Merge tag 'locks-v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton...
[linux-2.6-microblaze.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
9  *
10  *  based on other smp stuff by
11  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
12  *    (c) 1998 Ingo Molnar
13  *
14  * The code outside of smp.c uses logical cpu numbers, only smp.c does
15  * the translation of logical to physical cpu ids. All new code that
16  * operates on physical cpu numbers needs to go into smp.c.
17  */
18
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/irq_work.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/kprobes.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/diag.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
44 #include <asm/ipl.h>
45 #include <asm/setup.h>
46 #include <asm/irq.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
50 #include <asm/sclp.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/stacktrace.h>
57 #include <asm/topology.h>
58 #include <asm/vdso.h>
59 #include "entry.h"
60
61 enum {
62         ec_schedule = 0,
63         ec_call_function_single,
64         ec_stop_cpu,
65         ec_mcck_pending,
66         ec_irq_work,
67 };
68
69 enum {
70         CPU_STATE_STANDBY,
71         CPU_STATE_CONFIGURED,
72 };
73
74 static DEFINE_PER_CPU(struct cpu *, cpu_device);
75
76 struct pcpu {
77         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
78         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
79         signed char state;              /* physical cpu state */
80         signed char polarization;       /* physical polarization */
81         u16 address;                    /* physical cpu address */
82 };
83
84 static u8 boot_core_type;
85 static struct pcpu pcpu_devices[NR_CPUS];
86
87 unsigned int smp_cpu_mt_shift;
88 EXPORT_SYMBOL(smp_cpu_mt_shift);
89
90 unsigned int smp_cpu_mtid;
91 EXPORT_SYMBOL(smp_cpu_mtid);
92
93 #ifdef CONFIG_CRASH_DUMP
94 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
95 #endif
96
97 static unsigned int smp_max_threads __initdata = -1U;
98
99 static int __init early_nosmt(char *s)
100 {
101         smp_max_threads = 1;
102         return 0;
103 }
104 early_param("nosmt", early_nosmt);
105
106 static int __init early_smt(char *s)
107 {
108         get_option(&s, &smp_max_threads);
109         return 0;
110 }
111 early_param("smt", early_smt);
112
113 /*
114  * The smp_cpu_state_mutex must be held when changing the state or polarization
115  * member of a pcpu data structure within the pcpu_devices arreay.
116  */
117 DEFINE_MUTEX(smp_cpu_state_mutex);
118
119 /*
120  * Signal processor helper functions.
121  */
122 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
123 {
124         int cc;
125
126         while (1) {
127                 cc = __pcpu_sigp(addr, order, parm, NULL);
128                 if (cc != SIGP_CC_BUSY)
129                         return cc;
130                 cpu_relax();
131         }
132 }
133
134 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
135 {
136         int cc, retry;
137
138         for (retry = 0; ; retry++) {
139                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
140                 if (cc != SIGP_CC_BUSY)
141                         break;
142                 if (retry >= 3)
143                         udelay(10);
144         }
145         return cc;
146 }
147
148 static inline int pcpu_stopped(struct pcpu *pcpu)
149 {
150         u32 status;
151
152         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
153                         0, &status) != SIGP_CC_STATUS_STORED)
154                 return 0;
155         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
156 }
157
158 static inline int pcpu_running(struct pcpu *pcpu)
159 {
160         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
161                         0, NULL) != SIGP_CC_STATUS_STORED)
162                 return 1;
163         /* Status stored condition code is equivalent to cpu not running. */
164         return 0;
165 }
166
167 /*
168  * Find struct pcpu by cpu address.
169  */
170 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
171 {
172         int cpu;
173
174         for_each_cpu(cpu, mask)
175                 if (pcpu_devices[cpu].address == address)
176                         return pcpu_devices + cpu;
177         return NULL;
178 }
179
180 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
181 {
182         int order;
183
184         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
185                 return;
186         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
187         pcpu->ec_clk = get_tod_clock_fast();
188         pcpu_sigp_retry(pcpu, order, 0);
189 }
190
191 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
192 {
193         unsigned long async_stack, nodat_stack, mcck_stack;
194         struct lowcore *lc;
195
196         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
197         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
198         async_stack = stack_alloc();
199         mcck_stack = stack_alloc();
200         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
201                 goto out;
202         memcpy(lc, &S390_lowcore, 512);
203         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204         lc->async_stack = async_stack + STACK_INIT_OFFSET;
205         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
206         lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
207         lc->cpu_nr = cpu;
208         lc->spinlock_lockval = arch_spin_lockval(cpu);
209         lc->spinlock_index = 0;
210         lc->br_r1_trampoline = 0x07f1;  /* br %r1 */
211         lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
212         lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
213         lc->preempt_count = PREEMPT_DISABLED;
214         if (nmi_alloc_per_cpu(lc))
215                 goto out;
216         lowcore_ptr[cpu] = lc;
217         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
218         return 0;
219
220 out:
221         stack_free(mcck_stack);
222         stack_free(async_stack);
223         free_pages(nodat_stack, THREAD_SIZE_ORDER);
224         free_pages((unsigned long) lc, LC_ORDER);
225         return -ENOMEM;
226 }
227
228 static void pcpu_free_lowcore(struct pcpu *pcpu)
229 {
230         unsigned long async_stack, nodat_stack, mcck_stack;
231         struct lowcore *lc;
232         int cpu;
233
234         cpu = pcpu - pcpu_devices;
235         lc = lowcore_ptr[cpu];
236         nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
237         async_stack = lc->async_stack - STACK_INIT_OFFSET;
238         mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
239         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
240         lowcore_ptr[cpu] = NULL;
241         nmi_free_per_cpu(lc);
242         stack_free(async_stack);
243         stack_free(mcck_stack);
244         free_pages(nodat_stack, THREAD_SIZE_ORDER);
245         free_pages((unsigned long) lc, LC_ORDER);
246 }
247
248 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
249 {
250         struct lowcore *lc = lowcore_ptr[cpu];
251
252         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
253         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
254         lc->cpu_nr = cpu;
255         lc->spinlock_lockval = arch_spin_lockval(cpu);
256         lc->spinlock_index = 0;
257         lc->percpu_offset = __per_cpu_offset[cpu];
258         lc->kernel_asce = S390_lowcore.kernel_asce;
259         lc->user_asce = s390_invalid_asce;
260         lc->machine_flags = S390_lowcore.machine_flags;
261         lc->user_timer = lc->system_timer =
262                 lc->steal_timer = lc->avg_steal_timer = 0;
263         __ctl_store(lc->cregs_save_area, 0, 15);
264         lc->cregs_save_area[1] = lc->kernel_asce;
265         lc->cregs_save_area[7] = lc->user_asce;
266         save_access_regs((unsigned int *) lc->access_regs_save_area);
267         arch_spin_lock_setup(cpu);
268 }
269
270 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
271 {
272         struct lowcore *lc;
273         int cpu;
274
275         cpu = pcpu - pcpu_devices;
276         lc = lowcore_ptr[cpu];
277         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
278                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
279         lc->current_task = (unsigned long) tsk;
280         lc->lpp = LPP_MAGIC;
281         lc->current_pid = tsk->pid;
282         lc->user_timer = tsk->thread.user_timer;
283         lc->guest_timer = tsk->thread.guest_timer;
284         lc->system_timer = tsk->thread.system_timer;
285         lc->hardirq_timer = tsk->thread.hardirq_timer;
286         lc->softirq_timer = tsk->thread.softirq_timer;
287         lc->steal_timer = 0;
288 }
289
290 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
291 {
292         struct lowcore *lc;
293         int cpu;
294
295         cpu = pcpu - pcpu_devices;
296         lc = lowcore_ptr[cpu];
297         lc->restart_stack = lc->nodat_stack;
298         lc->restart_fn = (unsigned long) func;
299         lc->restart_data = (unsigned long) data;
300         lc->restart_source = -1UL;
301         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
302 }
303
304 typedef void (pcpu_delegate_fn)(void *);
305
306 /*
307  * Call function via PSW restart on pcpu and stop the current cpu.
308  */
309 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
310 {
311         func(data);     /* should not return */
312 }
313
314 static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
315                                                 pcpu_delegate_fn *func,
316                                                 void *data, unsigned long stack)
317 {
318         struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
319         unsigned long source_cpu = stap();
320
321         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
322         if (pcpu->address == source_cpu) {
323                 call_on_stack(2, stack, void, __pcpu_delegate,
324                               pcpu_delegate_fn *, func, void *, data);
325         }
326         /* Stop target cpu (if func returns this stops the current cpu). */
327         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
328         /* Restart func on the target cpu and stop the current cpu. */
329         mem_assign_absolute(lc->restart_stack, stack);
330         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
331         mem_assign_absolute(lc->restart_data, (unsigned long) data);
332         mem_assign_absolute(lc->restart_source, source_cpu);
333         __bpon();
334         asm volatile(
335                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
336                 "       brc     2,0b    # busy, try again\n"
337                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
338                 "       brc     2,1b    # busy, try again\n"
339                 : : "d" (pcpu->address), "d" (source_cpu),
340                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
341                 : "0", "1", "cc");
342         for (;;) ;
343 }
344
345 /*
346  * Enable additional logical cpus for multi-threading.
347  */
348 static int pcpu_set_smt(unsigned int mtid)
349 {
350         int cc;
351
352         if (smp_cpu_mtid == mtid)
353                 return 0;
354         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
355         if (cc == 0) {
356                 smp_cpu_mtid = mtid;
357                 smp_cpu_mt_shift = 0;
358                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
359                         smp_cpu_mt_shift++;
360                 pcpu_devices[0].address = stap();
361         }
362         return cc;
363 }
364
365 /*
366  * Call function on an online CPU.
367  */
368 void smp_call_online_cpu(void (*func)(void *), void *data)
369 {
370         struct pcpu *pcpu;
371
372         /* Use the current cpu if it is online. */
373         pcpu = pcpu_find_address(cpu_online_mask, stap());
374         if (!pcpu)
375                 /* Use the first online cpu. */
376                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
377         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
378 }
379
380 /*
381  * Call function on the ipl CPU.
382  */
383 void smp_call_ipl_cpu(void (*func)(void *), void *data)
384 {
385         struct lowcore *lc = lowcore_ptr[0];
386
387         if (pcpu_devices[0].address == stap())
388                 lc = &S390_lowcore;
389
390         pcpu_delegate(&pcpu_devices[0], func, data,
391                       lc->nodat_stack);
392 }
393
394 int smp_find_processor_id(u16 address)
395 {
396         int cpu;
397
398         for_each_present_cpu(cpu)
399                 if (pcpu_devices[cpu].address == address)
400                         return cpu;
401         return -1;
402 }
403
404 void schedule_mcck_handler(void)
405 {
406         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
407 }
408
409 bool notrace arch_vcpu_is_preempted(int cpu)
410 {
411         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
412                 return false;
413         if (pcpu_running(pcpu_devices + cpu))
414                 return false;
415         return true;
416 }
417 EXPORT_SYMBOL(arch_vcpu_is_preempted);
418
419 void notrace smp_yield_cpu(int cpu)
420 {
421         if (!MACHINE_HAS_DIAG9C)
422                 return;
423         diag_stat_inc_norecursion(DIAG_STAT_X09C);
424         asm volatile("diag %0,0,0x9c"
425                      : : "d" (pcpu_devices[cpu].address));
426 }
427 EXPORT_SYMBOL_GPL(smp_yield_cpu);
428
429 /*
430  * Send cpus emergency shutdown signal. This gives the cpus the
431  * opportunity to complete outstanding interrupts.
432  */
433 void notrace smp_emergency_stop(void)
434 {
435         static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
436         static cpumask_t cpumask;
437         u64 end;
438         int cpu;
439
440         arch_spin_lock(&lock);
441         cpumask_copy(&cpumask, cpu_online_mask);
442         cpumask_clear_cpu(smp_processor_id(), &cpumask);
443
444         end = get_tod_clock() + (1000000UL << 12);
445         for_each_cpu(cpu, &cpumask) {
446                 struct pcpu *pcpu = pcpu_devices + cpu;
447                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
448                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
449                                    0, NULL) == SIGP_CC_BUSY &&
450                        get_tod_clock() < end)
451                         cpu_relax();
452         }
453         while (get_tod_clock() < end) {
454                 for_each_cpu(cpu, &cpumask)
455                         if (pcpu_stopped(pcpu_devices + cpu))
456                                 cpumask_clear_cpu(cpu, &cpumask);
457                 if (cpumask_empty(&cpumask))
458                         break;
459                 cpu_relax();
460         }
461         arch_spin_unlock(&lock);
462 }
463 NOKPROBE_SYMBOL(smp_emergency_stop);
464
465 /*
466  * Stop all cpus but the current one.
467  */
468 void smp_send_stop(void)
469 {
470         int cpu;
471
472         /* Disable all interrupts/machine checks */
473         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
474         trace_hardirqs_off();
475
476         debug_set_critical();
477
478         if (oops_in_progress)
479                 smp_emergency_stop();
480
481         /* stop all processors */
482         for_each_online_cpu(cpu) {
483                 if (cpu == smp_processor_id())
484                         continue;
485                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
486                 while (!pcpu_stopped(pcpu_devices + cpu))
487                         cpu_relax();
488         }
489 }
490
491 /*
492  * This is the main routine where commands issued by other
493  * cpus are handled.
494  */
495 static void smp_handle_ext_call(void)
496 {
497         unsigned long bits;
498
499         /* handle bit signal external calls */
500         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
501         if (test_bit(ec_stop_cpu, &bits))
502                 smp_stop_cpu();
503         if (test_bit(ec_schedule, &bits))
504                 scheduler_ipi();
505         if (test_bit(ec_call_function_single, &bits))
506                 generic_smp_call_function_single_interrupt();
507         if (test_bit(ec_mcck_pending, &bits))
508                 __s390_handle_mcck();
509         if (test_bit(ec_irq_work, &bits))
510                 irq_work_run();
511 }
512
513 static void do_ext_call_interrupt(struct ext_code ext_code,
514                                   unsigned int param32, unsigned long param64)
515 {
516         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
517         smp_handle_ext_call();
518 }
519
520 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
521 {
522         int cpu;
523
524         for_each_cpu(cpu, mask)
525                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
526 }
527
528 void arch_send_call_function_single_ipi(int cpu)
529 {
530         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
531 }
532
533 /*
534  * this function sends a 'reschedule' IPI to another CPU.
535  * it goes straight through and wastes no time serializing
536  * anything. Worst case is that we lose a reschedule ...
537  */
538 void smp_send_reschedule(int cpu)
539 {
540         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
541 }
542
543 #ifdef CONFIG_IRQ_WORK
544 void arch_irq_work_raise(void)
545 {
546         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
547 }
548 #endif
549
550 /*
551  * parameter area for the set/clear control bit callbacks
552  */
553 struct ec_creg_mask_parms {
554         unsigned long orval;
555         unsigned long andval;
556         int cr;
557 };
558
559 /*
560  * callback for setting/clearing control bits
561  */
562 static void smp_ctl_bit_callback(void *info)
563 {
564         struct ec_creg_mask_parms *pp = info;
565         unsigned long cregs[16];
566
567         __ctl_store(cregs, 0, 15);
568         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
569         __ctl_load(cregs, 0, 15);
570 }
571
572 /*
573  * Set a bit in a control register of all cpus
574  */
575 void smp_ctl_set_bit(int cr, int bit)
576 {
577         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
578
579         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
580 }
581 EXPORT_SYMBOL(smp_ctl_set_bit);
582
583 /*
584  * Clear a bit in a control register of all cpus
585  */
586 void smp_ctl_clear_bit(int cr, int bit)
587 {
588         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
589
590         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
591 }
592 EXPORT_SYMBOL(smp_ctl_clear_bit);
593
594 #ifdef CONFIG_CRASH_DUMP
595
596 int smp_store_status(int cpu)
597 {
598         struct lowcore *lc;
599         struct pcpu *pcpu;
600         unsigned long pa;
601
602         pcpu = pcpu_devices + cpu;
603         lc = lowcore_ptr[cpu];
604         pa = __pa(&lc->floating_pt_save_area);
605         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
606                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
607                 return -EIO;
608         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
609                 return 0;
610         pa = __pa(lc->mcesad & MCESA_ORIGIN_MASK);
611         if (MACHINE_HAS_GS)
612                 pa |= lc->mcesad & MCESA_LC_MASK;
613         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
614                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
615                 return -EIO;
616         return 0;
617 }
618
619 /*
620  * Collect CPU state of the previous, crashed system.
621  * There are four cases:
622  * 1) standard zfcp/nvme dump
623  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
624  *    The state for all CPUs except the boot CPU needs to be collected
625  *    with sigp stop-and-store-status. The boot CPU state is located in
626  *    the absolute lowcore of the memory stored in the HSA. The zcore code
627  *    will copy the boot CPU state from the HSA.
628  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
629  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
630  *    The state for all CPUs except the boot CPU needs to be collected
631  *    with sigp stop-and-store-status. The firmware or the boot-loader
632  *    stored the registers of the boot CPU in the absolute lowcore in the
633  *    memory of the old system.
634  * 3) kdump and the old kernel did not store the CPU state,
635  *    or stand-alone kdump for DASD
636  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
637  *    The state for all CPUs except the boot CPU needs to be collected
638  *    with sigp stop-and-store-status. The kexec code or the boot-loader
639  *    stored the registers of the boot CPU in the memory of the old system.
640  * 4) kdump and the old kernel stored the CPU state
641  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
642  *    This case does not exist for s390 anymore, setup_arch explicitly
643  *    deactivates the elfcorehdr= kernel parameter
644  */
645 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
646                                      bool is_boot_cpu, unsigned long page)
647 {
648         __vector128 *vxrs = (__vector128 *) page;
649
650         if (is_boot_cpu)
651                 vxrs = boot_cpu_vector_save_area;
652         else
653                 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
654         save_area_add_vxrs(sa, vxrs);
655 }
656
657 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
658                                      bool is_boot_cpu, unsigned long page)
659 {
660         void *regs = (void *) page;
661
662         if (is_boot_cpu)
663                 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
664         else
665                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
666         save_area_add_regs(sa, regs);
667 }
668
669 void __init smp_save_dump_cpus(void)
670 {
671         int addr, boot_cpu_addr, max_cpu_addr;
672         struct save_area *sa;
673         unsigned long page;
674         bool is_boot_cpu;
675
676         if (!(OLDMEM_BASE || is_ipl_type_dump()))
677                 /* No previous system present, normal boot. */
678                 return;
679         /* Allocate a page as dumping area for the store status sigps */
680         page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
681         if (!page)
682                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
683                       PAGE_SIZE, 1UL << 31);
684
685         /* Set multi-threading state to the previous system. */
686         pcpu_set_smt(sclp.mtid_prev);
687         boot_cpu_addr = stap();
688         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
689         for (addr = 0; addr <= max_cpu_addr; addr++) {
690                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
691                     SIGP_CC_NOT_OPERATIONAL)
692                         continue;
693                 is_boot_cpu = (addr == boot_cpu_addr);
694                 /* Allocate save area */
695                 sa = save_area_alloc(is_boot_cpu);
696                 if (!sa)
697                         panic("could not allocate memory for save area\n");
698                 if (MACHINE_HAS_VX)
699                         /* Get the vector registers */
700                         smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
701                 /*
702                  * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
703                  * of the boot CPU are stored in the HSA. To retrieve
704                  * these registers an SCLP request is required which is
705                  * done by drivers/s390/char/zcore.c:init_cpu_info()
706                  */
707                 if (!is_boot_cpu || OLDMEM_BASE)
708                         /* Get the CPU registers */
709                         smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
710         }
711         memblock_free(page, PAGE_SIZE);
712         diag_dma_ops.diag308_reset();
713         pcpu_set_smt(0);
714 }
715 #endif /* CONFIG_CRASH_DUMP */
716
717 void smp_cpu_set_polarization(int cpu, int val)
718 {
719         pcpu_devices[cpu].polarization = val;
720 }
721
722 int smp_cpu_get_polarization(int cpu)
723 {
724         return pcpu_devices[cpu].polarization;
725 }
726
727 int smp_cpu_get_cpu_address(int cpu)
728 {
729         return pcpu_devices[cpu].address;
730 }
731
732 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
733 {
734         static int use_sigp_detection;
735         int address;
736
737         if (use_sigp_detection || sclp_get_core_info(info, early)) {
738                 use_sigp_detection = 1;
739                 for (address = 0;
740                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
741                      address += (1U << smp_cpu_mt_shift)) {
742                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
743                             SIGP_CC_NOT_OPERATIONAL)
744                                 continue;
745                         info->core[info->configured].core_id =
746                                 address >> smp_cpu_mt_shift;
747                         info->configured++;
748                 }
749                 info->combined = info->configured;
750         }
751 }
752
753 static int smp_add_present_cpu(int cpu);
754
755 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
756                         bool configured, bool early)
757 {
758         struct pcpu *pcpu;
759         int cpu, nr, i;
760         u16 address;
761
762         nr = 0;
763         if (sclp.has_core_type && core->type != boot_core_type)
764                 return nr;
765         cpu = cpumask_first(avail);
766         address = core->core_id << smp_cpu_mt_shift;
767         for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
768                 if (pcpu_find_address(cpu_present_mask, address + i))
769                         continue;
770                 pcpu = pcpu_devices + cpu;
771                 pcpu->address = address + i;
772                 if (configured)
773                         pcpu->state = CPU_STATE_CONFIGURED;
774                 else
775                         pcpu->state = CPU_STATE_STANDBY;
776                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
777                 set_cpu_present(cpu, true);
778                 if (!early && smp_add_present_cpu(cpu) != 0)
779                         set_cpu_present(cpu, false);
780                 else
781                         nr++;
782                 cpumask_clear_cpu(cpu, avail);
783                 cpu = cpumask_next(cpu, avail);
784         }
785         return nr;
786 }
787
788 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
789 {
790         struct sclp_core_entry *core;
791         static cpumask_t avail;
792         bool configured;
793         u16 core_id;
794         int nr, i;
795
796         get_online_cpus();
797         mutex_lock(&smp_cpu_state_mutex);
798         nr = 0;
799         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
800         /*
801          * Add IPL core first (which got logical CPU number 0) to make sure
802          * that all SMT threads get subsequent logical CPU numbers.
803          */
804         if (early) {
805                 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
806                 for (i = 0; i < info->configured; i++) {
807                         core = &info->core[i];
808                         if (core->core_id == core_id) {
809                                 nr += smp_add_core(core, &avail, true, early);
810                                 break;
811                         }
812                 }
813         }
814         for (i = 0; i < info->combined; i++) {
815                 configured = i < info->configured;
816                 nr += smp_add_core(&info->core[i], &avail, configured, early);
817         }
818         mutex_unlock(&smp_cpu_state_mutex);
819         put_online_cpus();
820         return nr;
821 }
822
823 void __init smp_detect_cpus(void)
824 {
825         unsigned int cpu, mtid, c_cpus, s_cpus;
826         struct sclp_core_info *info;
827         u16 address;
828
829         /* Get CPU information */
830         info = memblock_alloc(sizeof(*info), 8);
831         if (!info)
832                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
833                       __func__, sizeof(*info), 8);
834         smp_get_core_info(info, 1);
835         /* Find boot CPU type */
836         if (sclp.has_core_type) {
837                 address = stap();
838                 for (cpu = 0; cpu < info->combined; cpu++)
839                         if (info->core[cpu].core_id == address) {
840                                 /* The boot cpu dictates the cpu type. */
841                                 boot_core_type = info->core[cpu].type;
842                                 break;
843                         }
844                 if (cpu >= info->combined)
845                         panic("Could not find boot CPU type");
846         }
847
848         /* Set multi-threading state for the current system */
849         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
850         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
851         pcpu_set_smt(mtid);
852
853         /* Print number of CPUs */
854         c_cpus = s_cpus = 0;
855         for (cpu = 0; cpu < info->combined; cpu++) {
856                 if (sclp.has_core_type &&
857                     info->core[cpu].type != boot_core_type)
858                         continue;
859                 if (cpu < info->configured)
860                         c_cpus += smp_cpu_mtid + 1;
861                 else
862                         s_cpus += smp_cpu_mtid + 1;
863         }
864         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
865
866         /* Add CPUs present at boot */
867         __smp_rescan_cpus(info, true);
868         memblock_free_early((unsigned long)info, sizeof(*info));
869 }
870
871 static void smp_init_secondary(void)
872 {
873         int cpu = raw_smp_processor_id();
874
875         S390_lowcore.last_update_clock = get_tod_clock();
876         restore_access_regs(S390_lowcore.access_regs_save_area);
877         cpu_init();
878         rcu_cpu_starting(cpu);
879         init_cpu_timer();
880         vtime_init();
881         vdso_getcpu_init();
882         pfault_init();
883         notify_cpu_starting(cpu);
884         if (topology_cpu_dedicated(cpu))
885                 set_cpu_flag(CIF_DEDICATED_CPU);
886         else
887                 clear_cpu_flag(CIF_DEDICATED_CPU);
888         set_cpu_online(cpu, true);
889         update_cpu_masks();
890         inc_irq_stat(CPU_RST);
891         local_irq_enable();
892         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
893 }
894
895 /*
896  *      Activate a secondary processor.
897  */
898 static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
899 {
900         S390_lowcore.restart_stack = (unsigned long) restart_stack;
901         S390_lowcore.restart_fn = (unsigned long) do_restart;
902         S390_lowcore.restart_data = 0;
903         S390_lowcore.restart_source = -1UL;
904         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
905         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
906         call_on_stack_noreturn(smp_init_secondary, S390_lowcore.kernel_stack);
907 }
908
909 /* Upping and downing of CPUs */
910 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
911 {
912         struct pcpu *pcpu = pcpu_devices + cpu;
913         int rc;
914
915         if (pcpu->state != CPU_STATE_CONFIGURED)
916                 return -EIO;
917         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
918             SIGP_CC_ORDER_CODE_ACCEPTED)
919                 return -EIO;
920
921         rc = pcpu_alloc_lowcore(pcpu, cpu);
922         if (rc)
923                 return rc;
924         pcpu_prepare_secondary(pcpu, cpu);
925         pcpu_attach_task(pcpu, tidle);
926         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
927         /* Wait until cpu puts itself in the online & active maps */
928         while (!cpu_online(cpu))
929                 cpu_relax();
930         return 0;
931 }
932
933 static unsigned int setup_possible_cpus __initdata;
934
935 static int __init _setup_possible_cpus(char *s)
936 {
937         get_option(&s, &setup_possible_cpus);
938         return 0;
939 }
940 early_param("possible_cpus", _setup_possible_cpus);
941
942 int __cpu_disable(void)
943 {
944         unsigned long cregs[16];
945
946         /* Handle possible pending IPIs */
947         smp_handle_ext_call();
948         set_cpu_online(smp_processor_id(), false);
949         update_cpu_masks();
950         /* Disable pseudo page faults on this cpu. */
951         pfault_fini();
952         /* Disable interrupt sources via control register. */
953         __ctl_store(cregs, 0, 15);
954         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
955         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
956         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
957         __ctl_load(cregs, 0, 15);
958         clear_cpu_flag(CIF_NOHZ_DELAY);
959         return 0;
960 }
961
962 void __cpu_die(unsigned int cpu)
963 {
964         struct pcpu *pcpu;
965
966         /* Wait until target cpu is down */
967         pcpu = pcpu_devices + cpu;
968         while (!pcpu_stopped(pcpu))
969                 cpu_relax();
970         pcpu_free_lowcore(pcpu);
971         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
972         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
973 }
974
975 void __noreturn cpu_die(void)
976 {
977         idle_task_exit();
978         __bpon();
979         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
980         for (;;) ;
981 }
982
983 void __init smp_fill_possible_mask(void)
984 {
985         unsigned int possible, sclp_max, cpu;
986
987         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
988         sclp_max = min(smp_max_threads, sclp_max);
989         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
990         possible = setup_possible_cpus ?: nr_cpu_ids;
991         possible = min(possible, sclp_max);
992         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
993                 set_cpu_possible(cpu, true);
994 }
995
996 void __init smp_prepare_cpus(unsigned int max_cpus)
997 {
998         /* request the 0x1201 emergency signal external interrupt */
999         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1000                 panic("Couldn't request external interrupt 0x1201");
1001         /* request the 0x1202 external call external interrupt */
1002         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1003                 panic("Couldn't request external interrupt 0x1202");
1004 }
1005
1006 void __init smp_prepare_boot_cpu(void)
1007 {
1008         struct pcpu *pcpu = pcpu_devices;
1009
1010         WARN_ON(!cpu_present(0) || !cpu_online(0));
1011         pcpu->state = CPU_STATE_CONFIGURED;
1012         S390_lowcore.percpu_offset = __per_cpu_offset[0];
1013         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1014 }
1015
1016 void __init smp_setup_processor_id(void)
1017 {
1018         pcpu_devices[0].address = stap();
1019         S390_lowcore.cpu_nr = 0;
1020         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1021         S390_lowcore.spinlock_index = 0;
1022 }
1023
1024 /*
1025  * the frequency of the profiling timer can be changed
1026  * by writing a multiplier value into /proc/profile.
1027  *
1028  * usually you want to run this on all CPUs ;)
1029  */
1030 int setup_profiling_timer(unsigned int multiplier)
1031 {
1032         return 0;
1033 }
1034
1035 static ssize_t cpu_configure_show(struct device *dev,
1036                                   struct device_attribute *attr, char *buf)
1037 {
1038         ssize_t count;
1039
1040         mutex_lock(&smp_cpu_state_mutex);
1041         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1042         mutex_unlock(&smp_cpu_state_mutex);
1043         return count;
1044 }
1045
1046 static ssize_t cpu_configure_store(struct device *dev,
1047                                    struct device_attribute *attr,
1048                                    const char *buf, size_t count)
1049 {
1050         struct pcpu *pcpu;
1051         int cpu, val, rc, i;
1052         char delim;
1053
1054         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1055                 return -EINVAL;
1056         if (val != 0 && val != 1)
1057                 return -EINVAL;
1058         get_online_cpus();
1059         mutex_lock(&smp_cpu_state_mutex);
1060         rc = -EBUSY;
1061         /* disallow configuration changes of online cpus and cpu 0 */
1062         cpu = dev->id;
1063         cpu = smp_get_base_cpu(cpu);
1064         if (cpu == 0)
1065                 goto out;
1066         for (i = 0; i <= smp_cpu_mtid; i++)
1067                 if (cpu_online(cpu + i))
1068                         goto out;
1069         pcpu = pcpu_devices + cpu;
1070         rc = 0;
1071         switch (val) {
1072         case 0:
1073                 if (pcpu->state != CPU_STATE_CONFIGURED)
1074                         break;
1075                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1076                 if (rc)
1077                         break;
1078                 for (i = 0; i <= smp_cpu_mtid; i++) {
1079                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1080                                 continue;
1081                         pcpu[i].state = CPU_STATE_STANDBY;
1082                         smp_cpu_set_polarization(cpu + i,
1083                                                  POLARIZATION_UNKNOWN);
1084                 }
1085                 topology_expect_change();
1086                 break;
1087         case 1:
1088                 if (pcpu->state != CPU_STATE_STANDBY)
1089                         break;
1090                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1091                 if (rc)
1092                         break;
1093                 for (i = 0; i <= smp_cpu_mtid; i++) {
1094                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1095                                 continue;
1096                         pcpu[i].state = CPU_STATE_CONFIGURED;
1097                         smp_cpu_set_polarization(cpu + i,
1098                                                  POLARIZATION_UNKNOWN);
1099                 }
1100                 topology_expect_change();
1101                 break;
1102         default:
1103                 break;
1104         }
1105 out:
1106         mutex_unlock(&smp_cpu_state_mutex);
1107         put_online_cpus();
1108         return rc ? rc : count;
1109 }
1110 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1111
1112 static ssize_t show_cpu_address(struct device *dev,
1113                                 struct device_attribute *attr, char *buf)
1114 {
1115         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1116 }
1117 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1118
1119 static struct attribute *cpu_common_attrs[] = {
1120         &dev_attr_configure.attr,
1121         &dev_attr_address.attr,
1122         NULL,
1123 };
1124
1125 static struct attribute_group cpu_common_attr_group = {
1126         .attrs = cpu_common_attrs,
1127 };
1128
1129 static struct attribute *cpu_online_attrs[] = {
1130         &dev_attr_idle_count.attr,
1131         &dev_attr_idle_time_us.attr,
1132         NULL,
1133 };
1134
1135 static struct attribute_group cpu_online_attr_group = {
1136         .attrs = cpu_online_attrs,
1137 };
1138
1139 static int smp_cpu_online(unsigned int cpu)
1140 {
1141         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1142
1143         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1144 }
1145
1146 static int smp_cpu_pre_down(unsigned int cpu)
1147 {
1148         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1149
1150         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1151         return 0;
1152 }
1153
1154 static int smp_add_present_cpu(int cpu)
1155 {
1156         struct device *s;
1157         struct cpu *c;
1158         int rc;
1159
1160         c = kzalloc(sizeof(*c), GFP_KERNEL);
1161         if (!c)
1162                 return -ENOMEM;
1163         per_cpu(cpu_device, cpu) = c;
1164         s = &c->dev;
1165         c->hotpluggable = 1;
1166         rc = register_cpu(c, cpu);
1167         if (rc)
1168                 goto out;
1169         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1170         if (rc)
1171                 goto out_cpu;
1172         rc = topology_cpu_init(c);
1173         if (rc)
1174                 goto out_topology;
1175         return 0;
1176
1177 out_topology:
1178         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1179 out_cpu:
1180         unregister_cpu(c);
1181 out:
1182         return rc;
1183 }
1184
1185 int __ref smp_rescan_cpus(void)
1186 {
1187         struct sclp_core_info *info;
1188         int nr;
1189
1190         info = kzalloc(sizeof(*info), GFP_KERNEL);
1191         if (!info)
1192                 return -ENOMEM;
1193         smp_get_core_info(info, 0);
1194         nr = __smp_rescan_cpus(info, false);
1195         kfree(info);
1196         if (nr)
1197                 topology_schedule_update();
1198         return 0;
1199 }
1200
1201 static ssize_t __ref rescan_store(struct device *dev,
1202                                   struct device_attribute *attr,
1203                                   const char *buf,
1204                                   size_t count)
1205 {
1206         int rc;
1207
1208         rc = lock_device_hotplug_sysfs();
1209         if (rc)
1210                 return rc;
1211         rc = smp_rescan_cpus();
1212         unlock_device_hotplug();
1213         return rc ? rc : count;
1214 }
1215 static DEVICE_ATTR_WO(rescan);
1216
1217 static int __init s390_smp_init(void)
1218 {
1219         int cpu, rc = 0;
1220
1221         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1222         if (rc)
1223                 return rc;
1224         for_each_present_cpu(cpu) {
1225                 rc = smp_add_present_cpu(cpu);
1226                 if (rc)
1227                         goto out;
1228         }
1229
1230         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1231                                smp_cpu_online, smp_cpu_pre_down);
1232         rc = rc <= 0 ? rc : 0;
1233 out:
1234         return rc;
1235 }
1236 subsys_initcall(s390_smp_init);
1237
1238 static __always_inline void set_new_lowcore(struct lowcore *lc)
1239 {
1240         union register_pair dst, src;
1241         u32 pfx;
1242
1243         src.even = (unsigned long) &S390_lowcore;
1244         src.odd  = sizeof(S390_lowcore);
1245         dst.even = (unsigned long) lc;
1246         dst.odd  = sizeof(*lc);
1247         pfx = (unsigned long) lc;
1248
1249         asm volatile(
1250                 "       mvcl    %[dst],%[src]\n"
1251                 "       spx     %[pfx]\n"
1252                 : [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1253                 : [pfx] "Q" (pfx)
1254                 : "memory", "cc");
1255 }
1256
1257 static int __init smp_reinit_ipl_cpu(void)
1258 {
1259         unsigned long async_stack, nodat_stack, mcck_stack;
1260         struct lowcore *lc, *lc_ipl;
1261         unsigned long flags;
1262
1263         lc_ipl = lowcore_ptr[0];
1264         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1265         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1266         async_stack = stack_alloc();
1267         mcck_stack = stack_alloc();
1268         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
1269                 panic("Couldn't allocate memory");
1270
1271         local_irq_save(flags);
1272         local_mcck_disable();
1273         set_new_lowcore(lc);
1274         S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1275         S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1276         S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1277         lowcore_ptr[0] = lc;
1278         local_mcck_enable();
1279         local_irq_restore(flags);
1280
1281         free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1282         memblock_free_late(lc_ipl->mcck_stack - STACK_INIT_OFFSET, THREAD_SIZE);
1283         memblock_free_late((unsigned long) lc_ipl, sizeof(*lc_ipl));
1284
1285         return 0;
1286 }
1287 early_initcall(smp_reinit_ipl_cpu);