Merge tag 'for-linus-20190617' of git://git.sourceforge.jp/gitroot/uclinux-h8/linux
[linux-2.6-microblaze.git] / arch / powerpc / mm / book3s64 / radix_pgtable.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Page table handling routines for radix page table.
4  *
5  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6  */
7
8 #define pr_fmt(fmt) "radix-mmu: " fmt
9
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/sched/mm.h>
13 #include <linux/memblock.h>
14 #include <linux/of_fdt.h>
15 #include <linux/mm.h>
16 #include <linux/string_helpers.h>
17 #include <linux/stop_machine.h>
18
19 #include <asm/pgtable.h>
20 #include <asm/pgalloc.h>
21 #include <asm/mmu_context.h>
22 #include <asm/dma.h>
23 #include <asm/machdep.h>
24 #include <asm/mmu.h>
25 #include <asm/firmware.h>
26 #include <asm/powernv.h>
27 #include <asm/sections.h>
28 #include <asm/trace.h>
29 #include <asm/uaccess.h>
30
31 #include <trace/events/thp.h>
32
33 unsigned int mmu_pid_bits;
34 unsigned int mmu_base_pid;
35
36 static int native_register_process_table(unsigned long base, unsigned long pg_sz,
37                                          unsigned long table_size)
38 {
39         unsigned long patb0, patb1;
40
41         patb0 = be64_to_cpu(partition_tb[0].patb0);
42         patb1 = base | table_size | PATB_GR;
43
44         mmu_partition_table_set_entry(0, patb0, patb1);
45
46         return 0;
47 }
48
49 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
50                         unsigned long region_start, unsigned long region_end)
51 {
52         phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
53         phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
54         void *ptr;
55
56         if (region_start)
57                 min_addr = region_start;
58         if (region_end)
59                 max_addr = region_end;
60
61         ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
62
63         if (!ptr)
64                 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
65                       __func__, size, size, nid, &min_addr, &max_addr);
66
67         return ptr;
68 }
69
70 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
71                           pgprot_t flags,
72                           unsigned int map_page_size,
73                           int nid,
74                           unsigned long region_start, unsigned long region_end)
75 {
76         unsigned long pfn = pa >> PAGE_SHIFT;
77         pgd_t *pgdp;
78         pud_t *pudp;
79         pmd_t *pmdp;
80         pte_t *ptep;
81
82         pgdp = pgd_offset_k(ea);
83         if (pgd_none(*pgdp)) {
84                 pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid,
85                                                 region_start, region_end);
86                 pgd_populate(&init_mm, pgdp, pudp);
87         }
88         pudp = pud_offset(pgdp, ea);
89         if (map_page_size == PUD_SIZE) {
90                 ptep = (pte_t *)pudp;
91                 goto set_the_pte;
92         }
93         if (pud_none(*pudp)) {
94                 pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid,
95                                                 region_start, region_end);
96                 pud_populate(&init_mm, pudp, pmdp);
97         }
98         pmdp = pmd_offset(pudp, ea);
99         if (map_page_size == PMD_SIZE) {
100                 ptep = pmdp_ptep(pmdp);
101                 goto set_the_pte;
102         }
103         if (!pmd_present(*pmdp)) {
104                 ptep = early_alloc_pgtable(PAGE_SIZE, nid,
105                                                 region_start, region_end);
106                 pmd_populate_kernel(&init_mm, pmdp, ptep);
107         }
108         ptep = pte_offset_kernel(pmdp, ea);
109
110 set_the_pte:
111         set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
112         smp_wmb();
113         return 0;
114 }
115
116 /*
117  * nid, region_start, and region_end are hints to try to place the page
118  * table memory in the same node or region.
119  */
120 static int __map_kernel_page(unsigned long ea, unsigned long pa,
121                           pgprot_t flags,
122                           unsigned int map_page_size,
123                           int nid,
124                           unsigned long region_start, unsigned long region_end)
125 {
126         unsigned long pfn = pa >> PAGE_SHIFT;
127         pgd_t *pgdp;
128         pud_t *pudp;
129         pmd_t *pmdp;
130         pte_t *ptep;
131         /*
132          * Make sure task size is correct as per the max adddr
133          */
134         BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
135
136 #ifdef CONFIG_PPC_64K_PAGES
137         BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
138 #endif
139
140         if (unlikely(!slab_is_available()))
141                 return early_map_kernel_page(ea, pa, flags, map_page_size,
142                                                 nid, region_start, region_end);
143
144         /*
145          * Should make page table allocation functions be able to take a
146          * node, so we can place kernel page tables on the right nodes after
147          * boot.
148          */
149         pgdp = pgd_offset_k(ea);
150         pudp = pud_alloc(&init_mm, pgdp, ea);
151         if (!pudp)
152                 return -ENOMEM;
153         if (map_page_size == PUD_SIZE) {
154                 ptep = (pte_t *)pudp;
155                 goto set_the_pte;
156         }
157         pmdp = pmd_alloc(&init_mm, pudp, ea);
158         if (!pmdp)
159                 return -ENOMEM;
160         if (map_page_size == PMD_SIZE) {
161                 ptep = pmdp_ptep(pmdp);
162                 goto set_the_pte;
163         }
164         ptep = pte_alloc_kernel(pmdp, ea);
165         if (!ptep)
166                 return -ENOMEM;
167
168 set_the_pte:
169         set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
170         smp_wmb();
171         return 0;
172 }
173
174 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
175                           pgprot_t flags,
176                           unsigned int map_page_size)
177 {
178         return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
179 }
180
181 #ifdef CONFIG_STRICT_KERNEL_RWX
182 void radix__change_memory_range(unsigned long start, unsigned long end,
183                                 unsigned long clear)
184 {
185         unsigned long idx;
186         pgd_t *pgdp;
187         pud_t *pudp;
188         pmd_t *pmdp;
189         pte_t *ptep;
190
191         start = ALIGN_DOWN(start, PAGE_SIZE);
192         end = PAGE_ALIGN(end); // aligns up
193
194         pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
195                  start, end, clear);
196
197         for (idx = start; idx < end; idx += PAGE_SIZE) {
198                 pgdp = pgd_offset_k(idx);
199                 pudp = pud_alloc(&init_mm, pgdp, idx);
200                 if (!pudp)
201                         continue;
202                 if (pud_is_leaf(*pudp)) {
203                         ptep = (pte_t *)pudp;
204                         goto update_the_pte;
205                 }
206                 pmdp = pmd_alloc(&init_mm, pudp, idx);
207                 if (!pmdp)
208                         continue;
209                 if (pmd_is_leaf(*pmdp)) {
210                         ptep = pmdp_ptep(pmdp);
211                         goto update_the_pte;
212                 }
213                 ptep = pte_alloc_kernel(pmdp, idx);
214                 if (!ptep)
215                         continue;
216 update_the_pte:
217                 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
218         }
219
220         radix__flush_tlb_kernel_range(start, end);
221 }
222
223 void radix__mark_rodata_ro(void)
224 {
225         unsigned long start, end;
226
227         start = (unsigned long)_stext;
228         end = (unsigned long)__init_begin;
229
230         radix__change_memory_range(start, end, _PAGE_WRITE);
231 }
232
233 void radix__mark_initmem_nx(void)
234 {
235         unsigned long start = (unsigned long)__init_begin;
236         unsigned long end = (unsigned long)__init_end;
237
238         radix__change_memory_range(start, end, _PAGE_EXEC);
239 }
240 #endif /* CONFIG_STRICT_KERNEL_RWX */
241
242 static inline void __meminit
243 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
244 {
245         char buf[10];
246
247         if (end <= start)
248                 return;
249
250         string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
251
252         pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
253                 exec ? " (exec)" : "");
254 }
255
256 static unsigned long next_boundary(unsigned long addr, unsigned long end)
257 {
258 #ifdef CONFIG_STRICT_KERNEL_RWX
259         if (addr < __pa_symbol(__init_begin))
260                 return __pa_symbol(__init_begin);
261 #endif
262         return end;
263 }
264
265 static int __meminit create_physical_mapping(unsigned long start,
266                                              unsigned long end,
267                                              int nid)
268 {
269         unsigned long vaddr, addr, mapping_size = 0;
270         bool prev_exec, exec = false;
271         pgprot_t prot;
272         int psize;
273
274         start = _ALIGN_UP(start, PAGE_SIZE);
275         for (addr = start; addr < end; addr += mapping_size) {
276                 unsigned long gap, previous_size;
277                 int rc;
278
279                 gap = next_boundary(addr, end) - addr;
280                 previous_size = mapping_size;
281                 prev_exec = exec;
282
283                 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
284                     mmu_psize_defs[MMU_PAGE_1G].shift) {
285                         mapping_size = PUD_SIZE;
286                         psize = MMU_PAGE_1G;
287                 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
288                            mmu_psize_defs[MMU_PAGE_2M].shift) {
289                         mapping_size = PMD_SIZE;
290                         psize = MMU_PAGE_2M;
291                 } else {
292                         mapping_size = PAGE_SIZE;
293                         psize = mmu_virtual_psize;
294                 }
295
296                 vaddr = (unsigned long)__va(addr);
297
298                 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
299                     overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
300                         prot = PAGE_KERNEL_X;
301                         exec = true;
302                 } else {
303                         prot = PAGE_KERNEL;
304                         exec = false;
305                 }
306
307                 if (mapping_size != previous_size || exec != prev_exec) {
308                         print_mapping(start, addr, previous_size, prev_exec);
309                         start = addr;
310                 }
311
312                 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
313                 if (rc)
314                         return rc;
315
316                 update_page_count(psize, 1);
317         }
318
319         print_mapping(start, addr, mapping_size, exec);
320         return 0;
321 }
322
323 static void __init radix_init_pgtable(void)
324 {
325         unsigned long rts_field;
326         struct memblock_region *reg;
327
328         /* We don't support slb for radix */
329         mmu_slb_size = 0;
330         /*
331          * Create the linear mapping, using standard page size for now
332          */
333         for_each_memblock(memory, reg) {
334                 /*
335                  * The memblock allocator  is up at this point, so the
336                  * page tables will be allocated within the range. No
337                  * need or a node (which we don't have yet).
338                  */
339
340                 if ((reg->base + reg->size) >= RADIX_VMALLOC_START) {
341                         pr_warn("Outside the supported range\n");
342                         continue;
343                 }
344
345                 WARN_ON(create_physical_mapping(reg->base,
346                                                 reg->base + reg->size,
347                                                 -1));
348         }
349
350         /* Find out how many PID bits are supported */
351         if (cpu_has_feature(CPU_FTR_HVMODE)) {
352                 if (!mmu_pid_bits)
353                         mmu_pid_bits = 20;
354 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
355                 /*
356                  * When KVM is possible, we only use the top half of the
357                  * PID space to avoid collisions between host and guest PIDs
358                  * which can cause problems due to prefetch when exiting the
359                  * guest with AIL=3
360                  */
361                 mmu_base_pid = 1 << (mmu_pid_bits - 1);
362 #else
363                 mmu_base_pid = 1;
364 #endif
365         } else {
366                 /* The guest uses the bottom half of the PID space */
367                 if (!mmu_pid_bits)
368                         mmu_pid_bits = 19;
369                 mmu_base_pid = 1;
370         }
371
372         /*
373          * Allocate Partition table and process table for the
374          * host.
375          */
376         BUG_ON(PRTB_SIZE_SHIFT > 36);
377         process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
378         /*
379          * Fill in the process table.
380          */
381         rts_field = radix__get_tree_size();
382         process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
383         /*
384          * Fill in the partition table. We are suppose to use effective address
385          * of process table here. But our linear mapping also enable us to use
386          * physical address here.
387          */
388         register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12);
389         pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd);
390         asm volatile("ptesync" : : : "memory");
391         asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
392                      "r" (TLBIEL_INVAL_SET_LPID), "r" (0));
393         asm volatile("eieio; tlbsync; ptesync" : : : "memory");
394         trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID, 0, 2, 1, 1);
395
396         /*
397          * The init_mm context is given the first available (non-zero) PID,
398          * which is the "guard PID" and contains no page table. PIDR should
399          * never be set to zero because that duplicates the kernel address
400          * space at the 0x0... offset (quadrant 0)!
401          *
402          * An arbitrary PID that may later be allocated by the PID allocator
403          * for userspace processes must not be used either, because that
404          * would cause stale user mappings for that PID on CPUs outside of
405          * the TLB invalidation scheme (because it won't be in mm_cpumask).
406          *
407          * So permanently carve out one PID for the purpose of a guard PID.
408          */
409         init_mm.context.id = mmu_base_pid;
410         mmu_base_pid++;
411 }
412
413 static void __init radix_init_partition_table(void)
414 {
415         unsigned long rts_field, dw0;
416
417         mmu_partition_table_init();
418         rts_field = radix__get_tree_size();
419         dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
420         mmu_partition_table_set_entry(0, dw0, 0);
421
422         pr_info("Initializing Radix MMU\n");
423         pr_info("Partition table %p\n", partition_tb);
424 }
425
426 void __init radix_init_native(void)
427 {
428         register_process_table = native_register_process_table;
429 }
430
431 static int __init get_idx_from_shift(unsigned int shift)
432 {
433         int idx = -1;
434
435         switch (shift) {
436         case 0xc:
437                 idx = MMU_PAGE_4K;
438                 break;
439         case 0x10:
440                 idx = MMU_PAGE_64K;
441                 break;
442         case 0x15:
443                 idx = MMU_PAGE_2M;
444                 break;
445         case 0x1e:
446                 idx = MMU_PAGE_1G;
447                 break;
448         }
449         return idx;
450 }
451
452 static int __init radix_dt_scan_page_sizes(unsigned long node,
453                                            const char *uname, int depth,
454                                            void *data)
455 {
456         int size = 0;
457         int shift, idx;
458         unsigned int ap;
459         const __be32 *prop;
460         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
461
462         /* We are scanning "cpu" nodes only */
463         if (type == NULL || strcmp(type, "cpu") != 0)
464                 return 0;
465
466         /* Find MMU PID size */
467         prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
468         if (prop && size == 4)
469                 mmu_pid_bits = be32_to_cpup(prop);
470
471         /* Grab page size encodings */
472         prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
473         if (!prop)
474                 return 0;
475
476         pr_info("Page sizes from device-tree:\n");
477         for (; size >= 4; size -= 4, ++prop) {
478
479                 struct mmu_psize_def *def;
480
481                 /* top 3 bit is AP encoding */
482                 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
483                 ap = be32_to_cpu(prop[0]) >> 29;
484                 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
485
486                 idx = get_idx_from_shift(shift);
487                 if (idx < 0)
488                         continue;
489
490                 def = &mmu_psize_defs[idx];
491                 def->shift = shift;
492                 def->ap  = ap;
493         }
494
495         /* needed ? */
496         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
497         return 1;
498 }
499
500 void __init radix__early_init_devtree(void)
501 {
502         int rc;
503
504         /*
505          * Try to find the available page sizes in the device-tree
506          */
507         rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
508         if (rc != 0)  /* Found */
509                 goto found;
510         /*
511          * let's assume we have page 4k and 64k support
512          */
513         mmu_psize_defs[MMU_PAGE_4K].shift = 12;
514         mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
515
516         mmu_psize_defs[MMU_PAGE_64K].shift = 16;
517         mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
518 found:
519         return;
520 }
521
522 static void radix_init_amor(void)
523 {
524         /*
525         * In HV mode, we init AMOR (Authority Mask Override Register) so that
526         * the hypervisor and guest can setup IAMR (Instruction Authority Mask
527         * Register), enable key 0 and set it to 1.
528         *
529         * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
530         */
531         mtspr(SPRN_AMOR, (3ul << 62));
532 }
533
534 #ifdef CONFIG_PPC_KUEP
535 void setup_kuep(bool disabled)
536 {
537         if (disabled || !early_radix_enabled())
538                 return;
539
540         if (smp_processor_id() == boot_cpuid)
541                 pr_info("Activating Kernel Userspace Execution Prevention\n");
542
543         /*
544          * Radix always uses key0 of the IAMR to determine if an access is
545          * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
546          * fetch.
547          */
548         mtspr(SPRN_IAMR, (1ul << 62));
549 }
550 #endif
551
552 #ifdef CONFIG_PPC_KUAP
553 void setup_kuap(bool disabled)
554 {
555         if (disabled || !early_radix_enabled())
556                 return;
557
558         if (smp_processor_id() == boot_cpuid) {
559                 pr_info("Activating Kernel Userspace Access Prevention\n");
560                 cur_cpu_spec->mmu_features |= MMU_FTR_RADIX_KUAP;
561         }
562
563         /* Make sure userspace can't change the AMR */
564         mtspr(SPRN_UAMOR, 0);
565         mtspr(SPRN_AMR, AMR_KUAP_BLOCKED);
566         isync();
567 }
568 #endif
569
570 void __init radix__early_init_mmu(void)
571 {
572         unsigned long lpcr;
573
574 #ifdef CONFIG_PPC_64K_PAGES
575         /* PAGE_SIZE mappings */
576         mmu_virtual_psize = MMU_PAGE_64K;
577 #else
578         mmu_virtual_psize = MMU_PAGE_4K;
579 #endif
580
581 #ifdef CONFIG_SPARSEMEM_VMEMMAP
582         /* vmemmap mapping */
583         if (mmu_psize_defs[MMU_PAGE_2M].shift) {
584                 /*
585                  * map vmemmap using 2M if available
586                  */
587                 mmu_vmemmap_psize = MMU_PAGE_2M;
588         } else
589                 mmu_vmemmap_psize = mmu_virtual_psize;
590 #endif
591         /*
592          * initialize page table size
593          */
594         __pte_index_size = RADIX_PTE_INDEX_SIZE;
595         __pmd_index_size = RADIX_PMD_INDEX_SIZE;
596         __pud_index_size = RADIX_PUD_INDEX_SIZE;
597         __pgd_index_size = RADIX_PGD_INDEX_SIZE;
598         __pud_cache_index = RADIX_PUD_INDEX_SIZE;
599         __pte_table_size = RADIX_PTE_TABLE_SIZE;
600         __pmd_table_size = RADIX_PMD_TABLE_SIZE;
601         __pud_table_size = RADIX_PUD_TABLE_SIZE;
602         __pgd_table_size = RADIX_PGD_TABLE_SIZE;
603
604         __pmd_val_bits = RADIX_PMD_VAL_BITS;
605         __pud_val_bits = RADIX_PUD_VAL_BITS;
606         __pgd_val_bits = RADIX_PGD_VAL_BITS;
607
608         __kernel_virt_start = RADIX_KERN_VIRT_START;
609         __vmalloc_start = RADIX_VMALLOC_START;
610         __vmalloc_end = RADIX_VMALLOC_END;
611         __kernel_io_start = RADIX_KERN_IO_START;
612         __kernel_io_end = RADIX_KERN_IO_END;
613         vmemmap = (struct page *)RADIX_VMEMMAP_START;
614         ioremap_bot = IOREMAP_BASE;
615
616 #ifdef CONFIG_PCI
617         pci_io_base = ISA_IO_BASE;
618 #endif
619         __pte_frag_nr = RADIX_PTE_FRAG_NR;
620         __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
621         __pmd_frag_nr = RADIX_PMD_FRAG_NR;
622         __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
623
624         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
625                 radix_init_native();
626                 lpcr = mfspr(SPRN_LPCR);
627                 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
628                 radix_init_partition_table();
629                 radix_init_amor();
630         } else {
631                 radix_init_pseries();
632         }
633
634         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
635
636         radix_init_pgtable();
637         /* Switch to the guard PID before turning on MMU */
638         radix__switch_mmu_context(NULL, &init_mm);
639         if (cpu_has_feature(CPU_FTR_HVMODE))
640                 tlbiel_all();
641 }
642
643 void radix__early_init_mmu_secondary(void)
644 {
645         unsigned long lpcr;
646         /*
647          * update partition table control register and UPRT
648          */
649         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
650                 lpcr = mfspr(SPRN_LPCR);
651                 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
652
653                 mtspr(SPRN_PTCR,
654                       __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
655                 radix_init_amor();
656         }
657
658         radix__switch_mmu_context(NULL, &init_mm);
659         if (cpu_has_feature(CPU_FTR_HVMODE))
660                 tlbiel_all();
661 }
662
663 void radix__mmu_cleanup_all(void)
664 {
665         unsigned long lpcr;
666
667         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
668                 lpcr = mfspr(SPRN_LPCR);
669                 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
670                 mtspr(SPRN_PTCR, 0);
671                 powernv_set_nmmu_ptcr(0);
672                 radix__flush_tlb_all();
673         }
674 }
675
676 void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
677                                 phys_addr_t first_memblock_size)
678 {
679         /*
680          * We don't currently support the first MEMBLOCK not mapping 0
681          * physical on those processors
682          */
683         BUG_ON(first_memblock_base != 0);
684
685         /*
686          * Radix mode is not limited by RMA / VRMA addressing.
687          */
688         ppc64_rma_size = ULONG_MAX;
689 }
690
691 #ifdef CONFIG_MEMORY_HOTPLUG
692 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
693 {
694         pte_t *pte;
695         int i;
696
697         for (i = 0; i < PTRS_PER_PTE; i++) {
698                 pte = pte_start + i;
699                 if (!pte_none(*pte))
700                         return;
701         }
702
703         pte_free_kernel(&init_mm, pte_start);
704         pmd_clear(pmd);
705 }
706
707 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
708 {
709         pmd_t *pmd;
710         int i;
711
712         for (i = 0; i < PTRS_PER_PMD; i++) {
713                 pmd = pmd_start + i;
714                 if (!pmd_none(*pmd))
715                         return;
716         }
717
718         pmd_free(&init_mm, pmd_start);
719         pud_clear(pud);
720 }
721
722 struct change_mapping_params {
723         pte_t *pte;
724         unsigned long start;
725         unsigned long end;
726         unsigned long aligned_start;
727         unsigned long aligned_end;
728 };
729
730 static int __meminit stop_machine_change_mapping(void *data)
731 {
732         struct change_mapping_params *params =
733                         (struct change_mapping_params *)data;
734
735         if (!data)
736                 return -1;
737
738         spin_unlock(&init_mm.page_table_lock);
739         pte_clear(&init_mm, params->aligned_start, params->pte);
740         create_physical_mapping(params->aligned_start, params->start, -1);
741         create_physical_mapping(params->end, params->aligned_end, -1);
742         spin_lock(&init_mm.page_table_lock);
743         return 0;
744 }
745
746 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
747                              unsigned long end)
748 {
749         unsigned long next;
750         pte_t *pte;
751
752         pte = pte_start + pte_index(addr);
753         for (; addr < end; addr = next, pte++) {
754                 next = (addr + PAGE_SIZE) & PAGE_MASK;
755                 if (next > end)
756                         next = end;
757
758                 if (!pte_present(*pte))
759                         continue;
760
761                 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
762                         /*
763                          * The vmemmap_free() and remove_section_mapping()
764                          * codepaths call us with aligned addresses.
765                          */
766                         WARN_ONCE(1, "%s: unaligned range\n", __func__);
767                         continue;
768                 }
769
770                 pte_clear(&init_mm, addr, pte);
771         }
772 }
773
774 /*
775  * clear the pte and potentially split the mapping helper
776  */
777 static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end,
778                                 unsigned long size, pte_t *pte)
779 {
780         unsigned long mask = ~(size - 1);
781         unsigned long aligned_start = addr & mask;
782         unsigned long aligned_end = addr + size;
783         struct change_mapping_params params;
784         bool split_region = false;
785
786         if ((end - addr) < size) {
787                 /*
788                  * We're going to clear the PTE, but not flushed
789                  * the mapping, time to remap and flush. The
790                  * effects if visible outside the processor or
791                  * if we are running in code close to the
792                  * mapping we cleared, we are in trouble.
793                  */
794                 if (overlaps_kernel_text(aligned_start, addr) ||
795                         overlaps_kernel_text(end, aligned_end)) {
796                         /*
797                          * Hack, just return, don't pte_clear
798                          */
799                         WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
800                                   "text, not splitting\n", addr, end);
801                         return;
802                 }
803                 split_region = true;
804         }
805
806         if (split_region) {
807                 params.pte = pte;
808                 params.start = addr;
809                 params.end = end;
810                 params.aligned_start = addr & ~(size - 1);
811                 params.aligned_end = min_t(unsigned long, aligned_end,
812                                 (unsigned long)__va(memblock_end_of_DRAM()));
813                 stop_machine(stop_machine_change_mapping, &params, NULL);
814                 return;
815         }
816
817         pte_clear(&init_mm, addr, pte);
818 }
819
820 static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
821                              unsigned long end)
822 {
823         unsigned long next;
824         pte_t *pte_base;
825         pmd_t *pmd;
826
827         pmd = pmd_start + pmd_index(addr);
828         for (; addr < end; addr = next, pmd++) {
829                 next = pmd_addr_end(addr, end);
830
831                 if (!pmd_present(*pmd))
832                         continue;
833
834                 if (pmd_is_leaf(*pmd)) {
835                         split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
836                         continue;
837                 }
838
839                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
840                 remove_pte_table(pte_base, addr, next);
841                 free_pte_table(pte_base, pmd);
842         }
843 }
844
845 static void remove_pud_table(pud_t *pud_start, unsigned long addr,
846                              unsigned long end)
847 {
848         unsigned long next;
849         pmd_t *pmd_base;
850         pud_t *pud;
851
852         pud = pud_start + pud_index(addr);
853         for (; addr < end; addr = next, pud++) {
854                 next = pud_addr_end(addr, end);
855
856                 if (!pud_present(*pud))
857                         continue;
858
859                 if (pud_is_leaf(*pud)) {
860                         split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
861                         continue;
862                 }
863
864                 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
865                 remove_pmd_table(pmd_base, addr, next);
866                 free_pmd_table(pmd_base, pud);
867         }
868 }
869
870 static void __meminit remove_pagetable(unsigned long start, unsigned long end)
871 {
872         unsigned long addr, next;
873         pud_t *pud_base;
874         pgd_t *pgd;
875
876         spin_lock(&init_mm.page_table_lock);
877
878         for (addr = start; addr < end; addr = next) {
879                 next = pgd_addr_end(addr, end);
880
881                 pgd = pgd_offset_k(addr);
882                 if (!pgd_present(*pgd))
883                         continue;
884
885                 if (pgd_is_leaf(*pgd)) {
886                         split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd);
887                         continue;
888                 }
889
890                 pud_base = (pud_t *)pgd_page_vaddr(*pgd);
891                 remove_pud_table(pud_base, addr, next);
892         }
893
894         spin_unlock(&init_mm.page_table_lock);
895         radix__flush_tlb_kernel_range(start, end);
896 }
897
898 int __meminit radix__create_section_mapping(unsigned long start, unsigned long end, int nid)
899 {
900         if (end >= RADIX_VMALLOC_START) {
901                 pr_warn("Outside the supported range\n");
902                 return -1;
903         }
904
905         return create_physical_mapping(start, end, nid);
906 }
907
908 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
909 {
910         remove_pagetable(start, end);
911         return 0;
912 }
913 #endif /* CONFIG_MEMORY_HOTPLUG */
914
915 #ifdef CONFIG_SPARSEMEM_VMEMMAP
916 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
917                                  pgprot_t flags, unsigned int map_page_size,
918                                  int nid)
919 {
920         return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
921 }
922
923 int __meminit radix__vmemmap_create_mapping(unsigned long start,
924                                       unsigned long page_size,
925                                       unsigned long phys)
926 {
927         /* Create a PTE encoding */
928         unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
929         int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
930         int ret;
931
932         if ((start + page_size) >= RADIX_VMEMMAP_END) {
933                 pr_warn("Outside the supported range\n");
934                 return -1;
935         }
936
937         ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
938         BUG_ON(ret);
939
940         return 0;
941 }
942
943 #ifdef CONFIG_MEMORY_HOTPLUG
944 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
945 {
946         remove_pagetable(start, start + page_size);
947 }
948 #endif
949 #endif
950
951 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
952
953 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
954                                   pmd_t *pmdp, unsigned long clr,
955                                   unsigned long set)
956 {
957         unsigned long old;
958
959 #ifdef CONFIG_DEBUG_VM
960         WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
961         assert_spin_locked(pmd_lockptr(mm, pmdp));
962 #endif
963
964         old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
965         trace_hugepage_update(addr, old, clr, set);
966
967         return old;
968 }
969
970 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
971                         pmd_t *pmdp)
972
973 {
974         pmd_t pmd;
975
976         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
977         VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
978         VM_BUG_ON(pmd_devmap(*pmdp));
979         /*
980          * khugepaged calls this for normal pmd
981          */
982         pmd = *pmdp;
983         pmd_clear(pmdp);
984
985         /*FIXME!!  Verify whether we need this kick below */
986         serialize_against_pte_lookup(vma->vm_mm);
987
988         radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
989
990         return pmd;
991 }
992
993 /*
994  * For us pgtable_t is pte_t *. Inorder to save the deposisted
995  * page table, we consider the allocated page table as a list
996  * head. On withdraw we need to make sure we zero out the used
997  * list_head memory area.
998  */
999 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1000                                  pgtable_t pgtable)
1001 {
1002         struct list_head *lh = (struct list_head *) pgtable;
1003
1004         assert_spin_locked(pmd_lockptr(mm, pmdp));
1005
1006         /* FIFO */
1007         if (!pmd_huge_pte(mm, pmdp))
1008                 INIT_LIST_HEAD(lh);
1009         else
1010                 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1011         pmd_huge_pte(mm, pmdp) = pgtable;
1012 }
1013
1014 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1015 {
1016         pte_t *ptep;
1017         pgtable_t pgtable;
1018         struct list_head *lh;
1019
1020         assert_spin_locked(pmd_lockptr(mm, pmdp));
1021
1022         /* FIFO */
1023         pgtable = pmd_huge_pte(mm, pmdp);
1024         lh = (struct list_head *) pgtable;
1025         if (list_empty(lh))
1026                 pmd_huge_pte(mm, pmdp) = NULL;
1027         else {
1028                 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1029                 list_del(lh);
1030         }
1031         ptep = (pte_t *) pgtable;
1032         *ptep = __pte(0);
1033         ptep++;
1034         *ptep = __pte(0);
1035         return pgtable;
1036 }
1037
1038 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1039                                      unsigned long addr, pmd_t *pmdp)
1040 {
1041         pmd_t old_pmd;
1042         unsigned long old;
1043
1044         old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1045         old_pmd = __pmd(old);
1046         /*
1047          * Serialize against find_current_mm_pte which does lock-less
1048          * lookup in page tables with local interrupts disabled. For huge pages
1049          * it casts pmd_t to pte_t. Since format of pte_t is different from
1050          * pmd_t we want to prevent transit from pmd pointing to page table
1051          * to pmd pointing to huge page (and back) while interrupts are disabled.
1052          * We clear pmd to possibly replace it with page table pointer in
1053          * different code paths. So make sure we wait for the parallel
1054          * find_current_mm_pte to finish.
1055          */
1056         serialize_against_pte_lookup(mm);
1057         return old_pmd;
1058 }
1059
1060 int radix__has_transparent_hugepage(void)
1061 {
1062         /* For radix 2M at PMD level means thp */
1063         if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
1064                 return 1;
1065         return 0;
1066 }
1067 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1068
1069 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1070                                   pte_t entry, unsigned long address, int psize)
1071 {
1072         struct mm_struct *mm = vma->vm_mm;
1073         unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
1074                                               _PAGE_RW | _PAGE_EXEC);
1075
1076         unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1077         /*
1078          * To avoid NMMU hang while relaxing access, we need mark
1079          * the pte invalid in between.
1080          */
1081         if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
1082                 unsigned long old_pte, new_pte;
1083
1084                 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1085                 /*
1086                  * new value of pte
1087                  */
1088                 new_pte = old_pte | set;
1089                 radix__flush_tlb_page_psize(mm, address, psize);
1090                 __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1091         } else {
1092                 __radix_pte_update(ptep, 0, set);
1093                 /*
1094                  * Book3S does not require a TLB flush when relaxing access
1095                  * restrictions when the address space is not attached to a
1096                  * NMMU, because the core MMU will reload the pte after taking
1097                  * an access fault, which is defined by the architectue.
1098                  */
1099         }
1100         /* See ptesync comment in radix__set_pte_at */
1101 }
1102
1103 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1104                                     unsigned long addr, pte_t *ptep,
1105                                     pte_t old_pte, pte_t pte)
1106 {
1107         struct mm_struct *mm = vma->vm_mm;
1108
1109         /*
1110          * To avoid NMMU hang while relaxing access we need to flush the tlb before
1111          * we set the new value. We need to do this only for radix, because hash
1112          * translation does flush when updating the linux pte.
1113          */
1114         if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1115             (atomic_read(&mm->context.copros) > 0))
1116                 radix__flush_tlb_page(vma, addr);
1117
1118         set_pte_at(mm, addr, ptep, pte);
1119 }
1120
1121 int __init arch_ioremap_pud_supported(void)
1122 {
1123         /* HPT does not cope with large pages in the vmalloc area */
1124         return radix_enabled();
1125 }
1126
1127 int __init arch_ioremap_pmd_supported(void)
1128 {
1129         return radix_enabled();
1130 }
1131
1132 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1133 {
1134         return 0;
1135 }
1136
1137 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1138 {
1139         pte_t *ptep = (pte_t *)pud;
1140         pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1141
1142         if (!radix_enabled())
1143                 return 0;
1144
1145         set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1146
1147         return 1;
1148 }
1149
1150 int pud_clear_huge(pud_t *pud)
1151 {
1152         if (pud_huge(*pud)) {
1153                 pud_clear(pud);
1154                 return 1;
1155         }
1156
1157         return 0;
1158 }
1159
1160 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1161 {
1162         pmd_t *pmd;
1163         int i;
1164
1165         pmd = (pmd_t *)pud_page_vaddr(*pud);
1166         pud_clear(pud);
1167
1168         flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1169
1170         for (i = 0; i < PTRS_PER_PMD; i++) {
1171                 if (!pmd_none(pmd[i])) {
1172                         pte_t *pte;
1173                         pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1174
1175                         pte_free_kernel(&init_mm, pte);
1176                 }
1177         }
1178
1179         pmd_free(&init_mm, pmd);
1180
1181         return 1;
1182 }
1183
1184 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1185 {
1186         pte_t *ptep = (pte_t *)pmd;
1187         pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1188
1189         if (!radix_enabled())
1190                 return 0;
1191
1192         set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1193
1194         return 1;
1195 }
1196
1197 int pmd_clear_huge(pmd_t *pmd)
1198 {
1199         if (pmd_huge(*pmd)) {
1200                 pmd_clear(pmd);
1201                 return 1;
1202         }
1203
1204         return 0;
1205 }
1206
1207 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1208 {
1209         pte_t *pte;
1210
1211         pte = (pte_t *)pmd_page_vaddr(*pmd);
1212         pmd_clear(pmd);
1213
1214         flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1215
1216         pte_free_kernel(&init_mm, pte);
1217
1218         return 1;
1219 }
1220
1221 int radix__ioremap_range(unsigned long ea, phys_addr_t pa, unsigned long size,
1222                         pgprot_t prot, int nid)
1223 {
1224         if (likely(slab_is_available())) {
1225                 int err = ioremap_page_range(ea, ea + size, pa, prot);
1226                 if (err)
1227                         unmap_kernel_range(ea, size);
1228                 return err;
1229         } else {
1230                 unsigned long i;
1231
1232                 for (i = 0; i < size; i += PAGE_SIZE) {
1233                         int err = map_kernel_page(ea + i, pa + i, prot);
1234                         if (WARN_ON_ONCE(err)) /* Should clean up */
1235                                 return err;
1236                 }
1237                 return 0;
1238         }
1239 }
1240
1241 int __init arch_ioremap_p4d_supported(void)
1242 {
1243         return 0;
1244 }