kprobes: Remove kprobe::fault_handler
[linux-2.6-microblaze.git] / arch / sh / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Kernel probes (kprobes) for SuperH
4  *
5  * Copyright (C) 2007 Chris Smith <chris.smith@st.com>
6  * Copyright (C) 2006 Lineo Solutions, Inc.
7  */
8 #include <linux/kprobes.h>
9 #include <linux/extable.h>
10 #include <linux/ptrace.h>
11 #include <linux/preempt.h>
12 #include <linux/kdebug.h>
13 #include <linux/slab.h>
14 #include <asm/cacheflush.h>
15 #include <linux/uaccess.h>
16
17 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
18 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
19
20 static DEFINE_PER_CPU(struct kprobe, saved_current_opcode);
21 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode);
22 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode2);
23
24 #define OPCODE_JMP(x)   (((x) & 0xF0FF) == 0x402b)
25 #define OPCODE_JSR(x)   (((x) & 0xF0FF) == 0x400b)
26 #define OPCODE_BRA(x)   (((x) & 0xF000) == 0xa000)
27 #define OPCODE_BRAF(x)  (((x) & 0xF0FF) == 0x0023)
28 #define OPCODE_BSR(x)   (((x) & 0xF000) == 0xb000)
29 #define OPCODE_BSRF(x)  (((x) & 0xF0FF) == 0x0003)
30
31 #define OPCODE_BF_S(x)  (((x) & 0xFF00) == 0x8f00)
32 #define OPCODE_BT_S(x)  (((x) & 0xFF00) == 0x8d00)
33
34 #define OPCODE_BF(x)    (((x) & 0xFF00) == 0x8b00)
35 #define OPCODE_BT(x)    (((x) & 0xFF00) == 0x8900)
36
37 #define OPCODE_RTS(x)   (((x) & 0x000F) == 0x000b)
38 #define OPCODE_RTE(x)   (((x) & 0xFFFF) == 0x002b)
39
40 int __kprobes arch_prepare_kprobe(struct kprobe *p)
41 {
42         kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr);
43
44         if (OPCODE_RTE(opcode))
45                 return -EFAULT; /* Bad breakpoint */
46
47         p->opcode = opcode;
48
49         return 0;
50 }
51
52 void __kprobes arch_copy_kprobe(struct kprobe *p)
53 {
54         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
55         p->opcode = *p->addr;
56 }
57
58 void __kprobes arch_arm_kprobe(struct kprobe *p)
59 {
60         *p->addr = BREAKPOINT_INSTRUCTION;
61         flush_icache_range((unsigned long)p->addr,
62                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
63 }
64
65 void __kprobes arch_disarm_kprobe(struct kprobe *p)
66 {
67         *p->addr = p->opcode;
68         flush_icache_range((unsigned long)p->addr,
69                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
70 }
71
72 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
73 {
74         if (*p->addr == BREAKPOINT_INSTRUCTION)
75                 return 1;
76
77         return 0;
78 }
79
80 /**
81  * If an illegal slot instruction exception occurs for an address
82  * containing a kprobe, remove the probe.
83  *
84  * Returns 0 if the exception was handled successfully, 1 otherwise.
85  */
86 int __kprobes kprobe_handle_illslot(unsigned long pc)
87 {
88         struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1);
89
90         if (p != NULL) {
91                 printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
92                        (unsigned int)pc + 2);
93                 unregister_kprobe(p);
94                 return 0;
95         }
96
97         return 1;
98 }
99
100 void __kprobes arch_remove_kprobe(struct kprobe *p)
101 {
102         struct kprobe *saved = this_cpu_ptr(&saved_next_opcode);
103
104         if (saved->addr) {
105                 arch_disarm_kprobe(p);
106                 arch_disarm_kprobe(saved);
107
108                 saved->addr = NULL;
109                 saved->opcode = 0;
110
111                 saved = this_cpu_ptr(&saved_next_opcode2);
112                 if (saved->addr) {
113                         arch_disarm_kprobe(saved);
114
115                         saved->addr = NULL;
116                         saved->opcode = 0;
117                 }
118         }
119 }
120
121 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
122 {
123         kcb->prev_kprobe.kp = kprobe_running();
124         kcb->prev_kprobe.status = kcb->kprobe_status;
125 }
126
127 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
128 {
129         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
130         kcb->kprobe_status = kcb->prev_kprobe.status;
131 }
132
133 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
134                                          struct kprobe_ctlblk *kcb)
135 {
136         __this_cpu_write(current_kprobe, p);
137 }
138
139 /*
140  * Singlestep is implemented by disabling the current kprobe and setting one
141  * on the next instruction, following branches. Two probes are set if the
142  * branch is conditional.
143  */
144 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
145 {
146         __this_cpu_write(saved_current_opcode.addr, (kprobe_opcode_t *)regs->pc);
147
148         if (p != NULL) {
149                 struct kprobe *op1, *op2;
150
151                 arch_disarm_kprobe(p);
152
153                 op1 = this_cpu_ptr(&saved_next_opcode);
154                 op2 = this_cpu_ptr(&saved_next_opcode2);
155
156                 if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) {
157                         unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
158                         op1->addr = (kprobe_opcode_t *) regs->regs[reg_nr];
159                 } else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) {
160                         unsigned long disp = (p->opcode & 0x0FFF);
161                         op1->addr =
162                             (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
163
164                 } else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) {
165                         unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
166                         op1->addr =
167                             (kprobe_opcode_t *) (regs->pc + 4 +
168                                                  regs->regs[reg_nr]);
169
170                 } else if (OPCODE_RTS(p->opcode)) {
171                         op1->addr = (kprobe_opcode_t *) regs->pr;
172
173                 } else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) {
174                         unsigned long disp = (p->opcode & 0x00FF);
175                         /* case 1 */
176                         op1->addr = p->addr + 1;
177                         /* case 2 */
178                         op2->addr =
179                             (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
180                         op2->opcode = *(op2->addr);
181                         arch_arm_kprobe(op2);
182
183                 } else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) {
184                         unsigned long disp = (p->opcode & 0x00FF);
185                         /* case 1 */
186                         op1->addr = p->addr + 2;
187                         /* case 2 */
188                         op2->addr =
189                             (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
190                         op2->opcode = *(op2->addr);
191                         arch_arm_kprobe(op2);
192
193                 } else {
194                         op1->addr = p->addr + 1;
195                 }
196
197                 op1->opcode = *(op1->addr);
198                 arch_arm_kprobe(op1);
199         }
200 }
201
202 /* Called with kretprobe_lock held */
203 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
204                                       struct pt_regs *regs)
205 {
206         ri->ret_addr = (kprobe_opcode_t *) regs->pr;
207         ri->fp = NULL;
208
209         /* Replace the return addr with trampoline addr */
210         regs->pr = (unsigned long)kretprobe_trampoline;
211 }
212
213 static int __kprobes kprobe_handler(struct pt_regs *regs)
214 {
215         struct kprobe *p;
216         int ret = 0;
217         kprobe_opcode_t *addr = NULL;
218         struct kprobe_ctlblk *kcb;
219
220         /*
221          * We don't want to be preempted for the entire
222          * duration of kprobe processing
223          */
224         preempt_disable();
225         kcb = get_kprobe_ctlblk();
226
227         addr = (kprobe_opcode_t *) (regs->pc);
228
229         /* Check we're not actually recursing */
230         if (kprobe_running()) {
231                 p = get_kprobe(addr);
232                 if (p) {
233                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
234                             *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
235                                 goto no_kprobe;
236                         }
237                         /* We have reentered the kprobe_handler(), since
238                          * another probe was hit while within the handler.
239                          * We here save the original kprobes variables and
240                          * just single step on the instruction of the new probe
241                          * without calling any user handlers.
242                          */
243                         save_previous_kprobe(kcb);
244                         set_current_kprobe(p, regs, kcb);
245                         kprobes_inc_nmissed_count(p);
246                         prepare_singlestep(p, regs);
247                         kcb->kprobe_status = KPROBE_REENTER;
248                         return 1;
249                 }
250                 goto no_kprobe;
251         }
252
253         p = get_kprobe(addr);
254         if (!p) {
255                 /* Not one of ours: let kernel handle it */
256                 if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) {
257                         /*
258                          * The breakpoint instruction was removed right
259                          * after we hit it. Another cpu has removed
260                          * either a probepoint or a debugger breakpoint
261                          * at this address. In either case, no further
262                          * handling of this interrupt is appropriate.
263                          */
264                         ret = 1;
265                 }
266
267                 goto no_kprobe;
268         }
269
270         set_current_kprobe(p, regs, kcb);
271         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
272
273         if (p->pre_handler && p->pre_handler(p, regs)) {
274                 /* handler has already set things up, so skip ss setup */
275                 reset_current_kprobe();
276                 preempt_enable_no_resched();
277                 return 1;
278         }
279
280         prepare_singlestep(p, regs);
281         kcb->kprobe_status = KPROBE_HIT_SS;
282         return 1;
283
284 no_kprobe:
285         preempt_enable_no_resched();
286         return ret;
287 }
288
289 /*
290  * For function-return probes, init_kprobes() establishes a probepoint
291  * here. When a retprobed function returns, this probe is hit and
292  * trampoline_probe_handler() runs, calling the kretprobe's handler.
293  */
294 static void __used kretprobe_trampoline_holder(void)
295 {
296         asm volatile (".globl kretprobe_trampoline\n"
297                       "kretprobe_trampoline:\n\t"
298                       "nop\n");
299 }
300
301 /*
302  * Called when we hit the probe point at kretprobe_trampoline
303  */
304 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
305 {
306         regs->pc = __kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
307
308         return 1;
309 }
310
311 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
312 {
313         struct kprobe *cur = kprobe_running();
314         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
315         kprobe_opcode_t *addr = NULL;
316         struct kprobe *p = NULL;
317
318         if (!cur)
319                 return 0;
320
321         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
322                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
323                 cur->post_handler(cur, regs, 0);
324         }
325
326         p = this_cpu_ptr(&saved_next_opcode);
327         if (p->addr) {
328                 arch_disarm_kprobe(p);
329                 p->addr = NULL;
330                 p->opcode = 0;
331
332                 addr = __this_cpu_read(saved_current_opcode.addr);
333                 __this_cpu_write(saved_current_opcode.addr, NULL);
334
335                 p = get_kprobe(addr);
336                 arch_arm_kprobe(p);
337
338                 p = this_cpu_ptr(&saved_next_opcode2);
339                 if (p->addr) {
340                         arch_disarm_kprobe(p);
341                         p->addr = NULL;
342                         p->opcode = 0;
343                 }
344         }
345
346         /* Restore back the original saved kprobes variables and continue. */
347         if (kcb->kprobe_status == KPROBE_REENTER) {
348                 restore_previous_kprobe(kcb);
349                 goto out;
350         }
351
352         reset_current_kprobe();
353
354 out:
355         preempt_enable_no_resched();
356
357         return 1;
358 }
359
360 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
361 {
362         struct kprobe *cur = kprobe_running();
363         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
364         const struct exception_table_entry *entry;
365
366         switch (kcb->kprobe_status) {
367         case KPROBE_HIT_SS:
368         case KPROBE_REENTER:
369                 /*
370                  * We are here because the instruction being single
371                  * stepped caused a page fault. We reset the current
372                  * kprobe, point the pc back to the probe address
373                  * and allow the page fault handler to continue as a
374                  * normal page fault.
375                  */
376                 regs->pc = (unsigned long)cur->addr;
377                 if (kcb->kprobe_status == KPROBE_REENTER)
378                         restore_previous_kprobe(kcb);
379                 else
380                         reset_current_kprobe();
381                 preempt_enable_no_resched();
382                 break;
383         case KPROBE_HIT_ACTIVE:
384         case KPROBE_HIT_SSDONE:
385                 /*
386                  * We increment the nmissed count for accounting,
387                  * we can also use npre/npostfault count for accounting
388                  * these specific fault cases.
389                  */
390                 kprobes_inc_nmissed_count(cur);
391
392                 /*
393                  * In case the user-specified fault handler returned
394                  * zero, try to fix up.
395                  */
396                 if ((entry = search_exception_tables(regs->pc)) != NULL) {
397                         regs->pc = entry->fixup;
398                         return 1;
399                 }
400
401                 /*
402                  * fixup_exception() could not handle it,
403                  * Let do_page_fault() fix it.
404                  */
405                 break;
406         default:
407                 break;
408         }
409
410         return 0;
411 }
412
413 /*
414  * Wrapper routine to for handling exceptions.
415  */
416 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
417                                        unsigned long val, void *data)
418 {
419         struct kprobe *p = NULL;
420         struct die_args *args = (struct die_args *)data;
421         int ret = NOTIFY_DONE;
422         kprobe_opcode_t *addr = NULL;
423         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
424
425         addr = (kprobe_opcode_t *) (args->regs->pc);
426         if (val == DIE_TRAP &&
427             args->trapnr == (BREAKPOINT_INSTRUCTION & 0xff)) {
428                 if (!kprobe_running()) {
429                         if (kprobe_handler(args->regs)) {
430                                 ret = NOTIFY_STOP;
431                         } else {
432                                 /* Not a kprobe trap */
433                                 ret = NOTIFY_DONE;
434                         }
435                 } else {
436                         p = get_kprobe(addr);
437                         if ((kcb->kprobe_status == KPROBE_HIT_SS) ||
438                             (kcb->kprobe_status == KPROBE_REENTER)) {
439                                 if (post_kprobe_handler(args->regs))
440                                         ret = NOTIFY_STOP;
441                         } else {
442                                 if (kprobe_handler(args->regs))
443                                         ret = NOTIFY_STOP;
444                         }
445                 }
446         }
447
448         return ret;
449 }
450
451 static struct kprobe trampoline_p = {
452         .addr = (kprobe_opcode_t *)&kretprobe_trampoline,
453         .pre_handler = trampoline_probe_handler
454 };
455
456 int __init arch_init_kprobes(void)
457 {
458         return register_kprobe(&trampoline_p);
459 }