Merge tag 'folio-5.18d' of git://git.infradead.org/users/willy/pagecache
[linux-2.6-microblaze.git] / arch / s390 / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9
10 #define pr_fmt(fmt) "kprobes: " fmt
11
12 #include <linux/moduleloader.h>
13 #include <linux/kprobes.h>
14 #include <linux/ptrace.h>
15 #include <linux/preempt.h>
16 #include <linux/stop_machine.h>
17 #include <linux/kdebug.h>
18 #include <linux/uaccess.h>
19 #include <linux/extable.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/hardirq.h>
23 #include <linux/ftrace.h>
24 #include <asm/set_memory.h>
25 #include <asm/sections.h>
26 #include <asm/dis.h>
27 #include "entry.h"
28
29 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
30 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
31
32 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
33
34 DEFINE_INSN_CACHE_OPS(s390_insn);
35
36 static int insn_page_in_use;
37
38 void *alloc_insn_page(void)
39 {
40         void *page;
41
42         page = module_alloc(PAGE_SIZE);
43         if (!page)
44                 return NULL;
45         __set_memory((unsigned long) page, 1, SET_MEMORY_RO | SET_MEMORY_X);
46         return page;
47 }
48
49 static void *alloc_s390_insn_page(void)
50 {
51         if (xchg(&insn_page_in_use, 1) == 1)
52                 return NULL;
53         return &kprobes_insn_page;
54 }
55
56 static void free_s390_insn_page(void *page)
57 {
58         xchg(&insn_page_in_use, 0);
59 }
60
61 struct kprobe_insn_cache kprobe_s390_insn_slots = {
62         .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
63         .alloc = alloc_s390_insn_page,
64         .free = free_s390_insn_page,
65         .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
66         .insn_size = MAX_INSN_SIZE,
67 };
68
69 static void copy_instruction(struct kprobe *p)
70 {
71         kprobe_opcode_t insn[MAX_INSN_SIZE];
72         s64 disp, new_disp;
73         u64 addr, new_addr;
74         unsigned int len;
75
76         len = insn_length(*p->addr >> 8);
77         memcpy(&insn, p->addr, len);
78         p->opcode = insn[0];
79         if (probe_is_insn_relative_long(&insn[0])) {
80                 /*
81                  * For pc-relative instructions in RIL-b or RIL-c format patch
82                  * the RI2 displacement field. We have already made sure that
83                  * the insn slot for the patched instruction is within the same
84                  * 2GB area as the original instruction (either kernel image or
85                  * module area). Therefore the new displacement will always fit.
86                  */
87                 disp = *(s32 *)&insn[1];
88                 addr = (u64)(unsigned long)p->addr;
89                 new_addr = (u64)(unsigned long)p->ainsn.insn;
90                 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
91                 *(s32 *)&insn[1] = new_disp;
92         }
93         s390_kernel_write(p->ainsn.insn, &insn, len);
94 }
95 NOKPROBE_SYMBOL(copy_instruction);
96
97 static int s390_get_insn_slot(struct kprobe *p)
98 {
99         /*
100          * Get an insn slot that is within the same 2GB area like the original
101          * instruction. That way instructions with a 32bit signed displacement
102          * field can be patched and executed within the insn slot.
103          */
104         p->ainsn.insn = NULL;
105         if (is_kernel((unsigned long)p->addr))
106                 p->ainsn.insn = get_s390_insn_slot();
107         else if (is_module_addr(p->addr))
108                 p->ainsn.insn = get_insn_slot();
109         return p->ainsn.insn ? 0 : -ENOMEM;
110 }
111 NOKPROBE_SYMBOL(s390_get_insn_slot);
112
113 static void s390_free_insn_slot(struct kprobe *p)
114 {
115         if (!p->ainsn.insn)
116                 return;
117         if (is_kernel((unsigned long)p->addr))
118                 free_s390_insn_slot(p->ainsn.insn, 0);
119         else
120                 free_insn_slot(p->ainsn.insn, 0);
121         p->ainsn.insn = NULL;
122 }
123 NOKPROBE_SYMBOL(s390_free_insn_slot);
124
125 /* Check if paddr is at an instruction boundary */
126 static bool can_probe(unsigned long paddr)
127 {
128         unsigned long addr, offset = 0;
129         kprobe_opcode_t insn;
130         struct kprobe *kp;
131
132         if (paddr & 0x01)
133                 return false;
134
135         if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
136                 return false;
137
138         /* Decode instructions */
139         addr = paddr - offset;
140         while (addr < paddr) {
141                 if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
142                         return false;
143
144                 if (insn >> 8 == 0) {
145                         if (insn != BREAKPOINT_INSTRUCTION) {
146                                 /*
147                                  * Note that QEMU inserts opcode 0x0000 to implement
148                                  * software breakpoints for guests. Since the size of
149                                  * the original instruction is unknown, stop following
150                                  * instructions and prevent setting a kprobe.
151                                  */
152                                 return false;
153                         }
154                         /*
155                          * Check if the instruction has been modified by another
156                          * kprobe, in which case the original instruction is
157                          * decoded.
158                          */
159                         kp = get_kprobe((void *)addr);
160                         if (!kp) {
161                                 /* not a kprobe */
162                                 return false;
163                         }
164                         insn = kp->opcode;
165                 }
166                 addr += insn_length(insn >> 8);
167         }
168         return addr == paddr;
169 }
170
171 int arch_prepare_kprobe(struct kprobe *p)
172 {
173         if (!can_probe((unsigned long)p->addr))
174                 return -EINVAL;
175         /* Make sure the probe isn't going on a difficult instruction */
176         if (probe_is_prohibited_opcode(p->addr))
177                 return -EINVAL;
178         if (s390_get_insn_slot(p))
179                 return -ENOMEM;
180         copy_instruction(p);
181         return 0;
182 }
183 NOKPROBE_SYMBOL(arch_prepare_kprobe);
184
185 struct swap_insn_args {
186         struct kprobe *p;
187         unsigned int arm_kprobe : 1;
188 };
189
190 static int swap_instruction(void *data)
191 {
192         struct swap_insn_args *args = data;
193         struct kprobe *p = args->p;
194         u16 opc;
195
196         opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
197         s390_kernel_write(p->addr, &opc, sizeof(opc));
198         return 0;
199 }
200 NOKPROBE_SYMBOL(swap_instruction);
201
202 void arch_arm_kprobe(struct kprobe *p)
203 {
204         struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
205
206         stop_machine_cpuslocked(swap_instruction, &args, NULL);
207 }
208 NOKPROBE_SYMBOL(arch_arm_kprobe);
209
210 void arch_disarm_kprobe(struct kprobe *p)
211 {
212         struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
213
214         stop_machine_cpuslocked(swap_instruction, &args, NULL);
215 }
216 NOKPROBE_SYMBOL(arch_disarm_kprobe);
217
218 void arch_remove_kprobe(struct kprobe *p)
219 {
220         s390_free_insn_slot(p);
221 }
222 NOKPROBE_SYMBOL(arch_remove_kprobe);
223
224 static void enable_singlestep(struct kprobe_ctlblk *kcb,
225                               struct pt_regs *regs,
226                               unsigned long ip)
227 {
228         struct per_regs per_kprobe;
229
230         /* Set up the PER control registers %cr9-%cr11 */
231         per_kprobe.control = PER_EVENT_IFETCH;
232         per_kprobe.start = ip;
233         per_kprobe.end = ip;
234
235         /* Save control regs and psw mask */
236         __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
237         kcb->kprobe_saved_imask = regs->psw.mask &
238                 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
239
240         /* Set PER control regs, turns on single step for the given address */
241         __ctl_load(per_kprobe, 9, 11);
242         regs->psw.mask |= PSW_MASK_PER;
243         regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
244         regs->psw.addr = ip;
245 }
246 NOKPROBE_SYMBOL(enable_singlestep);
247
248 static void disable_singlestep(struct kprobe_ctlblk *kcb,
249                                struct pt_regs *regs,
250                                unsigned long ip)
251 {
252         /* Restore control regs and psw mask, set new psw address */
253         __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
254         regs->psw.mask &= ~PSW_MASK_PER;
255         regs->psw.mask |= kcb->kprobe_saved_imask;
256         regs->psw.addr = ip;
257 }
258 NOKPROBE_SYMBOL(disable_singlestep);
259
260 /*
261  * Activate a kprobe by storing its pointer to current_kprobe. The
262  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
263  * two kprobes can be active, see KPROBE_REENTER.
264  */
265 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
266 {
267         kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
268         kcb->prev_kprobe.status = kcb->kprobe_status;
269         __this_cpu_write(current_kprobe, p);
270 }
271 NOKPROBE_SYMBOL(push_kprobe);
272
273 /*
274  * Deactivate a kprobe by backing up to the previous state. If the
275  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
276  * for any other state prev_kprobe.kp will be NULL.
277  */
278 static void pop_kprobe(struct kprobe_ctlblk *kcb)
279 {
280         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
281         kcb->kprobe_status = kcb->prev_kprobe.status;
282 }
283 NOKPROBE_SYMBOL(pop_kprobe);
284
285 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
286 {
287         ri->ret_addr = (kprobe_opcode_t *)regs->gprs[14];
288         ri->fp = (void *)regs->gprs[15];
289
290         /* Replace the return addr with trampoline addr */
291         regs->gprs[14] = (unsigned long)&__kretprobe_trampoline;
292 }
293 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
294
295 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
296 {
297         switch (kcb->kprobe_status) {
298         case KPROBE_HIT_SSDONE:
299         case KPROBE_HIT_ACTIVE:
300                 kprobes_inc_nmissed_count(p);
301                 break;
302         case KPROBE_HIT_SS:
303         case KPROBE_REENTER:
304         default:
305                 /*
306                  * A kprobe on the code path to single step an instruction
307                  * is a BUG. The code path resides in the .kprobes.text
308                  * section and is executed with interrupts disabled.
309                  */
310                 pr_err("Failed to recover from reentered kprobes.\n");
311                 dump_kprobe(p);
312                 BUG();
313         }
314 }
315 NOKPROBE_SYMBOL(kprobe_reenter_check);
316
317 static int kprobe_handler(struct pt_regs *regs)
318 {
319         struct kprobe_ctlblk *kcb;
320         struct kprobe *p;
321
322         /*
323          * We want to disable preemption for the entire duration of kprobe
324          * processing. That includes the calls to the pre/post handlers
325          * and single stepping the kprobe instruction.
326          */
327         preempt_disable();
328         kcb = get_kprobe_ctlblk();
329         p = get_kprobe((void *)(regs->psw.addr - 2));
330
331         if (p) {
332                 if (kprobe_running()) {
333                         /*
334                          * We have hit a kprobe while another is still
335                          * active. This can happen in the pre and post
336                          * handler. Single step the instruction of the
337                          * new probe but do not call any handler function
338                          * of this secondary kprobe.
339                          * push_kprobe and pop_kprobe saves and restores
340                          * the currently active kprobe.
341                          */
342                         kprobe_reenter_check(kcb, p);
343                         push_kprobe(kcb, p);
344                         kcb->kprobe_status = KPROBE_REENTER;
345                 } else {
346                         /*
347                          * If we have no pre-handler or it returned 0, we
348                          * continue with single stepping. If we have a
349                          * pre-handler and it returned non-zero, it prepped
350                          * for changing execution path, so get out doing
351                          * nothing more here.
352                          */
353                         push_kprobe(kcb, p);
354                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
355                         if (p->pre_handler && p->pre_handler(p, regs)) {
356                                 pop_kprobe(kcb);
357                                 preempt_enable_no_resched();
358                                 return 1;
359                         }
360                         kcb->kprobe_status = KPROBE_HIT_SS;
361                 }
362                 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
363                 return 1;
364         } /* else:
365            * No kprobe at this address and no active kprobe. The trap has
366            * not been caused by a kprobe breakpoint. The race of breakpoint
367            * vs. kprobe remove does not exist because on s390 as we use
368            * stop_machine to arm/disarm the breakpoints.
369            */
370         preempt_enable_no_resched();
371         return 0;
372 }
373 NOKPROBE_SYMBOL(kprobe_handler);
374
375 void arch_kretprobe_fixup_return(struct pt_regs *regs,
376                                  kprobe_opcode_t *correct_ret_addr)
377 {
378         /* Replace fake return address with real one. */
379         regs->gprs[14] = (unsigned long)correct_ret_addr;
380 }
381 NOKPROBE_SYMBOL(arch_kretprobe_fixup_return);
382
383 /*
384  * Called from __kretprobe_trampoline
385  */
386 void trampoline_probe_handler(struct pt_regs *regs)
387 {
388         kretprobe_trampoline_handler(regs, (void *)regs->gprs[15]);
389 }
390 NOKPROBE_SYMBOL(trampoline_probe_handler);
391
392 /* assembler function that handles the kretprobes must not be probed itself */
393 NOKPROBE_SYMBOL(__kretprobe_trampoline);
394
395 /*
396  * Called after single-stepping.  p->addr is the address of the
397  * instruction whose first byte has been replaced by the "breakpoint"
398  * instruction.  To avoid the SMP problems that can occur when we
399  * temporarily put back the original opcode to single-step, we
400  * single-stepped a copy of the instruction.  The address of this
401  * copy is p->ainsn.insn.
402  */
403 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
404 {
405         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
406         unsigned long ip = regs->psw.addr;
407         int fixup = probe_get_fixup_type(p->ainsn.insn);
408
409         if (fixup & FIXUP_PSW_NORMAL)
410                 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
411
412         if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
413                 int ilen = insn_length(p->ainsn.insn[0] >> 8);
414                 if (ip - (unsigned long) p->ainsn.insn == ilen)
415                         ip = (unsigned long) p->addr + ilen;
416         }
417
418         if (fixup & FIXUP_RETURN_REGISTER) {
419                 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
420                 regs->gprs[reg] += (unsigned long) p->addr -
421                                    (unsigned long) p->ainsn.insn;
422         }
423
424         disable_singlestep(kcb, regs, ip);
425 }
426 NOKPROBE_SYMBOL(resume_execution);
427
428 static int post_kprobe_handler(struct pt_regs *regs)
429 {
430         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
431         struct kprobe *p = kprobe_running();
432
433         if (!p)
434                 return 0;
435
436         if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
437                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
438                 p->post_handler(p, regs, 0);
439         }
440
441         resume_execution(p, regs);
442         pop_kprobe(kcb);
443         preempt_enable_no_resched();
444
445         /*
446          * if somebody else is singlestepping across a probe point, psw mask
447          * will have PER set, in which case, continue the remaining processing
448          * of do_single_step, as if this is not a probe hit.
449          */
450         if (regs->psw.mask & PSW_MASK_PER)
451                 return 0;
452
453         return 1;
454 }
455 NOKPROBE_SYMBOL(post_kprobe_handler);
456
457 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
458 {
459         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
460         struct kprobe *p = kprobe_running();
461
462         switch(kcb->kprobe_status) {
463         case KPROBE_HIT_SS:
464         case KPROBE_REENTER:
465                 /*
466                  * We are here because the instruction being single
467                  * stepped caused a page fault. We reset the current
468                  * kprobe and the nip points back to the probe address
469                  * and allow the page fault handler to continue as a
470                  * normal page fault.
471                  */
472                 disable_singlestep(kcb, regs, (unsigned long) p->addr);
473                 pop_kprobe(kcb);
474                 preempt_enable_no_resched();
475                 break;
476         case KPROBE_HIT_ACTIVE:
477         case KPROBE_HIT_SSDONE:
478                 /*
479                  * In case the user-specified fault handler returned
480                  * zero, try to fix up.
481                  */
482                 if (fixup_exception(regs))
483                         return 1;
484                 /*
485                  * fixup_exception() could not handle it,
486                  * Let do_page_fault() fix it.
487                  */
488                 break;
489         default:
490                 break;
491         }
492         return 0;
493 }
494 NOKPROBE_SYMBOL(kprobe_trap_handler);
495
496 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
497 {
498         int ret;
499
500         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
501                 local_irq_disable();
502         ret = kprobe_trap_handler(regs, trapnr);
503         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
504                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
505         return ret;
506 }
507 NOKPROBE_SYMBOL(kprobe_fault_handler);
508
509 /*
510  * Wrapper routine to for handling exceptions.
511  */
512 int kprobe_exceptions_notify(struct notifier_block *self,
513                              unsigned long val, void *data)
514 {
515         struct die_args *args = (struct die_args *) data;
516         struct pt_regs *regs = args->regs;
517         int ret = NOTIFY_DONE;
518
519         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
520                 local_irq_disable();
521
522         switch (val) {
523         case DIE_BPT:
524                 if (kprobe_handler(regs))
525                         ret = NOTIFY_STOP;
526                 break;
527         case DIE_SSTEP:
528                 if (post_kprobe_handler(regs))
529                         ret = NOTIFY_STOP;
530                 break;
531         case DIE_TRAP:
532                 if (!preemptible() && kprobe_running() &&
533                     kprobe_trap_handler(regs, args->trapnr))
534                         ret = NOTIFY_STOP;
535                 break;
536         default:
537                 break;
538         }
539
540         if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
541                 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
542
543         return ret;
544 }
545 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
546
547 int __init arch_init_kprobes(void)
548 {
549         return 0;
550 }
551
552 int arch_trampoline_kprobe(struct kprobe *p)
553 {
554         return 0;
555 }
556 NOKPROBE_SYMBOL(arch_trampoline_kprobe);