Merge tag 'arm-dt-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / arch / powerpc / kernel / watchdog.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Watchdog support on powerpc systems.
4  *
5  * Copyright 2017, IBM Corporation.
6  *
7  * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8  */
9
10 #define pr_fmt(fmt) "watchdog: " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/processor.h>
28 #include <linux/smp.h>
29
30 #include <asm/interrupt.h>
31 #include <asm/paca.h>
32 #include <asm/nmi.h>
33
34 /*
35  * The powerpc watchdog ensures that each CPU is able to service timers.
36  * The watchdog sets up a simple timer on each CPU to run once per timer
37  * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
38  * the heartbeat.
39  *
40  * Then there are two systems to check that the heartbeat is still running.
41  * The local soft-NMI, and the SMP checker.
42  *
43  * The soft-NMI checker can detect lockups on the local CPU. When interrupts
44  * are disabled with local_irq_disable(), platforms that use soft-masking
45  * can leave hardware interrupts enabled and handle them with a masked
46  * interrupt handler. The masked handler can send the timer interrupt to the
47  * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
48  * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
49  *
50  * The soft-NMI checker will compare the heartbeat timestamp for this CPU
51  * with the current time, and take action if the difference exceeds the
52  * watchdog threshold.
53  *
54  * The limitation of the soft-NMI watchdog is that it does not work when
55  * interrupts are hard disabled or otherwise not being serviced. This is
56  * solved by also having a SMP watchdog where all CPUs check all other
57  * CPUs heartbeat.
58  *
59  * The SMP checker can detect lockups on other CPUs. A gobal "pending"
60  * cpumask is kept, containing all CPUs which enable the watchdog. Each
61  * CPU clears their pending bit in their heartbeat timer. When the bitmask
62  * becomes empty, the last CPU to clear its pending bit updates a global
63  * timestamp and refills the pending bitmask.
64  *
65  * In the heartbeat timer, if any CPU notices that the global timestamp has
66  * not been updated for a period exceeding the watchdog threshold, then it
67  * means the CPU(s) with their bit still set in the pending mask have had
68  * their heartbeat stop, and action is taken.
69  *
70  * Some platforms implement true NMI IPIs, which can be used by the SMP
71  * watchdog to detect an unresponsive CPU and pull it out of its stuck
72  * state with the NMI IPI, to get crash/debug data from it. This way the
73  * SMP watchdog can detect hardware interrupts off lockups.
74  */
75
76 static cpumask_t wd_cpus_enabled __read_mostly;
77
78 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
79 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
80
81 static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */
82
83 static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
84 static DEFINE_PER_CPU(u64, wd_timer_tb);
85
86 /* SMP checker bits */
87 static unsigned long __wd_smp_lock;
88 static cpumask_t wd_smp_cpus_pending;
89 static cpumask_t wd_smp_cpus_stuck;
90 static u64 wd_smp_last_reset_tb;
91
92 static inline void wd_smp_lock(unsigned long *flags)
93 {
94         /*
95          * Avoid locking layers if possible.
96          * This may be called from low level interrupt handlers at some
97          * point in future.
98          */
99         raw_local_irq_save(*flags);
100         hard_irq_disable(); /* Make it soft-NMI safe */
101         while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
102                 raw_local_irq_restore(*flags);
103                 spin_until_cond(!test_bit(0, &__wd_smp_lock));
104                 raw_local_irq_save(*flags);
105                 hard_irq_disable();
106         }
107 }
108
109 static inline void wd_smp_unlock(unsigned long *flags)
110 {
111         clear_bit_unlock(0, &__wd_smp_lock);
112         raw_local_irq_restore(*flags);
113 }
114
115 static void wd_lockup_ipi(struct pt_regs *regs)
116 {
117         int cpu = raw_smp_processor_id();
118         u64 tb = get_tb();
119
120         pr_emerg("CPU %d Hard LOCKUP\n", cpu);
121         pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
122                  cpu, tb, per_cpu(wd_timer_tb, cpu),
123                  tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
124         print_modules();
125         print_irqtrace_events(current);
126         if (regs)
127                 show_regs(regs);
128         else
129                 dump_stack();
130
131         /* Do not panic from here because that can recurse into NMI IPI layer */
132 }
133
134 static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
135 {
136         cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
137         cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
138         if (cpumask_empty(&wd_smp_cpus_pending)) {
139                 wd_smp_last_reset_tb = tb;
140                 cpumask_andnot(&wd_smp_cpus_pending,
141                                 &wd_cpus_enabled,
142                                 &wd_smp_cpus_stuck);
143         }
144 }
145 static void set_cpu_stuck(int cpu, u64 tb)
146 {
147         set_cpumask_stuck(cpumask_of(cpu), tb);
148 }
149
150 static void watchdog_smp_panic(int cpu, u64 tb)
151 {
152         unsigned long flags;
153         int c;
154
155         wd_smp_lock(&flags);
156         /* Double check some things under lock */
157         if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
158                 goto out;
159         if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
160                 goto out;
161         if (cpumask_weight(&wd_smp_cpus_pending) == 0)
162                 goto out;
163
164         pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
165                  cpu, cpumask_pr_args(&wd_smp_cpus_pending));
166         pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
167                  cpu, tb, wd_smp_last_reset_tb,
168                  tb_to_ns(tb - wd_smp_last_reset_tb) / 1000000);
169
170         if (!sysctl_hardlockup_all_cpu_backtrace) {
171                 /*
172                  * Try to trigger the stuck CPUs, unless we are going to
173                  * get a backtrace on all of them anyway.
174                  */
175                 for_each_cpu(c, &wd_smp_cpus_pending) {
176                         if (c == cpu)
177                                 continue;
178                         smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
179                 }
180         }
181
182         /* Take the stuck CPUs out of the watch group */
183         set_cpumask_stuck(&wd_smp_cpus_pending, tb);
184
185         wd_smp_unlock(&flags);
186
187         printk_safe_flush();
188         /*
189          * printk_safe_flush() seems to require another print
190          * before anything actually goes out to console.
191          */
192         if (sysctl_hardlockup_all_cpu_backtrace)
193                 trigger_allbutself_cpu_backtrace();
194
195         if (hardlockup_panic)
196                 nmi_panic(NULL, "Hard LOCKUP");
197
198         return;
199
200 out:
201         wd_smp_unlock(&flags);
202 }
203
204 static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
205 {
206         if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
207                 if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
208                         struct pt_regs *regs = get_irq_regs();
209                         unsigned long flags;
210
211                         wd_smp_lock(&flags);
212
213                         pr_emerg("CPU %d became unstuck TB:%lld\n",
214                                  cpu, tb);
215                         print_irqtrace_events(current);
216                         if (regs)
217                                 show_regs(regs);
218                         else
219                                 dump_stack();
220
221                         cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
222                         wd_smp_unlock(&flags);
223                 }
224                 return;
225         }
226         cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
227         if (cpumask_empty(&wd_smp_cpus_pending)) {
228                 unsigned long flags;
229
230                 wd_smp_lock(&flags);
231                 if (cpumask_empty(&wd_smp_cpus_pending)) {
232                         wd_smp_last_reset_tb = tb;
233                         cpumask_andnot(&wd_smp_cpus_pending,
234                                         &wd_cpus_enabled,
235                                         &wd_smp_cpus_stuck);
236                 }
237                 wd_smp_unlock(&flags);
238         }
239 }
240
241 static void watchdog_timer_interrupt(int cpu)
242 {
243         u64 tb = get_tb();
244
245         per_cpu(wd_timer_tb, cpu) = tb;
246
247         wd_smp_clear_cpu_pending(cpu, tb);
248
249         if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
250                 watchdog_smp_panic(cpu, tb);
251 }
252
253 DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt)
254 {
255         unsigned long flags;
256         int cpu = raw_smp_processor_id();
257         u64 tb;
258
259         /* should only arrive from kernel, with irqs disabled */
260         WARN_ON_ONCE(!arch_irq_disabled_regs(regs));
261
262         if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
263                 return 0;
264
265         __this_cpu_inc(irq_stat.soft_nmi_irqs);
266
267         tb = get_tb();
268         if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
269                 wd_smp_lock(&flags);
270                 if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
271                         wd_smp_unlock(&flags);
272                         return 0;
273                 }
274                 set_cpu_stuck(cpu, tb);
275
276                 pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
277                          cpu, (void *)regs->nip);
278                 pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
279                          cpu, tb, per_cpu(wd_timer_tb, cpu),
280                          tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
281                 print_modules();
282                 print_irqtrace_events(current);
283                 show_regs(regs);
284
285                 wd_smp_unlock(&flags);
286
287                 if (sysctl_hardlockup_all_cpu_backtrace)
288                         trigger_allbutself_cpu_backtrace();
289
290                 if (hardlockup_panic)
291                         nmi_panic(regs, "Hard LOCKUP");
292         }
293         if (wd_panic_timeout_tb < 0x7fffffff)
294                 mtspr(SPRN_DEC, wd_panic_timeout_tb);
295
296         return 0;
297 }
298
299 static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
300 {
301         int cpu = smp_processor_id();
302
303         if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
304                 return HRTIMER_NORESTART;
305
306         if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
307                 return HRTIMER_NORESTART;
308
309         watchdog_timer_interrupt(cpu);
310
311         hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
312
313         return HRTIMER_RESTART;
314 }
315
316 void arch_touch_nmi_watchdog(void)
317 {
318         unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
319         int cpu = smp_processor_id();
320         u64 tb = get_tb();
321
322         if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
323                 per_cpu(wd_timer_tb, cpu) = tb;
324                 wd_smp_clear_cpu_pending(cpu, tb);
325         }
326 }
327 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
328
329 static void start_watchdog(void *arg)
330 {
331         struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
332         int cpu = smp_processor_id();
333         unsigned long flags;
334
335         if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
336                 WARN_ON(1);
337                 return;
338         }
339
340         if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
341                 return;
342
343         if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
344                 return;
345
346         wd_smp_lock(&flags);
347         cpumask_set_cpu(cpu, &wd_cpus_enabled);
348         if (cpumask_weight(&wd_cpus_enabled) == 1) {
349                 cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
350                 wd_smp_last_reset_tb = get_tb();
351         }
352         wd_smp_unlock(&flags);
353
354         *this_cpu_ptr(&wd_timer_tb) = get_tb();
355
356         hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
357         hrtimer->function = watchdog_timer_fn;
358         hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
359                       HRTIMER_MODE_REL_PINNED);
360 }
361
362 static int start_watchdog_on_cpu(unsigned int cpu)
363 {
364         return smp_call_function_single(cpu, start_watchdog, NULL, true);
365 }
366
367 static void stop_watchdog(void *arg)
368 {
369         struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
370         int cpu = smp_processor_id();
371         unsigned long flags;
372
373         if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
374                 return; /* Can happen in CPU unplug case */
375
376         hrtimer_cancel(hrtimer);
377
378         wd_smp_lock(&flags);
379         cpumask_clear_cpu(cpu, &wd_cpus_enabled);
380         wd_smp_unlock(&flags);
381
382         wd_smp_clear_cpu_pending(cpu, get_tb());
383 }
384
385 static int stop_watchdog_on_cpu(unsigned int cpu)
386 {
387         return smp_call_function_single(cpu, stop_watchdog, NULL, true);
388 }
389
390 static void watchdog_calc_timeouts(void)
391 {
392         wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
393
394         /* Have the SMP detector trigger a bit later */
395         wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
396
397         /* 2/5 is the factor that the perf based detector uses */
398         wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
399 }
400
401 void watchdog_nmi_stop(void)
402 {
403         int cpu;
404
405         for_each_cpu(cpu, &wd_cpus_enabled)
406                 stop_watchdog_on_cpu(cpu);
407 }
408
409 void watchdog_nmi_start(void)
410 {
411         int cpu;
412
413         watchdog_calc_timeouts();
414         for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
415                 start_watchdog_on_cpu(cpu);
416 }
417
418 /*
419  * Invoked from core watchdog init.
420  */
421 int __init watchdog_nmi_probe(void)
422 {
423         int err;
424
425         err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
426                                         "powerpc/watchdog:online",
427                                         start_watchdog_on_cpu,
428                                         stop_watchdog_on_cpu);
429         if (err < 0) {
430                 pr_warn("could not be initialized");
431                 return err;
432         }
433         return 0;
434 }