063                          */
1064                         if (hwc->state & PERF_HES_STOPPED)
1065                                 hwc->state |= PERF_HES_ARCH;
1066
1067                         x86_pmu_stop(event, PERF_EF_UPDATE);
1068                 }
1069
1070                 /*
1071                  * step2: reprogram moved events into new counters
1072                  */
1073                 for (i = 0; i < cpuc->n_events; i++) {
1074                         event = cpuc->event_list[i];
1075                         hwc = &event->hw;
1076
1077                         if (!match_prev_assignment(hwc, cpuc, i))
1078                                 x86_assign_hw_event(event, cpuc, i);
1079                         else if (i < n_running)
1080                                 continue;
1081
1082                         if (hwc->state & PERF_HES_ARCH)
1083                                 continue;
1084
1085                         x86_pmu_start(event, PERF_EF_RELOAD);
1086                 }
1087                 cpuc->n_added = 0;
1088                 perf_events_lapic_init();
1089         }
1090
1091         cpuc->enabled = 1;
1092         barrier();
1093
1094         x86_pmu.enable_all(added);
1095 }
1096
1097 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1098
1099 /*
1100  * Set the next IRQ period, based on the hwc->period_left value.
1101  * To be called with the event disabled in hw:
1102  */
1103 int x86_perf_event_set_period(struct perf_event *event)
1104 {
1105         struct hw_perf_event *hwc = &event->hw;
1106         s64 left = local64_read(&hwc->period_left);
1107         s64 period = hwc->sample_period;
1108         int ret = 0, idx = hwc->idx;
1109
1110         if (idx == INTEL_PMC_IDX_FIXED_BTS)
1111                 return 0;
1112
1113         /*
1114          * If we are way outside a reasonable range then just skip forward:
1115          */
1116         if (unlikely(left <= -period)) {
1117                 left = period;
1118                 local64_set(&hwc->period_left, left);
1119                 hwc->last_period = period;
1120                 ret = 1;
1121         }
1122
1123         if (unlikely(left <= 0)) {
1124                 left += period;
1125                 local64_set(&hwc->period_left, left);
1126                 hwc->last_period = period;
1127                 ret = 1;
1128         }
1129         /*
1130          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1131          */
1132         if (unlikely(left < 2))
1133                 left = 2;
1134
1135         if (left > x86_pmu.max_period)
1136                 left = x86_pmu.max_period;
1137
1138         if (x86_pmu.limit_period)
1139                 left = x86_pmu.limit_period(event, left);
1140
1141         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1142
1143         if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1144             local64_read(&hwc->prev_count) != (u64)-left) {
1145                 /*
1146                  * The hw event starts counting from this event offset,
1147                  * mark it to be able to extra future deltas:
1148                  */
1149                 local64_set(&hwc->prev_count, (u64)-left);
1150
1151                 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1152         }
1153
1154         /*
1155          * Due to erratum on certan cpu we need
1156          * a second write to be sure the register
1157          * is updated properly
1158          */
1159         if (x86_pmu.perfctr_second_write) {
1160                 wrmsrl(hwc->event_base,
1161                         (u64)(-left) & x86_pmu.cntval_mask);
1162         }
1163
1164         perf_event_update_userpage(event);
1165
1166         return ret;
1167 }
1168
1169 void x86_pmu_enable_event(struct perf_event *event)
1170 {
1171         if (__this_cpu_read(cpu_hw_events.enabled))
1172                 __x86_pmu_enable_event(&event->hw,
1173                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1174 }
1175
1176 /*
1177  * Add a single event to the PMU.
1178  *
1179  * The event is added to the group of enabled events
1180  * but only if it can be scehduled with existing events.
1181  */
1182 static int x86_pmu_add(struct perf_event *event, int flags)
1183 {
1184         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1185         struct hw_perf_event *hwc;
1186         int assign[X86_PMC_IDX_MAX];
1187         int n, n0, ret;
1188
1189         hwc = &event->hw;
1190
1191         n0 = cpuc->n_events;
1192         ret = n = collect_events(cpuc, event, false);
1193         if (ret < 0)
1194                 goto out;
1195
1196         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1197         if (!(flags & PERF_EF_START))
1198                 hwc->state |= PERF_HES_ARCH;
1199
1200         /*
1201          * If group events scheduling transaction was started,
1202          * skip the schedulability test here, it will be performed
1203          * at commit time (->commit_txn) as a whole.
1204          */
1205         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1206                 goto done_collect;
1207
1208         ret = x86_pmu.schedule_events(cpuc, n, assign);
1209         if (ret)
1210                 goto out;
1211         /*
1212          * copy new assignment, now we know it is possible
1213          * will be used by hw_perf_enable()
1214          */
1215         memcpy(cpuc->assign, assign, n*sizeof(int));
1216
1217 done_collect:
1218         /*
1219          * Commit the collect_events() state. See x86_pmu_del() and
1220          * x86_pmu_*_txn().
1221          */
1222         cpuc->n_events = n;
1223         cpuc->n_added += n - n0;
1224         cpuc->n_txn += n - n0;
1225
1226         ret = 0;
1227 out:
1228         return ret;
1229 }
1230
1231 static void x86_pmu_start(struct perf_event *event, int flags)
1232 {
1233         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1234         int idx = event->hw.idx;
1235
1236         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1237                 return;
1238
1239         if (WARN_ON_ONCE(idx == -1))
1240                 return;
1241
1242         if (flags & PERF_EF_RELOAD) {
1243                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1244                 x86_perf_event_set_period(event);
1245         }
1246
1247         event->hw.state = 0;
1248
1249         cpuc->events[idx] = event;
1250         __set_bit(idx, cpuc->active_mask);
1251         __set_bit(idx, cpuc->running);
1252         x86_pmu.enable(event);
1253         perf_event_update_userpage(event);
1254 }
1255
1256 void perf_event_print_debug(void)
1257 {
1258         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1259         u64 pebs, debugctl;
1260         struct cpu_hw_events *cpuc;
1261         unsigned long flags;
1262         int cpu, idx;
1263
1264         if (!x86_pmu.num_counters)
1265                 return;
1266
1267         local_irq_save(flags);
1268
1269         cpu = smp_processor_id();
1270         cpuc = &per_cpu(cpu_hw_events, cpu);
1271
1272         if (x86_pmu.version >= 2) {
1273                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1274                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1275                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1276                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1277
1278                 pr_info("\n");
1279                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1280                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1281                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1282                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1283                 if (x86_pmu.pebs_constraints) {
1284                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1285                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1286                 }
1287                 if (x86_pmu.lbr_nr) {
1288                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1289                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1290                 }
1291         }
1292         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1293
1294         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1295                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1296                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1297
1298                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1299
1300                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1301                         cpu, idx, pmc_ctrl);
1302                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1303                         cpu, idx, pmc_count);
1304                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1305                         cpu, idx, prev_left);
1306         }
1307         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1308                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1309
1310                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1311                         cpu, idx, pmc_count);
1312         }
1313         local_irq_restore(flags);
1314 }
1315
1316 void x86_pmu_stop(struct perf_event *event, int flags)
1317 {
1318         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1319         struct hw_perf_event *hwc = &event->hw;
1320
1321         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1322                 x86_pmu.disable(event);
1323                 cpuc->events[hwc->idx] = NULL;
1324                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1325                 hwc->state |= PERF_HES_STOPPED;
1326         }
1327
1328         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1329                 /*
1330                  * Drain the remaining delta count out of a event
1331                  * that we are disabling:
1332                  */
1333                 x86_perf_event_update(event);
1334                 hwc->state |= PERF_HES_UPTODATE;
1335         }
1336 }
1337
1338 static void x86_pmu_del(struct perf_event *event, int flags)
1339 {
1340         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1341         int i;
1342
1343         /*
1344          * event is descheduled
1345          */
1346         event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1347
1348         /*
1349          * If we're called during a txn, we don't need to do anything.
1350          * The events never got scheduled and ->cancel_txn will truncate
1351          * the event_list.
1352          *
1353          * XXX assumes any ->del() called during a TXN will only be on
1354          * an event added during that same TXN.
1355          */
1356         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1357                 return;
1358
1359         /*
1360          * Not a TXN, therefore cleanup properly.
1361          */
1362         x86_pmu_stop(event, PERF_EF_UPDATE);
1363
1364         for (i = 0; i < cpuc->n_events; i++) {
1365                 if (event == cpuc->event_list[i])
1366                         break;
1367         }
1368
1369         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1370                 return;
1371
1372         /* If we have a newly added event; make sure to decrease n_added. */
1373         if (i >= cpuc->n_events - cpuc->n_added)
1374                 --cpuc->n_added;
1375
1376         if (x86_pmu.put_event_constraints)
1377                 x86_pmu.put_event_constraints(cpuc, event);
1378
1379         /* Delete the array entry. */
1380         while (++i < cpuc->n_events) {
1381                 cpuc->event_list[i-1] = cpuc->event_list[i];
1382                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1383         }
1384         --cpuc->n_events;
1385
1386         perf_event_update_userpage(event);
1387 }
1388
1389 int x86_pmu_handle_irq(struct pt_regs *regs)
1390 {
1391         struct perf_sample_data data;
1392         struct cpu_hw_events *cpuc;
1393         struct perf_event *event;
1394         int idx, handled = 0;
1395         u64 val;
1396
1397         cpuc = this_cpu_ptr(&cpu_hw_events);
1398
1399         /*
1400          * Some chipsets need to unmask the LVTPC in a particular spot
1401          * inside the nmi handler.  As a result, the unmasking was pushed
1402          * into all the nmi handlers.
1403          *
1404          * This generic handler doesn't seem to have any issues where the
1405          * unmasking occurs so it was left at the top.
1406          */
1407         apic_write(APIC_LVTPC, APIC_DM_NMI);
1408
1409         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1410                 if (!test_bit(idx, cpuc->active_mask)) {
1411                         /*
1412                          * Though we deactivated the counter some cpus
1413                          * might still deliver spurious interrupts still
1414                          * in flight. Catch them:
1415                          */
1416                         if (__test_and_clear_bit(idx, cpuc->running))
1417                                 handled++;
1418                         continue;
1419                 }
1420
1421                 event = cpuc->events[idx];
1422
1423                 val = x86_perf_event_update(event);
1424                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1425                         continue;
1426
1427                 /*
1428                  * event overflow
1429                  */
1430                 handled++;
1431                 perf_sample_data_init(&data, 0, event->hw.last_period);
1432
1433                 if (!x86_perf_event_set_period(event))
1434                         continue;
1435
1436                 if (perf_event_overflow(event, &data, regs))
1437                         x86_pmu_stop(event, 0);
1438         }
1439
1440         if (handled)
1441                 inc_irq_stat(apic_perf_irqs);
1442
1443         return handled;
1444 }
1445
1446 void perf_events_lapic_init(void)
1447 {
1448         if (!x86_pmu.apic || !x86_pmu_initialized())
1449                 return;
1450
1451         /*
1452          * Always use NMI for PMU
1453          */
1454         apic_write(APIC_LVTPC, APIC_DM_NMI);
1455 }
1456
1457 static int
1458 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1459 {
1460         u64 start_clock;
1461         u64 finish_clock;
1462         int ret;
1463
1464         /*
1465          * All PMUs/events that share this PMI handler should make sure to
1466          * increment active_events for their events.
1467          */
1468         if (!atomic_read(&active_events))
1469                 return NMI_DONE;
1470
1471         start_clock = sched_clock();
1472         ret = x86_pmu.handle_irq(regs);
1473         finish_clock = sched_clock();
1474
1475         perf_sample_event_took(finish_clock - start_clock);
1476
1477         return ret;
1478 }
1479 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1480
1481 struct event_constraint emptyconstraint;
1482 struct event_constraint unconstrained;
1483
1484 static int x86_pmu_prepare_cpu(unsigned int cpu)
1485 {
1486         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1487         int i;
1488
1489         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1490                 cpuc->kfree_on_online[i] = NULL;
1491         if (x86_pmu.cpu_prepare)
1492                 return x86_pmu.cpu_prepare(cpu);
1493         return 0;
1494 }
1495
1496 static int x86_pmu_dead_cpu(unsigned int cpu)
1497 {
1498         if (x86_pmu.cpu_dead)
1499                 x86_pmu.cpu_dead(cpu);
1500         return 0;
1501 }
1502
1503 static int x86_pmu_online_cpu(unsigned int cpu)
1504 {
1505         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1506         int i;
1507
1508         for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1509                 kfree(cpuc->kfree_on_online[i]);
1510                 cpuc->kfree_on_online[i] = NULL;
1511         }
1512         return 0;
1513 }
1514
1515 static int x86_pmu_starting_cpu(unsigned int cpu)
1516 {
1517         if (x86_pmu.cpu_starting)
1518                 x86_pmu.cpu_starting(cpu);
1519         return 0;
1520 }
1521
1522 static int x86_pmu_dying_cpu(unsigned int cpu)
1523 {
1524         if (x86_pmu.cpu_dying)
1525                 x86_pmu.cpu_dying(cpu);
1526         return 0;
1527 }
1528
1529 static void __init pmu_check_apic(void)
1530 {
1531         if (boot_cpu_has(X86_FEATURE_APIC))
1532                 return;
1533
1534         x86_pmu.apic = 0;
1535         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1536         pr_info("no hardware sampling interrupt available.\n");
1537
1538         /*
1539          * If we have a PMU initialized but no APIC
1540          * interrupts, we cannot sample hardware
1541          * events (user-space has to fall back and
1542          * sample via a hrtimer based software event):
1543          */
1544         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1545
1546 }
1547
1548 static struct attribute_group x86_pmu_format_group = {
1549         .name = "format",
1550         .attrs = NULL,
1551 };
1552
1553 /*
1554  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1555  * out of events_attr attributes.
1556  */
1557 static void __init filter_events(struct attribute **attrs)
1558 {
1559         struct device_attribute *d;
1560         struct perf_pmu_events_attr *pmu_attr;
1561         int offset = 0;
1562         int i, j;
1563
1564         for (i = 0; attrs[i]; i++) {
1565                 d = (struct device_attribute *)attrs[i];
1566                 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1567                 /* str trumps id */
1568                 if (pmu_attr->event_str)
1569                         continue;
1570                 if (x86_pmu.event_map(i + offset))
1571                         continue;
1572
1573                 for (j = i; attrs[j]; j++)
1574                         attrs[j] = attrs[j + 1];
1575
1576                 /* Check the shifted attr. */
1577                 i--;
1578
1579                 /*
1580                  * event_map() is index based, the attrs array is organized
1581                  * by increasing event index. If we shift the events, then
1582                  * we need to compensate for the event_map(), otherwise
1583                  * we are looking up the wrong event in the map
1584                  */
1585                 offset++;
1586         }
1587 }
1588
1589 /* Merge two pointer arrays */
1590 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1591 {
1592         struct attribute **new;
1593         int j, i;
1594
1595         for (j = 0; a[j]; j++)
1596                 ;
1597         for (i = 0; b[i]; i++)
1598                 j++;
1599         j++;
1600
1601         new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1602         if (!new)
1603                 return NULL;
1604
1605         j = 0;
1606         for (i = 0; a[i]; i++)
1607                 new[j++] = a[i];
1608         for (i = 0; b[i]; i++)
1609                 new[j++] = b[i];
1610         new[j] = NULL;
1611
1612         return new;
1613 }
1614
1615 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1616 {
1617         struct perf_pmu_events_attr *pmu_attr = \
1618                 container_of(attr, struct perf_pmu_events_attr, attr);
1619         u64 config = x86_pmu.event_map(pmu_attr->id);
1620
1621         /* string trumps id */
1622         if (pmu_attr->event_str)
1623                 return sprintf(page, "%s", pmu_attr->event_str);
1624
1625         return x86_pmu.events_sysfs_show(page, config);
1626 }
1627 EXPORT_SYMBOL_GPL(events_sysfs_show);
1628
1629 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1630                           char *page)
1631 {
1632         struct perf_pmu_events_ht_attr *pmu_attr =
1633                 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1634
1635         /*
1636          * Report conditional events depending on Hyper-Threading.
1637          *
1638          * This is overly conservative as usually the HT special
1639          * handling is not needed if the other CPU thread is idle.
1640          *
1641          * Note this does not (and cannot) handle the case when thread
1642          * siblings are invisible, for example with virtualization
1643          * if they are owned by some other guest.  The user tool
1644          * has to re-read when a thread sibling gets onlined later.
1645          */
1646         return sprintf(page, "%s",
1647                         topology_max_smt_threads() > 1 ?
1648                         pmu_attr->event_str_ht :
1649                         pmu_attr->event_str_noht);
1650 }
1651
1652 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1653 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1654 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1655 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1656 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1657 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1658 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1659 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1660 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1661 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1662
1663 static struct attribute *empty_attrs;
1664
1665 static struct attribute *events_attr[] = {
1666         EVENT_PTR(CPU_CYCLES),
1667         EVENT_PTR(INSTRUCTIONS),
1668         EVENT_PTR(CACHE_REFERENCES),
1669         EVENT_PTR(CACHE_MISSES),
1670         EVENT_PTR(BRANCH_INSTRUCTIONS),
1671         EVENT_PTR(BRANCH_MISSES),
1672         EVENT_PTR(BUS_CYCLES),
1673         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1674         EVENT_PTR(STALLED_CYCLES_BACKEND),
1675         EVENT_PTR(REF_CPU_CYCLES),
1676         NULL,
1677 };
1678
1679 static struct attribute_group x86_pmu_events_group = {
1680         .name = "events",
1681         .attrs = events_attr,
1682 };
1683
1684 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1685 {
1686         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1687         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1688         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1689         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1690         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1691         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1692         ssize_t ret;
1693
1694         /*
1695         * We have whole page size to spend and just little data
1696         * to write, so we can safely use sprintf.
1697         */
1698         ret = sprintf(page, "event=0x%02llx", event);
1699
1700         if (umask)
1701                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1702
1703         if (edge)
1704                 ret += sprintf(page + ret, ",edge");
1705
1706         if (pc)
1707                 ret += sprintf(page + ret, ",pc");
1708
1709         if (any)
1710                 ret += sprintf(page + ret, ",any");
1711
1712         if (inv)
1713                 ret += sprintf(page + ret, ",inv");
1714
1715         if (cmask)
1716                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1717
1718         ret += sprintf(page + ret, "\n");
1719
1720         return ret;
1721 }
1722
1723 static int __init init_hw_perf_events(void)
1724 {
1725         struct x86_pmu_quirk *quirk;
1726         int err;
1727
1728         pr_info("Performance Events: ");
1729
1730         switch (boot_cpu_data.x86_vendor) {
1731         case X86_VENDOR_INTEL:
1732                 err = intel_pmu_init();
1733                 break;
1734         case X86_VENDOR_AMD:
1735                 err = amd_pmu_init();
1736                 break;
1737         default:
1738                 err = -ENOTSUPP;
1739         }
1740         if (err != 0) {
1741                 pr_cont("no PMU driver, software events only.\n");
1742                 return 0;
1743         }
1744
1745         pmu_check_apic();
1746
1747         /* sanity check that the hardware exists or is emulated */
1748         if (!check_hw_exists())
1749                 return 0;
1750
1751         pr_cont("%s PMU driver.\n", x86_pmu.name);
1752
1753         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1754
1755         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1756                 quirk->func();
1757
1758         if (!x86_pmu.intel_ctrl)
1759                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1760
1761         perf_events_lapic_init();
1762         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1763
1764         unconstrained = (struct event_constraint)
1765                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1766                                    0, x86_pmu.num_counters, 0, 0);
1767
1768         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1769
1770         if (x86_pmu.event_attrs)
1771                 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1772
1773         if (!x86_pmu.events_sysfs_show)
1774                 x86_pmu_events_group.attrs = &empty_attrs;
1775         else
1776                 filter_events(x86_pmu_events_group.attrs);
1777
1778         if (x86_pmu.cpu_events) {
1779                 struct attribute **tmp;
1780
1781                 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1782                 if (!WARN_ON(!tmp))
1783                         x86_pmu_events_group.attrs = tmp;
1784         }
1785
1786         pr_info("... version:                %d\n",     x86_pmu.version);
1787         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1788         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1789         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1790         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1791         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1792         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1793
1794         /*
1795          * Install callbacks. Core will call them for each online
1796          * cpu.
1797          */
1798         err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "PERF_X86_PREPARE",
1799                                 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1800         if (err)
1801                 return err;
1802
1803         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1804                                 "AP_PERF_X86_STARTING", x86_pmu_starting_cpu,
1805                                 x86_pmu_dying_cpu);
1806         if (err)
1807                 goto out;
1808
1809         err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "AP_PERF_X86_ONLINE",
1810                                 x86_pmu_online_cpu, NULL);
1811         if (err)
1812                 goto out1;
1813
1814         err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1815         if (err)
1816                 goto out2;
1817
1818         return 0;
1819
1820 out2:
1821         cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1822 out1:
1823         cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1824 out:
1825         cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1826         return err;
1827 }
1828 early_initcall(init_hw_perf_events);
1829
1830 static inline void x86_pmu_read(struct perf_event *event)
1831 {
1832         x86_perf_event_update(event);
1833 }
1834
1835 /*
1836  * Start group events scheduling transaction
1837  * Set the flag to make pmu::enable() not perform the
1838  * schedulability test, it will be performed at commit time
1839  *
1840  * We only support PERF_PMU_TXN_ADD transactions. Save the
1841  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1842  * transactions.
1843  */
1844 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1845 {
1846         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1847
1848         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1849
1850         cpuc->txn_flags = txn_flags;
1851         if (txn_flags & ~PERF_PMU_TXN_ADD)
1852                 return;
1853
1854         perf_pmu_disable(pmu);
1855         __this_cpu_write(cpu_hw_events.n_txn, 0);
1856 }
1857
1858 /*
1859  * Stop group events scheduling transaction
1860  * Clear the flag and pmu::enable() will perform the
1861  * schedulability test.
1862  */
1863 static void x86_pmu_cancel_txn(struct pmu *pmu)
1864 {
1865         unsigned int txn_flags;
1866         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1867
1868         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1869
1870         txn_flags = cpuc->txn_flags;
1871         cpuc->txn_flags = 0;
1872         if (txn_flags & ~PERF_PMU_TXN_ADD)
1873                 return;
1874
1875         /*
1876          * Truncate collected array by the number of events added in this
1877          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1878          */
1879         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1880         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1881         perf_pmu_enable(pmu);
1882 }
1883
1884 /*
1885  * Commit group events scheduling transaction
1886  * Perform the group schedulability test as a whole
1887  * Return 0 if success
1888  *
1889  * Does not cancel the transaction on failure; expects the caller to do this.
1890  */
1891 static int x86_pmu_commit_txn(struct pmu *pmu)
1892 {
1893         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1894         int assign[X86_PMC_IDX_MAX];
1895         int n, ret;
1896
1897         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1898
1899         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1900                 cpuc->txn_flags = 0;
1901                 return 0;
1902         }
1903
1904         n = cpuc->n_events;
1905
1906         if (!x86_pmu_initialized())
1907                 return -EAGAIN;
1908
1909         ret = x86_pmu.schedule_events(cpuc, n, assign);
1910         if (ret)
1911                 return ret;
1912
1913         /*
1914          * copy new assignment, now we know it is possible
1915          * will be used by hw_perf_enable()
1916          */
1917         memcpy(cpuc->assign, assign, n*sizeof(int));
1918
1919         cpuc->txn_flags = 0;
1920         perf_pmu_enable(pmu);
1921         return 0;
1922 }
1923 /*
1924  * a fake_cpuc is used to validate event groups. Due to
1925  * the extra reg logic, we need to also allocate a fake
1926  * per_core and per_cpu structure. Otherwise, group events
1927  * using extra reg may conflict without the kernel being
1928  * able to catch this when the last event gets added to
1929  * the group.
1930  */
1931 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1932 {
1933         kfree(cpuc->shared_regs);
1934         kfree(cpuc);
1935 }
1936
1937 static struct cpu_hw_events *allocate_fake_cpuc(void)
1938 {
1939         struct cpu_hw_events *cpuc;
1940         int cpu = raw_smp_processor_id();
1941
1942         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1943         if (!cpuc)
1944                 return ERR_PTR(-ENOMEM);
1945
1946         /* only needed, if we have extra_regs */
1947         if (x86_pmu.extra_regs) {
1948                 cpuc->shared_regs = allocate_shared_regs(cpu);
1949                 if (!cpuc->shared_regs)
1950                         goto error;
1951         }
1952         cpuc->is_fake = 1;
1953         return cpuc;
1954 error:
1955         free_fake_cpuc(cpuc);
1956         return ERR_PTR(-ENOMEM);
1957 }
1958
1959 /*
1960  * validate that we can schedule this event
1961  */
1962 static int validate_event(struct perf_event *event)
1963 {
1964         struct cpu_hw_events *fake_cpuc;
1965         struct event_constraint *c;
1966         int ret = 0;
1967
1968         fake_cpuc = allocate_fake_cpuc();
1969         if (IS_ERR(fake_cpuc))
1970                 return PTR_ERR(fake_cpuc);
1971
1972         c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1973
1974         if (!c || !c->weight)
1975                 ret = -EINVAL;
1976
1977         if (x86_pmu.put_event_constraints)
1978                 x86_pmu.put_event_constraints(fake_cpuc, event);
1979
1980         free_fake_cpuc(fake_cpuc);
1981
1982         return ret;
1983 }
1984
1985 /*
1986  * validate a single event group
1987  *
1988  * validation include:
1989  *      - check events are compatible which each other
1990  *      - events do not compete for the same counter
1991  *      - number of events <= number of counters
1992  *
1993  * validation ensures the group can be loaded onto the
1994  * PMU if it was the only group available.
1995  */
1996 static int validate_group(struct perf_event *event)
1997 {
1998         struct perf_event *leader = event->group_leader;
1999         struct cpu_hw_events *fake_cpuc;
2000         int ret = -EINVAL, n;
2001
2002         fake_cpuc = allocate_fake_cpuc();
2003         if (IS_ERR(fake_cpuc))
2004                 return PTR_ERR(fake_cpuc);
2005         /*
2006          * the event is not yet connected with its
2007          * siblings therefore we must first collect
2008          * existing siblings, then add the new event
2009          * before we can simulate the scheduling
2010          */
2011         n = collect_events(fake_cpuc, leader, true);
2012         if (n < 0)
2013                 goto out;
2014
2015         fake_cpuc->n_events = n;
2016         n = collect_events(fake_cpuc, event, false);
2017         if (n < 0)
2018                 goto out;
2019
2020         fake_cpuc->n_events = n;
2021
2022         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2023
2024 out:
2025         free_fake_cpuc(fake_cpuc);
2026         return ret;
2027 }
2028
2029 static int x86_pmu_event_init(struct perf_event *event)
2030 {
2031         struct pmu *tmp;
2032         int err;
2033
2034         switch (event->attr.type) {
2035         case PERF_TYPE_RAW:
2036         case PERF_TYPE_HARDWARE:
2037         case PERF_TYPE_HW_CACHE:
2038                 break;
2039
2040         default:
2041                 return -ENOENT;
2042         }
2043
2044         err = __x86_pmu_event_init(event);
2045         if (!err) {
2046                 /*
2047                  * we temporarily connect event to its pmu
2048                  * such that validate_group() can classify
2049                  * it as an x86 event using is_x86_event()
2050                  */
2051                 tmp = event->pmu;
2052                 event->pmu = &pmu;
2053
2054                 if (event->group_leader != event)
2055                         err = validate_group(event);
2056                 else
2057                         err = validate_event(event);
2058
2059                 event->pmu = tmp;
2060         }
2061         if (err) {
2062                 if (event->destroy)
2063                         event->destroy(event);
2064         }
2065
2066         if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2067                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2068
2069         return err;
2070 }
2071
2072 static void refresh_pce(void *ignored)
2073 {
2074         if (current->mm)
2075                 load_mm_cr4(current->mm);
2076 }
2077
2078 static void x86_pmu_event_mapped(struct perf_event *event)
2079 {
2080         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2081                 return;
2082
2083         if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2084                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2085 }
2086
2087 static void x86_pmu_event_unmapped(struct perf_event *event)
2088 {
2089         if (!current->mm)
2090                 return;
2091
2092         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2093                 return;
2094
2095         if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2096                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2097 }
2098
2099 static int x86_pmu_event_idx(struct perf_event *event)
2100 {
2101         int idx = event->hw.idx;
2102
2103         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2104                 return 0;
2105
2106         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2107                 idx -= INTEL_PMC_IDX_FIXED;
2108                 idx |= 1 << 30;
2109         }
2110
2111         return idx + 1;
2112 }
2113
2114 static ssize_t get_attr_rdpmc(struct device *cdev,
2115                               struct device_attribute *attr,
2116                               char *buf)
2117 {
2118         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2119 }
2120
2121 static ssize_t set_attr_rdpmc(struct device *cdev,
2122                               struct device_attribute *attr,
2123                               const char *buf, size_t count)
2124 {
2125         unsigned long val;
2126         ssize_t ret;
2127
2128         ret = kstrtoul(buf, 0, &val);
2129         if (ret)
2130                 return ret;
2131
2132         if (val > 2)
2133                 return -EINVAL;
2134
2135         if (x86_pmu.attr_rdpmc_broken)
2136                 return -ENOTSUPP;
2137
2138         if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2139                 /*
2140                  * Changing into or out of always available, aka
2141                  * perf-event-bypassing mode.  This path is extremely slow,
2142                  * but only root can trigger it, so it's okay.
2143                  */
2144                 if (val == 2)
2145                         static_key_slow_inc(&rdpmc_always_available);
2146                 else
2147                         static_key_slow_dec(&rdpmc_always_available);
2148                 on_each_cpu(refresh_pce, NULL, 1);
2149         }
2150
2151         x86_pmu.attr_rdpmc = val;
2152
2153         return count;
2154 }
2155
2156 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2157
2158 static struct attribute *x86_pmu_attrs[] = {
2159         &dev_attr_rdpmc.attr,
2160         NULL,
2161 };
2162
2163 static struct attribute_group x86_pmu_attr_group = {
2164         .attrs = x86_pmu_attrs,
2165 };
2166
2167 static const struct attribute_group *x86_pmu_attr_groups[] = {
2168         &x86_pmu_attr_group,
2169         &x86_pmu_format_group,
2170         &x86_pmu_events_group,
2171         NULL,
2172 };
2173
2174 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2175 {
2176         if (x86_pmu.sched_task)
2177                 x86_pmu.sched_task(ctx, sched_in);
2178 }
2179
2180 void perf_check_microcode(void)
2181 {
2182         if (x86_pmu.check_microcode)
2183                 x86_pmu.check_microcode();
2184 }
2185 EXPORT_SYMBOL_GPL(perf_check_microcode);
2186
2187 static struct pmu pmu = {
2188         .pmu_enable             = x86_pmu_enable,
2189         .pmu_disable            = x86_pmu_disable,
2190
2191         .attr_groups            = x86_pmu_attr_groups,
2192
2193         .event_init             = x86_pmu_event_init,
2194
2195         .event_mapped           = x86_pmu_event_mapped,
2196         .event_unmapped         = x86_pmu_event_unmapped,
2197
2198         .add                    = x86_pmu_add,
2199         .del                    = x86_pmu_del,
2200         .start                  = x86_pmu_start,
2201         .stop                   = x86_pmu_stop,
2202         .read                   = x86_pmu_read,
2203
2204         .start_txn              = x86_pmu_start_txn,
2205         .cancel_txn             = x86_pmu_cancel_txn,
2206         .commit_txn             = x86_pmu_commit_txn,
2207
2208         .event_idx              = x86_pmu_event_idx,
2209         .sched_task             = x86_pmu_sched_task,
2210         .task_ctx_size          = sizeof(struct x86_perf_task_context),
2211 };
2212
2213 void arch_perf_update_userpage(struct perf_event *event,
2214                                struct perf_event_mmap_page *userpg, u64 now)
2215 {
2216         struct cyc2ns_data *data;
2217
2218         userpg->cap_user_time = 0;
2219         userpg->cap_user_time_zero = 0;
2220         userpg->cap_user_rdpmc =
2221                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2222         userpg->pmc_width = x86_pmu.cntval_bits;
2223
2224         if (!sched_clock_stable())
2225                 return;
2226
2227         data = cyc2ns_read_begin();
2228
2229         /*
2230          * Internal timekeeping for enabled/running/stopped times
2231          * is always in the local_clock domain.
2232          */
2233         userpg->cap_user_time = 1;
2234         userpg->time_mult = data->cyc2ns_mul;
2235         userpg->time_shift = data->cyc2ns_shift;
2236         userpg->time_offset = data->cyc2ns_offset - now;
2237
2238         /*
2239          * cap_user_time_zero doesn't make sense when we're using a different
2240          * time base for the records.
2241          */
2242         if (!event->attr.use_clockid) {
2243                 userpg->cap_user_time_zero = 1;
2244                 userpg->time_zero = data->cyc2ns_offset;
2245         }
2246
2247         cyc2ns_read_end(data);
2248 }
2249
2250 /*
2251  * callchain support
2252  */
2253
2254 static int backtrace_stack(void *data, char *name)
2255 {
2256         return 0;
2257 }
2258
2259 static int backtrace_address(void *data, unsigned long addr, int reliable)
2260 {
2261         struct perf_callchain_entry_ctx *entry = data;
2262
2263         return perf_callchain_store(entry, addr);
2264 }
2265
2266 static const struct stacktrace_ops backtrace_ops = {
2267         .stack                  = backtrace_stack,
2268         .address                = backtrace_address,
2269         .walk_stack             = print_context_stack_bp,
2270 };
2271
2272 void
2273 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2274 {
2275         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2276                 /* TODO: We don't support guest os callchain now */
2277                 return;
2278         }
2279
2280         perf_callchain_store(entry, regs->ip);
2281
2282         dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2283 }
2284
2285 static inline int
2286 valid_user_frame(const void __user *fp, unsigned long size)
2287 {
2288         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2289 }
2290
2291 static unsigned long get_segment_base(unsigned int segment)
2292 {
2293         struct desc_struct *desc;
2294         int idx = segment >> 3;
2295
2296         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2297 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2298                 struct ldt_struct *ldt;
2299
2300                 if (idx > LDT_ENTRIES)
2301                         return 0;
2302
2303                 /* IRQs are off, so this synchronizes with smp_store_release */
2304                 ldt = lockless_dereference(current->active_mm->context.ldt);
2305                 if (!ldt || idx > ldt->size)
2306                         return 0;
2307
2308                 desc = &ldt->entries[idx];
2309 #else
2310                 return 0;
2311 #endif
2312         } else {
2313                 if (idx > GDT_ENTRIES)
2314                         return 0;
2315
2316                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2317         }
2318
2319         return get_desc_base(desc);
2320 }
2321
2322 #ifdef CONFIG_IA32_EMULATION
2323
2324 #include <asm/compat.h>
2325
2326 static inline int
2327 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2328 {
2329         /* 32-bit process in 64-bit kernel. */
2330         unsigned long ss_base, cs_base;
2331         struct stack_frame_ia32 frame;
2332         const void __user *fp;
2333
2334         if (!test_thread_flag(TIF_IA32))
2335                 return 0;
2336
2337         cs_base = get_segment_base(regs->cs);
2338         ss_base = get_segment_base(regs->ss);
2339
2340         fp = compat_ptr(ss_base + regs->bp);
2341         pagefault_disable();
2342         while (entry->nr < entry->max_stack) {
2343                 unsigned long bytes;
2344                 frame.next_frame     = 0;
2345                 frame.return_address = 0;
2346
2347                 if (!access_ok(VERIFY_READ, fp, 8))
2348                         break;
2349
2350                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2351                 if (bytes != 0)
2352                         break;
2353                 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2354                 if (bytes != 0)
2355                         break;
2356
2357                 if (!valid_user_frame(fp, sizeof(frame)))
2358                         break;
2359
2360                 perf_callchain_store(entry, cs_base + frame.return_address);
2361                 fp = compat_ptr(ss_base + frame.next_frame);
2362         }
2363         pagefault_enable();
2364         return 1;
2365 }
2366 #else
2367 static inline int
2368 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2369 {
2370     return 0;
2371 }
2372 #endif
2373
2374 void
2375 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2376 {
2377         struct stack_frame frame;
2378         const unsigned long __user *fp;
2379
2380         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2381                 /* TODO: We don't support guest os callchain now */
2382                 return;
2383         }
2384
2385         /*
2386          * We don't know what to do with VM86 stacks.. ignore them for now.
2387          */
2388         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2389                 return;
2390
2391         fp = (unsigned long __user *)regs->bp;
2392
2393         perf_callchain_store(entry, regs->ip);
2394
2395         if (!current->mm)
2396                 return;
2397
2398         if (perf_callchain_user32(regs, entry))
2399                 return;
2400
2401         pagefault_disable();
2402         while (entry->nr < entry->max_stack) {
2403                 unsigned long bytes;
2404
2405                 frame.next_frame             = NULL;
2406                 frame.return_address = 0;
2407
2408                 if (!access_ok(VERIFY_READ, fp, sizeof(*fp) * 2))
2409                         break;
2410
2411                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2412                 if (bytes != 0)
2413                         break;
2414                 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2415                 if (bytes != 0)
2416                         break;
2417
2418                 if (!valid_user_frame(fp, sizeof(frame)))
2419                         break;
2420
2421                 perf_callchain_store(entry, frame.return_address);
2422                 fp = (void __user *)frame.next_frame;
2423         }
2424         pagefault_enable();
2425 }
2426
2427 /*
2428  * Deal with code segment offsets for the various execution modes:
2429  *
2430  *   VM86 - the good olde 16 bit days, where the linear address is
2431  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2432  *
2433  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2434  *          to figure out what the 32bit base address is.
2435  *
2436  *    X32 - has TIF_X32 set, but is running in x86_64
2437  *
2438  * X86_64 - CS,DS,SS,ES are all zero based.
2439  */
2440 static unsigned long code_segment_base(struct pt_regs *regs)
2441 {
2442         /*
2443          * For IA32 we look at the GDT/LDT segment base to convert the
2444          * effective IP to a linear address.
2445          */
2446
2447 #ifdef CONFIG_X86_32
2448         /*
2449          * If we are in VM86 mode, add the segment offset to convert to a
2450          * linear address.
2451          */
2452         if (regs->flags & X86_VM_MASK)
2453                 return 0x10 * regs->cs;
2454
2455         if (user_mode(regs) && regs->cs != __USER_CS)
2456                 return get_segment_base(regs->cs);
2457 #else
2458         if (user_mode(regs) && !user_64bit_mode(regs) &&
2459             regs->cs != __USER32_CS)
2460                 return get_segment_base(regs->cs);
2461 #endif
2462         return 0;
2463 }
2464
2465 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2466 {
2467         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2468                 return perf_guest_cbs->get_guest_ip();
2469
2470         return regs->ip + code_segment_base(regs);
2471 }
2472
2473 unsigned long perf_misc_flags(struct pt_regs *regs)
2474 {
2475         int misc = 0;
2476
2477         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2478                 if (perf_guest_cbs->is_user_mode())
2479                         misc |= PERF_RECORD_MISC_GUEST_USER;
2480                 else
2481                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2482         } else {
2483                 if (user_mode(regs))
2484                         misc |= PERF_RECORD_MISC_USER;
2485                 else
2486                         misc |= PERF_RECORD_MISC_KERNEL;
2487         }
2488
2489         if (regs->flags & PERF_EFLAGS_EXACT)
2490                 misc |= PERF_RECORD_MISC_EXACT_IP;
2491
2492         return misc;
2493 }
2494
2495 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2496 {
2497         cap->version            = x86_pmu.version;
2498         cap->num_counters_gp    = x86_pmu.num_counters;
2499         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2500         cap->bit_width_gp       = x86_pmu.cntval_bits;
2501         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2502         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2503         cap->events_mask_len    = x86_pmu.events_mask_len;
2504 }
2505 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);