Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux-2.6-microblaze.git] / arch / x86 / events / amd / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/perf_event.h>
3 #include <linux/export.h>
4 #include <linux/types.h>
5 #include <linux/init.h>
6 #include <linux/slab.h>
7 #include <linux/delay.h>
8 #include <linux/jiffies.h>
9 #include <asm/apicdef.h>
10 #include <asm/nmi.h>
11
12 #include "../perf_event.h"
13
14 static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
15 static unsigned long perf_nmi_window;
16
17 /* AMD Event 0xFFF: Merge.  Used with Large Increment per Cycle events */
18 #define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL)
19 #define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE)
20
21 static __initconst const u64 amd_hw_cache_event_ids
22                                 [PERF_COUNT_HW_CACHE_MAX]
23                                 [PERF_COUNT_HW_CACHE_OP_MAX]
24                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
25 {
26  [ C(L1D) ] = {
27         [ C(OP_READ) ] = {
28                 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
29                 [ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
30         },
31         [ C(OP_WRITE) ] = {
32                 [ C(RESULT_ACCESS) ] = 0,
33                 [ C(RESULT_MISS)   ] = 0,
34         },
35         [ C(OP_PREFETCH) ] = {
36                 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
37                 [ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
38         },
39  },
40  [ C(L1I ) ] = {
41         [ C(OP_READ) ] = {
42                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
43                 [ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
44         },
45         [ C(OP_WRITE) ] = {
46                 [ C(RESULT_ACCESS) ] = -1,
47                 [ C(RESULT_MISS)   ] = -1,
48         },
49         [ C(OP_PREFETCH) ] = {
50                 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
51                 [ C(RESULT_MISS)   ] = 0,
52         },
53  },
54  [ C(LL  ) ] = {
55         [ C(OP_READ) ] = {
56                 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
57                 [ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
58         },
59         [ C(OP_WRITE) ] = {
60                 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
61                 [ C(RESULT_MISS)   ] = 0,
62         },
63         [ C(OP_PREFETCH) ] = {
64                 [ C(RESULT_ACCESS) ] = 0,
65                 [ C(RESULT_MISS)   ] = 0,
66         },
67  },
68  [ C(DTLB) ] = {
69         [ C(OP_READ) ] = {
70                 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
71                 [ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
72         },
73         [ C(OP_WRITE) ] = {
74                 [ C(RESULT_ACCESS) ] = 0,
75                 [ C(RESULT_MISS)   ] = 0,
76         },
77         [ C(OP_PREFETCH) ] = {
78                 [ C(RESULT_ACCESS) ] = 0,
79                 [ C(RESULT_MISS)   ] = 0,
80         },
81  },
82  [ C(ITLB) ] = {
83         [ C(OP_READ) ] = {
84                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
85                 [ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
86         },
87         [ C(OP_WRITE) ] = {
88                 [ C(RESULT_ACCESS) ] = -1,
89                 [ C(RESULT_MISS)   ] = -1,
90         },
91         [ C(OP_PREFETCH) ] = {
92                 [ C(RESULT_ACCESS) ] = -1,
93                 [ C(RESULT_MISS)   ] = -1,
94         },
95  },
96  [ C(BPU ) ] = {
97         [ C(OP_READ) ] = {
98                 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
99                 [ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
100         },
101         [ C(OP_WRITE) ] = {
102                 [ C(RESULT_ACCESS) ] = -1,
103                 [ C(RESULT_MISS)   ] = -1,
104         },
105         [ C(OP_PREFETCH) ] = {
106                 [ C(RESULT_ACCESS) ] = -1,
107                 [ C(RESULT_MISS)   ] = -1,
108         },
109  },
110  [ C(NODE) ] = {
111         [ C(OP_READ) ] = {
112                 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
113                 [ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
114         },
115         [ C(OP_WRITE) ] = {
116                 [ C(RESULT_ACCESS) ] = -1,
117                 [ C(RESULT_MISS)   ] = -1,
118         },
119         [ C(OP_PREFETCH) ] = {
120                 [ C(RESULT_ACCESS) ] = -1,
121                 [ C(RESULT_MISS)   ] = -1,
122         },
123  },
124 };
125
126 static __initconst const u64 amd_hw_cache_event_ids_f17h
127                                 [PERF_COUNT_HW_CACHE_MAX]
128                                 [PERF_COUNT_HW_CACHE_OP_MAX]
129                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
130 [C(L1D)] = {
131         [C(OP_READ)] = {
132                 [C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
133                 [C(RESULT_MISS)]   = 0xc860, /* L2$ access from DC Miss */
134         },
135         [C(OP_WRITE)] = {
136                 [C(RESULT_ACCESS)] = 0,
137                 [C(RESULT_MISS)]   = 0,
138         },
139         [C(OP_PREFETCH)] = {
140                 [C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
141                 [C(RESULT_MISS)]   = 0,
142         },
143 },
144 [C(L1I)] = {
145         [C(OP_READ)] = {
146                 [C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches  */
147                 [C(RESULT_MISS)]   = 0x0081, /* Instruction cache misses   */
148         },
149         [C(OP_WRITE)] = {
150                 [C(RESULT_ACCESS)] = -1,
151                 [C(RESULT_MISS)]   = -1,
152         },
153         [C(OP_PREFETCH)] = {
154                 [C(RESULT_ACCESS)] = 0,
155                 [C(RESULT_MISS)]   = 0,
156         },
157 },
158 [C(LL)] = {
159         [C(OP_READ)] = {
160                 [C(RESULT_ACCESS)] = 0,
161                 [C(RESULT_MISS)]   = 0,
162         },
163         [C(OP_WRITE)] = {
164                 [C(RESULT_ACCESS)] = 0,
165                 [C(RESULT_MISS)]   = 0,
166         },
167         [C(OP_PREFETCH)] = {
168                 [C(RESULT_ACCESS)] = 0,
169                 [C(RESULT_MISS)]   = 0,
170         },
171 },
172 [C(DTLB)] = {
173         [C(OP_READ)] = {
174                 [C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
175                 [C(RESULT_MISS)]   = 0xf045, /* L2 DTLB misses (PT walks) */
176         },
177         [C(OP_WRITE)] = {
178                 [C(RESULT_ACCESS)] = 0,
179                 [C(RESULT_MISS)]   = 0,
180         },
181         [C(OP_PREFETCH)] = {
182                 [C(RESULT_ACCESS)] = 0,
183                 [C(RESULT_MISS)]   = 0,
184         },
185 },
186 [C(ITLB)] = {
187         [C(OP_READ)] = {
188                 [C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
189                 [C(RESULT_MISS)]   = 0xff85, /* L1 ITLB misses, L2 misses */
190         },
191         [C(OP_WRITE)] = {
192                 [C(RESULT_ACCESS)] = -1,
193                 [C(RESULT_MISS)]   = -1,
194         },
195         [C(OP_PREFETCH)] = {
196                 [C(RESULT_ACCESS)] = -1,
197                 [C(RESULT_MISS)]   = -1,
198         },
199 },
200 [C(BPU)] = {
201         [C(OP_READ)] = {
202                 [C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr.      */
203                 [C(RESULT_MISS)]   = 0x00c3, /* Retired Mispredicted BI    */
204         },
205         [C(OP_WRITE)] = {
206                 [C(RESULT_ACCESS)] = -1,
207                 [C(RESULT_MISS)]   = -1,
208         },
209         [C(OP_PREFETCH)] = {
210                 [C(RESULT_ACCESS)] = -1,
211                 [C(RESULT_MISS)]   = -1,
212         },
213 },
214 [C(NODE)] = {
215         [C(OP_READ)] = {
216                 [C(RESULT_ACCESS)] = 0,
217                 [C(RESULT_MISS)]   = 0,
218         },
219         [C(OP_WRITE)] = {
220                 [C(RESULT_ACCESS)] = -1,
221                 [C(RESULT_MISS)]   = -1,
222         },
223         [C(OP_PREFETCH)] = {
224                 [C(RESULT_ACCESS)] = -1,
225                 [C(RESULT_MISS)]   = -1,
226         },
227 },
228 };
229
230 /*
231  * AMD Performance Monitor K7 and later, up to and including Family 16h:
232  */
233 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
234 {
235         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
236         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
237         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x077d,
238         [PERF_COUNT_HW_CACHE_MISSES]            = 0x077e,
239         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
240         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
241         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
242         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = 0x00d1, /* "Dispatch stalls" event */
243 };
244
245 /*
246  * AMD Performance Monitor Family 17h and later:
247  */
248 static const u64 amd_f17h_perfmon_event_map[PERF_COUNT_HW_MAX] =
249 {
250         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
251         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
252         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0xff60,
253         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
254         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
255         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287,
256         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = 0x0187,
257 };
258
259 static u64 amd_pmu_event_map(int hw_event)
260 {
261         if (boot_cpu_data.x86 >= 0x17)
262                 return amd_f17h_perfmon_event_map[hw_event];
263
264         return amd_perfmon_event_map[hw_event];
265 }
266
267 /*
268  * Previously calculated offsets
269  */
270 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
271 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
272
273 /*
274  * Legacy CPUs:
275  *   4 counters starting at 0xc0010000 each offset by 1
276  *
277  * CPUs with core performance counter extensions:
278  *   6 counters starting at 0xc0010200 each offset by 2
279  */
280 static inline int amd_pmu_addr_offset(int index, bool eventsel)
281 {
282         int offset;
283
284         if (!index)
285                 return index;
286
287         if (eventsel)
288                 offset = event_offsets[index];
289         else
290                 offset = count_offsets[index];
291
292         if (offset)
293                 return offset;
294
295         if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
296                 offset = index;
297         else
298                 offset = index << 1;
299
300         if (eventsel)
301                 event_offsets[index] = offset;
302         else
303                 count_offsets[index] = offset;
304
305         return offset;
306 }
307
308 /*
309  * AMD64 events are detected based on their event codes.
310  */
311 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
312 {
313         return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
314 }
315
316 static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc)
317 {
318         if (!(x86_pmu.flags & PMU_FL_PAIR))
319                 return false;
320
321         switch (amd_get_event_code(hwc)) {
322         case 0x003:     return true;    /* Retired SSE/AVX FLOPs */
323         default:        return false;
324         }
325 }
326
327 static int amd_core_hw_config(struct perf_event *event)
328 {
329         if (event->attr.exclude_host && event->attr.exclude_guest)
330                 /*
331                  * When HO == GO == 1 the hardware treats that as GO == HO == 0
332                  * and will count in both modes. We don't want to count in that
333                  * case so we emulate no-counting by setting US = OS = 0.
334                  */
335                 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
336                                       ARCH_PERFMON_EVENTSEL_OS);
337         else if (event->attr.exclude_host)
338                 event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
339         else if (event->attr.exclude_guest)
340                 event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
341
342         if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw))
343                 event->hw.flags |= PERF_X86_EVENT_PAIR;
344
345         return 0;
346 }
347
348 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
349 {
350         return (hwc->config & 0xe0) == 0xe0;
351 }
352
353 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
354 {
355         struct amd_nb *nb = cpuc->amd_nb;
356
357         return nb && nb->nb_id != -1;
358 }
359
360 static int amd_pmu_hw_config(struct perf_event *event)
361 {
362         int ret;
363
364         /* pass precise event sampling to ibs: */
365         if (event->attr.precise_ip && get_ibs_caps())
366                 return -ENOENT;
367
368         if (has_branch_stack(event))
369                 return -EOPNOTSUPP;
370
371         ret = x86_pmu_hw_config(event);
372         if (ret)
373                 return ret;
374
375         if (event->attr.type == PERF_TYPE_RAW)
376                 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
377
378         return amd_core_hw_config(event);
379 }
380
381 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
382                                            struct perf_event *event)
383 {
384         struct amd_nb *nb = cpuc->amd_nb;
385         int i;
386
387         /*
388          * need to scan whole list because event may not have
389          * been assigned during scheduling
390          *
391          * no race condition possible because event can only
392          * be removed on one CPU at a time AND PMU is disabled
393          * when we come here
394          */
395         for (i = 0; i < x86_pmu.num_counters; i++) {
396                 if (cmpxchg(nb->owners + i, event, NULL) == event)
397                         break;
398         }
399 }
400
401  /*
402   * AMD64 NorthBridge events need special treatment because
403   * counter access needs to be synchronized across all cores
404   * of a package. Refer to BKDG section 3.12
405   *
406   * NB events are events measuring L3 cache, Hypertransport
407   * traffic. They are identified by an event code >= 0xe00.
408   * They measure events on the NorthBride which is shared
409   * by all cores on a package. NB events are counted on a
410   * shared set of counters. When a NB event is programmed
411   * in a counter, the data actually comes from a shared
412   * counter. Thus, access to those counters needs to be
413   * synchronized.
414   *
415   * We implement the synchronization such that no two cores
416   * can be measuring NB events using the same counters. Thus,
417   * we maintain a per-NB allocation table. The available slot
418   * is propagated using the event_constraint structure.
419   *
420   * We provide only one choice for each NB event based on
421   * the fact that only NB events have restrictions. Consequently,
422   * if a counter is available, there is a guarantee the NB event
423   * will be assigned to it. If no slot is available, an empty
424   * constraint is returned and scheduling will eventually fail
425   * for this event.
426   *
427   * Note that all cores attached the same NB compete for the same
428   * counters to host NB events, this is why we use atomic ops. Some
429   * multi-chip CPUs may have more than one NB.
430   *
431   * Given that resources are allocated (cmpxchg), they must be
432   * eventually freed for others to use. This is accomplished by
433   * calling __amd_put_nb_event_constraints()
434   *
435   * Non NB events are not impacted by this restriction.
436   */
437 static struct event_constraint *
438 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
439                                struct event_constraint *c)
440 {
441         struct hw_perf_event *hwc = &event->hw;
442         struct amd_nb *nb = cpuc->amd_nb;
443         struct perf_event *old;
444         int idx, new = -1;
445
446         if (!c)
447                 c = &unconstrained;
448
449         if (cpuc->is_fake)
450                 return c;
451
452         /*
453          * detect if already present, if so reuse
454          *
455          * cannot merge with actual allocation
456          * because of possible holes
457          *
458          * event can already be present yet not assigned (in hwc->idx)
459          * because of successive calls to x86_schedule_events() from
460          * hw_perf_group_sched_in() without hw_perf_enable()
461          */
462         for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
463                 if (new == -1 || hwc->idx == idx)
464                         /* assign free slot, prefer hwc->idx */
465                         old = cmpxchg(nb->owners + idx, NULL, event);
466                 else if (nb->owners[idx] == event)
467                         /* event already present */
468                         old = event;
469                 else
470                         continue;
471
472                 if (old && old != event)
473                         continue;
474
475                 /* reassign to this slot */
476                 if (new != -1)
477                         cmpxchg(nb->owners + new, event, NULL);
478                 new = idx;
479
480                 /* already present, reuse */
481                 if (old == event)
482                         break;
483         }
484
485         if (new == -1)
486                 return &emptyconstraint;
487
488         return &nb->event_constraints[new];
489 }
490
491 static struct amd_nb *amd_alloc_nb(int cpu)
492 {
493         struct amd_nb *nb;
494         int i;
495
496         nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
497         if (!nb)
498                 return NULL;
499
500         nb->nb_id = -1;
501
502         /*
503          * initialize all possible NB constraints
504          */
505         for (i = 0; i < x86_pmu.num_counters; i++) {
506                 __set_bit(i, nb->event_constraints[i].idxmsk);
507                 nb->event_constraints[i].weight = 1;
508         }
509         return nb;
510 }
511
512 static int amd_pmu_cpu_prepare(int cpu)
513 {
514         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
515
516         WARN_ON_ONCE(cpuc->amd_nb);
517
518         if (!x86_pmu.amd_nb_constraints)
519                 return 0;
520
521         cpuc->amd_nb = amd_alloc_nb(cpu);
522         if (!cpuc->amd_nb)
523                 return -ENOMEM;
524
525         return 0;
526 }
527
528 static void amd_pmu_cpu_starting(int cpu)
529 {
530         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
531         void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
532         struct amd_nb *nb;
533         int i, nb_id;
534
535         cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
536
537         if (!x86_pmu.amd_nb_constraints)
538                 return;
539
540         nb_id = amd_get_nb_id(cpu);
541         WARN_ON_ONCE(nb_id == BAD_APICID);
542
543         for_each_online_cpu(i) {
544                 nb = per_cpu(cpu_hw_events, i).amd_nb;
545                 if (WARN_ON_ONCE(!nb))
546                         continue;
547
548                 if (nb->nb_id == nb_id) {
549                         *onln = cpuc->amd_nb;
550                         cpuc->amd_nb = nb;
551                         break;
552                 }
553         }
554
555         cpuc->amd_nb->nb_id = nb_id;
556         cpuc->amd_nb->refcnt++;
557 }
558
559 static void amd_pmu_cpu_dead(int cpu)
560 {
561         struct cpu_hw_events *cpuhw;
562
563         if (!x86_pmu.amd_nb_constraints)
564                 return;
565
566         cpuhw = &per_cpu(cpu_hw_events, cpu);
567
568         if (cpuhw->amd_nb) {
569                 struct amd_nb *nb = cpuhw->amd_nb;
570
571                 if (nb->nb_id == -1 || --nb->refcnt == 0)
572                         kfree(nb);
573
574                 cpuhw->amd_nb = NULL;
575         }
576 }
577
578 /*
579  * When a PMC counter overflows, an NMI is used to process the event and
580  * reset the counter. NMI latency can result in the counter being updated
581  * before the NMI can run, which can result in what appear to be spurious
582  * NMIs. This function is intended to wait for the NMI to run and reset
583  * the counter to avoid possible unhandled NMI messages.
584  */
585 #define OVERFLOW_WAIT_COUNT     50
586
587 static void amd_pmu_wait_on_overflow(int idx)
588 {
589         unsigned int i;
590         u64 counter;
591
592         /*
593          * Wait for the counter to be reset if it has overflowed. This loop
594          * should exit very, very quickly, but just in case, don't wait
595          * forever...
596          */
597         for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
598                 rdmsrl(x86_pmu_event_addr(idx), counter);
599                 if (counter & (1ULL << (x86_pmu.cntval_bits - 1)))
600                         break;
601
602                 /* Might be in IRQ context, so can't sleep */
603                 udelay(1);
604         }
605 }
606
607 static void amd_pmu_disable_all(void)
608 {
609         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
610         int idx;
611
612         x86_pmu_disable_all();
613
614         /*
615          * This shouldn't be called from NMI context, but add a safeguard here
616          * to return, since if we're in NMI context we can't wait for an NMI
617          * to reset an overflowed counter value.
618          */
619         if (in_nmi())
620                 return;
621
622         /*
623          * Check each counter for overflow and wait for it to be reset by the
624          * NMI if it has overflowed. This relies on the fact that all active
625          * counters are always enabled when this function is caled and
626          * ARCH_PERFMON_EVENTSEL_INT is always set.
627          */
628         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
629                 if (!test_bit(idx, cpuc->active_mask))
630                         continue;
631
632                 amd_pmu_wait_on_overflow(idx);
633         }
634 }
635
636 static void amd_pmu_disable_event(struct perf_event *event)
637 {
638         x86_pmu_disable_event(event);
639
640         /*
641          * This can be called from NMI context (via x86_pmu_stop). The counter
642          * may have overflowed, but either way, we'll never see it get reset
643          * by the NMI if we're already in the NMI. And the NMI latency support
644          * below will take care of any pending NMI that might have been
645          * generated by the overflow.
646          */
647         if (in_nmi())
648                 return;
649
650         amd_pmu_wait_on_overflow(event->hw.idx);
651 }
652
653 /*
654  * Because of NMI latency, if multiple PMC counters are active or other sources
655  * of NMIs are received, the perf NMI handler can handle one or more overflowed
656  * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
657  * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
658  * back-to-back NMI support won't be active. This PMC handler needs to take into
659  * account that this can occur, otherwise this could result in unknown NMI
660  * messages being issued. Examples of this is PMC overflow while in the NMI
661  * handler when multiple PMCs are active or PMC overflow while handling some
662  * other source of an NMI.
663  *
664  * Attempt to mitigate this by creating an NMI window in which un-handled NMIs
665  * received during this window will be claimed. This prevents extending the
666  * window past when it is possible that latent NMIs should be received. The
667  * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
668  * handled a counter. When an un-handled NMI is received, it will be claimed
669  * only if arriving within that window.
670  */
671 static int amd_pmu_handle_irq(struct pt_regs *regs)
672 {
673         int handled;
674
675         /* Process any counter overflows */
676         handled = x86_pmu_handle_irq(regs);
677
678         /*
679          * If a counter was handled, record a timestamp such that un-handled
680          * NMIs will be claimed if arriving within that window.
681          */
682         if (handled) {
683                 this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window);
684
685                 return handled;
686         }
687
688         if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
689                 return NMI_DONE;
690
691         return NMI_HANDLED;
692 }
693
694 static struct event_constraint *
695 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
696                           struct perf_event *event)
697 {
698         /*
699          * if not NB event or no NB, then no constraints
700          */
701         if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
702                 return &unconstrained;
703
704         return __amd_get_nb_event_constraints(cpuc, event, NULL);
705 }
706
707 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
708                                       struct perf_event *event)
709 {
710         if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
711                 __amd_put_nb_event_constraints(cpuc, event);
712 }
713
714 PMU_FORMAT_ATTR(event,  "config:0-7,32-35");
715 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
716 PMU_FORMAT_ATTR(edge,   "config:18"     );
717 PMU_FORMAT_ATTR(inv,    "config:23"     );
718 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
719
720 static struct attribute *amd_format_attr[] = {
721         &format_attr_event.attr,
722         &format_attr_umask.attr,
723         &format_attr_edge.attr,
724         &format_attr_inv.attr,
725         &format_attr_cmask.attr,
726         NULL,
727 };
728
729 /* AMD Family 15h */
730
731 #define AMD_EVENT_TYPE_MASK     0x000000F0ULL
732
733 #define AMD_EVENT_FP            0x00000000ULL ... 0x00000010ULL
734 #define AMD_EVENT_LS            0x00000020ULL ... 0x00000030ULL
735 #define AMD_EVENT_DC            0x00000040ULL ... 0x00000050ULL
736 #define AMD_EVENT_CU            0x00000060ULL ... 0x00000070ULL
737 #define AMD_EVENT_IC_DE         0x00000080ULL ... 0x00000090ULL
738 #define AMD_EVENT_EX_LS         0x000000C0ULL
739 #define AMD_EVENT_DE            0x000000D0ULL
740 #define AMD_EVENT_NB            0x000000E0ULL ... 0x000000F0ULL
741
742 /*
743  * AMD family 15h event code/PMC mappings:
744  *
745  * type = event_code & 0x0F0:
746  *
747  * 0x000        FP      PERF_CTL[5:3]
748  * 0x010        FP      PERF_CTL[5:3]
749  * 0x020        LS      PERF_CTL[5:0]
750  * 0x030        LS      PERF_CTL[5:0]
751  * 0x040        DC      PERF_CTL[5:0]
752  * 0x050        DC      PERF_CTL[5:0]
753  * 0x060        CU      PERF_CTL[2:0]
754  * 0x070        CU      PERF_CTL[2:0]
755  * 0x080        IC/DE   PERF_CTL[2:0]
756  * 0x090        IC/DE   PERF_CTL[2:0]
757  * 0x0A0        ---
758  * 0x0B0        ---
759  * 0x0C0        EX/LS   PERF_CTL[5:0]
760  * 0x0D0        DE      PERF_CTL[2:0]
761  * 0x0E0        NB      NB_PERF_CTL[3:0]
762  * 0x0F0        NB      NB_PERF_CTL[3:0]
763  *
764  * Exceptions:
765  *
766  * 0x000        FP      PERF_CTL[3], PERF_CTL[5:3] (*)
767  * 0x003        FP      PERF_CTL[3]
768  * 0x004        FP      PERF_CTL[3], PERF_CTL[5:3] (*)
769  * 0x00B        FP      PERF_CTL[3]
770  * 0x00D        FP      PERF_CTL[3]
771  * 0x023        DE      PERF_CTL[2:0]
772  * 0x02D        LS      PERF_CTL[3]
773  * 0x02E        LS      PERF_CTL[3,0]
774  * 0x031        LS      PERF_CTL[2:0] (**)
775  * 0x043        CU      PERF_CTL[2:0]
776  * 0x045        CU      PERF_CTL[2:0]
777  * 0x046        CU      PERF_CTL[2:0]
778  * 0x054        CU      PERF_CTL[2:0]
779  * 0x055        CU      PERF_CTL[2:0]
780  * 0x08F        IC      PERF_CTL[0]
781  * 0x187        DE      PERF_CTL[0]
782  * 0x188        DE      PERF_CTL[0]
783  * 0x0DB        EX      PERF_CTL[5:0]
784  * 0x0DC        LS      PERF_CTL[5:0]
785  * 0x0DD        LS      PERF_CTL[5:0]
786  * 0x0DE        LS      PERF_CTL[5:0]
787  * 0x0DF        LS      PERF_CTL[5:0]
788  * 0x1C0        EX      PERF_CTL[5:3]
789  * 0x1D6        EX      PERF_CTL[5:0]
790  * 0x1D8        EX      PERF_CTL[5:0]
791  *
792  * (*)  depending on the umask all FPU counters may be used
793  * (**) only one unitmask enabled at a time
794  */
795
796 static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
797 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
798 static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
799 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
800 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
801 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
802
803 static struct event_constraint *
804 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
805                                struct perf_event *event)
806 {
807         struct hw_perf_event *hwc = &event->hw;
808         unsigned int event_code = amd_get_event_code(hwc);
809
810         switch (event_code & AMD_EVENT_TYPE_MASK) {
811         case AMD_EVENT_FP:
812                 switch (event_code) {
813                 case 0x000:
814                         if (!(hwc->config & 0x0000F000ULL))
815                                 break;
816                         if (!(hwc->config & 0x00000F00ULL))
817                                 break;
818                         return &amd_f15_PMC3;
819                 case 0x004:
820                         if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
821                                 break;
822                         return &amd_f15_PMC3;
823                 case 0x003:
824                 case 0x00B:
825                 case 0x00D:
826                         return &amd_f15_PMC3;
827                 }
828                 return &amd_f15_PMC53;
829         case AMD_EVENT_LS:
830         case AMD_EVENT_DC:
831         case AMD_EVENT_EX_LS:
832                 switch (event_code) {
833                 case 0x023:
834                 case 0x043:
835                 case 0x045:
836                 case 0x046:
837                 case 0x054:
838                 case 0x055:
839                         return &amd_f15_PMC20;
840                 case 0x02D:
841                         return &amd_f15_PMC3;
842                 case 0x02E:
843                         return &amd_f15_PMC30;
844                 case 0x031:
845                         if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
846                                 return &amd_f15_PMC20;
847                         return &emptyconstraint;
848                 case 0x1C0:
849                         return &amd_f15_PMC53;
850                 default:
851                         return &amd_f15_PMC50;
852                 }
853         case AMD_EVENT_CU:
854         case AMD_EVENT_IC_DE:
855         case AMD_EVENT_DE:
856                 switch (event_code) {
857                 case 0x08F:
858                 case 0x187:
859                 case 0x188:
860                         return &amd_f15_PMC0;
861                 case 0x0DB ... 0x0DF:
862                 case 0x1D6:
863                 case 0x1D8:
864                         return &amd_f15_PMC50;
865                 default:
866                         return &amd_f15_PMC20;
867                 }
868         case AMD_EVENT_NB:
869                 /* moved to uncore.c */
870                 return &emptyconstraint;
871         default:
872                 return &emptyconstraint;
873         }
874 }
875
876 static struct event_constraint pair_constraint;
877
878 static struct event_constraint *
879 amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx,
880                                struct perf_event *event)
881 {
882         struct hw_perf_event *hwc = &event->hw;
883
884         if (amd_is_pair_event_code(hwc))
885                 return &pair_constraint;
886
887         return &unconstrained;
888 }
889
890 static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc,
891                                            struct perf_event *event)
892 {
893         struct hw_perf_event *hwc = &event->hw;
894
895         if (is_counter_pair(hwc))
896                 --cpuc->n_pair;
897 }
898
899 static ssize_t amd_event_sysfs_show(char *page, u64 config)
900 {
901         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
902                     (config & AMD64_EVENTSEL_EVENT) >> 24;
903
904         return x86_event_sysfs_show(page, config, event);
905 }
906
907 static __initconst const struct x86_pmu amd_pmu = {
908         .name                   = "AMD",
909         .handle_irq             = amd_pmu_handle_irq,
910         .disable_all            = amd_pmu_disable_all,
911         .enable_all             = x86_pmu_enable_all,
912         .enable                 = x86_pmu_enable_event,
913         .disable                = amd_pmu_disable_event,
914         .hw_config              = amd_pmu_hw_config,
915         .schedule_events        = x86_schedule_events,
916         .eventsel               = MSR_K7_EVNTSEL0,
917         .perfctr                = MSR_K7_PERFCTR0,
918         .addr_offset            = amd_pmu_addr_offset,
919         .event_map              = amd_pmu_event_map,
920         .max_events             = ARRAY_SIZE(amd_perfmon_event_map),
921         .num_counters           = AMD64_NUM_COUNTERS,
922         .cntval_bits            = 48,
923         .cntval_mask            = (1ULL << 48) - 1,
924         .apic                   = 1,
925         /* use highest bit to detect overflow */
926         .max_period             = (1ULL << 47) - 1,
927         .get_event_constraints  = amd_get_event_constraints,
928         .put_event_constraints  = amd_put_event_constraints,
929
930         .format_attrs           = amd_format_attr,
931         .events_sysfs_show      = amd_event_sysfs_show,
932
933         .cpu_prepare            = amd_pmu_cpu_prepare,
934         .cpu_starting           = amd_pmu_cpu_starting,
935         .cpu_dead               = amd_pmu_cpu_dead,
936
937         .amd_nb_constraints     = 1,
938 };
939
940 static int __init amd_core_pmu_init(void)
941 {
942         u64 even_ctr_mask = 0ULL;
943         int i;
944
945         if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
946                 return 0;
947
948         /* Avoid calculating the value each time in the NMI handler */
949         perf_nmi_window = msecs_to_jiffies(100);
950
951         /*
952          * If core performance counter extensions exists, we must use
953          * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
954          * amd_pmu_addr_offset().
955          */
956         x86_pmu.eventsel        = MSR_F15H_PERF_CTL;
957         x86_pmu.perfctr         = MSR_F15H_PERF_CTR;
958         x86_pmu.num_counters    = AMD64_NUM_COUNTERS_CORE;
959         /*
960          * AMD Core perfctr has separate MSRs for the NB events, see
961          * the amd/uncore.c driver.
962          */
963         x86_pmu.amd_nb_constraints = 0;
964
965         if (boot_cpu_data.x86 == 0x15) {
966                 pr_cont("Fam15h ");
967                 x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
968         }
969         if (boot_cpu_data.x86 >= 0x17) {
970                 pr_cont("Fam17h+ ");
971                 /*
972                  * Family 17h and compatibles have constraints for Large
973                  * Increment per Cycle events: they may only be assigned an
974                  * even numbered counter that has a consecutive adjacent odd
975                  * numbered counter following it.
976                  */
977                 for (i = 0; i < x86_pmu.num_counters - 1; i += 2)
978                         even_ctr_mask |= 1 << i;
979
980                 pair_constraint = (struct event_constraint)
981                                     __EVENT_CONSTRAINT(0, even_ctr_mask, 0,
982                                     x86_pmu.num_counters / 2, 0,
983                                     PERF_X86_EVENT_PAIR);
984
985                 x86_pmu.get_event_constraints = amd_get_event_constraints_f17h;
986                 x86_pmu.put_event_constraints = amd_put_event_constraints_f17h;
987                 x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE;
988                 x86_pmu.flags |= PMU_FL_PAIR;
989         }
990
991         pr_cont("core perfctr, ");
992         return 0;
993 }
994
995 __init int amd_pmu_init(void)
996 {
997         int ret;
998
999         /* Performance-monitoring supported from K7 and later: */
1000         if (boot_cpu_data.x86 < 6)
1001                 return -ENODEV;
1002
1003         x86_pmu = amd_pmu;
1004
1005         ret = amd_core_pmu_init();
1006         if (ret)
1007                 return ret;
1008
1009         if (num_possible_cpus() == 1) {
1010                 /*
1011                  * No point in allocating data structures to serialize
1012                  * against other CPUs, when there is only the one CPU.
1013                  */
1014                 x86_pmu.amd_nb_constraints = 0;
1015         }
1016
1017         if (boot_cpu_data.x86 >= 0x17)
1018                 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
1019         else
1020                 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
1021
1022         return 0;
1023 }
1024
1025 void amd_pmu_enable_virt(void)
1026 {
1027         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1028
1029         cpuc->perf_ctr_virt_mask = 0;
1030
1031         /* Reload all events */
1032         amd_pmu_disable_all();
1033         x86_pmu_enable_all(0);
1034 }
1035 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
1036
1037 void amd_pmu_disable_virt(void)
1038 {
1039         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1040
1041         /*
1042          * We only mask out the Host-only bit so that host-only counting works
1043          * when SVM is disabled. If someone sets up a guest-only counter when
1044          * SVM is disabled the Guest-only bits still gets set and the counter
1045          * will not count anything.
1046          */
1047         cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1048
1049         /* Reload all events */
1050         amd_pmu_disable_all();
1051         x86_pmu_enable_all(0);
1052 }
1053 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);