Merge tag 'powerpc-4.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-microblaze.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <linux/swap.h>
21 #include <linux/swapops.h>
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlb.h>
25 #include <asm/setup.h>
26 #include <asm/hugetlb.h>
27 #include <asm/pte-walk.h>
28
29
30 #ifdef CONFIG_HUGETLB_PAGE
31
32 #define PAGE_SHIFT_64K  16
33 #define PAGE_SHIFT_512K 19
34 #define PAGE_SHIFT_8M   23
35 #define PAGE_SHIFT_16M  24
36 #define PAGE_SHIFT_16G  34
37
38 unsigned int HPAGE_SHIFT;
39 EXPORT_SYMBOL(HPAGE_SHIFT);
40
41 #define hugepd_none(hpd)        (hpd_val(hpd) == 0)
42
43 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
44 {
45         /*
46          * Only called for hugetlbfs pages, hence can ignore THP and the
47          * irq disabled walk.
48          */
49         return __find_linux_pte(mm->pgd, addr, NULL, NULL);
50 }
51
52 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
53                            unsigned long address, unsigned pdshift, unsigned pshift)
54 {
55         struct kmem_cache *cachep;
56         pte_t *new;
57         int i;
58         int num_hugepd;
59
60         if (pshift >= pdshift) {
61                 cachep = hugepte_cache;
62                 num_hugepd = 1 << (pshift - pdshift);
63         } else {
64                 cachep = PGT_CACHE(pdshift - pshift);
65                 num_hugepd = 1;
66         }
67
68         new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
69
70         BUG_ON(pshift > HUGEPD_SHIFT_MASK);
71         BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
72
73         if (! new)
74                 return -ENOMEM;
75
76         /*
77          * Make sure other cpus find the hugepd set only after a
78          * properly initialized page table is visible to them.
79          * For more details look for comment in __pte_alloc().
80          */
81         smp_wmb();
82
83         spin_lock(&mm->page_table_lock);
84
85         /*
86          * We have multiple higher-level entries that point to the same
87          * actual pte location.  Fill in each as we go and backtrack on error.
88          * We need all of these so the DTLB pgtable walk code can find the
89          * right higher-level entry without knowing if it's a hugepage or not.
90          */
91         for (i = 0; i < num_hugepd; i++, hpdp++) {
92                 if (unlikely(!hugepd_none(*hpdp)))
93                         break;
94                 else {
95 #ifdef CONFIG_PPC_BOOK3S_64
96                         *hpdp = __hugepd(__pa(new) |
97                                          (shift_to_mmu_psize(pshift) << 2));
98 #elif defined(CONFIG_PPC_8xx)
99                         *hpdp = __hugepd(__pa(new) | _PMD_USER |
100                                          (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
101                                           _PMD_PAGE_512K) | _PMD_PRESENT);
102 #else
103                         /* We use the old format for PPC_FSL_BOOK3E */
104                         *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
105 #endif
106                 }
107         }
108         /* If we bailed from the for loop early, an error occurred, clean up */
109         if (i < num_hugepd) {
110                 for (i = i - 1 ; i >= 0; i--, hpdp--)
111                         *hpdp = __hugepd(0);
112                 kmem_cache_free(cachep, new);
113         }
114         spin_unlock(&mm->page_table_lock);
115         return 0;
116 }
117
118 /*
119  * These macros define how to determine which level of the page table holds
120  * the hpdp.
121  */
122 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
123 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
124 #define HUGEPD_PUD_SHIFT PUD_SHIFT
125 #else
126 #define HUGEPD_PGD_SHIFT PUD_SHIFT
127 #define HUGEPD_PUD_SHIFT PMD_SHIFT
128 #endif
129
130 /*
131  * At this point we do the placement change only for BOOK3S 64. This would
132  * possibly work on other subarchs.
133  */
134 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
135 {
136         pgd_t *pg;
137         pud_t *pu;
138         pmd_t *pm;
139         hugepd_t *hpdp = NULL;
140         unsigned pshift = __ffs(sz);
141         unsigned pdshift = PGDIR_SHIFT;
142
143         addr &= ~(sz-1);
144         pg = pgd_offset(mm, addr);
145
146 #ifdef CONFIG_PPC_BOOK3S_64
147         if (pshift == PGDIR_SHIFT)
148                 /* 16GB huge page */
149                 return (pte_t *) pg;
150         else if (pshift > PUD_SHIFT)
151                 /*
152                  * We need to use hugepd table
153                  */
154                 hpdp = (hugepd_t *)pg;
155         else {
156                 pdshift = PUD_SHIFT;
157                 pu = pud_alloc(mm, pg, addr);
158                 if (pshift == PUD_SHIFT)
159                         return (pte_t *)pu;
160                 else if (pshift > PMD_SHIFT)
161                         hpdp = (hugepd_t *)pu;
162                 else {
163                         pdshift = PMD_SHIFT;
164                         pm = pmd_alloc(mm, pu, addr);
165                         if (pshift == PMD_SHIFT)
166                                 /* 16MB hugepage */
167                                 return (pte_t *)pm;
168                         else
169                                 hpdp = (hugepd_t *)pm;
170                 }
171         }
172 #else
173         if (pshift >= HUGEPD_PGD_SHIFT) {
174                 hpdp = (hugepd_t *)pg;
175         } else {
176                 pdshift = PUD_SHIFT;
177                 pu = pud_alloc(mm, pg, addr);
178                 if (pshift >= HUGEPD_PUD_SHIFT) {
179                         hpdp = (hugepd_t *)pu;
180                 } else {
181                         pdshift = PMD_SHIFT;
182                         pm = pmd_alloc(mm, pu, addr);
183                         hpdp = (hugepd_t *)pm;
184                 }
185         }
186 #endif
187         if (!hpdp)
188                 return NULL;
189
190         BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
191
192         if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
193                 return NULL;
194
195         return hugepte_offset(*hpdp, addr, pdshift);
196 }
197
198 #ifdef CONFIG_PPC_BOOK3S_64
199 /*
200  * Tracks gpages after the device tree is scanned and before the
201  * huge_boot_pages list is ready on pseries.
202  */
203 #define MAX_NUMBER_GPAGES       1024
204 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
205 __initdata static unsigned nr_gpages;
206
207 /*
208  * Build list of addresses of gigantic pages.  This function is used in early
209  * boot before the buddy allocator is setup.
210  */
211 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
212 {
213         if (!addr)
214                 return;
215         while (number_of_pages > 0) {
216                 gpage_freearray[nr_gpages] = addr;
217                 nr_gpages++;
218                 number_of_pages--;
219                 addr += page_size;
220         }
221 }
222
223 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
224 {
225         struct huge_bootmem_page *m;
226         if (nr_gpages == 0)
227                 return 0;
228         m = phys_to_virt(gpage_freearray[--nr_gpages]);
229         gpage_freearray[nr_gpages] = 0;
230         list_add(&m->list, &huge_boot_pages);
231         m->hstate = hstate;
232         return 1;
233 }
234 #endif
235
236
237 int __init alloc_bootmem_huge_page(struct hstate *h)
238 {
239
240 #ifdef CONFIG_PPC_BOOK3S_64
241         if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
242                 return pseries_alloc_bootmem_huge_page(h);
243 #endif
244         return __alloc_bootmem_huge_page(h);
245 }
246
247 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
248 #define HUGEPD_FREELIST_SIZE \
249         ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
250
251 struct hugepd_freelist {
252         struct rcu_head rcu;
253         unsigned int index;
254         void *ptes[0];
255 };
256
257 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
258
259 static void hugepd_free_rcu_callback(struct rcu_head *head)
260 {
261         struct hugepd_freelist *batch =
262                 container_of(head, struct hugepd_freelist, rcu);
263         unsigned int i;
264
265         for (i = 0; i < batch->index; i++)
266                 kmem_cache_free(hugepte_cache, batch->ptes[i]);
267
268         free_page((unsigned long)batch);
269 }
270
271 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
272 {
273         struct hugepd_freelist **batchp;
274
275         batchp = &get_cpu_var(hugepd_freelist_cur);
276
277         if (atomic_read(&tlb->mm->mm_users) < 2 ||
278             mm_is_thread_local(tlb->mm)) {
279                 kmem_cache_free(hugepte_cache, hugepte);
280                 put_cpu_var(hugepd_freelist_cur);
281                 return;
282         }
283
284         if (*batchp == NULL) {
285                 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
286                 (*batchp)->index = 0;
287         }
288
289         (*batchp)->ptes[(*batchp)->index++] = hugepte;
290         if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
291                 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
292                 *batchp = NULL;
293         }
294         put_cpu_var(hugepd_freelist_cur);
295 }
296 #else
297 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
298 #endif
299
300 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
301                               unsigned long start, unsigned long end,
302                               unsigned long floor, unsigned long ceiling)
303 {
304         pte_t *hugepte = hugepd_page(*hpdp);
305         int i;
306
307         unsigned long pdmask = ~((1UL << pdshift) - 1);
308         unsigned int num_hugepd = 1;
309         unsigned int shift = hugepd_shift(*hpdp);
310
311         /* Note: On fsl the hpdp may be the first of several */
312         if (shift > pdshift)
313                 num_hugepd = 1 << (shift - pdshift);
314
315         start &= pdmask;
316         if (start < floor)
317                 return;
318         if (ceiling) {
319                 ceiling &= pdmask;
320                 if (! ceiling)
321                         return;
322         }
323         if (end - 1 > ceiling - 1)
324                 return;
325
326         for (i = 0; i < num_hugepd; i++, hpdp++)
327                 *hpdp = __hugepd(0);
328
329         if (shift >= pdshift)
330                 hugepd_free(tlb, hugepte);
331         else
332                 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
333 }
334
335 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
336                                    unsigned long addr, unsigned long end,
337                                    unsigned long floor, unsigned long ceiling)
338 {
339         pmd_t *pmd;
340         unsigned long next;
341         unsigned long start;
342
343         start = addr;
344         do {
345                 unsigned long more;
346
347                 pmd = pmd_offset(pud, addr);
348                 next = pmd_addr_end(addr, end);
349                 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
350                         /*
351                          * if it is not hugepd pointer, we should already find
352                          * it cleared.
353                          */
354                         WARN_ON(!pmd_none_or_clear_bad(pmd));
355                         continue;
356                 }
357                 /*
358                  * Increment next by the size of the huge mapping since
359                  * there may be more than one entry at this level for a
360                  * single hugepage, but all of them point to
361                  * the same kmem cache that holds the hugepte.
362                  */
363                 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
364                 if (more > next)
365                         next = more;
366
367                 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
368                                   addr, next, floor, ceiling);
369         } while (addr = next, addr != end);
370
371         start &= PUD_MASK;
372         if (start < floor)
373                 return;
374         if (ceiling) {
375                 ceiling &= PUD_MASK;
376                 if (!ceiling)
377                         return;
378         }
379         if (end - 1 > ceiling - 1)
380                 return;
381
382         pmd = pmd_offset(pud, start);
383         pud_clear(pud);
384         pmd_free_tlb(tlb, pmd, start);
385         mm_dec_nr_pmds(tlb->mm);
386 }
387
388 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
389                                    unsigned long addr, unsigned long end,
390                                    unsigned long floor, unsigned long ceiling)
391 {
392         pud_t *pud;
393         unsigned long next;
394         unsigned long start;
395
396         start = addr;
397         do {
398                 pud = pud_offset(pgd, addr);
399                 next = pud_addr_end(addr, end);
400                 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
401                         if (pud_none_or_clear_bad(pud))
402                                 continue;
403                         hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
404                                                ceiling);
405                 } else {
406                         unsigned long more;
407                         /*
408                          * Increment next by the size of the huge mapping since
409                          * there may be more than one entry at this level for a
410                          * single hugepage, but all of them point to
411                          * the same kmem cache that holds the hugepte.
412                          */
413                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
414                         if (more > next)
415                                 next = more;
416
417                         free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
418                                           addr, next, floor, ceiling);
419                 }
420         } while (addr = next, addr != end);
421
422         start &= PGDIR_MASK;
423         if (start < floor)
424                 return;
425         if (ceiling) {
426                 ceiling &= PGDIR_MASK;
427                 if (!ceiling)
428                         return;
429         }
430         if (end - 1 > ceiling - 1)
431                 return;
432
433         pud = pud_offset(pgd, start);
434         pgd_clear(pgd);
435         pud_free_tlb(tlb, pud, start);
436         mm_dec_nr_puds(tlb->mm);
437 }
438
439 /*
440  * This function frees user-level page tables of a process.
441  */
442 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
443                             unsigned long addr, unsigned long end,
444                             unsigned long floor, unsigned long ceiling)
445 {
446         pgd_t *pgd;
447         unsigned long next;
448
449         /*
450          * Because there are a number of different possible pagetable
451          * layouts for hugepage ranges, we limit knowledge of how
452          * things should be laid out to the allocation path
453          * (huge_pte_alloc(), above).  Everything else works out the
454          * structure as it goes from information in the hugepd
455          * pointers.  That means that we can't here use the
456          * optimization used in the normal page free_pgd_range(), of
457          * checking whether we're actually covering a large enough
458          * range to have to do anything at the top level of the walk
459          * instead of at the bottom.
460          *
461          * To make sense of this, you should probably go read the big
462          * block comment at the top of the normal free_pgd_range(),
463          * too.
464          */
465
466         do {
467                 next = pgd_addr_end(addr, end);
468                 pgd = pgd_offset(tlb->mm, addr);
469                 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
470                         if (pgd_none_or_clear_bad(pgd))
471                                 continue;
472                         hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
473                 } else {
474                         unsigned long more;
475                         /*
476                          * Increment next by the size of the huge mapping since
477                          * there may be more than one entry at the pgd level
478                          * for a single hugepage, but all of them point to the
479                          * same kmem cache that holds the hugepte.
480                          */
481                         more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
482                         if (more > next)
483                                 next = more;
484
485                         free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
486                                           addr, next, floor, ceiling);
487                 }
488         } while (addr = next, addr != end);
489 }
490
491 struct page *follow_huge_pd(struct vm_area_struct *vma,
492                             unsigned long address, hugepd_t hpd,
493                             int flags, int pdshift)
494 {
495         pte_t *ptep;
496         spinlock_t *ptl;
497         struct page *page = NULL;
498         unsigned long mask;
499         int shift = hugepd_shift(hpd);
500         struct mm_struct *mm = vma->vm_mm;
501
502 retry:
503         ptl = &mm->page_table_lock;
504         spin_lock(ptl);
505
506         ptep = hugepte_offset(hpd, address, pdshift);
507         if (pte_present(*ptep)) {
508                 mask = (1UL << shift) - 1;
509                 page = pte_page(*ptep);
510                 page += ((address & mask) >> PAGE_SHIFT);
511                 if (flags & FOLL_GET)
512                         get_page(page);
513         } else {
514                 if (is_hugetlb_entry_migration(*ptep)) {
515                         spin_unlock(ptl);
516                         __migration_entry_wait(mm, ptep, ptl);
517                         goto retry;
518                 }
519         }
520         spin_unlock(ptl);
521         return page;
522 }
523
524 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
525                                       unsigned long sz)
526 {
527         unsigned long __boundary = (addr + sz) & ~(sz-1);
528         return (__boundary - 1 < end - 1) ? __boundary : end;
529 }
530
531 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
532                 unsigned long end, int write, struct page **pages, int *nr)
533 {
534         pte_t *ptep;
535         unsigned long sz = 1UL << hugepd_shift(hugepd);
536         unsigned long next;
537
538         ptep = hugepte_offset(hugepd, addr, pdshift);
539         do {
540                 next = hugepte_addr_end(addr, end, sz);
541                 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
542                         return 0;
543         } while (ptep++, addr = next, addr != end);
544
545         return 1;
546 }
547
548 #ifdef CONFIG_PPC_MM_SLICES
549 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
550                                         unsigned long len, unsigned long pgoff,
551                                         unsigned long flags)
552 {
553         struct hstate *hstate = hstate_file(file);
554         int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
555
556         if (radix_enabled())
557                 return radix__hugetlb_get_unmapped_area(file, addr, len,
558                                                        pgoff, flags);
559         return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
560 }
561 #endif
562
563 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
564 {
565 #ifdef CONFIG_PPC_MM_SLICES
566         unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
567         /* With radix we don't use slice, so derive it from vma*/
568         if (!radix_enabled())
569                 return 1UL << mmu_psize_to_shift(psize);
570 #endif
571         if (!is_vm_hugetlb_page(vma))
572                 return PAGE_SIZE;
573
574         return huge_page_size(hstate_vma(vma));
575 }
576
577 static inline bool is_power_of_4(unsigned long x)
578 {
579         if (is_power_of_2(x))
580                 return (__ilog2(x) % 2) ? false : true;
581         return false;
582 }
583
584 static int __init add_huge_page_size(unsigned long long size)
585 {
586         int shift = __ffs(size);
587         int mmu_psize;
588
589         /* Check that it is a page size supported by the hardware and
590          * that it fits within pagetable and slice limits. */
591         if (size <= PAGE_SIZE)
592                 return -EINVAL;
593 #if defined(CONFIG_PPC_FSL_BOOK3E)
594         if (!is_power_of_4(size))
595                 return -EINVAL;
596 #elif !defined(CONFIG_PPC_8xx)
597         if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
598                 return -EINVAL;
599 #endif
600
601         if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
602                 return -EINVAL;
603
604 #ifdef CONFIG_PPC_BOOK3S_64
605         /*
606          * We need to make sure that for different page sizes reported by
607          * firmware we only add hugetlb support for page sizes that can be
608          * supported by linux page table layout.
609          * For now we have
610          * Radix: 2M
611          * Hash: 16M and 16G
612          */
613         if (radix_enabled()) {
614                 if (mmu_psize != MMU_PAGE_2M) {
615                         if (cpu_has_feature(CPU_FTR_POWER9_DD1) ||
616                             (mmu_psize != MMU_PAGE_1G))
617                                 return -EINVAL;
618                 }
619         } else {
620                 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
621                         return -EINVAL;
622         }
623 #endif
624
625         BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
626
627         /* Return if huge page size has already been setup */
628         if (size_to_hstate(size))
629                 return 0;
630
631         hugetlb_add_hstate(shift - PAGE_SHIFT);
632
633         return 0;
634 }
635
636 static int __init hugepage_setup_sz(char *str)
637 {
638         unsigned long long size;
639
640         size = memparse(str, &str);
641
642         if (add_huge_page_size(size) != 0) {
643                 hugetlb_bad_size();
644                 pr_err("Invalid huge page size specified(%llu)\n", size);
645         }
646
647         return 1;
648 }
649 __setup("hugepagesz=", hugepage_setup_sz);
650
651 struct kmem_cache *hugepte_cache;
652 static int __init hugetlbpage_init(void)
653 {
654         int psize;
655
656 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
657         if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
658                 return -ENODEV;
659 #endif
660         for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
661                 unsigned shift;
662                 unsigned pdshift;
663
664                 if (!mmu_psize_defs[psize].shift)
665                         continue;
666
667                 shift = mmu_psize_to_shift(psize);
668
669                 if (add_huge_page_size(1ULL << shift) < 0)
670                         continue;
671
672                 if (shift < HUGEPD_PUD_SHIFT)
673                         pdshift = PMD_SHIFT;
674                 else if (shift < HUGEPD_PGD_SHIFT)
675                         pdshift = PUD_SHIFT;
676                 else
677                         pdshift = PGDIR_SHIFT;
678                 /*
679                  * if we have pdshift and shift value same, we don't
680                  * use pgt cache for hugepd.
681                  */
682                 if (pdshift > shift)
683                         pgtable_cache_add(pdshift - shift, NULL);
684 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
685                 else if (!hugepte_cache) {
686                         /*
687                          * Create a kmem cache for hugeptes.  The bottom bits in
688                          * the pte have size information encoded in them, so
689                          * align them to allow this
690                          */
691                         hugepte_cache = kmem_cache_create("hugepte-cache",
692                                                           sizeof(pte_t),
693                                                           HUGEPD_SHIFT_MASK + 1,
694                                                           0, NULL);
695                         if (hugepte_cache == NULL)
696                                 panic("%s: Unable to create kmem cache "
697                                       "for hugeptes\n", __func__);
698
699                 }
700 #endif
701         }
702
703 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
704         /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
705         if (mmu_psize_defs[MMU_PAGE_4M].shift)
706                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
707         else if (mmu_psize_defs[MMU_PAGE_512K].shift)
708                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
709 #else
710         /* Set default large page size. Currently, we pick 16M or 1M
711          * depending on what is available
712          */
713         if (mmu_psize_defs[MMU_PAGE_16M].shift)
714                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
715         else if (mmu_psize_defs[MMU_PAGE_1M].shift)
716                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
717         else if (mmu_psize_defs[MMU_PAGE_2M].shift)
718                 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
719 #endif
720         return 0;
721 }
722
723 arch_initcall(hugetlbpage_init);
724
725 void flush_dcache_icache_hugepage(struct page *page)
726 {
727         int i;
728         void *start;
729
730         BUG_ON(!PageCompound(page));
731
732         for (i = 0; i < (1UL << compound_order(page)); i++) {
733                 if (!PageHighMem(page)) {
734                         __flush_dcache_icache(page_address(page+i));
735                 } else {
736                         start = kmap_atomic(page+i);
737                         __flush_dcache_icache(start);
738                         kunmap_atomic(start);
739                 }
740         }
741 }
742
743 #endif /* CONFIG_HUGETLB_PAGE */
744
745 /*
746  * We have 4 cases for pgds and pmds:
747  * (1) invalid (all zeroes)
748  * (2) pointer to next table, as normal; bottom 6 bits == 0
749  * (3) leaf pte for huge page _PAGE_PTE set
750  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
751  *
752  * So long as we atomically load page table pointers we are safe against teardown,
753  * we can follow the address down to the the page and take a ref on it.
754  * This function need to be called with interrupts disabled. We use this variant
755  * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
756  */
757 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
758                         bool *is_thp, unsigned *hpage_shift)
759 {
760         pgd_t pgd, *pgdp;
761         pud_t pud, *pudp;
762         pmd_t pmd, *pmdp;
763         pte_t *ret_pte;
764         hugepd_t *hpdp = NULL;
765         unsigned pdshift = PGDIR_SHIFT;
766
767         if (hpage_shift)
768                 *hpage_shift = 0;
769
770         if (is_thp)
771                 *is_thp = false;
772
773         pgdp = pgdir + pgd_index(ea);
774         pgd  = READ_ONCE(*pgdp);
775         /*
776          * Always operate on the local stack value. This make sure the
777          * value don't get updated by a parallel THP split/collapse,
778          * page fault or a page unmap. The return pte_t * is still not
779          * stable. So should be checked there for above conditions.
780          */
781         if (pgd_none(pgd))
782                 return NULL;
783         else if (pgd_huge(pgd)) {
784                 ret_pte = (pte_t *) pgdp;
785                 goto out;
786         } else if (is_hugepd(__hugepd(pgd_val(pgd))))
787                 hpdp = (hugepd_t *)&pgd;
788         else {
789                 /*
790                  * Even if we end up with an unmap, the pgtable will not
791                  * be freed, because we do an rcu free and here we are
792                  * irq disabled
793                  */
794                 pdshift = PUD_SHIFT;
795                 pudp = pud_offset(&pgd, ea);
796                 pud  = READ_ONCE(*pudp);
797
798                 if (pud_none(pud))
799                         return NULL;
800                 else if (pud_huge(pud)) {
801                         ret_pte = (pte_t *) pudp;
802                         goto out;
803                 } else if (is_hugepd(__hugepd(pud_val(pud))))
804                         hpdp = (hugepd_t *)&pud;
805                 else {
806                         pdshift = PMD_SHIFT;
807                         pmdp = pmd_offset(&pud, ea);
808                         pmd  = READ_ONCE(*pmdp);
809                         /*
810                          * A hugepage collapse is captured by pmd_none, because
811                          * it mark the pmd none and do a hpte invalidate.
812                          */
813                         if (pmd_none(pmd))
814                                 return NULL;
815
816                         if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
817                                 if (is_thp)
818                                         *is_thp = true;
819                                 ret_pte = (pte_t *) pmdp;
820                                 goto out;
821                         }
822
823                         if (pmd_huge(pmd)) {
824                                 ret_pte = (pte_t *) pmdp;
825                                 goto out;
826                         } else if (is_hugepd(__hugepd(pmd_val(pmd))))
827                                 hpdp = (hugepd_t *)&pmd;
828                         else
829                                 return pte_offset_kernel(&pmd, ea);
830                 }
831         }
832         if (!hpdp)
833                 return NULL;
834
835         ret_pte = hugepte_offset(*hpdp, ea, pdshift);
836         pdshift = hugepd_shift(*hpdp);
837 out:
838         if (hpage_shift)
839                 *hpage_shift = pdshift;
840         return ret_pte;
841 }
842 EXPORT_SYMBOL_GPL(__find_linux_pte);
843
844 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
845                 unsigned long end, int write, struct page **pages, int *nr)
846 {
847         unsigned long pte_end;
848         struct page *head, *page;
849         pte_t pte;
850         int refs;
851
852         pte_end = (addr + sz) & ~(sz-1);
853         if (pte_end < end)
854                 end = pte_end;
855
856         pte = READ_ONCE(*ptep);
857
858         if (!pte_access_permitted(pte, write))
859                 return 0;
860
861         /* hugepages are never "special" */
862         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
863
864         refs = 0;
865         head = pte_page(pte);
866
867         page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
868         do {
869                 VM_BUG_ON(compound_head(page) != head);
870                 pages[*nr] = page;
871                 (*nr)++;
872                 page++;
873                 refs++;
874         } while (addr += PAGE_SIZE, addr != end);
875
876         if (!page_cache_add_speculative(head, refs)) {
877                 *nr -= refs;
878                 return 0;
879         }
880
881         if (unlikely(pte_val(pte) != pte_val(*ptep))) {
882                 /* Could be optimized better */
883                 *nr -= refs;
884                 while (refs--)
885                         put_page(head);
886                 return 0;
887         }
888
889         return 1;
890 }