Merge tag 'powerpc-5.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-microblaze.git] / arch / powerpc / lib / sstep.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Single-step support.
4  *
5  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6  */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17
18 extern char system_call_common[];
19 extern char system_call_vectored_emulate[];
20
21 #ifdef CONFIG_PPC64
22 /* Bits in SRR1 that are copied from MSR */
23 #define MSR_MASK        0xffffffff87c0ffffUL
24 #else
25 #define MSR_MASK        0x87c0ffff
26 #endif
27
28 /* Bits in XER */
29 #define XER_SO          0x80000000U
30 #define XER_OV          0x40000000U
31 #define XER_CA          0x20000000U
32 #define XER_OV32        0x00080000U
33 #define XER_CA32        0x00040000U
34
35 #ifdef CONFIG_VSX
36 #define VSX_REGISTER_XTP(rd)   ((((rd) & 1) << 5) | ((rd) & 0xfe))
37 #endif
38
39 #ifdef CONFIG_PPC_FPU
40 /*
41  * Functions in ldstfp.S
42  */
43 extern void get_fpr(int rn, double *p);
44 extern void put_fpr(int rn, const double *p);
45 extern void get_vr(int rn, __vector128 *p);
46 extern void put_vr(int rn, __vector128 *p);
47 extern void load_vsrn(int vsr, const void *p);
48 extern void store_vsrn(int vsr, void *p);
49 extern void conv_sp_to_dp(const float *sp, double *dp);
50 extern void conv_dp_to_sp(const double *dp, float *sp);
51 #endif
52
53 #ifdef __powerpc64__
54 /*
55  * Functions in quad.S
56  */
57 extern int do_lq(unsigned long ea, unsigned long *regs);
58 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
59 extern int do_lqarx(unsigned long ea, unsigned long *regs);
60 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
61                     unsigned int *crp);
62 #endif
63
64 #ifdef __LITTLE_ENDIAN__
65 #define IS_LE   1
66 #define IS_BE   0
67 #else
68 #define IS_LE   0
69 #define IS_BE   1
70 #endif
71
72 /*
73  * Emulate the truncation of 64 bit values in 32-bit mode.
74  */
75 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
76                                                         unsigned long val)
77 {
78         if ((msr & MSR_64BIT) == 0)
79                 val &= 0xffffffffUL;
80         return val;
81 }
82
83 /*
84  * Determine whether a conditional branch instruction would branch.
85  */
86 static nokprobe_inline int branch_taken(unsigned int instr,
87                                         const struct pt_regs *regs,
88                                         struct instruction_op *op)
89 {
90         unsigned int bo = (instr >> 21) & 0x1f;
91         unsigned int bi;
92
93         if ((bo & 4) == 0) {
94                 /* decrement counter */
95                 op->type |= DECCTR;
96                 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
97                         return 0;
98         }
99         if ((bo & 0x10) == 0) {
100                 /* check bit from CR */
101                 bi = (instr >> 16) & 0x1f;
102                 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
103                         return 0;
104         }
105         return 1;
106 }
107
108 static nokprobe_inline long address_ok(struct pt_regs *regs,
109                                        unsigned long ea, int nb)
110 {
111         if (!user_mode(regs))
112                 return 1;
113         if (access_ok((void __user *)ea, nb))
114                 return 1;
115         if (access_ok((void __user *)ea, 1))
116                 /* Access overlaps the end of the user region */
117                 regs->dar = TASK_SIZE_MAX - 1;
118         else
119                 regs->dar = ea;
120         return 0;
121 }
122
123 /*
124  * Calculate effective address for a D-form instruction
125  */
126 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
127                                               const struct pt_regs *regs)
128 {
129         int ra;
130         unsigned long ea;
131
132         ra = (instr >> 16) & 0x1f;
133         ea = (signed short) instr;              /* sign-extend */
134         if (ra)
135                 ea += regs->gpr[ra];
136
137         return ea;
138 }
139
140 #ifdef __powerpc64__
141 /*
142  * Calculate effective address for a DS-form instruction
143  */
144 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
145                                                const struct pt_regs *regs)
146 {
147         int ra;
148         unsigned long ea;
149
150         ra = (instr >> 16) & 0x1f;
151         ea = (signed short) (instr & ~3);       /* sign-extend */
152         if (ra)
153                 ea += regs->gpr[ra];
154
155         return ea;
156 }
157
158 /*
159  * Calculate effective address for a DQ-form instruction
160  */
161 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
162                                                const struct pt_regs *regs)
163 {
164         int ra;
165         unsigned long ea;
166
167         ra = (instr >> 16) & 0x1f;
168         ea = (signed short) (instr & ~0xf);     /* sign-extend */
169         if (ra)
170                 ea += regs->gpr[ra];
171
172         return ea;
173 }
174 #endif /* __powerpc64 */
175
176 /*
177  * Calculate effective address for an X-form instruction
178  */
179 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
180                                               const struct pt_regs *regs)
181 {
182         int ra, rb;
183         unsigned long ea;
184
185         ra = (instr >> 16) & 0x1f;
186         rb = (instr >> 11) & 0x1f;
187         ea = regs->gpr[rb];
188         if (ra)
189                 ea += regs->gpr[ra];
190
191         return ea;
192 }
193
194 /*
195  * Calculate effective address for a MLS:D-form / 8LS:D-form
196  * prefixed instruction
197  */
198 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
199                                                   unsigned int suffix,
200                                                   const struct pt_regs *regs)
201 {
202         int ra, prefix_r;
203         unsigned int  dd;
204         unsigned long ea, d0, d1, d;
205
206         prefix_r = GET_PREFIX_R(instr);
207         ra = GET_PREFIX_RA(suffix);
208
209         d0 = instr & 0x3ffff;
210         d1 = suffix & 0xffff;
211         d = (d0 << 16) | d1;
212
213         /*
214          * sign extend a 34 bit number
215          */
216         dd = (unsigned int)(d >> 2);
217         ea = (signed int)dd;
218         ea = (ea << 2) | (d & 0x3);
219
220         if (!prefix_r && ra)
221                 ea += regs->gpr[ra];
222         else if (!prefix_r && !ra)
223                 ; /* Leave ea as is */
224         else if (prefix_r)
225                 ea += regs->nip;
226
227         /*
228          * (prefix_r && ra) is an invalid form. Should already be
229          * checked for by caller!
230          */
231
232         return ea;
233 }
234
235 /*
236  * Return the largest power of 2, not greater than sizeof(unsigned long),
237  * such that x is a multiple of it.
238  */
239 static nokprobe_inline unsigned long max_align(unsigned long x)
240 {
241         x |= sizeof(unsigned long);
242         return x & -x;          /* isolates rightmost bit */
243 }
244
245 static nokprobe_inline unsigned long byterev_2(unsigned long x)
246 {
247         return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
248 }
249
250 static nokprobe_inline unsigned long byterev_4(unsigned long x)
251 {
252         return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
253                 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
254 }
255
256 #ifdef __powerpc64__
257 static nokprobe_inline unsigned long byterev_8(unsigned long x)
258 {
259         return (byterev_4(x) << 32) | byterev_4(x >> 32);
260 }
261 #endif
262
263 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
264 {
265         switch (nb) {
266         case 2:
267                 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
268                 break;
269         case 4:
270                 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
271                 break;
272 #ifdef __powerpc64__
273         case 8:
274                 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
275                 break;
276         case 16: {
277                 unsigned long *up = (unsigned long *)ptr;
278                 unsigned long tmp;
279                 tmp = byterev_8(up[0]);
280                 up[0] = byterev_8(up[1]);
281                 up[1] = tmp;
282                 break;
283         }
284         case 32: {
285                 unsigned long *up = (unsigned long *)ptr;
286                 unsigned long tmp;
287
288                 tmp = byterev_8(up[0]);
289                 up[0] = byterev_8(up[3]);
290                 up[3] = tmp;
291                 tmp = byterev_8(up[2]);
292                 up[2] = byterev_8(up[1]);
293                 up[1] = tmp;
294                 break;
295         }
296
297 #endif
298         default:
299                 WARN_ON_ONCE(1);
300         }
301 }
302
303 static __always_inline int
304 __read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
305 {
306         unsigned long x = 0;
307
308         switch (nb) {
309         case 1:
310                 unsafe_get_user(x, (unsigned char __user *)ea, Efault);
311                 break;
312         case 2:
313                 unsafe_get_user(x, (unsigned short __user *)ea, Efault);
314                 break;
315         case 4:
316                 unsafe_get_user(x, (unsigned int __user *)ea, Efault);
317                 break;
318 #ifdef __powerpc64__
319         case 8:
320                 unsafe_get_user(x, (unsigned long __user *)ea, Efault);
321                 break;
322 #endif
323         }
324         *dest = x;
325         return 0;
326
327 Efault:
328         regs->dar = ea;
329         return -EFAULT;
330 }
331
332 static nokprobe_inline int
333 read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
334 {
335         int err;
336
337         if (is_kernel_addr(ea))
338                 return __read_mem_aligned(dest, ea, nb, regs);
339
340         if (user_read_access_begin((void __user *)ea, nb)) {
341                 err = __read_mem_aligned(dest, ea, nb, regs);
342                 user_read_access_end();
343         } else {
344                 err = -EFAULT;
345                 regs->dar = ea;
346         }
347
348         return err;
349 }
350
351 /*
352  * Copy from userspace to a buffer, using the largest possible
353  * aligned accesses, up to sizeof(long).
354  */
355 static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
356 {
357         int c;
358
359         for (; nb > 0; nb -= c) {
360                 c = max_align(ea);
361                 if (c > nb)
362                         c = max_align(nb);
363                 switch (c) {
364                 case 1:
365                         unsafe_get_user(*dest, (u8 __user *)ea, Efault);
366                         break;
367                 case 2:
368                         unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault);
369                         break;
370                 case 4:
371                         unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault);
372                         break;
373 #ifdef __powerpc64__
374                 case 8:
375                         unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault);
376                         break;
377 #endif
378                 }
379                 dest += c;
380                 ea += c;
381         }
382         return 0;
383
384 Efault:
385         regs->dar = ea;
386         return -EFAULT;
387 }
388
389 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
390 {
391         int err;
392
393         if (is_kernel_addr(ea))
394                 return __copy_mem_in(dest, ea, nb, regs);
395
396         if (user_read_access_begin((void __user *)ea, nb)) {
397                 err = __copy_mem_in(dest, ea, nb, regs);
398                 user_read_access_end();
399         } else {
400                 err = -EFAULT;
401                 regs->dar = ea;
402         }
403
404         return err;
405 }
406
407 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
408                                               unsigned long ea, int nb,
409                                               struct pt_regs *regs)
410 {
411         union {
412                 unsigned long ul;
413                 u8 b[sizeof(unsigned long)];
414         } u;
415         int i;
416         int err;
417
418         u.ul = 0;
419         i = IS_BE ? sizeof(unsigned long) - nb : 0;
420         err = copy_mem_in(&u.b[i], ea, nb, regs);
421         if (!err)
422                 *dest = u.ul;
423         return err;
424 }
425
426 /*
427  * Read memory at address ea for nb bytes, return 0 for success
428  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
429  * If nb < sizeof(long), the result is right-justified on BE systems.
430  */
431 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
432                               struct pt_regs *regs)
433 {
434         if (!address_ok(regs, ea, nb))
435                 return -EFAULT;
436         if ((ea & (nb - 1)) == 0)
437                 return read_mem_aligned(dest, ea, nb, regs);
438         return read_mem_unaligned(dest, ea, nb, regs);
439 }
440 NOKPROBE_SYMBOL(read_mem);
441
442 static __always_inline int
443 __write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
444 {
445         switch (nb) {
446         case 1:
447                 unsafe_put_user(val, (unsigned char __user *)ea, Efault);
448                 break;
449         case 2:
450                 unsafe_put_user(val, (unsigned short __user *)ea, Efault);
451                 break;
452         case 4:
453                 unsafe_put_user(val, (unsigned int __user *)ea, Efault);
454                 break;
455 #ifdef __powerpc64__
456         case 8:
457                 unsafe_put_user(val, (unsigned long __user *)ea, Efault);
458                 break;
459 #endif
460         }
461         return 0;
462
463 Efault:
464         regs->dar = ea;
465         return -EFAULT;
466 }
467
468 static nokprobe_inline int
469 write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
470 {
471         int err;
472
473         if (is_kernel_addr(ea))
474                 return __write_mem_aligned(val, ea, nb, regs);
475
476         if (user_write_access_begin((void __user *)ea, nb)) {
477                 err = __write_mem_aligned(val, ea, nb, regs);
478                 user_write_access_end();
479         } else {
480                 err = -EFAULT;
481                 regs->dar = ea;
482         }
483
484         return err;
485 }
486
487 /*
488  * Copy from a buffer to userspace, using the largest possible
489  * aligned accesses, up to sizeof(long).
490  */
491 static nokprobe_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
492 {
493         int c;
494
495         for (; nb > 0; nb -= c) {
496                 c = max_align(ea);
497                 if (c > nb)
498                         c = max_align(nb);
499                 switch (c) {
500                 case 1:
501                         unsafe_put_user(*dest, (u8 __user *)ea, Efault);
502                         break;
503                 case 2:
504                         unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault);
505                         break;
506                 case 4:
507                         unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault);
508                         break;
509 #ifdef __powerpc64__
510                 case 8:
511                         unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault);
512                         break;
513 #endif
514                 }
515                 dest += c;
516                 ea += c;
517         }
518         return 0;
519
520 Efault:
521         regs->dar = ea;
522         return -EFAULT;
523 }
524
525 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
526 {
527         int err;
528
529         if (is_kernel_addr(ea))
530                 return __copy_mem_out(dest, ea, nb, regs);
531
532         if (user_write_access_begin((void __user *)ea, nb)) {
533                 err = __copy_mem_out(dest, ea, nb, regs);
534                 user_write_access_end();
535         } else {
536                 err = -EFAULT;
537                 regs->dar = ea;
538         }
539
540         return err;
541 }
542
543 static nokprobe_inline int write_mem_unaligned(unsigned long val,
544                                                unsigned long ea, int nb,
545                                                struct pt_regs *regs)
546 {
547         union {
548                 unsigned long ul;
549                 u8 b[sizeof(unsigned long)];
550         } u;
551         int i;
552
553         u.ul = val;
554         i = IS_BE ? sizeof(unsigned long) - nb : 0;
555         return copy_mem_out(&u.b[i], ea, nb, regs);
556 }
557
558 /*
559  * Write memory at address ea for nb bytes, return 0 for success
560  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
561  */
562 static int write_mem(unsigned long val, unsigned long ea, int nb,
563                                struct pt_regs *regs)
564 {
565         if (!address_ok(regs, ea, nb))
566                 return -EFAULT;
567         if ((ea & (nb - 1)) == 0)
568                 return write_mem_aligned(val, ea, nb, regs);
569         return write_mem_unaligned(val, ea, nb, regs);
570 }
571 NOKPROBE_SYMBOL(write_mem);
572
573 #ifdef CONFIG_PPC_FPU
574 /*
575  * These access either the real FP register or the image in the
576  * thread_struct, depending on regs->msr & MSR_FP.
577  */
578 static int do_fp_load(struct instruction_op *op, unsigned long ea,
579                       struct pt_regs *regs, bool cross_endian)
580 {
581         int err, rn, nb;
582         union {
583                 int i;
584                 unsigned int u;
585                 float f;
586                 double d[2];
587                 unsigned long l[2];
588                 u8 b[2 * sizeof(double)];
589         } u;
590
591         nb = GETSIZE(op->type);
592         if (!address_ok(regs, ea, nb))
593                 return -EFAULT;
594         rn = op->reg;
595         err = copy_mem_in(u.b, ea, nb, regs);
596         if (err)
597                 return err;
598         if (unlikely(cross_endian)) {
599                 do_byte_reverse(u.b, min(nb, 8));
600                 if (nb == 16)
601                         do_byte_reverse(&u.b[8], 8);
602         }
603         preempt_disable();
604         if (nb == 4) {
605                 if (op->type & FPCONV)
606                         conv_sp_to_dp(&u.f, &u.d[0]);
607                 else if (op->type & SIGNEXT)
608                         u.l[0] = u.i;
609                 else
610                         u.l[0] = u.u;
611         }
612         if (regs->msr & MSR_FP)
613                 put_fpr(rn, &u.d[0]);
614         else
615                 current->thread.TS_FPR(rn) = u.l[0];
616         if (nb == 16) {
617                 /* lfdp */
618                 rn |= 1;
619                 if (regs->msr & MSR_FP)
620                         put_fpr(rn, &u.d[1]);
621                 else
622                         current->thread.TS_FPR(rn) = u.l[1];
623         }
624         preempt_enable();
625         return 0;
626 }
627 NOKPROBE_SYMBOL(do_fp_load);
628
629 static int do_fp_store(struct instruction_op *op, unsigned long ea,
630                        struct pt_regs *regs, bool cross_endian)
631 {
632         int rn, nb;
633         union {
634                 unsigned int u;
635                 float f;
636                 double d[2];
637                 unsigned long l[2];
638                 u8 b[2 * sizeof(double)];
639         } u;
640
641         nb = GETSIZE(op->type);
642         if (!address_ok(regs, ea, nb))
643                 return -EFAULT;
644         rn = op->reg;
645         preempt_disable();
646         if (regs->msr & MSR_FP)
647                 get_fpr(rn, &u.d[0]);
648         else
649                 u.l[0] = current->thread.TS_FPR(rn);
650         if (nb == 4) {
651                 if (op->type & FPCONV)
652                         conv_dp_to_sp(&u.d[0], &u.f);
653                 else
654                         u.u = u.l[0];
655         }
656         if (nb == 16) {
657                 rn |= 1;
658                 if (regs->msr & MSR_FP)
659                         get_fpr(rn, &u.d[1]);
660                 else
661                         u.l[1] = current->thread.TS_FPR(rn);
662         }
663         preempt_enable();
664         if (unlikely(cross_endian)) {
665                 do_byte_reverse(u.b, min(nb, 8));
666                 if (nb == 16)
667                         do_byte_reverse(&u.b[8], 8);
668         }
669         return copy_mem_out(u.b, ea, nb, regs);
670 }
671 NOKPROBE_SYMBOL(do_fp_store);
672 #endif
673
674 #ifdef CONFIG_ALTIVEC
675 /* For Altivec/VMX, no need to worry about alignment */
676 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
677                                        int size, struct pt_regs *regs,
678                                        bool cross_endian)
679 {
680         int err;
681         union {
682                 __vector128 v;
683                 u8 b[sizeof(__vector128)];
684         } u = {};
685
686         if (!address_ok(regs, ea & ~0xfUL, 16))
687                 return -EFAULT;
688         /* align to multiple of size */
689         ea &= ~(size - 1);
690         err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
691         if (err)
692                 return err;
693         if (unlikely(cross_endian))
694                 do_byte_reverse(&u.b[ea & 0xf], size);
695         preempt_disable();
696         if (regs->msr & MSR_VEC)
697                 put_vr(rn, &u.v);
698         else
699                 current->thread.vr_state.vr[rn] = u.v;
700         preempt_enable();
701         return 0;
702 }
703
704 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
705                                         int size, struct pt_regs *regs,
706                                         bool cross_endian)
707 {
708         union {
709                 __vector128 v;
710                 u8 b[sizeof(__vector128)];
711         } u;
712
713         if (!address_ok(regs, ea & ~0xfUL, 16))
714                 return -EFAULT;
715         /* align to multiple of size */
716         ea &= ~(size - 1);
717
718         preempt_disable();
719         if (regs->msr & MSR_VEC)
720                 get_vr(rn, &u.v);
721         else
722                 u.v = current->thread.vr_state.vr[rn];
723         preempt_enable();
724         if (unlikely(cross_endian))
725                 do_byte_reverse(&u.b[ea & 0xf], size);
726         return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
727 }
728 #endif /* CONFIG_ALTIVEC */
729
730 #ifdef __powerpc64__
731 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
732                                       int reg, bool cross_endian)
733 {
734         int err;
735
736         if (!address_ok(regs, ea, 16))
737                 return -EFAULT;
738         /* if aligned, should be atomic */
739         if ((ea & 0xf) == 0) {
740                 err = do_lq(ea, &regs->gpr[reg]);
741         } else {
742                 err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
743                 if (!err)
744                         err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
745         }
746         if (!err && unlikely(cross_endian))
747                 do_byte_reverse(&regs->gpr[reg], 16);
748         return err;
749 }
750
751 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
752                                        int reg, bool cross_endian)
753 {
754         int err;
755         unsigned long vals[2];
756
757         if (!address_ok(regs, ea, 16))
758                 return -EFAULT;
759         vals[0] = regs->gpr[reg];
760         vals[1] = regs->gpr[reg + 1];
761         if (unlikely(cross_endian))
762                 do_byte_reverse(vals, 16);
763
764         /* if aligned, should be atomic */
765         if ((ea & 0xf) == 0)
766                 return do_stq(ea, vals[0], vals[1]);
767
768         err = write_mem(vals[IS_LE], ea, 8, regs);
769         if (!err)
770                 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
771         return err;
772 }
773 #endif /* __powerpc64 */
774
775 #ifdef CONFIG_VSX
776 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
777                       const void *mem, bool rev)
778 {
779         int size, read_size;
780         int i, j;
781         const unsigned int *wp;
782         const unsigned short *hp;
783         const unsigned char *bp;
784
785         size = GETSIZE(op->type);
786         reg->d[0] = reg->d[1] = 0;
787
788         switch (op->element_size) {
789         case 32:
790                 /* [p]lxvp[x] */
791         case 16:
792                 /* whole vector; lxv[x] or lxvl[l] */
793                 if (size == 0)
794                         break;
795                 memcpy(reg, mem, size);
796                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
797                         rev = !rev;
798                 if (rev)
799                         do_byte_reverse(reg, size);
800                 break;
801         case 8:
802                 /* scalar loads, lxvd2x, lxvdsx */
803                 read_size = (size >= 8) ? 8 : size;
804                 i = IS_LE ? 8 : 8 - read_size;
805                 memcpy(&reg->b[i], mem, read_size);
806                 if (rev)
807                         do_byte_reverse(&reg->b[i], 8);
808                 if (size < 8) {
809                         if (op->type & SIGNEXT) {
810                                 /* size == 4 is the only case here */
811                                 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
812                         } else if (op->vsx_flags & VSX_FPCONV) {
813                                 preempt_disable();
814                                 conv_sp_to_dp(&reg->fp[1 + IS_LE],
815                                               &reg->dp[IS_LE]);
816                                 preempt_enable();
817                         }
818                 } else {
819                         if (size == 16) {
820                                 unsigned long v = *(unsigned long *)(mem + 8);
821                                 reg->d[IS_BE] = !rev ? v : byterev_8(v);
822                         } else if (op->vsx_flags & VSX_SPLAT)
823                                 reg->d[IS_BE] = reg->d[IS_LE];
824                 }
825                 break;
826         case 4:
827                 /* lxvw4x, lxvwsx */
828                 wp = mem;
829                 for (j = 0; j < size / 4; ++j) {
830                         i = IS_LE ? 3 - j : j;
831                         reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
832                 }
833                 if (op->vsx_flags & VSX_SPLAT) {
834                         u32 val = reg->w[IS_LE ? 3 : 0];
835                         for (; j < 4; ++j) {
836                                 i = IS_LE ? 3 - j : j;
837                                 reg->w[i] = val;
838                         }
839                 }
840                 break;
841         case 2:
842                 /* lxvh8x */
843                 hp = mem;
844                 for (j = 0; j < size / 2; ++j) {
845                         i = IS_LE ? 7 - j : j;
846                         reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
847                 }
848                 break;
849         case 1:
850                 /* lxvb16x */
851                 bp = mem;
852                 for (j = 0; j < size; ++j) {
853                         i = IS_LE ? 15 - j : j;
854                         reg->b[i] = *bp++;
855                 }
856                 break;
857         }
858 }
859 EXPORT_SYMBOL_GPL(emulate_vsx_load);
860 NOKPROBE_SYMBOL(emulate_vsx_load);
861
862 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
863                        void *mem, bool rev)
864 {
865         int size, write_size;
866         int i, j;
867         union vsx_reg buf;
868         unsigned int *wp;
869         unsigned short *hp;
870         unsigned char *bp;
871
872         size = GETSIZE(op->type);
873
874         switch (op->element_size) {
875         case 32:
876                 /* [p]stxvp[x] */
877                 if (size == 0)
878                         break;
879                 if (rev) {
880                         /* reverse 32 bytes */
881                         union vsx_reg buf32[2];
882                         buf32[0].d[0] = byterev_8(reg[1].d[1]);
883                         buf32[0].d[1] = byterev_8(reg[1].d[0]);
884                         buf32[1].d[0] = byterev_8(reg[0].d[1]);
885                         buf32[1].d[1] = byterev_8(reg[0].d[0]);
886                         memcpy(mem, buf32, size);
887                 } else {
888                         memcpy(mem, reg, size);
889                 }
890                 break;
891         case 16:
892                 /* stxv, stxvx, stxvl, stxvll */
893                 if (size == 0)
894                         break;
895                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
896                         rev = !rev;
897                 if (rev) {
898                         /* reverse 16 bytes */
899                         buf.d[0] = byterev_8(reg->d[1]);
900                         buf.d[1] = byterev_8(reg->d[0]);
901                         reg = &buf;
902                 }
903                 memcpy(mem, reg, size);
904                 break;
905         case 8:
906                 /* scalar stores, stxvd2x */
907                 write_size = (size >= 8) ? 8 : size;
908                 i = IS_LE ? 8 : 8 - write_size;
909                 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
910                         buf.d[0] = buf.d[1] = 0;
911                         preempt_disable();
912                         conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
913                         preempt_enable();
914                         reg = &buf;
915                 }
916                 memcpy(mem, &reg->b[i], write_size);
917                 if (size == 16)
918                         memcpy(mem + 8, &reg->d[IS_BE], 8);
919                 if (unlikely(rev)) {
920                         do_byte_reverse(mem, write_size);
921                         if (size == 16)
922                                 do_byte_reverse(mem + 8, 8);
923                 }
924                 break;
925         case 4:
926                 /* stxvw4x */
927                 wp = mem;
928                 for (j = 0; j < size / 4; ++j) {
929                         i = IS_LE ? 3 - j : j;
930                         *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
931                 }
932                 break;
933         case 2:
934                 /* stxvh8x */
935                 hp = mem;
936                 for (j = 0; j < size / 2; ++j) {
937                         i = IS_LE ? 7 - j : j;
938                         *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
939                 }
940                 break;
941         case 1:
942                 /* stvxb16x */
943                 bp = mem;
944                 for (j = 0; j < size; ++j) {
945                         i = IS_LE ? 15 - j : j;
946                         *bp++ = reg->b[i];
947                 }
948                 break;
949         }
950 }
951 EXPORT_SYMBOL_GPL(emulate_vsx_store);
952 NOKPROBE_SYMBOL(emulate_vsx_store);
953
954 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
955                                        unsigned long ea, struct pt_regs *regs,
956                                        bool cross_endian)
957 {
958         int reg = op->reg;
959         int i, j, nr_vsx_regs;
960         u8 mem[32];
961         union vsx_reg buf[2];
962         int size = GETSIZE(op->type);
963
964         if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
965                 return -EFAULT;
966
967         nr_vsx_regs = max(1ul, size / sizeof(__vector128));
968         emulate_vsx_load(op, buf, mem, cross_endian);
969         preempt_disable();
970         if (reg < 32) {
971                 /* FP regs + extensions */
972                 if (regs->msr & MSR_FP) {
973                         for (i = 0; i < nr_vsx_regs; i++) {
974                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
975                                 load_vsrn(reg + i, &buf[j].v);
976                         }
977                 } else {
978                         for (i = 0; i < nr_vsx_regs; i++) {
979                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
980                                 current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
981                                 current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
982                         }
983                 }
984         } else {
985                 if (regs->msr & MSR_VEC) {
986                         for (i = 0; i < nr_vsx_regs; i++) {
987                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
988                                 load_vsrn(reg + i, &buf[j].v);
989                         }
990                 } else {
991                         for (i = 0; i < nr_vsx_regs; i++) {
992                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
993                                 current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
994                         }
995                 }
996         }
997         preempt_enable();
998         return 0;
999 }
1000
1001 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
1002                                         unsigned long ea, struct pt_regs *regs,
1003                                         bool cross_endian)
1004 {
1005         int reg = op->reg;
1006         int i, j, nr_vsx_regs;
1007         u8 mem[32];
1008         union vsx_reg buf[2];
1009         int size = GETSIZE(op->type);
1010
1011         if (!address_ok(regs, ea, size))
1012                 return -EFAULT;
1013
1014         nr_vsx_regs = max(1ul, size / sizeof(__vector128));
1015         preempt_disable();
1016         if (reg < 32) {
1017                 /* FP regs + extensions */
1018                 if (regs->msr & MSR_FP) {
1019                         for (i = 0; i < nr_vsx_regs; i++) {
1020                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1021                                 store_vsrn(reg + i, &buf[j].v);
1022                         }
1023                 } else {
1024                         for (i = 0; i < nr_vsx_regs; i++) {
1025                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1026                                 buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
1027                                 buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
1028                         }
1029                 }
1030         } else {
1031                 if (regs->msr & MSR_VEC) {
1032                         for (i = 0; i < nr_vsx_regs; i++) {
1033                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1034                                 store_vsrn(reg + i, &buf[j].v);
1035                         }
1036                 } else {
1037                         for (i = 0; i < nr_vsx_regs; i++) {
1038                                 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1039                                 buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
1040                         }
1041                 }
1042         }
1043         preempt_enable();
1044         emulate_vsx_store(op, buf, mem, cross_endian);
1045         return  copy_mem_out(mem, ea, size, regs);
1046 }
1047 #endif /* CONFIG_VSX */
1048
1049 static int __emulate_dcbz(unsigned long ea)
1050 {
1051         unsigned long i;
1052         unsigned long size = l1_dcache_bytes();
1053
1054         for (i = 0; i < size; i += sizeof(long))
1055                 unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault);
1056
1057         return 0;
1058
1059 Efault:
1060         return -EFAULT;
1061 }
1062
1063 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
1064 {
1065         int err;
1066         unsigned long size = l1_dcache_bytes();
1067
1068         ea = truncate_if_32bit(regs->msr, ea);
1069         ea &= ~(size - 1);
1070         if (!address_ok(regs, ea, size))
1071                 return -EFAULT;
1072
1073         if (is_kernel_addr(ea)) {
1074                 err = __emulate_dcbz(ea);
1075         } else if (user_write_access_begin((void __user *)ea, size)) {
1076                 err = __emulate_dcbz(ea);
1077                 user_write_access_end();
1078         } else {
1079                 err = -EFAULT;
1080         }
1081
1082         if (err)
1083                 regs->dar = ea;
1084
1085
1086         return err;
1087 }
1088 NOKPROBE_SYMBOL(emulate_dcbz);
1089
1090 #define __put_user_asmx(x, addr, err, op, cr)           \
1091         __asm__ __volatile__(                           \
1092                 ".machine push\n"                       \
1093                 ".machine power8\n"                     \
1094                 "1:     " op " %2,0,%3\n"               \
1095                 ".machine pop\n"                        \
1096                 "       mfcr    %1\n"                   \
1097                 "2:\n"                                  \
1098                 ".section .fixup,\"ax\"\n"              \
1099                 "3:     li      %0,%4\n"                \
1100                 "       b       2b\n"                   \
1101                 ".previous\n"                           \
1102                 EX_TABLE(1b, 3b)                        \
1103                 : "=r" (err), "=r" (cr)                 \
1104                 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1105
1106 #define __get_user_asmx(x, addr, err, op)               \
1107         __asm__ __volatile__(                           \
1108                 ".machine push\n"                       \
1109                 ".machine power8\n"                     \
1110                 "1:     "op" %1,0,%2\n"                 \
1111                 ".machine pop\n"                        \
1112                 "2:\n"                                  \
1113                 ".section .fixup,\"ax\"\n"              \
1114                 "3:     li      %0,%3\n"                \
1115                 "       b       2b\n"                   \
1116                 ".previous\n"                           \
1117                 EX_TABLE(1b, 3b)                        \
1118                 : "=r" (err), "=r" (x)                  \
1119                 : "r" (addr), "i" (-EFAULT), "0" (err))
1120
1121 #define __cacheop_user_asmx(addr, err, op)              \
1122         __asm__ __volatile__(                           \
1123                 "1:     "op" 0,%1\n"                    \
1124                 "2:\n"                                  \
1125                 ".section .fixup,\"ax\"\n"              \
1126                 "3:     li      %0,%3\n"                \
1127                 "       b       2b\n"                   \
1128                 ".previous\n"                           \
1129                 EX_TABLE(1b, 3b)                        \
1130                 : "=r" (err)                            \
1131                 : "r" (addr), "i" (-EFAULT), "0" (err))
1132
1133 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1134                                     struct instruction_op *op)
1135 {
1136         long val = op->val;
1137
1138         op->type |= SETCC;
1139         op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1140         if (!(regs->msr & MSR_64BIT))
1141                 val = (int) val;
1142         if (val < 0)
1143                 op->ccval |= 0x80000000;
1144         else if (val > 0)
1145                 op->ccval |= 0x40000000;
1146         else
1147                 op->ccval |= 0x20000000;
1148 }
1149
1150 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1151 {
1152         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1153                 if (val)
1154                         op->xerval |= XER_CA32;
1155                 else
1156                         op->xerval &= ~XER_CA32;
1157         }
1158 }
1159
1160 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1161                                      struct instruction_op *op, int rd,
1162                                      unsigned long val1, unsigned long val2,
1163                                      unsigned long carry_in)
1164 {
1165         unsigned long val = val1 + val2;
1166
1167         if (carry_in)
1168                 ++val;
1169         op->type = COMPUTE + SETREG + SETXER;
1170         op->reg = rd;
1171         op->val = val;
1172         val = truncate_if_32bit(regs->msr, val);
1173         val1 = truncate_if_32bit(regs->msr, val1);
1174         op->xerval = regs->xer;
1175         if (val < val1 || (carry_in && val == val1))
1176                 op->xerval |= XER_CA;
1177         else
1178                 op->xerval &= ~XER_CA;
1179
1180         set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1181                         (carry_in && (unsigned int)val == (unsigned int)val1));
1182 }
1183
1184 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1185                                           struct instruction_op *op,
1186                                           long v1, long v2, int crfld)
1187 {
1188         unsigned int crval, shift;
1189
1190         op->type = COMPUTE + SETCC;
1191         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1192         if (v1 < v2)
1193                 crval |= 8;
1194         else if (v1 > v2)
1195                 crval |= 4;
1196         else
1197                 crval |= 2;
1198         shift = (7 - crfld) * 4;
1199         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1200 }
1201
1202 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1203                                             struct instruction_op *op,
1204                                             unsigned long v1,
1205                                             unsigned long v2, int crfld)
1206 {
1207         unsigned int crval, shift;
1208
1209         op->type = COMPUTE + SETCC;
1210         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1211         if (v1 < v2)
1212                 crval |= 8;
1213         else if (v1 > v2)
1214                 crval |= 4;
1215         else
1216                 crval |= 2;
1217         shift = (7 - crfld) * 4;
1218         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1219 }
1220
1221 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1222                                     struct instruction_op *op,
1223                                     unsigned long v1, unsigned long v2)
1224 {
1225         unsigned long long out_val, mask;
1226         int i;
1227
1228         out_val = 0;
1229         for (i = 0; i < 8; i++) {
1230                 mask = 0xffUL << (i * 8);
1231                 if ((v1 & mask) == (v2 & mask))
1232                         out_val |= mask;
1233         }
1234         op->val = out_val;
1235 }
1236
1237 /*
1238  * The size parameter is used to adjust the equivalent popcnt instruction.
1239  * popcntb = 8, popcntw = 32, popcntd = 64
1240  */
1241 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1242                                       struct instruction_op *op,
1243                                       unsigned long v1, int size)
1244 {
1245         unsigned long long out = v1;
1246
1247         out -= (out >> 1) & 0x5555555555555555ULL;
1248         out = (0x3333333333333333ULL & out) +
1249               (0x3333333333333333ULL & (out >> 2));
1250         out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1251
1252         if (size == 8) {        /* popcntb */
1253                 op->val = out;
1254                 return;
1255         }
1256         out += out >> 8;
1257         out += out >> 16;
1258         if (size == 32) {       /* popcntw */
1259                 op->val = out & 0x0000003f0000003fULL;
1260                 return;
1261         }
1262
1263         out = (out + (out >> 32)) & 0x7f;
1264         op->val = out;  /* popcntd */
1265 }
1266
1267 #ifdef CONFIG_PPC64
1268 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1269                                       struct instruction_op *op,
1270                                       unsigned long v1, unsigned long v2)
1271 {
1272         unsigned char perm, idx;
1273         unsigned int i;
1274
1275         perm = 0;
1276         for (i = 0; i < 8; i++) {
1277                 idx = (v1 >> (i * 8)) & 0xff;
1278                 if (idx < 64)
1279                         if (v2 & PPC_BIT(idx))
1280                                 perm |= 1 << i;
1281         }
1282         op->val = perm;
1283 }
1284 #endif /* CONFIG_PPC64 */
1285 /*
1286  * The size parameter adjusts the equivalent prty instruction.
1287  * prtyw = 32, prtyd = 64
1288  */
1289 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1290                                     struct instruction_op *op,
1291                                     unsigned long v, int size)
1292 {
1293         unsigned long long res = v ^ (v >> 8);
1294
1295         res ^= res >> 16;
1296         if (size == 32) {               /* prtyw */
1297                 op->val = res & 0x0000000100000001ULL;
1298                 return;
1299         }
1300
1301         res ^= res >> 32;
1302         op->val = res & 1;      /*prtyd */
1303 }
1304
1305 static nokprobe_inline int trap_compare(long v1, long v2)
1306 {
1307         int ret = 0;
1308
1309         if (v1 < v2)
1310                 ret |= 0x10;
1311         else if (v1 > v2)
1312                 ret |= 0x08;
1313         else
1314                 ret |= 0x04;
1315         if ((unsigned long)v1 < (unsigned long)v2)
1316                 ret |= 0x02;
1317         else if ((unsigned long)v1 > (unsigned long)v2)
1318                 ret |= 0x01;
1319         return ret;
1320 }
1321
1322 /*
1323  * Elements of 32-bit rotate and mask instructions.
1324  */
1325 #define MASK32(mb, me)  ((0xffffffffUL >> (mb)) + \
1326                          ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1327 #ifdef __powerpc64__
1328 #define MASK64_L(mb)    (~0UL >> (mb))
1329 #define MASK64_R(me)    ((signed long)-0x8000000000000000L >> (me))
1330 #define MASK64(mb, me)  (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1331 #define DATA32(x)       (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1332 #else
1333 #define DATA32(x)       (x)
1334 #endif
1335 #define ROTATE(x, n)    ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1336
1337 /*
1338  * Decode an instruction, and return information about it in *op
1339  * without changing *regs.
1340  * Integer arithmetic and logical instructions, branches, and barrier
1341  * instructions can be emulated just using the information in *op.
1342  *
1343  * Return value is 1 if the instruction can be emulated just by
1344  * updating *regs with the information in *op, -1 if we need the
1345  * GPRs but *regs doesn't contain the full register set, or 0
1346  * otherwise.
1347  */
1348 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1349                   ppc_inst_t instr)
1350 {
1351 #ifdef CONFIG_PPC64
1352         unsigned int suffixopcode, prefixtype, prefix_r;
1353 #endif
1354         unsigned int opcode, ra, rb, rc, rd, spr, u;
1355         unsigned long int imm;
1356         unsigned long int val, val2;
1357         unsigned int mb, me, sh;
1358         unsigned int word, suffix;
1359         long ival;
1360
1361         word = ppc_inst_val(instr);
1362         suffix = ppc_inst_suffix(instr);
1363
1364         op->type = COMPUTE;
1365
1366         opcode = ppc_inst_primary_opcode(instr);
1367         switch (opcode) {
1368         case 16:        /* bc */
1369                 op->type = BRANCH;
1370                 imm = (signed short)(word & 0xfffc);
1371                 if ((word & 2) == 0)
1372                         imm += regs->nip;
1373                 op->val = truncate_if_32bit(regs->msr, imm);
1374                 if (word & 1)
1375                         op->type |= SETLK;
1376                 if (branch_taken(word, regs, op))
1377                         op->type |= BRTAKEN;
1378                 return 1;
1379 #ifdef CONFIG_PPC64
1380         case 17:        /* sc */
1381                 if ((word & 0xfe2) == 2)
1382                         op->type = SYSCALL;
1383                 else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1384                                 (word & 0xfe3) == 1) {  /* scv */
1385                         op->type = SYSCALL_VECTORED_0;
1386                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1387                                 goto unknown_opcode;
1388                 } else
1389                         op->type = UNKNOWN;
1390                 return 0;
1391 #endif
1392         case 18:        /* b */
1393                 op->type = BRANCH | BRTAKEN;
1394                 imm = word & 0x03fffffc;
1395                 if (imm & 0x02000000)
1396                         imm -= 0x04000000;
1397                 if ((word & 2) == 0)
1398                         imm += regs->nip;
1399                 op->val = truncate_if_32bit(regs->msr, imm);
1400                 if (word & 1)
1401                         op->type |= SETLK;
1402                 return 1;
1403         case 19:
1404                 switch ((word >> 1) & 0x3ff) {
1405                 case 0:         /* mcrf */
1406                         op->type = COMPUTE + SETCC;
1407                         rd = 7 - ((word >> 23) & 0x7);
1408                         ra = 7 - ((word >> 18) & 0x7);
1409                         rd *= 4;
1410                         ra *= 4;
1411                         val = (regs->ccr >> ra) & 0xf;
1412                         op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1413                         return 1;
1414
1415                 case 16:        /* bclr */
1416                 case 528:       /* bcctr */
1417                         op->type = BRANCH;
1418                         imm = (word & 0x400)? regs->ctr: regs->link;
1419                         op->val = truncate_if_32bit(regs->msr, imm);
1420                         if (word & 1)
1421                                 op->type |= SETLK;
1422                         if (branch_taken(word, regs, op))
1423                                 op->type |= BRTAKEN;
1424                         return 1;
1425
1426                 case 18:        /* rfid, scary */
1427                         if (regs->msr & MSR_PR)
1428                                 goto priv;
1429                         op->type = RFI;
1430                         return 0;
1431
1432                 case 150:       /* isync */
1433                         op->type = BARRIER | BARRIER_ISYNC;
1434                         return 1;
1435
1436                 case 33:        /* crnor */
1437                 case 129:       /* crandc */
1438                 case 193:       /* crxor */
1439                 case 225:       /* crnand */
1440                 case 257:       /* crand */
1441                 case 289:       /* creqv */
1442                 case 417:       /* crorc */
1443                 case 449:       /* cror */
1444                         op->type = COMPUTE + SETCC;
1445                         ra = (word >> 16) & 0x1f;
1446                         rb = (word >> 11) & 0x1f;
1447                         rd = (word >> 21) & 0x1f;
1448                         ra = (regs->ccr >> (31 - ra)) & 1;
1449                         rb = (regs->ccr >> (31 - rb)) & 1;
1450                         val = (word >> (6 + ra * 2 + rb)) & 1;
1451                         op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1452                                 (val << (31 - rd));
1453                         return 1;
1454                 }
1455                 break;
1456         case 31:
1457                 switch ((word >> 1) & 0x3ff) {
1458                 case 598:       /* sync */
1459                         op->type = BARRIER + BARRIER_SYNC;
1460 #ifdef __powerpc64__
1461                         switch ((word >> 21) & 3) {
1462                         case 1:         /* lwsync */
1463                                 op->type = BARRIER + BARRIER_LWSYNC;
1464                                 break;
1465                         case 2:         /* ptesync */
1466                                 op->type = BARRIER + BARRIER_PTESYNC;
1467                                 break;
1468                         }
1469 #endif
1470                         return 1;
1471
1472                 case 854:       /* eieio */
1473                         op->type = BARRIER + BARRIER_EIEIO;
1474                         return 1;
1475                 }
1476                 break;
1477         }
1478
1479         rd = (word >> 21) & 0x1f;
1480         ra = (word >> 16) & 0x1f;
1481         rb = (word >> 11) & 0x1f;
1482         rc = (word >> 6) & 0x1f;
1483
1484         switch (opcode) {
1485 #ifdef __powerpc64__
1486         case 1:
1487                 if (!cpu_has_feature(CPU_FTR_ARCH_31))
1488                         goto unknown_opcode;
1489
1490                 prefix_r = GET_PREFIX_R(word);
1491                 ra = GET_PREFIX_RA(suffix);
1492                 rd = (suffix >> 21) & 0x1f;
1493                 op->reg = rd;
1494                 op->val = regs->gpr[rd];
1495                 suffixopcode = get_op(suffix);
1496                 prefixtype = (word >> 24) & 0x3;
1497                 switch (prefixtype) {
1498                 case 2:
1499                         if (prefix_r && ra)
1500                                 return 0;
1501                         switch (suffixopcode) {
1502                         case 14:        /* paddi */
1503                                 op->type = COMPUTE | PREFIXED;
1504                                 op->val = mlsd_8lsd_ea(word, suffix, regs);
1505                                 goto compute_done;
1506                         }
1507                 }
1508                 break;
1509         case 2:         /* tdi */
1510                 if (rd & trap_compare(regs->gpr[ra], (short) word))
1511                         goto trap;
1512                 return 1;
1513 #endif
1514         case 3:         /* twi */
1515                 if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1516                         goto trap;
1517                 return 1;
1518
1519 #ifdef __powerpc64__
1520         case 4:
1521                 /*
1522                  * There are very many instructions with this primary opcode
1523                  * introduced in the ISA as early as v2.03. However, the ones
1524                  * we currently emulate were all introduced with ISA 3.0
1525                  */
1526                 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1527                         goto unknown_opcode;
1528
1529                 switch (word & 0x3f) {
1530                 case 48:        /* maddhd */
1531                         asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1532                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1533                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1534                         goto compute_done;
1535
1536                 case 49:        /* maddhdu */
1537                         asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1538                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1539                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1540                         goto compute_done;
1541
1542                 case 51:        /* maddld */
1543                         asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1544                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1545                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1546                         goto compute_done;
1547                 }
1548
1549                 /*
1550                  * There are other instructions from ISA 3.0 with the same
1551                  * primary opcode which do not have emulation support yet.
1552                  */
1553                 goto unknown_opcode;
1554 #endif
1555
1556         case 7:         /* mulli */
1557                 op->val = regs->gpr[ra] * (short) word;
1558                 goto compute_done;
1559
1560         case 8:         /* subfic */
1561                 imm = (short) word;
1562                 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1563                 return 1;
1564
1565         case 10:        /* cmpli */
1566                 imm = (unsigned short) word;
1567                 val = regs->gpr[ra];
1568 #ifdef __powerpc64__
1569                 if ((rd & 1) == 0)
1570                         val = (unsigned int) val;
1571 #endif
1572                 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1573                 return 1;
1574
1575         case 11:        /* cmpi */
1576                 imm = (short) word;
1577                 val = regs->gpr[ra];
1578 #ifdef __powerpc64__
1579                 if ((rd & 1) == 0)
1580                         val = (int) val;
1581 #endif
1582                 do_cmp_signed(regs, op, val, imm, rd >> 2);
1583                 return 1;
1584
1585         case 12:        /* addic */
1586                 imm = (short) word;
1587                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1588                 return 1;
1589
1590         case 13:        /* addic. */
1591                 imm = (short) word;
1592                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1593                 set_cr0(regs, op);
1594                 return 1;
1595
1596         case 14:        /* addi */
1597                 imm = (short) word;
1598                 if (ra)
1599                         imm += regs->gpr[ra];
1600                 op->val = imm;
1601                 goto compute_done;
1602
1603         case 15:        /* addis */
1604                 imm = ((short) word) << 16;
1605                 if (ra)
1606                         imm += regs->gpr[ra];
1607                 op->val = imm;
1608                 goto compute_done;
1609
1610         case 19:
1611                 if (((word >> 1) & 0x1f) == 2) {
1612                         /* addpcis */
1613                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1614                                 goto unknown_opcode;
1615                         imm = (short) (word & 0xffc1);  /* d0 + d2 fields */
1616                         imm |= (word >> 15) & 0x3e;     /* d1 field */
1617                         op->val = regs->nip + (imm << 16) + 4;
1618                         goto compute_done;
1619                 }
1620                 op->type = UNKNOWN;
1621                 return 0;
1622
1623         case 20:        /* rlwimi */
1624                 mb = (word >> 6) & 0x1f;
1625                 me = (word >> 1) & 0x1f;
1626                 val = DATA32(regs->gpr[rd]);
1627                 imm = MASK32(mb, me);
1628                 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1629                 goto logical_done;
1630
1631         case 21:        /* rlwinm */
1632                 mb = (word >> 6) & 0x1f;
1633                 me = (word >> 1) & 0x1f;
1634                 val = DATA32(regs->gpr[rd]);
1635                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1636                 goto logical_done;
1637
1638         case 23:        /* rlwnm */
1639                 mb = (word >> 6) & 0x1f;
1640                 me = (word >> 1) & 0x1f;
1641                 rb = regs->gpr[rb] & 0x1f;
1642                 val = DATA32(regs->gpr[rd]);
1643                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1644                 goto logical_done;
1645
1646         case 24:        /* ori */
1647                 op->val = regs->gpr[rd] | (unsigned short) word;
1648                 goto logical_done_nocc;
1649
1650         case 25:        /* oris */
1651                 imm = (unsigned short) word;
1652                 op->val = regs->gpr[rd] | (imm << 16);
1653                 goto logical_done_nocc;
1654
1655         case 26:        /* xori */
1656                 op->val = regs->gpr[rd] ^ (unsigned short) word;
1657                 goto logical_done_nocc;
1658
1659         case 27:        /* xoris */
1660                 imm = (unsigned short) word;
1661                 op->val = regs->gpr[rd] ^ (imm << 16);
1662                 goto logical_done_nocc;
1663
1664         case 28:        /* andi. */
1665                 op->val = regs->gpr[rd] & (unsigned short) word;
1666                 set_cr0(regs, op);
1667                 goto logical_done_nocc;
1668
1669         case 29:        /* andis. */
1670                 imm = (unsigned short) word;
1671                 op->val = regs->gpr[rd] & (imm << 16);
1672                 set_cr0(regs, op);
1673                 goto logical_done_nocc;
1674
1675 #ifdef __powerpc64__
1676         case 30:        /* rld* */
1677                 mb = ((word >> 6) & 0x1f) | (word & 0x20);
1678                 val = regs->gpr[rd];
1679                 if ((word & 0x10) == 0) {
1680                         sh = rb | ((word & 2) << 4);
1681                         val = ROTATE(val, sh);
1682                         switch ((word >> 2) & 3) {
1683                         case 0:         /* rldicl */
1684                                 val &= MASK64_L(mb);
1685                                 break;
1686                         case 1:         /* rldicr */
1687                                 val &= MASK64_R(mb);
1688                                 break;
1689                         case 2:         /* rldic */
1690                                 val &= MASK64(mb, 63 - sh);
1691                                 break;
1692                         case 3:         /* rldimi */
1693                                 imm = MASK64(mb, 63 - sh);
1694                                 val = (regs->gpr[ra] & ~imm) |
1695                                         (val & imm);
1696                         }
1697                         op->val = val;
1698                         goto logical_done;
1699                 } else {
1700                         sh = regs->gpr[rb] & 0x3f;
1701                         val = ROTATE(val, sh);
1702                         switch ((word >> 1) & 7) {
1703                         case 0:         /* rldcl */
1704                                 op->val = val & MASK64_L(mb);
1705                                 goto logical_done;
1706                         case 1:         /* rldcr */
1707                                 op->val = val & MASK64_R(mb);
1708                                 goto logical_done;
1709                         }
1710                 }
1711 #endif
1712                 op->type = UNKNOWN;     /* illegal instruction */
1713                 return 0;
1714
1715         case 31:
1716                 /* isel occupies 32 minor opcodes */
1717                 if (((word >> 1) & 0x1f) == 15) {
1718                         mb = (word >> 6) & 0x1f; /* bc field */
1719                         val = (regs->ccr >> (31 - mb)) & 1;
1720                         val2 = (ra) ? regs->gpr[ra] : 0;
1721
1722                         op->val = (val) ? val2 : regs->gpr[rb];
1723                         goto compute_done;
1724                 }
1725
1726                 switch ((word >> 1) & 0x3ff) {
1727                 case 4:         /* tw */
1728                         if (rd == 0x1f ||
1729                             (rd & trap_compare((int)regs->gpr[ra],
1730                                                (int)regs->gpr[rb])))
1731                                 goto trap;
1732                         return 1;
1733 #ifdef __powerpc64__
1734                 case 68:        /* td */
1735                         if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1736                                 goto trap;
1737                         return 1;
1738 #endif
1739                 case 83:        /* mfmsr */
1740                         if (regs->msr & MSR_PR)
1741                                 goto priv;
1742                         op->type = MFMSR;
1743                         op->reg = rd;
1744                         return 0;
1745                 case 146:       /* mtmsr */
1746                         if (regs->msr & MSR_PR)
1747                                 goto priv;
1748                         op->type = MTMSR;
1749                         op->reg = rd;
1750                         op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1751                         return 0;
1752 #ifdef CONFIG_PPC64
1753                 case 178:       /* mtmsrd */
1754                         if (regs->msr & MSR_PR)
1755                                 goto priv;
1756                         op->type = MTMSR;
1757                         op->reg = rd;
1758                         /* only MSR_EE and MSR_RI get changed if bit 15 set */
1759                         /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1760                         imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1761                         op->val = imm;
1762                         return 0;
1763 #endif
1764
1765                 case 19:        /* mfcr */
1766                         imm = 0xffffffffUL;
1767                         if ((word >> 20) & 1) {
1768                                 imm = 0xf0000000UL;
1769                                 for (sh = 0; sh < 8; ++sh) {
1770                                         if (word & (0x80000 >> sh))
1771                                                 break;
1772                                         imm >>= 4;
1773                                 }
1774                         }
1775                         op->val = regs->ccr & imm;
1776                         goto compute_done;
1777
1778                 case 128:       /* setb */
1779                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1780                                 goto unknown_opcode;
1781                         /*
1782                          * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1783                          * Since each CR field is 4 bits,
1784                          * we can simply mask off the bottom two bits (bfa * 4)
1785                          * to yield the first bit in the CR field.
1786                          */
1787                         ra = ra & ~0x3;
1788                         /* 'val' stores bits of the CR field (bfa) */
1789                         val = regs->ccr >> (CR0_SHIFT - ra);
1790                         /* checks if the LT bit of CR field (bfa) is set */
1791                         if (val & 8)
1792                                 op->val = -1;
1793                         /* checks if the GT bit of CR field (bfa) is set */
1794                         else if (val & 4)
1795                                 op->val = 1;
1796                         else
1797                                 op->val = 0;
1798                         goto compute_done;
1799
1800                 case 144:       /* mtcrf */
1801                         op->type = COMPUTE + SETCC;
1802                         imm = 0xf0000000UL;
1803                         val = regs->gpr[rd];
1804                         op->ccval = regs->ccr;
1805                         for (sh = 0; sh < 8; ++sh) {
1806                                 if (word & (0x80000 >> sh))
1807                                         op->ccval = (op->ccval & ~imm) |
1808                                                 (val & imm);
1809                                 imm >>= 4;
1810                         }
1811                         return 1;
1812
1813                 case 339:       /* mfspr */
1814                         spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1815                         op->type = MFSPR;
1816                         op->reg = rd;
1817                         op->spr = spr;
1818                         if (spr == SPRN_XER || spr == SPRN_LR ||
1819                             spr == SPRN_CTR)
1820                                 return 1;
1821                         return 0;
1822
1823                 case 467:       /* mtspr */
1824                         spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1825                         op->type = MTSPR;
1826                         op->val = regs->gpr[rd];
1827                         op->spr = spr;
1828                         if (spr == SPRN_XER || spr == SPRN_LR ||
1829                             spr == SPRN_CTR)
1830                                 return 1;
1831                         return 0;
1832
1833 /*
1834  * Compare instructions
1835  */
1836                 case 0: /* cmp */
1837                         val = regs->gpr[ra];
1838                         val2 = regs->gpr[rb];
1839 #ifdef __powerpc64__
1840                         if ((rd & 1) == 0) {
1841                                 /* word (32-bit) compare */
1842                                 val = (int) val;
1843                                 val2 = (int) val2;
1844                         }
1845 #endif
1846                         do_cmp_signed(regs, op, val, val2, rd >> 2);
1847                         return 1;
1848
1849                 case 32:        /* cmpl */
1850                         val = regs->gpr[ra];
1851                         val2 = regs->gpr[rb];
1852 #ifdef __powerpc64__
1853                         if ((rd & 1) == 0) {
1854                                 /* word (32-bit) compare */
1855                                 val = (unsigned int) val;
1856                                 val2 = (unsigned int) val2;
1857                         }
1858 #endif
1859                         do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1860                         return 1;
1861
1862                 case 508: /* cmpb */
1863                         do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1864                         goto logical_done_nocc;
1865
1866 /*
1867  * Arithmetic instructions
1868  */
1869                 case 8: /* subfc */
1870                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1871                                        regs->gpr[rb], 1);
1872                         goto arith_done;
1873 #ifdef __powerpc64__
1874                 case 9: /* mulhdu */
1875                         asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1876                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1877                         goto arith_done;
1878 #endif
1879                 case 10:        /* addc */
1880                         add_with_carry(regs, op, rd, regs->gpr[ra],
1881                                        regs->gpr[rb], 0);
1882                         goto arith_done;
1883
1884                 case 11:        /* mulhwu */
1885                         asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1886                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1887                         goto arith_done;
1888
1889                 case 40:        /* subf */
1890                         op->val = regs->gpr[rb] - regs->gpr[ra];
1891                         goto arith_done;
1892 #ifdef __powerpc64__
1893                 case 73:        /* mulhd */
1894                         asm("mulhd %0,%1,%2" : "=r" (op->val) :
1895                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1896                         goto arith_done;
1897 #endif
1898                 case 75:        /* mulhw */
1899                         asm("mulhw %0,%1,%2" : "=r" (op->val) :
1900                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1901                         goto arith_done;
1902
1903                 case 104:       /* neg */
1904                         op->val = -regs->gpr[ra];
1905                         goto arith_done;
1906
1907                 case 136:       /* subfe */
1908                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1909                                        regs->gpr[rb], regs->xer & XER_CA);
1910                         goto arith_done;
1911
1912                 case 138:       /* adde */
1913                         add_with_carry(regs, op, rd, regs->gpr[ra],
1914                                        regs->gpr[rb], regs->xer & XER_CA);
1915                         goto arith_done;
1916
1917                 case 200:       /* subfze */
1918                         add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1919                                        regs->xer & XER_CA);
1920                         goto arith_done;
1921
1922                 case 202:       /* addze */
1923                         add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1924                                        regs->xer & XER_CA);
1925                         goto arith_done;
1926
1927                 case 232:       /* subfme */
1928                         add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1929                                        regs->xer & XER_CA);
1930                         goto arith_done;
1931 #ifdef __powerpc64__
1932                 case 233:       /* mulld */
1933                         op->val = regs->gpr[ra] * regs->gpr[rb];
1934                         goto arith_done;
1935 #endif
1936                 case 234:       /* addme */
1937                         add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1938                                        regs->xer & XER_CA);
1939                         goto arith_done;
1940
1941                 case 235:       /* mullw */
1942                         op->val = (long)(int) regs->gpr[ra] *
1943                                 (int) regs->gpr[rb];
1944
1945                         goto arith_done;
1946 #ifdef __powerpc64__
1947                 case 265:       /* modud */
1948                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1949                                 goto unknown_opcode;
1950                         op->val = regs->gpr[ra] % regs->gpr[rb];
1951                         goto compute_done;
1952 #endif
1953                 case 266:       /* add */
1954                         op->val = regs->gpr[ra] + regs->gpr[rb];
1955                         goto arith_done;
1956
1957                 case 267:       /* moduw */
1958                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1959                                 goto unknown_opcode;
1960                         op->val = (unsigned int) regs->gpr[ra] %
1961                                 (unsigned int) regs->gpr[rb];
1962                         goto compute_done;
1963 #ifdef __powerpc64__
1964                 case 457:       /* divdu */
1965                         op->val = regs->gpr[ra] / regs->gpr[rb];
1966                         goto arith_done;
1967 #endif
1968                 case 459:       /* divwu */
1969                         op->val = (unsigned int) regs->gpr[ra] /
1970                                 (unsigned int) regs->gpr[rb];
1971                         goto arith_done;
1972 #ifdef __powerpc64__
1973                 case 489:       /* divd */
1974                         op->val = (long int) regs->gpr[ra] /
1975                                 (long int) regs->gpr[rb];
1976                         goto arith_done;
1977 #endif
1978                 case 491:       /* divw */
1979                         op->val = (int) regs->gpr[ra] /
1980                                 (int) regs->gpr[rb];
1981                         goto arith_done;
1982 #ifdef __powerpc64__
1983                 case 425:       /* divde[.] */
1984                         asm volatile(PPC_DIVDE(%0, %1, %2) :
1985                                 "=r" (op->val) : "r" (regs->gpr[ra]),
1986                                 "r" (regs->gpr[rb]));
1987                         goto arith_done;
1988                 case 393:       /* divdeu[.] */
1989                         asm volatile(PPC_DIVDEU(%0, %1, %2) :
1990                                 "=r" (op->val) : "r" (regs->gpr[ra]),
1991                                 "r" (regs->gpr[rb]));
1992                         goto arith_done;
1993 #endif
1994                 case 755:       /* darn */
1995                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1996                                 goto unknown_opcode;
1997                         switch (ra & 0x3) {
1998                         case 0:
1999                                 /* 32-bit conditioned */
2000                                 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
2001                                 goto compute_done;
2002
2003                         case 1:
2004                                 /* 64-bit conditioned */
2005                                 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
2006                                 goto compute_done;
2007
2008                         case 2:
2009                                 /* 64-bit raw */
2010                                 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
2011                                 goto compute_done;
2012                         }
2013
2014                         goto unknown_opcode;
2015 #ifdef __powerpc64__
2016                 case 777:       /* modsd */
2017                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2018                                 goto unknown_opcode;
2019                         op->val = (long int) regs->gpr[ra] %
2020                                 (long int) regs->gpr[rb];
2021                         goto compute_done;
2022 #endif
2023                 case 779:       /* modsw */
2024                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2025                                 goto unknown_opcode;
2026                         op->val = (int) regs->gpr[ra] %
2027                                 (int) regs->gpr[rb];
2028                         goto compute_done;
2029
2030
2031 /*
2032  * Logical instructions
2033  */
2034                 case 26:        /* cntlzw */
2035                         val = (unsigned int) regs->gpr[rd];
2036                         op->val = ( val ? __builtin_clz(val) : 32 );
2037                         goto logical_done;
2038 #ifdef __powerpc64__
2039                 case 58:        /* cntlzd */
2040                         val = regs->gpr[rd];
2041                         op->val = ( val ? __builtin_clzl(val) : 64 );
2042                         goto logical_done;
2043 #endif
2044                 case 28:        /* and */
2045                         op->val = regs->gpr[rd] & regs->gpr[rb];
2046                         goto logical_done;
2047
2048                 case 60:        /* andc */
2049                         op->val = regs->gpr[rd] & ~regs->gpr[rb];
2050                         goto logical_done;
2051
2052                 case 122:       /* popcntb */
2053                         do_popcnt(regs, op, regs->gpr[rd], 8);
2054                         goto logical_done_nocc;
2055
2056                 case 124:       /* nor */
2057                         op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
2058                         goto logical_done;
2059
2060                 case 154:       /* prtyw */
2061                         do_prty(regs, op, regs->gpr[rd], 32);
2062                         goto logical_done_nocc;
2063
2064                 case 186:       /* prtyd */
2065                         do_prty(regs, op, regs->gpr[rd], 64);
2066                         goto logical_done_nocc;
2067 #ifdef CONFIG_PPC64
2068                 case 252:       /* bpermd */
2069                         do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
2070                         goto logical_done_nocc;
2071 #endif
2072                 case 284:       /* xor */
2073                         op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
2074                         goto logical_done;
2075
2076                 case 316:       /* xor */
2077                         op->val = regs->gpr[rd] ^ regs->gpr[rb];
2078                         goto logical_done;
2079
2080                 case 378:       /* popcntw */
2081                         do_popcnt(regs, op, regs->gpr[rd], 32);
2082                         goto logical_done_nocc;
2083
2084                 case 412:       /* orc */
2085                         op->val = regs->gpr[rd] | ~regs->gpr[rb];
2086                         goto logical_done;
2087
2088                 case 444:       /* or */
2089                         op->val = regs->gpr[rd] | regs->gpr[rb];
2090                         goto logical_done;
2091
2092                 case 476:       /* nand */
2093                         op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2094                         goto logical_done;
2095 #ifdef CONFIG_PPC64
2096                 case 506:       /* popcntd */
2097                         do_popcnt(regs, op, regs->gpr[rd], 64);
2098                         goto logical_done_nocc;
2099 #endif
2100                 case 538:       /* cnttzw */
2101                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2102                                 goto unknown_opcode;
2103                         val = (unsigned int) regs->gpr[rd];
2104                         op->val = (val ? __builtin_ctz(val) : 32);
2105                         goto logical_done;
2106 #ifdef __powerpc64__
2107                 case 570:       /* cnttzd */
2108                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2109                                 goto unknown_opcode;
2110                         val = regs->gpr[rd];
2111                         op->val = (val ? __builtin_ctzl(val) : 64);
2112                         goto logical_done;
2113 #endif
2114                 case 922:       /* extsh */
2115                         op->val = (signed short) regs->gpr[rd];
2116                         goto logical_done;
2117
2118                 case 954:       /* extsb */
2119                         op->val = (signed char) regs->gpr[rd];
2120                         goto logical_done;
2121 #ifdef __powerpc64__
2122                 case 986:       /* extsw */
2123                         op->val = (signed int) regs->gpr[rd];
2124                         goto logical_done;
2125 #endif
2126
2127 /*
2128  * Shift instructions
2129  */
2130                 case 24:        /* slw */
2131                         sh = regs->gpr[rb] & 0x3f;
2132                         if (sh < 32)
2133                                 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2134                         else
2135                                 op->val = 0;
2136                         goto logical_done;
2137
2138                 case 536:       /* srw */
2139                         sh = regs->gpr[rb] & 0x3f;
2140                         if (sh < 32)
2141                                 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2142                         else
2143                                 op->val = 0;
2144                         goto logical_done;
2145
2146                 case 792:       /* sraw */
2147                         op->type = COMPUTE + SETREG + SETXER;
2148                         sh = regs->gpr[rb] & 0x3f;
2149                         ival = (signed int) regs->gpr[rd];
2150                         op->val = ival >> (sh < 32 ? sh : 31);
2151                         op->xerval = regs->xer;
2152                         if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2153                                 op->xerval |= XER_CA;
2154                         else
2155                                 op->xerval &= ~XER_CA;
2156                         set_ca32(op, op->xerval & XER_CA);
2157                         goto logical_done;
2158
2159                 case 824:       /* srawi */
2160                         op->type = COMPUTE + SETREG + SETXER;
2161                         sh = rb;
2162                         ival = (signed int) regs->gpr[rd];
2163                         op->val = ival >> sh;
2164                         op->xerval = regs->xer;
2165                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2166                                 op->xerval |= XER_CA;
2167                         else
2168                                 op->xerval &= ~XER_CA;
2169                         set_ca32(op, op->xerval & XER_CA);
2170                         goto logical_done;
2171
2172 #ifdef __powerpc64__
2173                 case 27:        /* sld */
2174                         sh = regs->gpr[rb] & 0x7f;
2175                         if (sh < 64)
2176                                 op->val = regs->gpr[rd] << sh;
2177                         else
2178                                 op->val = 0;
2179                         goto logical_done;
2180
2181                 case 539:       /* srd */
2182                         sh = regs->gpr[rb] & 0x7f;
2183                         if (sh < 64)
2184                                 op->val = regs->gpr[rd] >> sh;
2185                         else
2186                                 op->val = 0;
2187                         goto logical_done;
2188
2189                 case 794:       /* srad */
2190                         op->type = COMPUTE + SETREG + SETXER;
2191                         sh = regs->gpr[rb] & 0x7f;
2192                         ival = (signed long int) regs->gpr[rd];
2193                         op->val = ival >> (sh < 64 ? sh : 63);
2194                         op->xerval = regs->xer;
2195                         if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2196                                 op->xerval |= XER_CA;
2197                         else
2198                                 op->xerval &= ~XER_CA;
2199                         set_ca32(op, op->xerval & XER_CA);
2200                         goto logical_done;
2201
2202                 case 826:       /* sradi with sh_5 = 0 */
2203                 case 827:       /* sradi with sh_5 = 1 */
2204                         op->type = COMPUTE + SETREG + SETXER;
2205                         sh = rb | ((word & 2) << 4);
2206                         ival = (signed long int) regs->gpr[rd];
2207                         op->val = ival >> sh;
2208                         op->xerval = regs->xer;
2209                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2210                                 op->xerval |= XER_CA;
2211                         else
2212                                 op->xerval &= ~XER_CA;
2213                         set_ca32(op, op->xerval & XER_CA);
2214                         goto logical_done;
2215
2216                 case 890:       /* extswsli with sh_5 = 0 */
2217                 case 891:       /* extswsli with sh_5 = 1 */
2218                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2219                                 goto unknown_opcode;
2220                         op->type = COMPUTE + SETREG;
2221                         sh = rb | ((word & 2) << 4);
2222                         val = (signed int) regs->gpr[rd];
2223                         if (sh)
2224                                 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2225                         else
2226                                 op->val = val;
2227                         goto logical_done;
2228
2229 #endif /* __powerpc64__ */
2230
2231 /*
2232  * Cache instructions
2233  */
2234                 case 54:        /* dcbst */
2235                         op->type = MKOP(CACHEOP, DCBST, 0);
2236                         op->ea = xform_ea(word, regs);
2237                         return 0;
2238
2239                 case 86:        /* dcbf */
2240                         op->type = MKOP(CACHEOP, DCBF, 0);
2241                         op->ea = xform_ea(word, regs);
2242                         return 0;
2243
2244                 case 246:       /* dcbtst */
2245                         op->type = MKOP(CACHEOP, DCBTST, 0);
2246                         op->ea = xform_ea(word, regs);
2247                         op->reg = rd;
2248                         return 0;
2249
2250                 case 278:       /* dcbt */
2251                         op->type = MKOP(CACHEOP, DCBTST, 0);
2252                         op->ea = xform_ea(word, regs);
2253                         op->reg = rd;
2254                         return 0;
2255
2256                 case 982:       /* icbi */
2257                         op->type = MKOP(CACHEOP, ICBI, 0);
2258                         op->ea = xform_ea(word, regs);
2259                         return 0;
2260
2261                 case 1014:      /* dcbz */
2262                         op->type = MKOP(CACHEOP, DCBZ, 0);
2263                         op->ea = xform_ea(word, regs);
2264                         return 0;
2265                 }
2266                 break;
2267         }
2268
2269 /*
2270  * Loads and stores.
2271  */
2272         op->type = UNKNOWN;
2273         op->update_reg = ra;
2274         op->reg = rd;
2275         op->val = regs->gpr[rd];
2276         u = (word >> 20) & UPDATE;
2277         op->vsx_flags = 0;
2278
2279         switch (opcode) {
2280         case 31:
2281                 u = word & UPDATE;
2282                 op->ea = xform_ea(word, regs);
2283                 switch ((word >> 1) & 0x3ff) {
2284                 case 20:        /* lwarx */
2285                         op->type = MKOP(LARX, 0, 4);
2286                         break;
2287
2288                 case 150:       /* stwcx. */
2289                         op->type = MKOP(STCX, 0, 4);
2290                         break;
2291
2292 #ifdef __powerpc64__
2293                 case 84:        /* ldarx */
2294                         op->type = MKOP(LARX, 0, 8);
2295                         break;
2296
2297                 case 214:       /* stdcx. */
2298                         op->type = MKOP(STCX, 0, 8);
2299                         break;
2300
2301                 case 52:        /* lbarx */
2302                         op->type = MKOP(LARX, 0, 1);
2303                         break;
2304
2305                 case 694:       /* stbcx. */
2306                         op->type = MKOP(STCX, 0, 1);
2307                         break;
2308
2309                 case 116:       /* lharx */
2310                         op->type = MKOP(LARX, 0, 2);
2311                         break;
2312
2313                 case 726:       /* sthcx. */
2314                         op->type = MKOP(STCX, 0, 2);
2315                         break;
2316
2317                 case 276:       /* lqarx */
2318                         if (!((rd & 1) || rd == ra || rd == rb))
2319                                 op->type = MKOP(LARX, 0, 16);
2320                         break;
2321
2322                 case 182:       /* stqcx. */
2323                         if (!(rd & 1))
2324                                 op->type = MKOP(STCX, 0, 16);
2325                         break;
2326 #endif
2327
2328                 case 23:        /* lwzx */
2329                 case 55:        /* lwzux */
2330                         op->type = MKOP(LOAD, u, 4);
2331                         break;
2332
2333                 case 87:        /* lbzx */
2334                 case 119:       /* lbzux */
2335                         op->type = MKOP(LOAD, u, 1);
2336                         break;
2337
2338 #ifdef CONFIG_ALTIVEC
2339                 /*
2340                  * Note: for the load/store vector element instructions,
2341                  * bits of the EA say which field of the VMX register to use.
2342                  */
2343                 case 7:         /* lvebx */
2344                         op->type = MKOP(LOAD_VMX, 0, 1);
2345                         op->element_size = 1;
2346                         break;
2347
2348                 case 39:        /* lvehx */
2349                         op->type = MKOP(LOAD_VMX, 0, 2);
2350                         op->element_size = 2;
2351                         break;
2352
2353                 case 71:        /* lvewx */
2354                         op->type = MKOP(LOAD_VMX, 0, 4);
2355                         op->element_size = 4;
2356                         break;
2357
2358                 case 103:       /* lvx */
2359                 case 359:       /* lvxl */
2360                         op->type = MKOP(LOAD_VMX, 0, 16);
2361                         op->element_size = 16;
2362                         break;
2363
2364                 case 135:       /* stvebx */
2365                         op->type = MKOP(STORE_VMX, 0, 1);
2366                         op->element_size = 1;
2367                         break;
2368
2369                 case 167:       /* stvehx */
2370                         op->type = MKOP(STORE_VMX, 0, 2);
2371                         op->element_size = 2;
2372                         break;
2373
2374                 case 199:       /* stvewx */
2375                         op->type = MKOP(STORE_VMX, 0, 4);
2376                         op->element_size = 4;
2377                         break;
2378
2379                 case 231:       /* stvx */
2380                 case 487:       /* stvxl */
2381                         op->type = MKOP(STORE_VMX, 0, 16);
2382                         break;
2383 #endif /* CONFIG_ALTIVEC */
2384
2385 #ifdef __powerpc64__
2386                 case 21:        /* ldx */
2387                 case 53:        /* ldux */
2388                         op->type = MKOP(LOAD, u, 8);
2389                         break;
2390
2391                 case 149:       /* stdx */
2392                 case 181:       /* stdux */
2393                         op->type = MKOP(STORE, u, 8);
2394                         break;
2395 #endif
2396
2397                 case 151:       /* stwx */
2398                 case 183:       /* stwux */
2399                         op->type = MKOP(STORE, u, 4);
2400                         break;
2401
2402                 case 215:       /* stbx */
2403                 case 247:       /* stbux */
2404                         op->type = MKOP(STORE, u, 1);
2405                         break;
2406
2407                 case 279:       /* lhzx */
2408                 case 311:       /* lhzux */
2409                         op->type = MKOP(LOAD, u, 2);
2410                         break;
2411
2412 #ifdef __powerpc64__
2413                 case 341:       /* lwax */
2414                 case 373:       /* lwaux */
2415                         op->type = MKOP(LOAD, SIGNEXT | u, 4);
2416                         break;
2417 #endif
2418
2419                 case 343:       /* lhax */
2420                 case 375:       /* lhaux */
2421                         op->type = MKOP(LOAD, SIGNEXT | u, 2);
2422                         break;
2423
2424                 case 407:       /* sthx */
2425                 case 439:       /* sthux */
2426                         op->type = MKOP(STORE, u, 2);
2427                         break;
2428
2429 #ifdef __powerpc64__
2430                 case 532:       /* ldbrx */
2431                         op->type = MKOP(LOAD, BYTEREV, 8);
2432                         break;
2433
2434 #endif
2435                 case 533:       /* lswx */
2436                         op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2437                         break;
2438
2439                 case 534:       /* lwbrx */
2440                         op->type = MKOP(LOAD, BYTEREV, 4);
2441                         break;
2442
2443                 case 597:       /* lswi */
2444                         if (rb == 0)
2445                                 rb = 32;        /* # bytes to load */
2446                         op->type = MKOP(LOAD_MULTI, 0, rb);
2447                         op->ea = ra ? regs->gpr[ra] : 0;
2448                         break;
2449
2450 #ifdef CONFIG_PPC_FPU
2451                 case 535:       /* lfsx */
2452                 case 567:       /* lfsux */
2453                         op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2454                         break;
2455
2456                 case 599:       /* lfdx */
2457                 case 631:       /* lfdux */
2458                         op->type = MKOP(LOAD_FP, u, 8);
2459                         break;
2460
2461                 case 663:       /* stfsx */
2462                 case 695:       /* stfsux */
2463                         op->type = MKOP(STORE_FP, u | FPCONV, 4);
2464                         break;
2465
2466                 case 727:       /* stfdx */
2467                 case 759:       /* stfdux */
2468                         op->type = MKOP(STORE_FP, u, 8);
2469                         break;
2470
2471 #ifdef __powerpc64__
2472                 case 791:       /* lfdpx */
2473                         op->type = MKOP(LOAD_FP, 0, 16);
2474                         break;
2475
2476                 case 855:       /* lfiwax */
2477                         op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2478                         break;
2479
2480                 case 887:       /* lfiwzx */
2481                         op->type = MKOP(LOAD_FP, 0, 4);
2482                         break;
2483
2484                 case 919:       /* stfdpx */
2485                         op->type = MKOP(STORE_FP, 0, 16);
2486                         break;
2487
2488                 case 983:       /* stfiwx */
2489                         op->type = MKOP(STORE_FP, 0, 4);
2490                         break;
2491 #endif /* __powerpc64 */
2492 #endif /* CONFIG_PPC_FPU */
2493
2494 #ifdef __powerpc64__
2495                 case 660:       /* stdbrx */
2496                         op->type = MKOP(STORE, BYTEREV, 8);
2497                         op->val = byterev_8(regs->gpr[rd]);
2498                         break;
2499
2500 #endif
2501                 case 661:       /* stswx */
2502                         op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2503                         break;
2504
2505                 case 662:       /* stwbrx */
2506                         op->type = MKOP(STORE, BYTEREV, 4);
2507                         op->val = byterev_4(regs->gpr[rd]);
2508                         break;
2509
2510                 case 725:       /* stswi */
2511                         if (rb == 0)
2512                                 rb = 32;        /* # bytes to store */
2513                         op->type = MKOP(STORE_MULTI, 0, rb);
2514                         op->ea = ra ? regs->gpr[ra] : 0;
2515                         break;
2516
2517                 case 790:       /* lhbrx */
2518                         op->type = MKOP(LOAD, BYTEREV, 2);
2519                         break;
2520
2521                 case 918:       /* sthbrx */
2522                         op->type = MKOP(STORE, BYTEREV, 2);
2523                         op->val = byterev_2(regs->gpr[rd]);
2524                         break;
2525
2526 #ifdef CONFIG_VSX
2527                 case 12:        /* lxsiwzx */
2528                         op->reg = rd | ((word & 1) << 5);
2529                         op->type = MKOP(LOAD_VSX, 0, 4);
2530                         op->element_size = 8;
2531                         break;
2532
2533                 case 76:        /* lxsiwax */
2534                         op->reg = rd | ((word & 1) << 5);
2535                         op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2536                         op->element_size = 8;
2537                         break;
2538
2539                 case 140:       /* stxsiwx */
2540                         op->reg = rd | ((word & 1) << 5);
2541                         op->type = MKOP(STORE_VSX, 0, 4);
2542                         op->element_size = 8;
2543                         break;
2544
2545                 case 268:       /* lxvx */
2546                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2547                                 goto unknown_opcode;
2548                         op->reg = rd | ((word & 1) << 5);
2549                         op->type = MKOP(LOAD_VSX, 0, 16);
2550                         op->element_size = 16;
2551                         op->vsx_flags = VSX_CHECK_VEC;
2552                         break;
2553
2554                 case 269:       /* lxvl */
2555                 case 301: {     /* lxvll */
2556                         int nb;
2557                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2558                                 goto unknown_opcode;
2559                         op->reg = rd | ((word & 1) << 5);
2560                         op->ea = ra ? regs->gpr[ra] : 0;
2561                         nb = regs->gpr[rb] & 0xff;
2562                         if (nb > 16)
2563                                 nb = 16;
2564                         op->type = MKOP(LOAD_VSX, 0, nb);
2565                         op->element_size = 16;
2566                         op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2567                                 VSX_CHECK_VEC;
2568                         break;
2569                 }
2570                 case 332:       /* lxvdsx */
2571                         op->reg = rd | ((word & 1) << 5);
2572                         op->type = MKOP(LOAD_VSX, 0, 8);
2573                         op->element_size = 8;
2574                         op->vsx_flags = VSX_SPLAT;
2575                         break;
2576
2577                 case 333:       /* lxvpx */
2578                         if (!cpu_has_feature(CPU_FTR_ARCH_31))
2579                                 goto unknown_opcode;
2580                         op->reg = VSX_REGISTER_XTP(rd);
2581                         op->type = MKOP(LOAD_VSX, 0, 32);
2582                         op->element_size = 32;
2583                         break;
2584
2585                 case 364:       /* lxvwsx */
2586                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2587                                 goto unknown_opcode;
2588                         op->reg = rd | ((word & 1) << 5);
2589                         op->type = MKOP(LOAD_VSX, 0, 4);
2590                         op->element_size = 4;
2591                         op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2592                         break;
2593
2594                 case 396:       /* stxvx */
2595                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2596                                 goto unknown_opcode;
2597                         op->reg = rd | ((word & 1) << 5);
2598                         op->type = MKOP(STORE_VSX, 0, 16);
2599                         op->element_size = 16;
2600                         op->vsx_flags = VSX_CHECK_VEC;
2601                         break;
2602
2603                 case 397:       /* stxvl */
2604                 case 429: {     /* stxvll */
2605                         int nb;
2606                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2607                                 goto unknown_opcode;
2608                         op->reg = rd | ((word & 1) << 5);
2609                         op->ea = ra ? regs->gpr[ra] : 0;
2610                         nb = regs->gpr[rb] & 0xff;
2611                         if (nb > 16)
2612                                 nb = 16;
2613                         op->type = MKOP(STORE_VSX, 0, nb);
2614                         op->element_size = 16;
2615                         op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2616                                 VSX_CHECK_VEC;
2617                         break;
2618                 }
2619                 case 461:       /* stxvpx */
2620                         if (!cpu_has_feature(CPU_FTR_ARCH_31))
2621                                 goto unknown_opcode;
2622                         op->reg = VSX_REGISTER_XTP(rd);
2623                         op->type = MKOP(STORE_VSX, 0, 32);
2624                         op->element_size = 32;
2625                         break;
2626                 case 524:       /* lxsspx */
2627                         op->reg = rd | ((word & 1) << 5);
2628                         op->type = MKOP(LOAD_VSX, 0, 4);
2629                         op->element_size = 8;
2630                         op->vsx_flags = VSX_FPCONV;
2631                         break;
2632
2633                 case 588:       /* lxsdx */
2634                         op->reg = rd | ((word & 1) << 5);
2635                         op->type = MKOP(LOAD_VSX, 0, 8);
2636                         op->element_size = 8;
2637                         break;
2638
2639                 case 652:       /* stxsspx */
2640                         op->reg = rd | ((word & 1) << 5);
2641                         op->type = MKOP(STORE_VSX, 0, 4);
2642                         op->element_size = 8;
2643                         op->vsx_flags = VSX_FPCONV;
2644                         break;
2645
2646                 case 716:       /* stxsdx */
2647                         op->reg = rd | ((word & 1) << 5);
2648                         op->type = MKOP(STORE_VSX, 0, 8);
2649                         op->element_size = 8;
2650                         break;
2651
2652                 case 780:       /* lxvw4x */
2653                         op->reg = rd | ((word & 1) << 5);
2654                         op->type = MKOP(LOAD_VSX, 0, 16);
2655                         op->element_size = 4;
2656                         break;
2657
2658                 case 781:       /* lxsibzx */
2659                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2660                                 goto unknown_opcode;
2661                         op->reg = rd | ((word & 1) << 5);
2662                         op->type = MKOP(LOAD_VSX, 0, 1);
2663                         op->element_size = 8;
2664                         op->vsx_flags = VSX_CHECK_VEC;
2665                         break;
2666
2667                 case 812:       /* lxvh8x */
2668                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2669                                 goto unknown_opcode;
2670                         op->reg = rd | ((word & 1) << 5);
2671                         op->type = MKOP(LOAD_VSX, 0, 16);
2672                         op->element_size = 2;
2673                         op->vsx_flags = VSX_CHECK_VEC;
2674                         break;
2675
2676                 case 813:       /* lxsihzx */
2677                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2678                                 goto unknown_opcode;
2679                         op->reg = rd | ((word & 1) << 5);
2680                         op->type = MKOP(LOAD_VSX, 0, 2);
2681                         op->element_size = 8;
2682                         op->vsx_flags = VSX_CHECK_VEC;
2683                         break;
2684
2685                 case 844:       /* lxvd2x */
2686                         op->reg = rd | ((word & 1) << 5);
2687                         op->type = MKOP(LOAD_VSX, 0, 16);
2688                         op->element_size = 8;
2689                         break;
2690
2691                 case 876:       /* lxvb16x */
2692                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2693                                 goto unknown_opcode;
2694                         op->reg = rd | ((word & 1) << 5);
2695                         op->type = MKOP(LOAD_VSX, 0, 16);
2696                         op->element_size = 1;
2697                         op->vsx_flags = VSX_CHECK_VEC;
2698                         break;
2699
2700                 case 908:       /* stxvw4x */
2701                         op->reg = rd | ((word & 1) << 5);
2702                         op->type = MKOP(STORE_VSX, 0, 16);
2703                         op->element_size = 4;
2704                         break;
2705
2706                 case 909:       /* stxsibx */
2707                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2708                                 goto unknown_opcode;
2709                         op->reg = rd | ((word & 1) << 5);
2710                         op->type = MKOP(STORE_VSX, 0, 1);
2711                         op->element_size = 8;
2712                         op->vsx_flags = VSX_CHECK_VEC;
2713                         break;
2714
2715                 case 940:       /* stxvh8x */
2716                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2717                                 goto unknown_opcode;
2718                         op->reg = rd | ((word & 1) << 5);
2719                         op->type = MKOP(STORE_VSX, 0, 16);
2720                         op->element_size = 2;
2721                         op->vsx_flags = VSX_CHECK_VEC;
2722                         break;
2723
2724                 case 941:       /* stxsihx */
2725                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2726                                 goto unknown_opcode;
2727                         op->reg = rd | ((word & 1) << 5);
2728                         op->type = MKOP(STORE_VSX, 0, 2);
2729                         op->element_size = 8;
2730                         op->vsx_flags = VSX_CHECK_VEC;
2731                         break;
2732
2733                 case 972:       /* stxvd2x */
2734                         op->reg = rd | ((word & 1) << 5);
2735                         op->type = MKOP(STORE_VSX, 0, 16);
2736                         op->element_size = 8;
2737                         break;
2738
2739                 case 1004:      /* stxvb16x */
2740                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2741                                 goto unknown_opcode;
2742                         op->reg = rd | ((word & 1) << 5);
2743                         op->type = MKOP(STORE_VSX, 0, 16);
2744                         op->element_size = 1;
2745                         op->vsx_flags = VSX_CHECK_VEC;
2746                         break;
2747
2748 #endif /* CONFIG_VSX */
2749                 }
2750                 break;
2751
2752         case 32:        /* lwz */
2753         case 33:        /* lwzu */
2754                 op->type = MKOP(LOAD, u, 4);
2755                 op->ea = dform_ea(word, regs);
2756                 break;
2757
2758         case 34:        /* lbz */
2759         case 35:        /* lbzu */
2760                 op->type = MKOP(LOAD, u, 1);
2761                 op->ea = dform_ea(word, regs);
2762                 break;
2763
2764         case 36:        /* stw */
2765         case 37:        /* stwu */
2766                 op->type = MKOP(STORE, u, 4);
2767                 op->ea = dform_ea(word, regs);
2768                 break;
2769
2770         case 38:        /* stb */
2771         case 39:        /* stbu */
2772                 op->type = MKOP(STORE, u, 1);
2773                 op->ea = dform_ea(word, regs);
2774                 break;
2775
2776         case 40:        /* lhz */
2777         case 41:        /* lhzu */
2778                 op->type = MKOP(LOAD, u, 2);
2779                 op->ea = dform_ea(word, regs);
2780                 break;
2781
2782         case 42:        /* lha */
2783         case 43:        /* lhau */
2784                 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2785                 op->ea = dform_ea(word, regs);
2786                 break;
2787
2788         case 44:        /* sth */
2789         case 45:        /* sthu */
2790                 op->type = MKOP(STORE, u, 2);
2791                 op->ea = dform_ea(word, regs);
2792                 break;
2793
2794         case 46:        /* lmw */
2795                 if (ra >= rd)
2796                         break;          /* invalid form, ra in range to load */
2797                 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2798                 op->ea = dform_ea(word, regs);
2799                 break;
2800
2801         case 47:        /* stmw */
2802                 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2803                 op->ea = dform_ea(word, regs);
2804                 break;
2805
2806 #ifdef CONFIG_PPC_FPU
2807         case 48:        /* lfs */
2808         case 49:        /* lfsu */
2809                 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2810                 op->ea = dform_ea(word, regs);
2811                 break;
2812
2813         case 50:        /* lfd */
2814         case 51:        /* lfdu */
2815                 op->type = MKOP(LOAD_FP, u, 8);
2816                 op->ea = dform_ea(word, regs);
2817                 break;
2818
2819         case 52:        /* stfs */
2820         case 53:        /* stfsu */
2821                 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2822                 op->ea = dform_ea(word, regs);
2823                 break;
2824
2825         case 54:        /* stfd */
2826         case 55:        /* stfdu */
2827                 op->type = MKOP(STORE_FP, u, 8);
2828                 op->ea = dform_ea(word, regs);
2829                 break;
2830 #endif
2831
2832 #ifdef __powerpc64__
2833         case 56:        /* lq */
2834                 if (!((rd & 1) || (rd == ra)))
2835                         op->type = MKOP(LOAD, 0, 16);
2836                 op->ea = dqform_ea(word, regs);
2837                 break;
2838 #endif
2839
2840 #ifdef CONFIG_VSX
2841         case 57:        /* lfdp, lxsd, lxssp */
2842                 op->ea = dsform_ea(word, regs);
2843                 switch (word & 3) {
2844                 case 0:         /* lfdp */
2845                         if (rd & 1)
2846                                 break;          /* reg must be even */
2847                         op->type = MKOP(LOAD_FP, 0, 16);
2848                         break;
2849                 case 2:         /* lxsd */
2850                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2851                                 goto unknown_opcode;
2852                         op->reg = rd + 32;
2853                         op->type = MKOP(LOAD_VSX, 0, 8);
2854                         op->element_size = 8;
2855                         op->vsx_flags = VSX_CHECK_VEC;
2856                         break;
2857                 case 3:         /* lxssp */
2858                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2859                                 goto unknown_opcode;
2860                         op->reg = rd + 32;
2861                         op->type = MKOP(LOAD_VSX, 0, 4);
2862                         op->element_size = 8;
2863                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2864                         break;
2865                 }
2866                 break;
2867 #endif /* CONFIG_VSX */
2868
2869 #ifdef __powerpc64__
2870         case 58:        /* ld[u], lwa */
2871                 op->ea = dsform_ea(word, regs);
2872                 switch (word & 3) {
2873                 case 0:         /* ld */
2874                         op->type = MKOP(LOAD, 0, 8);
2875                         break;
2876                 case 1:         /* ldu */
2877                         op->type = MKOP(LOAD, UPDATE, 8);
2878                         break;
2879                 case 2:         /* lwa */
2880                         op->type = MKOP(LOAD, SIGNEXT, 4);
2881                         break;
2882                 }
2883                 break;
2884 #endif
2885
2886 #ifdef CONFIG_VSX
2887         case 6:
2888                 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2889                         goto unknown_opcode;
2890                 op->ea = dqform_ea(word, regs);
2891                 op->reg = VSX_REGISTER_XTP(rd);
2892                 op->element_size = 32;
2893                 switch (word & 0xf) {
2894                 case 0:         /* lxvp */
2895                         op->type = MKOP(LOAD_VSX, 0, 32);
2896                         break;
2897                 case 1:         /* stxvp */
2898                         op->type = MKOP(STORE_VSX, 0, 32);
2899                         break;
2900                 }
2901                 break;
2902
2903         case 61:        /* stfdp, lxv, stxsd, stxssp, stxv */
2904                 switch (word & 7) {
2905                 case 0:         /* stfdp with LSB of DS field = 0 */
2906                 case 4:         /* stfdp with LSB of DS field = 1 */
2907                         op->ea = dsform_ea(word, regs);
2908                         op->type = MKOP(STORE_FP, 0, 16);
2909                         break;
2910
2911                 case 1:         /* lxv */
2912                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2913                                 goto unknown_opcode;
2914                         op->ea = dqform_ea(word, regs);
2915                         if (word & 8)
2916                                 op->reg = rd + 32;
2917                         op->type = MKOP(LOAD_VSX, 0, 16);
2918                         op->element_size = 16;
2919                         op->vsx_flags = VSX_CHECK_VEC;
2920                         break;
2921
2922                 case 2:         /* stxsd with LSB of DS field = 0 */
2923                 case 6:         /* stxsd with LSB of DS field = 1 */
2924                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2925                                 goto unknown_opcode;
2926                         op->ea = dsform_ea(word, regs);
2927                         op->reg = rd + 32;
2928                         op->type = MKOP(STORE_VSX, 0, 8);
2929                         op->element_size = 8;
2930                         op->vsx_flags = VSX_CHECK_VEC;
2931                         break;
2932
2933                 case 3:         /* stxssp with LSB of DS field = 0 */
2934                 case 7:         /* stxssp with LSB of DS field = 1 */
2935                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2936                                 goto unknown_opcode;
2937                         op->ea = dsform_ea(word, regs);
2938                         op->reg = rd + 32;
2939                         op->type = MKOP(STORE_VSX, 0, 4);
2940                         op->element_size = 8;
2941                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2942                         break;
2943
2944                 case 5:         /* stxv */
2945                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
2946                                 goto unknown_opcode;
2947                         op->ea = dqform_ea(word, regs);
2948                         if (word & 8)
2949                                 op->reg = rd + 32;
2950                         op->type = MKOP(STORE_VSX, 0, 16);
2951                         op->element_size = 16;
2952                         op->vsx_flags = VSX_CHECK_VEC;
2953                         break;
2954                 }
2955                 break;
2956 #endif /* CONFIG_VSX */
2957
2958 #ifdef __powerpc64__
2959         case 62:        /* std[u] */
2960                 op->ea = dsform_ea(word, regs);
2961                 switch (word & 3) {
2962                 case 0:         /* std */
2963                         op->type = MKOP(STORE, 0, 8);
2964                         break;
2965                 case 1:         /* stdu */
2966                         op->type = MKOP(STORE, UPDATE, 8);
2967                         break;
2968                 case 2:         /* stq */
2969                         if (!(rd & 1))
2970                                 op->type = MKOP(STORE, 0, 16);
2971                         break;
2972                 }
2973                 break;
2974         case 1: /* Prefixed instructions */
2975                 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2976                         goto unknown_opcode;
2977
2978                 prefix_r = GET_PREFIX_R(word);
2979                 ra = GET_PREFIX_RA(suffix);
2980                 op->update_reg = ra;
2981                 rd = (suffix >> 21) & 0x1f;
2982                 op->reg = rd;
2983                 op->val = regs->gpr[rd];
2984
2985                 suffixopcode = get_op(suffix);
2986                 prefixtype = (word >> 24) & 0x3;
2987                 switch (prefixtype) {
2988                 case 0: /* Type 00  Eight-Byte Load/Store */
2989                         if (prefix_r && ra)
2990                                 break;
2991                         op->ea = mlsd_8lsd_ea(word, suffix, regs);
2992                         switch (suffixopcode) {
2993                         case 41:        /* plwa */
2994                                 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2995                                 break;
2996 #ifdef CONFIG_VSX
2997                         case 42:        /* plxsd */
2998                                 op->reg = rd + 32;
2999                                 op->type = MKOP(LOAD_VSX, PREFIXED, 8);
3000                                 op->element_size = 8;
3001                                 op->vsx_flags = VSX_CHECK_VEC;
3002                                 break;
3003                         case 43:        /* plxssp */
3004                                 op->reg = rd + 32;
3005                                 op->type = MKOP(LOAD_VSX, PREFIXED, 4);
3006                                 op->element_size = 8;
3007                                 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3008                                 break;
3009                         case 46:        /* pstxsd */
3010                                 op->reg = rd + 32;
3011                                 op->type = MKOP(STORE_VSX, PREFIXED, 8);
3012                                 op->element_size = 8;
3013                                 op->vsx_flags = VSX_CHECK_VEC;
3014                                 break;
3015                         case 47:        /* pstxssp */
3016                                 op->reg = rd + 32;
3017                                 op->type = MKOP(STORE_VSX, PREFIXED, 4);
3018                                 op->element_size = 8;
3019                                 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3020                                 break;
3021                         case 51:        /* plxv1 */
3022                                 op->reg += 32;
3023                                 fallthrough;
3024                         case 50:        /* plxv0 */
3025                                 op->type = MKOP(LOAD_VSX, PREFIXED, 16);
3026                                 op->element_size = 16;
3027                                 op->vsx_flags = VSX_CHECK_VEC;
3028                                 break;
3029                         case 55:        /* pstxv1 */
3030                                 op->reg = rd + 32;
3031                                 fallthrough;
3032                         case 54:        /* pstxv0 */
3033                                 op->type = MKOP(STORE_VSX, PREFIXED, 16);
3034                                 op->element_size = 16;
3035                                 op->vsx_flags = VSX_CHECK_VEC;
3036                                 break;
3037 #endif /* CONFIG_VSX */
3038                         case 56:        /* plq */
3039                                 op->type = MKOP(LOAD, PREFIXED, 16);
3040                                 break;
3041                         case 57:        /* pld */
3042                                 op->type = MKOP(LOAD, PREFIXED, 8);
3043                                 break;
3044 #ifdef CONFIG_VSX
3045                         case 58:        /* plxvp */
3046                                 op->reg = VSX_REGISTER_XTP(rd);
3047                                 op->type = MKOP(LOAD_VSX, PREFIXED, 32);
3048                                 op->element_size = 32;
3049                                 break;
3050 #endif /* CONFIG_VSX */
3051                         case 60:        /* pstq */
3052                                 op->type = MKOP(STORE, PREFIXED, 16);
3053                                 break;
3054                         case 61:        /* pstd */
3055                                 op->type = MKOP(STORE, PREFIXED, 8);
3056                                 break;
3057 #ifdef CONFIG_VSX
3058                         case 62:        /* pstxvp */
3059                                 op->reg = VSX_REGISTER_XTP(rd);
3060                                 op->type = MKOP(STORE_VSX, PREFIXED, 32);
3061                                 op->element_size = 32;
3062                                 break;
3063 #endif /* CONFIG_VSX */
3064                         }
3065                         break;
3066                 case 1: /* Type 01 Eight-Byte Register-to-Register */
3067                         break;
3068                 case 2: /* Type 10 Modified Load/Store */
3069                         if (prefix_r && ra)
3070                                 break;
3071                         op->ea = mlsd_8lsd_ea(word, suffix, regs);
3072                         switch (suffixopcode) {
3073                         case 32:        /* plwz */
3074                                 op->type = MKOP(LOAD, PREFIXED, 4);
3075                                 break;
3076                         case 34:        /* plbz */
3077                                 op->type = MKOP(LOAD, PREFIXED, 1);
3078                                 break;
3079                         case 36:        /* pstw */
3080                                 op->type = MKOP(STORE, PREFIXED, 4);
3081                                 break;
3082                         case 38:        /* pstb */
3083                                 op->type = MKOP(STORE, PREFIXED, 1);
3084                                 break;
3085                         case 40:        /* plhz */
3086                                 op->type = MKOP(LOAD, PREFIXED, 2);
3087                                 break;
3088                         case 42:        /* plha */
3089                                 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3090                                 break;
3091                         case 44:        /* psth */
3092                                 op->type = MKOP(STORE, PREFIXED, 2);
3093                                 break;
3094                         case 48:        /* plfs */
3095                                 op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3096                                 break;
3097                         case 50:        /* plfd */
3098                                 op->type = MKOP(LOAD_FP, PREFIXED, 8);
3099                                 break;
3100                         case 52:        /* pstfs */
3101                                 op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3102                                 break;
3103                         case 54:        /* pstfd */
3104                                 op->type = MKOP(STORE_FP, PREFIXED, 8);
3105                                 break;
3106                         }
3107                         break;
3108                 case 3: /* Type 11 Modified Register-to-Register */
3109                         break;
3110                 }
3111 #endif /* __powerpc64__ */
3112
3113         }
3114
3115         if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3116                 switch (GETTYPE(op->type)) {
3117                 case LOAD:
3118                         if (ra == rd)
3119                                 goto unknown_opcode;
3120                         fallthrough;
3121                 case STORE:
3122                 case LOAD_FP:
3123                 case STORE_FP:
3124                         if (ra == 0)
3125                                 goto unknown_opcode;
3126                 }
3127         }
3128
3129 #ifdef CONFIG_VSX
3130         if ((GETTYPE(op->type) == LOAD_VSX ||
3131              GETTYPE(op->type) == STORE_VSX) &&
3132             !cpu_has_feature(CPU_FTR_VSX)) {
3133                 return -1;
3134         }
3135 #endif /* CONFIG_VSX */
3136
3137         return 0;
3138
3139  unknown_opcode:
3140         op->type = UNKNOWN;
3141         return 0;
3142
3143  logical_done:
3144         if (word & 1)
3145                 set_cr0(regs, op);
3146  logical_done_nocc:
3147         op->reg = ra;
3148         op->type |= SETREG;
3149         return 1;
3150
3151  arith_done:
3152         if (word & 1)
3153                 set_cr0(regs, op);
3154  compute_done:
3155         op->reg = rd;
3156         op->type |= SETREG;
3157         return 1;
3158
3159  priv:
3160         op->type = INTERRUPT | 0x700;
3161         op->val = SRR1_PROGPRIV;
3162         return 0;
3163
3164  trap:
3165         op->type = INTERRUPT | 0x700;
3166         op->val = SRR1_PROGTRAP;
3167         return 0;
3168 }
3169 EXPORT_SYMBOL_GPL(analyse_instr);
3170 NOKPROBE_SYMBOL(analyse_instr);
3171
3172 /*
3173  * For PPC32 we always use stwu with r1 to change the stack pointer.
3174  * So this emulated store may corrupt the exception frame, now we
3175  * have to provide the exception frame trampoline, which is pushed
3176  * below the kprobed function stack. So we only update gpr[1] but
3177  * don't emulate the real store operation. We will do real store
3178  * operation safely in exception return code by checking this flag.
3179  */
3180 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3181 {
3182         /*
3183          * Check if we already set since that means we'll
3184          * lose the previous value.
3185          */
3186         WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3187         set_thread_flag(TIF_EMULATE_STACK_STORE);
3188         return 0;
3189 }
3190
3191 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3192 {
3193         switch (size) {
3194         case 2:
3195                 *valp = (signed short) *valp;
3196                 break;
3197         case 4:
3198                 *valp = (signed int) *valp;
3199                 break;
3200         }
3201 }
3202
3203 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3204 {
3205         switch (size) {
3206         case 2:
3207                 *valp = byterev_2(*valp);
3208                 break;
3209         case 4:
3210                 *valp = byterev_4(*valp);
3211                 break;
3212 #ifdef __powerpc64__
3213         case 8:
3214                 *valp = byterev_8(*valp);
3215                 break;
3216 #endif
3217         }
3218 }
3219
3220 /*
3221  * Emulate an instruction that can be executed just by updating
3222  * fields in *regs.
3223  */
3224 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3225 {
3226         unsigned long next_pc;
3227
3228         next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3229         switch (GETTYPE(op->type)) {
3230         case COMPUTE:
3231                 if (op->type & SETREG)
3232                         regs->gpr[op->reg] = op->val;
3233                 if (op->type & SETCC)
3234                         regs->ccr = op->ccval;
3235                 if (op->type & SETXER)
3236                         regs->xer = op->xerval;
3237                 break;
3238
3239         case BRANCH:
3240                 if (op->type & SETLK)
3241                         regs->link = next_pc;
3242                 if (op->type & BRTAKEN)
3243                         next_pc = op->val;
3244                 if (op->type & DECCTR)
3245                         --regs->ctr;
3246                 break;
3247
3248         case BARRIER:
3249                 switch (op->type & BARRIER_MASK) {
3250                 case BARRIER_SYNC:
3251                         mb();
3252                         break;
3253                 case BARRIER_ISYNC:
3254                         isync();
3255                         break;
3256                 case BARRIER_EIEIO:
3257                         eieio();
3258                         break;
3259 #ifdef CONFIG_PPC64
3260                 case BARRIER_LWSYNC:
3261                         asm volatile("lwsync" : : : "memory");
3262                         break;
3263                 case BARRIER_PTESYNC:
3264                         asm volatile("ptesync" : : : "memory");
3265                         break;
3266 #endif
3267                 }
3268                 break;
3269
3270         case MFSPR:
3271                 switch (op->spr) {
3272                 case SPRN_XER:
3273                         regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3274                         break;
3275                 case SPRN_LR:
3276                         regs->gpr[op->reg] = regs->link;
3277                         break;
3278                 case SPRN_CTR:
3279                         regs->gpr[op->reg] = regs->ctr;
3280                         break;
3281                 default:
3282                         WARN_ON_ONCE(1);
3283                 }
3284                 break;
3285
3286         case MTSPR:
3287                 switch (op->spr) {
3288                 case SPRN_XER:
3289                         regs->xer = op->val & 0xffffffffUL;
3290                         break;
3291                 case SPRN_LR:
3292                         regs->link = op->val;
3293                         break;
3294                 case SPRN_CTR:
3295                         regs->ctr = op->val;
3296                         break;
3297                 default:
3298                         WARN_ON_ONCE(1);
3299                 }
3300                 break;
3301
3302         default:
3303                 WARN_ON_ONCE(1);
3304         }
3305         regs_set_return_ip(regs, next_pc);
3306 }
3307 NOKPROBE_SYMBOL(emulate_update_regs);
3308
3309 /*
3310  * Emulate a previously-analysed load or store instruction.
3311  * Return values are:
3312  * 0 = instruction emulated successfully
3313  * -EFAULT = address out of range or access faulted (regs->dar
3314  *           contains the faulting address)
3315  * -EACCES = misaligned access, instruction requires alignment
3316  * -EINVAL = unknown operation in *op
3317  */
3318 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3319 {
3320         int err, size, type;
3321         int i, rd, nb;
3322         unsigned int cr;
3323         unsigned long val;
3324         unsigned long ea;
3325         bool cross_endian;
3326
3327         err = 0;
3328         size = GETSIZE(op->type);
3329         type = GETTYPE(op->type);
3330         cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3331         ea = truncate_if_32bit(regs->msr, op->ea);
3332
3333         switch (type) {
3334         case LARX:
3335                 if (ea & (size - 1))
3336                         return -EACCES;         /* can't handle misaligned */
3337                 if (!address_ok(regs, ea, size))
3338                         return -EFAULT;
3339                 err = 0;
3340                 val = 0;
3341                 switch (size) {
3342 #ifdef __powerpc64__
3343                 case 1:
3344                         __get_user_asmx(val, ea, err, "lbarx");
3345                         break;
3346                 case 2:
3347                         __get_user_asmx(val, ea, err, "lharx");
3348                         break;
3349 #endif
3350                 case 4:
3351                         __get_user_asmx(val, ea, err, "lwarx");
3352                         break;
3353 #ifdef __powerpc64__
3354                 case 8:
3355                         __get_user_asmx(val, ea, err, "ldarx");
3356                         break;
3357                 case 16:
3358                         err = do_lqarx(ea, &regs->gpr[op->reg]);
3359                         break;
3360 #endif
3361                 default:
3362                         return -EINVAL;
3363                 }
3364                 if (err) {
3365                         regs->dar = ea;
3366                         break;
3367                 }
3368                 if (size < 16)
3369                         regs->gpr[op->reg] = val;
3370                 break;
3371
3372         case STCX:
3373                 if (ea & (size - 1))
3374                         return -EACCES;         /* can't handle misaligned */
3375                 if (!address_ok(regs, ea, size))
3376                         return -EFAULT;
3377                 err = 0;
3378                 switch (size) {
3379 #ifdef __powerpc64__
3380                 case 1:
3381                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3382                         break;
3383                 case 2:
3384                         __put_user_asmx(op->val, ea, err, "sthcx.", cr);
3385                         break;
3386 #endif
3387                 case 4:
3388                         __put_user_asmx(op->val, ea, err, "stwcx.", cr);
3389                         break;
3390 #ifdef __powerpc64__
3391                 case 8:
3392                         __put_user_asmx(op->val, ea, err, "stdcx.", cr);
3393                         break;
3394                 case 16:
3395                         err = do_stqcx(ea, regs->gpr[op->reg],
3396                                        regs->gpr[op->reg + 1], &cr);
3397                         break;
3398 #endif
3399                 default:
3400                         return -EINVAL;
3401                 }
3402                 if (!err)
3403                         regs->ccr = (regs->ccr & 0x0fffffff) |
3404                                 (cr & 0xe0000000) |
3405                                 ((regs->xer >> 3) & 0x10000000);
3406                 else
3407                         regs->dar = ea;
3408                 break;
3409
3410         case LOAD:
3411 #ifdef __powerpc64__
3412                 if (size == 16) {
3413                         err = emulate_lq(regs, ea, op->reg, cross_endian);
3414                         break;
3415                 }
3416 #endif
3417                 err = read_mem(&regs->gpr[op->reg], ea, size, regs);
3418                 if (!err) {
3419                         if (op->type & SIGNEXT)
3420                                 do_signext(&regs->gpr[op->reg], size);
3421                         if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3422                                 do_byterev(&regs->gpr[op->reg], size);
3423                 }
3424                 break;
3425
3426 #ifdef CONFIG_PPC_FPU
3427         case LOAD_FP:
3428                 /*
3429                  * If the instruction is in userspace, we can emulate it even
3430                  * if the VMX state is not live, because we have the state
3431                  * stored in the thread_struct.  If the instruction is in
3432                  * the kernel, we must not touch the state in the thread_struct.
3433                  */
3434                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3435                         return 0;
3436                 err = do_fp_load(op, ea, regs, cross_endian);
3437                 break;
3438 #endif
3439 #ifdef CONFIG_ALTIVEC
3440         case LOAD_VMX:
3441                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3442                         return 0;
3443                 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3444                 break;
3445 #endif
3446 #ifdef CONFIG_VSX
3447         case LOAD_VSX: {
3448                 unsigned long msrbit = MSR_VSX;
3449
3450                 /*
3451                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3452                  * when the target of the instruction is a vector register.
3453                  */
3454                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3455                         msrbit = MSR_VEC;
3456                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3457                         return 0;
3458                 err = do_vsx_load(op, ea, regs, cross_endian);
3459                 break;
3460         }
3461 #endif
3462         case LOAD_MULTI:
3463                 if (!address_ok(regs, ea, size))
3464                         return -EFAULT;
3465                 rd = op->reg;
3466                 for (i = 0; i < size; i += 4) {
3467                         unsigned int v32 = 0;
3468
3469                         nb = size - i;
3470                         if (nb > 4)
3471                                 nb = 4;
3472                         err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3473                         if (err)
3474                                 break;
3475                         if (unlikely(cross_endian))
3476                                 v32 = byterev_4(v32);
3477                         regs->gpr[rd] = v32;
3478                         ea += 4;
3479                         /* reg number wraps from 31 to 0 for lsw[ix] */
3480                         rd = (rd + 1) & 0x1f;
3481                 }
3482                 break;
3483
3484         case STORE:
3485 #ifdef __powerpc64__
3486                 if (size == 16) {
3487                         err = emulate_stq(regs, ea, op->reg, cross_endian);
3488                         break;
3489                 }
3490 #endif
3491                 if ((op->type & UPDATE) && size == sizeof(long) &&
3492                     op->reg == 1 && op->update_reg == 1 &&
3493                     !(regs->msr & MSR_PR) &&
3494                     ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3495                         err = handle_stack_update(ea, regs);
3496                         break;
3497                 }
3498                 if (unlikely(cross_endian))
3499                         do_byterev(&op->val, size);
3500                 err = write_mem(op->val, ea, size, regs);
3501                 break;
3502
3503 #ifdef CONFIG_PPC_FPU
3504         case STORE_FP:
3505                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3506                         return 0;
3507                 err = do_fp_store(op, ea, regs, cross_endian);
3508                 break;
3509 #endif
3510 #ifdef CONFIG_ALTIVEC
3511         case STORE_VMX:
3512                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3513                         return 0;
3514                 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3515                 break;
3516 #endif
3517 #ifdef CONFIG_VSX
3518         case STORE_VSX: {
3519                 unsigned long msrbit = MSR_VSX;
3520
3521                 /*
3522                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3523                  * when the target of the instruction is a vector register.
3524                  */
3525                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3526                         msrbit = MSR_VEC;
3527                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3528                         return 0;
3529                 err = do_vsx_store(op, ea, regs, cross_endian);
3530                 break;
3531         }
3532 #endif
3533         case STORE_MULTI:
3534                 if (!address_ok(regs, ea, size))
3535                         return -EFAULT;
3536                 rd = op->reg;
3537                 for (i = 0; i < size; i += 4) {
3538                         unsigned int v32 = regs->gpr[rd];
3539
3540                         nb = size - i;
3541                         if (nb > 4)
3542                                 nb = 4;
3543                         if (unlikely(cross_endian))
3544                                 v32 = byterev_4(v32);
3545                         err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3546                         if (err)
3547                                 break;
3548                         ea += 4;
3549                         /* reg number wraps from 31 to 0 for stsw[ix] */
3550                         rd = (rd + 1) & 0x1f;
3551                 }
3552                 break;
3553
3554         default:
3555                 return -EINVAL;
3556         }
3557
3558         if (err)
3559                 return err;
3560
3561         if (op->type & UPDATE)
3562                 regs->gpr[op->update_reg] = op->ea;
3563
3564         return 0;
3565 }
3566 NOKPROBE_SYMBOL(emulate_loadstore);
3567
3568 /*
3569  * Emulate instructions that cause a transfer of control,
3570  * loads and stores, and a few other instructions.
3571  * Returns 1 if the step was emulated, 0 if not,
3572  * or -1 if the instruction is one that should not be stepped,
3573  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3574  */
3575 int emulate_step(struct pt_regs *regs, ppc_inst_t instr)
3576 {
3577         struct instruction_op op;
3578         int r, err, type;
3579         unsigned long val;
3580         unsigned long ea;
3581
3582         r = analyse_instr(&op, regs, instr);
3583         if (r < 0)
3584                 return r;
3585         if (r > 0) {
3586                 emulate_update_regs(regs, &op);
3587                 return 1;
3588         }
3589
3590         err = 0;
3591         type = GETTYPE(op.type);
3592
3593         if (OP_IS_LOAD_STORE(type)) {
3594                 err = emulate_loadstore(regs, &op);
3595                 if (err)
3596                         return 0;
3597                 goto instr_done;
3598         }
3599
3600         switch (type) {
3601         case CACHEOP:
3602                 ea = truncate_if_32bit(regs->msr, op.ea);
3603                 if (!address_ok(regs, ea, 8))
3604                         return 0;
3605                 switch (op.type & CACHEOP_MASK) {
3606                 case DCBST:
3607                         __cacheop_user_asmx(ea, err, "dcbst");
3608                         break;
3609                 case DCBF:
3610                         __cacheop_user_asmx(ea, err, "dcbf");
3611                         break;
3612                 case DCBTST:
3613                         if (op.reg == 0)
3614                                 prefetchw((void *) ea);
3615                         break;
3616                 case DCBT:
3617                         if (op.reg == 0)
3618                                 prefetch((void *) ea);
3619                         break;
3620                 case ICBI:
3621                         __cacheop_user_asmx(ea, err, "icbi");
3622                         break;
3623                 case DCBZ:
3624                         err = emulate_dcbz(ea, regs);
3625                         break;
3626                 }
3627                 if (err) {
3628                         regs->dar = ea;
3629                         return 0;
3630                 }
3631                 goto instr_done;
3632
3633         case MFMSR:
3634                 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3635                 goto instr_done;
3636
3637         case MTMSR:
3638                 val = regs->gpr[op.reg];
3639                 if ((val & MSR_RI) == 0)
3640                         /* can't step mtmsr[d] that would clear MSR_RI */
3641                         return -1;
3642                 /* here op.val is the mask of bits to change */
3643                 regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3644                 goto instr_done;
3645
3646 #ifdef CONFIG_PPC64
3647         case SYSCALL:   /* sc */
3648                 /*
3649                  * N.B. this uses knowledge about how the syscall
3650                  * entry code works.  If that is changed, this will
3651                  * need to be changed also.
3652                  */
3653                 if (IS_ENABLED(CONFIG_PPC_FAST_ENDIAN_SWITCH) &&
3654                                 cpu_has_feature(CPU_FTR_REAL_LE) &&
3655                                 regs->gpr[0] == 0x1ebe) {
3656                         regs_set_return_msr(regs, regs->msr ^ MSR_LE);
3657                         goto instr_done;
3658                 }
3659                 regs->gpr[9] = regs->gpr[13];
3660                 regs->gpr[10] = MSR_KERNEL;
3661                 regs->gpr[11] = regs->nip + 4;
3662                 regs->gpr[12] = regs->msr & MSR_MASK;
3663                 regs->gpr[13] = (unsigned long) get_paca();
3664                 regs_set_return_ip(regs, (unsigned long) &system_call_common);
3665                 regs_set_return_msr(regs, MSR_KERNEL);
3666                 return 1;
3667
3668 #ifdef CONFIG_PPC_BOOK3S_64
3669         case SYSCALL_VECTORED_0:        /* scv 0 */
3670                 regs->gpr[9] = regs->gpr[13];
3671                 regs->gpr[10] = MSR_KERNEL;
3672                 regs->gpr[11] = regs->nip + 4;
3673                 regs->gpr[12] = regs->msr & MSR_MASK;
3674                 regs->gpr[13] = (unsigned long) get_paca();
3675                 regs_set_return_ip(regs, (unsigned long) &system_call_vectored_emulate);
3676                 regs_set_return_msr(regs, MSR_KERNEL);
3677                 return 1;
3678 #endif
3679
3680         case RFI:
3681                 return -1;
3682 #endif
3683         }
3684         return 0;
3685
3686  instr_done:
3687         regs_set_return_ip(regs,
3688                 truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3689         return 1;
3690 }
3691 NOKPROBE_SYMBOL(emulate_step);