perf/x86/amd: Update generic hardware cache events for Family 17h
[linux-2.6-microblaze.git] / arch / x86 / events / amd / core.c
1 #include <linux/perf_event.h>
2 #include <linux/export.h>
3 #include <linux/types.h>
4 #include <linux/init.h>
5 #include <linux/slab.h>
6 #include <linux/delay.h>
7 #include <asm/apicdef.h>
8 #include <asm/nmi.h>
9
10 #include "../perf_event.h"
11
12 static DEFINE_PER_CPU(unsigned int, perf_nmi_counter);
13
14 static __initconst const u64 amd_hw_cache_event_ids
15                                 [PERF_COUNT_HW_CACHE_MAX]
16                                 [PERF_COUNT_HW_CACHE_OP_MAX]
17                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
18 {
19  [ C(L1D) ] = {
20         [ C(OP_READ) ] = {
21                 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
22                 [ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
23         },
24         [ C(OP_WRITE) ] = {
25                 [ C(RESULT_ACCESS) ] = 0,
26                 [ C(RESULT_MISS)   ] = 0,
27         },
28         [ C(OP_PREFETCH) ] = {
29                 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
30                 [ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
31         },
32  },
33  [ C(L1I ) ] = {
34         [ C(OP_READ) ] = {
35                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
36                 [ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
37         },
38         [ C(OP_WRITE) ] = {
39                 [ C(RESULT_ACCESS) ] = -1,
40                 [ C(RESULT_MISS)   ] = -1,
41         },
42         [ C(OP_PREFETCH) ] = {
43                 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
44                 [ C(RESULT_MISS)   ] = 0,
45         },
46  },
47  [ C(LL  ) ] = {
48         [ C(OP_READ) ] = {
49                 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
50                 [ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
51         },
52         [ C(OP_WRITE) ] = {
53                 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
54                 [ C(RESULT_MISS)   ] = 0,
55         },
56         [ C(OP_PREFETCH) ] = {
57                 [ C(RESULT_ACCESS) ] = 0,
58                 [ C(RESULT_MISS)   ] = 0,
59         },
60  },
61  [ C(DTLB) ] = {
62         [ C(OP_READ) ] = {
63                 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
64                 [ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
65         },
66         [ C(OP_WRITE) ] = {
67                 [ C(RESULT_ACCESS) ] = 0,
68                 [ C(RESULT_MISS)   ] = 0,
69         },
70         [ C(OP_PREFETCH) ] = {
71                 [ C(RESULT_ACCESS) ] = 0,
72                 [ C(RESULT_MISS)   ] = 0,
73         },
74  },
75  [ C(ITLB) ] = {
76         [ C(OP_READ) ] = {
77                 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
78                 [ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
79         },
80         [ C(OP_WRITE) ] = {
81                 [ C(RESULT_ACCESS) ] = -1,
82                 [ C(RESULT_MISS)   ] = -1,
83         },
84         [ C(OP_PREFETCH) ] = {
85                 [ C(RESULT_ACCESS) ] = -1,
86                 [ C(RESULT_MISS)   ] = -1,
87         },
88  },
89  [ C(BPU ) ] = {
90         [ C(OP_READ) ] = {
91                 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
92                 [ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
93         },
94         [ C(OP_WRITE) ] = {
95                 [ C(RESULT_ACCESS) ] = -1,
96                 [ C(RESULT_MISS)   ] = -1,
97         },
98         [ C(OP_PREFETCH) ] = {
99                 [ C(RESULT_ACCESS) ] = -1,
100                 [ C(RESULT_MISS)   ] = -1,
101         },
102  },
103  [ C(NODE) ] = {
104         [ C(OP_READ) ] = {
105                 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
106                 [ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
107         },
108         [ C(OP_WRITE) ] = {
109                 [ C(RESULT_ACCESS) ] = -1,
110                 [ C(RESULT_MISS)   ] = -1,
111         },
112         [ C(OP_PREFETCH) ] = {
113                 [ C(RESULT_ACCESS) ] = -1,
114                 [ C(RESULT_MISS)   ] = -1,
115         },
116  },
117 };
118
119 static __initconst const u64 amd_hw_cache_event_ids_f17h
120                                 [PERF_COUNT_HW_CACHE_MAX]
121                                 [PERF_COUNT_HW_CACHE_OP_MAX]
122                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
123 [C(L1D)] = {
124         [C(OP_READ)] = {
125                 [C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
126                 [C(RESULT_MISS)]   = 0xc860, /* L2$ access from DC Miss */
127         },
128         [C(OP_WRITE)] = {
129                 [C(RESULT_ACCESS)] = 0,
130                 [C(RESULT_MISS)]   = 0,
131         },
132         [C(OP_PREFETCH)] = {
133                 [C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
134                 [C(RESULT_MISS)]   = 0,
135         },
136 },
137 [C(L1I)] = {
138         [C(OP_READ)] = {
139                 [C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches  */
140                 [C(RESULT_MISS)]   = 0x0081, /* Instruction cache misses   */
141         },
142         [C(OP_WRITE)] = {
143                 [C(RESULT_ACCESS)] = -1,
144                 [C(RESULT_MISS)]   = -1,
145         },
146         [C(OP_PREFETCH)] = {
147                 [C(RESULT_ACCESS)] = 0,
148                 [C(RESULT_MISS)]   = 0,
149         },
150 },
151 [C(LL)] = {
152         [C(OP_READ)] = {
153                 [C(RESULT_ACCESS)] = 0,
154                 [C(RESULT_MISS)]   = 0,
155         },
156         [C(OP_WRITE)] = {
157                 [C(RESULT_ACCESS)] = 0,
158                 [C(RESULT_MISS)]   = 0,
159         },
160         [C(OP_PREFETCH)] = {
161                 [C(RESULT_ACCESS)] = 0,
162                 [C(RESULT_MISS)]   = 0,
163         },
164 },
165 [C(DTLB)] = {
166         [C(OP_READ)] = {
167                 [C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
168                 [C(RESULT_MISS)]   = 0xf045, /* L2 DTLB misses (PT walks) */
169         },
170         [C(OP_WRITE)] = {
171                 [C(RESULT_ACCESS)] = 0,
172                 [C(RESULT_MISS)]   = 0,
173         },
174         [C(OP_PREFETCH)] = {
175                 [C(RESULT_ACCESS)] = 0,
176                 [C(RESULT_MISS)]   = 0,
177         },
178 },
179 [C(ITLB)] = {
180         [C(OP_READ)] = {
181                 [C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
182                 [C(RESULT_MISS)]   = 0xff85, /* L1 ITLB misses, L2 misses */
183         },
184         [C(OP_WRITE)] = {
185                 [C(RESULT_ACCESS)] = -1,
186                 [C(RESULT_MISS)]   = -1,
187         },
188         [C(OP_PREFETCH)] = {
189                 [C(RESULT_ACCESS)] = -1,
190                 [C(RESULT_MISS)]   = -1,
191         },
192 },
193 [C(BPU)] = {
194         [C(OP_READ)] = {
195                 [C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr.      */
196                 [C(RESULT_MISS)]   = 0x00c3, /* Retired Mispredicted BI    */
197         },
198         [C(OP_WRITE)] = {
199                 [C(RESULT_ACCESS)] = -1,
200                 [C(RESULT_MISS)]   = -1,
201         },
202         [C(OP_PREFETCH)] = {
203                 [C(RESULT_ACCESS)] = -1,
204                 [C(RESULT_MISS)]   = -1,
205         },
206 },
207 [C(NODE)] = {
208         [C(OP_READ)] = {
209                 [C(RESULT_ACCESS)] = 0,
210                 [C(RESULT_MISS)]   = 0,
211         },
212         [C(OP_WRITE)] = {
213                 [C(RESULT_ACCESS)] = -1,
214                 [C(RESULT_MISS)]   = -1,
215         },
216         [C(OP_PREFETCH)] = {
217                 [C(RESULT_ACCESS)] = -1,
218                 [C(RESULT_MISS)]   = -1,
219         },
220 },
221 };
222
223 /*
224  * AMD Performance Monitor K7 and later, up to and including Family 16h:
225  */
226 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
227 {
228         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
229         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
230         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x077d,
231         [PERF_COUNT_HW_CACHE_MISSES]            = 0x077e,
232         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
233         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
234         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
235         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = 0x00d1, /* "Dispatch stalls" event */
236 };
237
238 /*
239  * AMD Performance Monitor Family 17h and later:
240  */
241 static const u64 amd_f17h_perfmon_event_map[PERF_COUNT_HW_MAX] =
242 {
243         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0076,
244         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
245         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0xff60,
246         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c2,
247         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c3,
248         [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287,
249         [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]  = 0x0187,
250 };
251
252 static u64 amd_pmu_event_map(int hw_event)
253 {
254         if (boot_cpu_data.x86 >= 0x17)
255                 return amd_f17h_perfmon_event_map[hw_event];
256
257         return amd_perfmon_event_map[hw_event];
258 }
259
260 /*
261  * Previously calculated offsets
262  */
263 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
264 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
265
266 /*
267  * Legacy CPUs:
268  *   4 counters starting at 0xc0010000 each offset by 1
269  *
270  * CPUs with core performance counter extensions:
271  *   6 counters starting at 0xc0010200 each offset by 2
272  */
273 static inline int amd_pmu_addr_offset(int index, bool eventsel)
274 {
275         int offset;
276
277         if (!index)
278                 return index;
279
280         if (eventsel)
281                 offset = event_offsets[index];
282         else
283                 offset = count_offsets[index];
284
285         if (offset)
286                 return offset;
287
288         if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
289                 offset = index;
290         else
291                 offset = index << 1;
292
293         if (eventsel)
294                 event_offsets[index] = offset;
295         else
296                 count_offsets[index] = offset;
297
298         return offset;
299 }
300
301 static int amd_core_hw_config(struct perf_event *event)
302 {
303         if (event->attr.exclude_host && event->attr.exclude_guest)
304                 /*
305                  * When HO == GO == 1 the hardware treats that as GO == HO == 0
306                  * and will count in both modes. We don't want to count in that
307                  * case so we emulate no-counting by setting US = OS = 0.
308                  */
309                 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
310                                       ARCH_PERFMON_EVENTSEL_OS);
311         else if (event->attr.exclude_host)
312                 event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
313         else if (event->attr.exclude_guest)
314                 event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
315
316         return 0;
317 }
318
319 /*
320  * AMD64 events are detected based on their event codes.
321  */
322 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
323 {
324         return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
325 }
326
327 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
328 {
329         return (hwc->config & 0xe0) == 0xe0;
330 }
331
332 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
333 {
334         struct amd_nb *nb = cpuc->amd_nb;
335
336         return nb && nb->nb_id != -1;
337 }
338
339 static int amd_pmu_hw_config(struct perf_event *event)
340 {
341         int ret;
342
343         /* pass precise event sampling to ibs: */
344         if (event->attr.precise_ip && get_ibs_caps())
345                 return -ENOENT;
346
347         if (has_branch_stack(event))
348                 return -EOPNOTSUPP;
349
350         ret = x86_pmu_hw_config(event);
351         if (ret)
352                 return ret;
353
354         if (event->attr.type == PERF_TYPE_RAW)
355                 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
356
357         return amd_core_hw_config(event);
358 }
359
360 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
361                                            struct perf_event *event)
362 {
363         struct amd_nb *nb = cpuc->amd_nb;
364         int i;
365
366         /*
367          * need to scan whole list because event may not have
368          * been assigned during scheduling
369          *
370          * no race condition possible because event can only
371          * be removed on one CPU at a time AND PMU is disabled
372          * when we come here
373          */
374         for (i = 0; i < x86_pmu.num_counters; i++) {
375                 if (cmpxchg(nb->owners + i, event, NULL) == event)
376                         break;
377         }
378 }
379
380  /*
381   * AMD64 NorthBridge events need special treatment because
382   * counter access needs to be synchronized across all cores
383   * of a package. Refer to BKDG section 3.12
384   *
385   * NB events are events measuring L3 cache, Hypertransport
386   * traffic. They are identified by an event code >= 0xe00.
387   * They measure events on the NorthBride which is shared
388   * by all cores on a package. NB events are counted on a
389   * shared set of counters. When a NB event is programmed
390   * in a counter, the data actually comes from a shared
391   * counter. Thus, access to those counters needs to be
392   * synchronized.
393   *
394   * We implement the synchronization such that no two cores
395   * can be measuring NB events using the same counters. Thus,
396   * we maintain a per-NB allocation table. The available slot
397   * is propagated using the event_constraint structure.
398   *
399   * We provide only one choice for each NB event based on
400   * the fact that only NB events have restrictions. Consequently,
401   * if a counter is available, there is a guarantee the NB event
402   * will be assigned to it. If no slot is available, an empty
403   * constraint is returned and scheduling will eventually fail
404   * for this event.
405   *
406   * Note that all cores attached the same NB compete for the same
407   * counters to host NB events, this is why we use atomic ops. Some
408   * multi-chip CPUs may have more than one NB.
409   *
410   * Given that resources are allocated (cmpxchg), they must be
411   * eventually freed for others to use. This is accomplished by
412   * calling __amd_put_nb_event_constraints()
413   *
414   * Non NB events are not impacted by this restriction.
415   */
416 static struct event_constraint *
417 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
418                                struct event_constraint *c)
419 {
420         struct hw_perf_event *hwc = &event->hw;
421         struct amd_nb *nb = cpuc->amd_nb;
422         struct perf_event *old;
423         int idx, new = -1;
424
425         if (!c)
426                 c = &unconstrained;
427
428         if (cpuc->is_fake)
429                 return c;
430
431         /*
432          * detect if already present, if so reuse
433          *
434          * cannot merge with actual allocation
435          * because of possible holes
436          *
437          * event can already be present yet not assigned (in hwc->idx)
438          * because of successive calls to x86_schedule_events() from
439          * hw_perf_group_sched_in() without hw_perf_enable()
440          */
441         for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
442                 if (new == -1 || hwc->idx == idx)
443                         /* assign free slot, prefer hwc->idx */
444                         old = cmpxchg(nb->owners + idx, NULL, event);
445                 else if (nb->owners[idx] == event)
446                         /* event already present */
447                         old = event;
448                 else
449                         continue;
450
451                 if (old && old != event)
452                         continue;
453
454                 /* reassign to this slot */
455                 if (new != -1)
456                         cmpxchg(nb->owners + new, event, NULL);
457                 new = idx;
458
459                 /* already present, reuse */
460                 if (old == event)
461                         break;
462         }
463
464         if (new == -1)
465                 return &emptyconstraint;
466
467         return &nb->event_constraints[new];
468 }
469
470 static struct amd_nb *amd_alloc_nb(int cpu)
471 {
472         struct amd_nb *nb;
473         int i;
474
475         nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
476         if (!nb)
477                 return NULL;
478
479         nb->nb_id = -1;
480
481         /*
482          * initialize all possible NB constraints
483          */
484         for (i = 0; i < x86_pmu.num_counters; i++) {
485                 __set_bit(i, nb->event_constraints[i].idxmsk);
486                 nb->event_constraints[i].weight = 1;
487         }
488         return nb;
489 }
490
491 static int amd_pmu_cpu_prepare(int cpu)
492 {
493         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
494
495         WARN_ON_ONCE(cpuc->amd_nb);
496
497         if (!x86_pmu.amd_nb_constraints)
498                 return 0;
499
500         cpuc->amd_nb = amd_alloc_nb(cpu);
501         if (!cpuc->amd_nb)
502                 return -ENOMEM;
503
504         return 0;
505 }
506
507 static void amd_pmu_cpu_starting(int cpu)
508 {
509         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
510         void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
511         struct amd_nb *nb;
512         int i, nb_id;
513
514         cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
515
516         if (!x86_pmu.amd_nb_constraints)
517                 return;
518
519         nb_id = amd_get_nb_id(cpu);
520         WARN_ON_ONCE(nb_id == BAD_APICID);
521
522         for_each_online_cpu(i) {
523                 nb = per_cpu(cpu_hw_events, i).amd_nb;
524                 if (WARN_ON_ONCE(!nb))
525                         continue;
526
527                 if (nb->nb_id == nb_id) {
528                         *onln = cpuc->amd_nb;
529                         cpuc->amd_nb = nb;
530                         break;
531                 }
532         }
533
534         cpuc->amd_nb->nb_id = nb_id;
535         cpuc->amd_nb->refcnt++;
536 }
537
538 static void amd_pmu_cpu_dead(int cpu)
539 {
540         struct cpu_hw_events *cpuhw;
541
542         if (!x86_pmu.amd_nb_constraints)
543                 return;
544
545         cpuhw = &per_cpu(cpu_hw_events, cpu);
546
547         if (cpuhw->amd_nb) {
548                 struct amd_nb *nb = cpuhw->amd_nb;
549
550                 if (nb->nb_id == -1 || --nb->refcnt == 0)
551                         kfree(nb);
552
553                 cpuhw->amd_nb = NULL;
554         }
555 }
556
557 /*
558  * When a PMC counter overflows, an NMI is used to process the event and
559  * reset the counter. NMI latency can result in the counter being updated
560  * before the NMI can run, which can result in what appear to be spurious
561  * NMIs. This function is intended to wait for the NMI to run and reset
562  * the counter to avoid possible unhandled NMI messages.
563  */
564 #define OVERFLOW_WAIT_COUNT     50
565
566 static void amd_pmu_wait_on_overflow(int idx)
567 {
568         unsigned int i;
569         u64 counter;
570
571         /*
572          * Wait for the counter to be reset if it has overflowed. This loop
573          * should exit very, very quickly, but just in case, don't wait
574          * forever...
575          */
576         for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
577                 rdmsrl(x86_pmu_event_addr(idx), counter);
578                 if (counter & (1ULL << (x86_pmu.cntval_bits - 1)))
579                         break;
580
581                 /* Might be in IRQ context, so can't sleep */
582                 udelay(1);
583         }
584 }
585
586 static void amd_pmu_disable_all(void)
587 {
588         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
589         int idx;
590
591         x86_pmu_disable_all();
592
593         /*
594          * This shouldn't be called from NMI context, but add a safeguard here
595          * to return, since if we're in NMI context we can't wait for an NMI
596          * to reset an overflowed counter value.
597          */
598         if (in_nmi())
599                 return;
600
601         /*
602          * Check each counter for overflow and wait for it to be reset by the
603          * NMI if it has overflowed. This relies on the fact that all active
604          * counters are always enabled when this function is caled and
605          * ARCH_PERFMON_EVENTSEL_INT is always set.
606          */
607         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
608                 if (!test_bit(idx, cpuc->active_mask))
609                         continue;
610
611                 amd_pmu_wait_on_overflow(idx);
612         }
613 }
614
615 static void amd_pmu_disable_event(struct perf_event *event)
616 {
617         x86_pmu_disable_event(event);
618
619         /*
620          * This can be called from NMI context (via x86_pmu_stop). The counter
621          * may have overflowed, but either way, we'll never see it get reset
622          * by the NMI if we're already in the NMI. And the NMI latency support
623          * below will take care of any pending NMI that might have been
624          * generated by the overflow.
625          */
626         if (in_nmi())
627                 return;
628
629         amd_pmu_wait_on_overflow(event->hw.idx);
630 }
631
632 /*
633  * Because of NMI latency, if multiple PMC counters are active or other sources
634  * of NMIs are received, the perf NMI handler can handle one or more overflowed
635  * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
636  * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
637  * back-to-back NMI support won't be active. This PMC handler needs to take into
638  * account that this can occur, otherwise this could result in unknown NMI
639  * messages being issued. Examples of this is PMC overflow while in the NMI
640  * handler when multiple PMCs are active or PMC overflow while handling some
641  * other source of an NMI.
642  *
643  * Attempt to mitigate this by using the number of active PMCs to determine
644  * whether to return NMI_HANDLED if the perf NMI handler did not handle/reset
645  * any PMCs. The per-CPU perf_nmi_counter variable is set to a minimum of the
646  * number of active PMCs or 2. The value of 2 is used in case an NMI does not
647  * arrive at the LAPIC in time to be collapsed into an already pending NMI.
648  */
649 static int amd_pmu_handle_irq(struct pt_regs *regs)
650 {
651         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
652         int active, handled;
653
654         /*
655          * Obtain the active count before calling x86_pmu_handle_irq() since
656          * it is possible that x86_pmu_handle_irq() may make a counter
657          * inactive (through x86_pmu_stop).
658          */
659         active = __bitmap_weight(cpuc->active_mask, X86_PMC_IDX_MAX);
660
661         /* Process any counter overflows */
662         handled = x86_pmu_handle_irq(regs);
663
664         /*
665          * If a counter was handled, record the number of possible remaining
666          * NMIs that can occur.
667          */
668         if (handled) {
669                 this_cpu_write(perf_nmi_counter,
670                                min_t(unsigned int, 2, active));
671
672                 return handled;
673         }
674
675         if (!this_cpu_read(perf_nmi_counter))
676                 return NMI_DONE;
677
678         this_cpu_dec(perf_nmi_counter);
679
680         return NMI_HANDLED;
681 }
682
683 static struct event_constraint *
684 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
685                           struct perf_event *event)
686 {
687         /*
688          * if not NB event or no NB, then no constraints
689          */
690         if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
691                 return &unconstrained;
692
693         return __amd_get_nb_event_constraints(cpuc, event, NULL);
694 }
695
696 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
697                                       struct perf_event *event)
698 {
699         if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
700                 __amd_put_nb_event_constraints(cpuc, event);
701 }
702
703 PMU_FORMAT_ATTR(event,  "config:0-7,32-35");
704 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
705 PMU_FORMAT_ATTR(edge,   "config:18"     );
706 PMU_FORMAT_ATTR(inv,    "config:23"     );
707 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
708
709 static struct attribute *amd_format_attr[] = {
710         &format_attr_event.attr,
711         &format_attr_umask.attr,
712         &format_attr_edge.attr,
713         &format_attr_inv.attr,
714         &format_attr_cmask.attr,
715         NULL,
716 };
717
718 /* AMD Family 15h */
719
720 #define AMD_EVENT_TYPE_MASK     0x000000F0ULL
721
722 #define AMD_EVENT_FP            0x00000000ULL ... 0x00000010ULL
723 #define AMD_EVENT_LS            0x00000020ULL ... 0x00000030ULL
724 #define AMD_EVENT_DC            0x00000040ULL ... 0x00000050ULL
725 #define AMD_EVENT_CU            0x00000060ULL ... 0x00000070ULL
726 #define AMD_EVENT_IC_DE         0x00000080ULL ... 0x00000090ULL
727 #define AMD_EVENT_EX_LS         0x000000C0ULL
728 #define AMD_EVENT_DE            0x000000D0ULL
729 #define AMD_EVENT_NB            0x000000E0ULL ... 0x000000F0ULL
730
731 /*
732  * AMD family 15h event code/PMC mappings:
733  *
734  * type = event_code & 0x0F0:
735  *
736  * 0x000        FP      PERF_CTL[5:3]
737  * 0x010        FP      PERF_CTL[5:3]
738  * 0x020        LS      PERF_CTL[5:0]
739  * 0x030        LS      PERF_CTL[5:0]
740  * 0x040        DC      PERF_CTL[5:0]
741  * 0x050        DC      PERF_CTL[5:0]
742  * 0x060        CU      PERF_CTL[2:0]
743  * 0x070        CU      PERF_CTL[2:0]
744  * 0x080        IC/DE   PERF_CTL[2:0]
745  * 0x090        IC/DE   PERF_CTL[2:0]
746  * 0x0A0        ---
747  * 0x0B0        ---
748  * 0x0C0        EX/LS   PERF_CTL[5:0]
749  * 0x0D0        DE      PERF_CTL[2:0]
750  * 0x0E0        NB      NB_PERF_CTL[3:0]
751  * 0x0F0        NB      NB_PERF_CTL[3:0]
752  *
753  * Exceptions:
754  *
755  * 0x000        FP      PERF_CTL[3], PERF_CTL[5:3] (*)
756  * 0x003        FP      PERF_CTL[3]
757  * 0x004        FP      PERF_CTL[3], PERF_CTL[5:3] (*)
758  * 0x00B        FP      PERF_CTL[3]
759  * 0x00D        FP      PERF_CTL[3]
760  * 0x023        DE      PERF_CTL[2:0]
761  * 0x02D        LS      PERF_CTL[3]
762  * 0x02E        LS      PERF_CTL[3,0]
763  * 0x031        LS      PERF_CTL[2:0] (**)
764  * 0x043        CU      PERF_CTL[2:0]
765  * 0x045        CU      PERF_CTL[2:0]
766  * 0x046        CU      PERF_CTL[2:0]
767  * 0x054        CU      PERF_CTL[2:0]
768  * 0x055        CU      PERF_CTL[2:0]
769  * 0x08F        IC      PERF_CTL[0]
770  * 0x187        DE      PERF_CTL[0]
771  * 0x188        DE      PERF_CTL[0]
772  * 0x0DB        EX      PERF_CTL[5:0]
773  * 0x0DC        LS      PERF_CTL[5:0]
774  * 0x0DD        LS      PERF_CTL[5:0]
775  * 0x0DE        LS      PERF_CTL[5:0]
776  * 0x0DF        LS      PERF_CTL[5:0]
777  * 0x1C0        EX      PERF_CTL[5:3]
778  * 0x1D6        EX      PERF_CTL[5:0]
779  * 0x1D8        EX      PERF_CTL[5:0]
780  *
781  * (*)  depending on the umask all FPU counters may be used
782  * (**) only one unitmask enabled at a time
783  */
784
785 static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
786 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
787 static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
788 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
789 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
790 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
791
792 static struct event_constraint *
793 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
794                                struct perf_event *event)
795 {
796         struct hw_perf_event *hwc = &event->hw;
797         unsigned int event_code = amd_get_event_code(hwc);
798
799         switch (event_code & AMD_EVENT_TYPE_MASK) {
800         case AMD_EVENT_FP:
801                 switch (event_code) {
802                 case 0x000:
803                         if (!(hwc->config & 0x0000F000ULL))
804                                 break;
805                         if (!(hwc->config & 0x00000F00ULL))
806                                 break;
807                         return &amd_f15_PMC3;
808                 case 0x004:
809                         if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
810                                 break;
811                         return &amd_f15_PMC3;
812                 case 0x003:
813                 case 0x00B:
814                 case 0x00D:
815                         return &amd_f15_PMC3;
816                 }
817                 return &amd_f15_PMC53;
818         case AMD_EVENT_LS:
819         case AMD_EVENT_DC:
820         case AMD_EVENT_EX_LS:
821                 switch (event_code) {
822                 case 0x023:
823                 case 0x043:
824                 case 0x045:
825                 case 0x046:
826                 case 0x054:
827                 case 0x055:
828                         return &amd_f15_PMC20;
829                 case 0x02D:
830                         return &amd_f15_PMC3;
831                 case 0x02E:
832                         return &amd_f15_PMC30;
833                 case 0x031:
834                         if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
835                                 return &amd_f15_PMC20;
836                         return &emptyconstraint;
837                 case 0x1C0:
838                         return &amd_f15_PMC53;
839                 default:
840                         return &amd_f15_PMC50;
841                 }
842         case AMD_EVENT_CU:
843         case AMD_EVENT_IC_DE:
844         case AMD_EVENT_DE:
845                 switch (event_code) {
846                 case 0x08F:
847                 case 0x187:
848                 case 0x188:
849                         return &amd_f15_PMC0;
850                 case 0x0DB ... 0x0DF:
851                 case 0x1D6:
852                 case 0x1D8:
853                         return &amd_f15_PMC50;
854                 default:
855                         return &amd_f15_PMC20;
856                 }
857         case AMD_EVENT_NB:
858                 /* moved to uncore.c */
859                 return &emptyconstraint;
860         default:
861                 return &emptyconstraint;
862         }
863 }
864
865 static ssize_t amd_event_sysfs_show(char *page, u64 config)
866 {
867         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
868                     (config & AMD64_EVENTSEL_EVENT) >> 24;
869
870         return x86_event_sysfs_show(page, config, event);
871 }
872
873 static __initconst const struct x86_pmu amd_pmu = {
874         .name                   = "AMD",
875         .handle_irq             = amd_pmu_handle_irq,
876         .disable_all            = amd_pmu_disable_all,
877         .enable_all             = x86_pmu_enable_all,
878         .enable                 = x86_pmu_enable_event,
879         .disable                = amd_pmu_disable_event,
880         .hw_config              = amd_pmu_hw_config,
881         .schedule_events        = x86_schedule_events,
882         .eventsel               = MSR_K7_EVNTSEL0,
883         .perfctr                = MSR_K7_PERFCTR0,
884         .addr_offset            = amd_pmu_addr_offset,
885         .event_map              = amd_pmu_event_map,
886         .max_events             = ARRAY_SIZE(amd_perfmon_event_map),
887         .num_counters           = AMD64_NUM_COUNTERS,
888         .cntval_bits            = 48,
889         .cntval_mask            = (1ULL << 48) - 1,
890         .apic                   = 1,
891         /* use highest bit to detect overflow */
892         .max_period             = (1ULL << 47) - 1,
893         .get_event_constraints  = amd_get_event_constraints,
894         .put_event_constraints  = amd_put_event_constraints,
895
896         .format_attrs           = amd_format_attr,
897         .events_sysfs_show      = amd_event_sysfs_show,
898
899         .cpu_prepare            = amd_pmu_cpu_prepare,
900         .cpu_starting           = amd_pmu_cpu_starting,
901         .cpu_dead               = amd_pmu_cpu_dead,
902
903         .amd_nb_constraints     = 1,
904 };
905
906 static int __init amd_core_pmu_init(void)
907 {
908         if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
909                 return 0;
910
911         switch (boot_cpu_data.x86) {
912         case 0x15:
913                 pr_cont("Fam15h ");
914                 x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
915                 break;
916         case 0x17:
917                 pr_cont("Fam17h ");
918                 /*
919                  * In family 17h, there are no event constraints in the PMC hardware.
920                  * We fallback to using default amd_get_event_constraints.
921                  */
922                 break;
923         case 0x18:
924                 pr_cont("Fam18h ");
925                 /* Using default amd_get_event_constraints. */
926                 break;
927         default:
928                 pr_err("core perfctr but no constraints; unknown hardware!\n");
929                 return -ENODEV;
930         }
931
932         /*
933          * If core performance counter extensions exists, we must use
934          * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
935          * amd_pmu_addr_offset().
936          */
937         x86_pmu.eventsel        = MSR_F15H_PERF_CTL;
938         x86_pmu.perfctr         = MSR_F15H_PERF_CTR;
939         x86_pmu.num_counters    = AMD64_NUM_COUNTERS_CORE;
940         /*
941          * AMD Core perfctr has separate MSRs for the NB events, see
942          * the amd/uncore.c driver.
943          */
944         x86_pmu.amd_nb_constraints = 0;
945
946         pr_cont("core perfctr, ");
947         return 0;
948 }
949
950 __init int amd_pmu_init(void)
951 {
952         int ret;
953
954         /* Performance-monitoring supported from K7 and later: */
955         if (boot_cpu_data.x86 < 6)
956                 return -ENODEV;
957
958         x86_pmu = amd_pmu;
959
960         ret = amd_core_pmu_init();
961         if (ret)
962                 return ret;
963
964         if (num_possible_cpus() == 1) {
965                 /*
966                  * No point in allocating data structures to serialize
967                  * against other CPUs, when there is only the one CPU.
968                  */
969                 x86_pmu.amd_nb_constraints = 0;
970         }
971
972         if (boot_cpu_data.x86 >= 0x17)
973                 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
974         else
975                 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
976
977         return 0;
978 }
979
980 void amd_pmu_enable_virt(void)
981 {
982         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
983
984         cpuc->perf_ctr_virt_mask = 0;
985
986         /* Reload all events */
987         amd_pmu_disable_all();
988         x86_pmu_enable_all(0);
989 }
990 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
991
992 void amd_pmu_disable_virt(void)
993 {
994         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
995
996         /*
997          * We only mask out the Host-only bit so that host-only counting works
998          * when SVM is disabled. If someone sets up a guest-only counter when
999          * SVM is disabled the Guest-only bits still gets set and the counter
1000          * will not count anything.
1001          */
1002         cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1003
1004         /* Reload all events */
1005         amd_pmu_disable_all();
1006         x86_pmu_enable_all(0);
1007 }
1008 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);