Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec...
[linux-2.6-microblaze.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
46
47 #include <asm/pgtable.h>
48 #include <asm/io.h>
49 #include <asm/processor.h>
50 #include <asm/mmu.h>
51 #include <asm/prom.h>
52 #include <asm/machdep.h>
53 #include <asm/time.h>
54 #include <asm/runlatch.h>
55 #include <asm/syscalls.h>
56 #include <asm/switch_to.h>
57 #include <asm/tm.h>
58 #include <asm/debug.h>
59 #ifdef CONFIG_PPC64
60 #include <asm/firmware.h>
61 #include <asm/hw_irq.h>
62 #endif
63 #include <asm/code-patching.h>
64 #include <asm/exec.h>
65 #include <asm/livepatch.h>
66 #include <asm/cpu_has_feature.h>
67 #include <asm/asm-prototypes.h>
68
69 #include <linux/kprobes.h>
70 #include <linux/kdebug.h>
71
72 /* Transactional Memory debug */
73 #ifdef TM_DEBUG_SW
74 #define TM_DEBUG(x...) printk(KERN_INFO x)
75 #else
76 #define TM_DEBUG(x...) do { } while(0)
77 #endif
78
79 extern unsigned long _get_SP(void);
80
81 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
82 /*
83  * Are we running in "Suspend disabled" mode? If so we have to block any
84  * sigreturn that would get us into suspended state, and we also warn in some
85  * other paths that we should never reach with suspend disabled.
86  */
87 bool tm_suspend_disabled __ro_after_init = false;
88
89 static void check_if_tm_restore_required(struct task_struct *tsk)
90 {
91         /*
92          * If we are saving the current thread's registers, and the
93          * thread is in a transactional state, set the TIF_RESTORE_TM
94          * bit so that we know to restore the registers before
95          * returning to userspace.
96          */
97         if (tsk == current && tsk->thread.regs &&
98             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
99             !test_thread_flag(TIF_RESTORE_TM)) {
100                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
101                 set_thread_flag(TIF_RESTORE_TM);
102         }
103 }
104
105 static inline bool msr_tm_active(unsigned long msr)
106 {
107         return MSR_TM_ACTIVE(msr);
108 }
109
110 static bool tm_active_with_fp(struct task_struct *tsk)
111 {
112         return msr_tm_active(tsk->thread.regs->msr) &&
113                 (tsk->thread.ckpt_regs.msr & MSR_FP);
114 }
115
116 static bool tm_active_with_altivec(struct task_struct *tsk)
117 {
118         return msr_tm_active(tsk->thread.regs->msr) &&
119                 (tsk->thread.ckpt_regs.msr & MSR_VEC);
120 }
121 #else
122 static inline bool msr_tm_active(unsigned long msr) { return false; }
123 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
124 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
125 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
126 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
127
128 bool strict_msr_control;
129 EXPORT_SYMBOL(strict_msr_control);
130
131 static int __init enable_strict_msr_control(char *str)
132 {
133         strict_msr_control = true;
134         pr_info("Enabling strict facility control\n");
135
136         return 0;
137 }
138 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
139
140 unsigned long msr_check_and_set(unsigned long bits)
141 {
142         unsigned long oldmsr = mfmsr();
143         unsigned long newmsr;
144
145         newmsr = oldmsr | bits;
146
147 #ifdef CONFIG_VSX
148         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149                 newmsr |= MSR_VSX;
150 #endif
151
152         if (oldmsr != newmsr)
153                 mtmsr_isync(newmsr);
154
155         return newmsr;
156 }
157 EXPORT_SYMBOL_GPL(msr_check_and_set);
158
159 void __msr_check_and_clear(unsigned long bits)
160 {
161         unsigned long oldmsr = mfmsr();
162         unsigned long newmsr;
163
164         newmsr = oldmsr & ~bits;
165
166 #ifdef CONFIG_VSX
167         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
168                 newmsr &= ~MSR_VSX;
169 #endif
170
171         if (oldmsr != newmsr)
172                 mtmsr_isync(newmsr);
173 }
174 EXPORT_SYMBOL(__msr_check_and_clear);
175
176 #ifdef CONFIG_PPC_FPU
177 static void __giveup_fpu(struct task_struct *tsk)
178 {
179         unsigned long msr;
180
181         save_fpu(tsk);
182         msr = tsk->thread.regs->msr;
183         msr &= ~MSR_FP;
184 #ifdef CONFIG_VSX
185         if (cpu_has_feature(CPU_FTR_VSX))
186                 msr &= ~MSR_VSX;
187 #endif
188         tsk->thread.regs->msr = msr;
189 }
190
191 void giveup_fpu(struct task_struct *tsk)
192 {
193         check_if_tm_restore_required(tsk);
194
195         msr_check_and_set(MSR_FP);
196         __giveup_fpu(tsk);
197         msr_check_and_clear(MSR_FP);
198 }
199 EXPORT_SYMBOL(giveup_fpu);
200
201 /*
202  * Make sure the floating-point register state in the
203  * the thread_struct is up to date for task tsk.
204  */
205 void flush_fp_to_thread(struct task_struct *tsk)
206 {
207         if (tsk->thread.regs) {
208                 /*
209                  * We need to disable preemption here because if we didn't,
210                  * another process could get scheduled after the regs->msr
211                  * test but before we have finished saving the FP registers
212                  * to the thread_struct.  That process could take over the
213                  * FPU, and then when we get scheduled again we would store
214                  * bogus values for the remaining FP registers.
215                  */
216                 preempt_disable();
217                 if (tsk->thread.regs->msr & MSR_FP) {
218                         /*
219                          * This should only ever be called for current or
220                          * for a stopped child process.  Since we save away
221                          * the FP register state on context switch,
222                          * there is something wrong if a stopped child appears
223                          * to still have its FP state in the CPU registers.
224                          */
225                         BUG_ON(tsk != current);
226                         giveup_fpu(tsk);
227                 }
228                 preempt_enable();
229         }
230 }
231 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
232
233 void enable_kernel_fp(void)
234 {
235         unsigned long cpumsr;
236
237         WARN_ON(preemptible());
238
239         cpumsr = msr_check_and_set(MSR_FP);
240
241         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
242                 check_if_tm_restore_required(current);
243                 /*
244                  * If a thread has already been reclaimed then the
245                  * checkpointed registers are on the CPU but have definitely
246                  * been saved by the reclaim code. Don't need to and *cannot*
247                  * giveup as this would save  to the 'live' structure not the
248                  * checkpointed structure.
249                  */
250                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
251                         return;
252                 __giveup_fpu(current);
253         }
254 }
255 EXPORT_SYMBOL(enable_kernel_fp);
256
257 static int restore_fp(struct task_struct *tsk)
258 {
259         if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
260                 load_fp_state(&current->thread.fp_state);
261                 current->thread.load_fp++;
262                 return 1;
263         }
264         return 0;
265 }
266 #else
267 static int restore_fp(struct task_struct *tsk) { return 0; }
268 #endif /* CONFIG_PPC_FPU */
269
270 #ifdef CONFIG_ALTIVEC
271 #define loadvec(thr) ((thr).load_vec)
272
273 static void __giveup_altivec(struct task_struct *tsk)
274 {
275         unsigned long msr;
276
277         save_altivec(tsk);
278         msr = tsk->thread.regs->msr;
279         msr &= ~MSR_VEC;
280 #ifdef CONFIG_VSX
281         if (cpu_has_feature(CPU_FTR_VSX))
282                 msr &= ~MSR_VSX;
283 #endif
284         tsk->thread.regs->msr = msr;
285 }
286
287 void giveup_altivec(struct task_struct *tsk)
288 {
289         check_if_tm_restore_required(tsk);
290
291         msr_check_and_set(MSR_VEC);
292         __giveup_altivec(tsk);
293         msr_check_and_clear(MSR_VEC);
294 }
295 EXPORT_SYMBOL(giveup_altivec);
296
297 void enable_kernel_altivec(void)
298 {
299         unsigned long cpumsr;
300
301         WARN_ON(preemptible());
302
303         cpumsr = msr_check_and_set(MSR_VEC);
304
305         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
306                 check_if_tm_restore_required(current);
307                 /*
308                  * If a thread has already been reclaimed then the
309                  * checkpointed registers are on the CPU but have definitely
310                  * been saved by the reclaim code. Don't need to and *cannot*
311                  * giveup as this would save  to the 'live' structure not the
312                  * checkpointed structure.
313                  */
314                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
315                         return;
316                 __giveup_altivec(current);
317         }
318 }
319 EXPORT_SYMBOL(enable_kernel_altivec);
320
321 /*
322  * Make sure the VMX/Altivec register state in the
323  * the thread_struct is up to date for task tsk.
324  */
325 void flush_altivec_to_thread(struct task_struct *tsk)
326 {
327         if (tsk->thread.regs) {
328                 preempt_disable();
329                 if (tsk->thread.regs->msr & MSR_VEC) {
330                         BUG_ON(tsk != current);
331                         giveup_altivec(tsk);
332                 }
333                 preempt_enable();
334         }
335 }
336 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
337
338 static int restore_altivec(struct task_struct *tsk)
339 {
340         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
341                 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
342                 load_vr_state(&tsk->thread.vr_state);
343                 tsk->thread.used_vr = 1;
344                 tsk->thread.load_vec++;
345
346                 return 1;
347         }
348         return 0;
349 }
350 #else
351 #define loadvec(thr) 0
352 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
353 #endif /* CONFIG_ALTIVEC */
354
355 #ifdef CONFIG_VSX
356 static void __giveup_vsx(struct task_struct *tsk)
357 {
358         unsigned long msr = tsk->thread.regs->msr;
359
360         /*
361          * We should never be ssetting MSR_VSX without also setting
362          * MSR_FP and MSR_VEC
363          */
364         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
365
366         /* __giveup_fpu will clear MSR_VSX */
367         if (msr & MSR_FP)
368                 __giveup_fpu(tsk);
369         if (msr & MSR_VEC)
370                 __giveup_altivec(tsk);
371 }
372
373 static void giveup_vsx(struct task_struct *tsk)
374 {
375         check_if_tm_restore_required(tsk);
376
377         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
378         __giveup_vsx(tsk);
379         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
380 }
381
382 void enable_kernel_vsx(void)
383 {
384         unsigned long cpumsr;
385
386         WARN_ON(preemptible());
387
388         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
389
390         if (current->thread.regs &&
391             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
392                 check_if_tm_restore_required(current);
393                 /*
394                  * If a thread has already been reclaimed then the
395                  * checkpointed registers are on the CPU but have definitely
396                  * been saved by the reclaim code. Don't need to and *cannot*
397                  * giveup as this would save  to the 'live' structure not the
398                  * checkpointed structure.
399                  */
400                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
401                         return;
402                 __giveup_vsx(current);
403         }
404 }
405 EXPORT_SYMBOL(enable_kernel_vsx);
406
407 void flush_vsx_to_thread(struct task_struct *tsk)
408 {
409         if (tsk->thread.regs) {
410                 preempt_disable();
411                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
412                         BUG_ON(tsk != current);
413                         giveup_vsx(tsk);
414                 }
415                 preempt_enable();
416         }
417 }
418 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
419
420 static int restore_vsx(struct task_struct *tsk)
421 {
422         if (cpu_has_feature(CPU_FTR_VSX)) {
423                 tsk->thread.used_vsr = 1;
424                 return 1;
425         }
426
427         return 0;
428 }
429 #else
430 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
431 #endif /* CONFIG_VSX */
432
433 #ifdef CONFIG_SPE
434 void giveup_spe(struct task_struct *tsk)
435 {
436         check_if_tm_restore_required(tsk);
437
438         msr_check_and_set(MSR_SPE);
439         __giveup_spe(tsk);
440         msr_check_and_clear(MSR_SPE);
441 }
442 EXPORT_SYMBOL(giveup_spe);
443
444 void enable_kernel_spe(void)
445 {
446         WARN_ON(preemptible());
447
448         msr_check_and_set(MSR_SPE);
449
450         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
451                 check_if_tm_restore_required(current);
452                 __giveup_spe(current);
453         }
454 }
455 EXPORT_SYMBOL(enable_kernel_spe);
456
457 void flush_spe_to_thread(struct task_struct *tsk)
458 {
459         if (tsk->thread.regs) {
460                 preempt_disable();
461                 if (tsk->thread.regs->msr & MSR_SPE) {
462                         BUG_ON(tsk != current);
463                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
464                         giveup_spe(tsk);
465                 }
466                 preempt_enable();
467         }
468 }
469 #endif /* CONFIG_SPE */
470
471 static unsigned long msr_all_available;
472
473 static int __init init_msr_all_available(void)
474 {
475 #ifdef CONFIG_PPC_FPU
476         msr_all_available |= MSR_FP;
477 #endif
478 #ifdef CONFIG_ALTIVEC
479         if (cpu_has_feature(CPU_FTR_ALTIVEC))
480                 msr_all_available |= MSR_VEC;
481 #endif
482 #ifdef CONFIG_VSX
483         if (cpu_has_feature(CPU_FTR_VSX))
484                 msr_all_available |= MSR_VSX;
485 #endif
486 #ifdef CONFIG_SPE
487         if (cpu_has_feature(CPU_FTR_SPE))
488                 msr_all_available |= MSR_SPE;
489 #endif
490
491         return 0;
492 }
493 early_initcall(init_msr_all_available);
494
495 void giveup_all(struct task_struct *tsk)
496 {
497         unsigned long usermsr;
498
499         if (!tsk->thread.regs)
500                 return;
501
502         usermsr = tsk->thread.regs->msr;
503
504         if ((usermsr & msr_all_available) == 0)
505                 return;
506
507         msr_check_and_set(msr_all_available);
508         check_if_tm_restore_required(tsk);
509
510         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
511
512 #ifdef CONFIG_PPC_FPU
513         if (usermsr & MSR_FP)
514                 __giveup_fpu(tsk);
515 #endif
516 #ifdef CONFIG_ALTIVEC
517         if (usermsr & MSR_VEC)
518                 __giveup_altivec(tsk);
519 #endif
520 #ifdef CONFIG_SPE
521         if (usermsr & MSR_SPE)
522                 __giveup_spe(tsk);
523 #endif
524
525         msr_check_and_clear(msr_all_available);
526 }
527 EXPORT_SYMBOL(giveup_all);
528
529 void restore_math(struct pt_regs *regs)
530 {
531         unsigned long msr;
532
533         if (!msr_tm_active(regs->msr) &&
534                 !current->thread.load_fp && !loadvec(current->thread))
535                 return;
536
537         msr = regs->msr;
538         msr_check_and_set(msr_all_available);
539
540         /*
541          * Only reload if the bit is not set in the user MSR, the bit BEING set
542          * indicates that the registers are hot
543          */
544         if ((!(msr & MSR_FP)) && restore_fp(current))
545                 msr |= MSR_FP | current->thread.fpexc_mode;
546
547         if ((!(msr & MSR_VEC)) && restore_altivec(current))
548                 msr |= MSR_VEC;
549
550         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
551                         restore_vsx(current)) {
552                 msr |= MSR_VSX;
553         }
554
555         msr_check_and_clear(msr_all_available);
556
557         regs->msr = msr;
558 }
559
560 static void save_all(struct task_struct *tsk)
561 {
562         unsigned long usermsr;
563
564         if (!tsk->thread.regs)
565                 return;
566
567         usermsr = tsk->thread.regs->msr;
568
569         if ((usermsr & msr_all_available) == 0)
570                 return;
571
572         msr_check_and_set(msr_all_available);
573
574         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
575
576         if (usermsr & MSR_FP)
577                 save_fpu(tsk);
578
579         if (usermsr & MSR_VEC)
580                 save_altivec(tsk);
581
582         if (usermsr & MSR_SPE)
583                 __giveup_spe(tsk);
584
585         msr_check_and_clear(msr_all_available);
586         thread_pkey_regs_save(&tsk->thread);
587 }
588
589 void flush_all_to_thread(struct task_struct *tsk)
590 {
591         if (tsk->thread.regs) {
592                 preempt_disable();
593                 BUG_ON(tsk != current);
594                 save_all(tsk);
595
596 #ifdef CONFIG_SPE
597                 if (tsk->thread.regs->msr & MSR_SPE)
598                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
599 #endif
600
601                 preempt_enable();
602         }
603 }
604 EXPORT_SYMBOL(flush_all_to_thread);
605
606 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
607 void do_send_trap(struct pt_regs *regs, unsigned long address,
608                   unsigned long error_code, int breakpt)
609 {
610         current->thread.trap_nr = TRAP_HWBKPT;
611         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
612                         11, SIGSEGV) == NOTIFY_STOP)
613                 return;
614
615         /* Deliver the signal to userspace */
616         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
617                                     (void __user *)address);
618 }
619 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
620 void do_break (struct pt_regs *regs, unsigned long address,
621                     unsigned long error_code)
622 {
623         siginfo_t info;
624
625         current->thread.trap_nr = TRAP_HWBKPT;
626         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
627                         11, SIGSEGV) == NOTIFY_STOP)
628                 return;
629
630         if (debugger_break_match(regs))
631                 return;
632
633         /* Clear the breakpoint */
634         hw_breakpoint_disable();
635
636         /* Deliver the signal to userspace */
637         clear_siginfo(&info);
638         info.si_signo = SIGTRAP;
639         info.si_errno = 0;
640         info.si_code = TRAP_HWBKPT;
641         info.si_addr = (void __user *)address;
642         force_sig_info(SIGTRAP, &info, current);
643 }
644 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
645
646 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
647
648 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
649 /*
650  * Set the debug registers back to their default "safe" values.
651  */
652 static void set_debug_reg_defaults(struct thread_struct *thread)
653 {
654         thread->debug.iac1 = thread->debug.iac2 = 0;
655 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
656         thread->debug.iac3 = thread->debug.iac4 = 0;
657 #endif
658         thread->debug.dac1 = thread->debug.dac2 = 0;
659 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
660         thread->debug.dvc1 = thread->debug.dvc2 = 0;
661 #endif
662         thread->debug.dbcr0 = 0;
663 #ifdef CONFIG_BOOKE
664         /*
665          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
666          */
667         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
668                         DBCR1_IAC3US | DBCR1_IAC4US;
669         /*
670          * Force Data Address Compare User/Supervisor bits to be User-only
671          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
672          */
673         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
674 #else
675         thread->debug.dbcr1 = 0;
676 #endif
677 }
678
679 static void prime_debug_regs(struct debug_reg *debug)
680 {
681         /*
682          * We could have inherited MSR_DE from userspace, since
683          * it doesn't get cleared on exception entry.  Make sure
684          * MSR_DE is clear before we enable any debug events.
685          */
686         mtmsr(mfmsr() & ~MSR_DE);
687
688         mtspr(SPRN_IAC1, debug->iac1);
689         mtspr(SPRN_IAC2, debug->iac2);
690 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
691         mtspr(SPRN_IAC3, debug->iac3);
692         mtspr(SPRN_IAC4, debug->iac4);
693 #endif
694         mtspr(SPRN_DAC1, debug->dac1);
695         mtspr(SPRN_DAC2, debug->dac2);
696 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
697         mtspr(SPRN_DVC1, debug->dvc1);
698         mtspr(SPRN_DVC2, debug->dvc2);
699 #endif
700         mtspr(SPRN_DBCR0, debug->dbcr0);
701         mtspr(SPRN_DBCR1, debug->dbcr1);
702 #ifdef CONFIG_BOOKE
703         mtspr(SPRN_DBCR2, debug->dbcr2);
704 #endif
705 }
706 /*
707  * Unless neither the old or new thread are making use of the
708  * debug registers, set the debug registers from the values
709  * stored in the new thread.
710  */
711 void switch_booke_debug_regs(struct debug_reg *new_debug)
712 {
713         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
714                 || (new_debug->dbcr0 & DBCR0_IDM))
715                         prime_debug_regs(new_debug);
716 }
717 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
718 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
719 #ifndef CONFIG_HAVE_HW_BREAKPOINT
720 static void set_breakpoint(struct arch_hw_breakpoint *brk)
721 {
722         preempt_disable();
723         __set_breakpoint(brk);
724         preempt_enable();
725 }
726
727 static void set_debug_reg_defaults(struct thread_struct *thread)
728 {
729         thread->hw_brk.address = 0;
730         thread->hw_brk.type = 0;
731         if (ppc_breakpoint_available())
732                 set_breakpoint(&thread->hw_brk);
733 }
734 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
735 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
736
737 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739 {
740         mtspr(SPRN_DAC1, dabr);
741 #ifdef CONFIG_PPC_47x
742         isync();
743 #endif
744         return 0;
745 }
746 #elif defined(CONFIG_PPC_BOOK3S)
747 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
748 {
749         mtspr(SPRN_DABR, dabr);
750         if (cpu_has_feature(CPU_FTR_DABRX))
751                 mtspr(SPRN_DABRX, dabrx);
752         return 0;
753 }
754 #elif defined(CONFIG_PPC_8xx)
755 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
756 {
757         unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
758         unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
759         unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
760
761         if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
762                 lctrl1 |= 0xa0000;
763         else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
764                 lctrl1 |= 0xf0000;
765         else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
766                 lctrl2 = 0;
767
768         mtspr(SPRN_LCTRL2, 0);
769         mtspr(SPRN_CMPE, addr);
770         mtspr(SPRN_CMPF, addr + 4);
771         mtspr(SPRN_LCTRL1, lctrl1);
772         mtspr(SPRN_LCTRL2, lctrl2);
773
774         return 0;
775 }
776 #else
777 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
778 {
779         return -EINVAL;
780 }
781 #endif
782
783 static inline int set_dabr(struct arch_hw_breakpoint *brk)
784 {
785         unsigned long dabr, dabrx;
786
787         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
788         dabrx = ((brk->type >> 3) & 0x7);
789
790         if (ppc_md.set_dabr)
791                 return ppc_md.set_dabr(dabr, dabrx);
792
793         return __set_dabr(dabr, dabrx);
794 }
795
796 static inline int set_dawr(struct arch_hw_breakpoint *brk)
797 {
798         unsigned long dawr, dawrx, mrd;
799
800         dawr = brk->address;
801
802         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
803                                    << (63 - 58); //* read/write bits */
804         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
805                                    << (63 - 59); //* translate */
806         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
807                                    >> 3; //* PRIM bits */
808         /* dawr length is stored in field MDR bits 48:53.  Matches range in
809            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
810            0b111111=64DW.
811            brk->len is in bytes.
812            This aligns up to double word size, shifts and does the bias.
813         */
814         mrd = ((brk->len + 7) >> 3) - 1;
815         dawrx |= (mrd & 0x3f) << (63 - 53);
816
817         if (ppc_md.set_dawr)
818                 return ppc_md.set_dawr(dawr, dawrx);
819         mtspr(SPRN_DAWR, dawr);
820         mtspr(SPRN_DAWRX, dawrx);
821         return 0;
822 }
823
824 void __set_breakpoint(struct arch_hw_breakpoint *brk)
825 {
826         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
827
828         if (cpu_has_feature(CPU_FTR_DAWR))
829                 // Power8 or later
830                 set_dawr(brk);
831         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
832                 // Power7 or earlier
833                 set_dabr(brk);
834         else
835                 // Shouldn't happen due to higher level checks
836                 WARN_ON_ONCE(1);
837 }
838
839 /* Check if we have DAWR or DABR hardware */
840 bool ppc_breakpoint_available(void)
841 {
842         if (cpu_has_feature(CPU_FTR_DAWR))
843                 return true; /* POWER8 DAWR */
844         if (cpu_has_feature(CPU_FTR_ARCH_207S))
845                 return false; /* POWER9 with DAWR disabled */
846         /* DABR: Everything but POWER8 and POWER9 */
847         return true;
848 }
849 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
850
851 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
852                               struct arch_hw_breakpoint *b)
853 {
854         if (a->address != b->address)
855                 return false;
856         if (a->type != b->type)
857                 return false;
858         if (a->len != b->len)
859                 return false;
860         return true;
861 }
862
863 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
864
865 static inline bool tm_enabled(struct task_struct *tsk)
866 {
867         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
868 }
869
870 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
871 {
872         /*
873          * Use the current MSR TM suspended bit to track if we have
874          * checkpointed state outstanding.
875          * On signal delivery, we'd normally reclaim the checkpointed
876          * state to obtain stack pointer (see:get_tm_stackpointer()).
877          * This will then directly return to userspace without going
878          * through __switch_to(). However, if the stack frame is bad,
879          * we need to exit this thread which calls __switch_to() which
880          * will again attempt to reclaim the already saved tm state.
881          * Hence we need to check that we've not already reclaimed
882          * this state.
883          * We do this using the current MSR, rather tracking it in
884          * some specific thread_struct bit, as it has the additional
885          * benefit of checking for a potential TM bad thing exception.
886          */
887         if (!MSR_TM_SUSPENDED(mfmsr()))
888                 return;
889
890         giveup_all(container_of(thr, struct task_struct, thread));
891
892         tm_reclaim(thr, cause);
893
894         /*
895          * If we are in a transaction and FP is off then we can't have
896          * used FP inside that transaction. Hence the checkpointed
897          * state is the same as the live state. We need to copy the
898          * live state to the checkpointed state so that when the
899          * transaction is restored, the checkpointed state is correct
900          * and the aborted transaction sees the correct state. We use
901          * ckpt_regs.msr here as that's what tm_reclaim will use to
902          * determine if it's going to write the checkpointed state or
903          * not. So either this will write the checkpointed registers,
904          * or reclaim will. Similarly for VMX.
905          */
906         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
907                 memcpy(&thr->ckfp_state, &thr->fp_state,
908                        sizeof(struct thread_fp_state));
909         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
910                 memcpy(&thr->ckvr_state, &thr->vr_state,
911                        sizeof(struct thread_vr_state));
912 }
913
914 void tm_reclaim_current(uint8_t cause)
915 {
916         tm_enable();
917         tm_reclaim_thread(&current->thread, cause);
918 }
919
920 static inline void tm_reclaim_task(struct task_struct *tsk)
921 {
922         /* We have to work out if we're switching from/to a task that's in the
923          * middle of a transaction.
924          *
925          * In switching we need to maintain a 2nd register state as
926          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
927          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
928          * ckvr_state
929          *
930          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
931          */
932         struct thread_struct *thr = &tsk->thread;
933
934         if (!thr->regs)
935                 return;
936
937         if (!MSR_TM_ACTIVE(thr->regs->msr))
938                 goto out_and_saveregs;
939
940         WARN_ON(tm_suspend_disabled);
941
942         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
943                  "ccr=%lx, msr=%lx, trap=%lx)\n",
944                  tsk->pid, thr->regs->nip,
945                  thr->regs->ccr, thr->regs->msr,
946                  thr->regs->trap);
947
948         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
949
950         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
951                  tsk->pid);
952
953 out_and_saveregs:
954         /* Always save the regs here, even if a transaction's not active.
955          * This context-switches a thread's TM info SPRs.  We do it here to
956          * be consistent with the restore path (in recheckpoint) which
957          * cannot happen later in _switch().
958          */
959         tm_save_sprs(thr);
960 }
961
962 extern void __tm_recheckpoint(struct thread_struct *thread);
963
964 void tm_recheckpoint(struct thread_struct *thread)
965 {
966         unsigned long flags;
967
968         if (!(thread->regs->msr & MSR_TM))
969                 return;
970
971         /* We really can't be interrupted here as the TEXASR registers can't
972          * change and later in the trecheckpoint code, we have a userspace R1.
973          * So let's hard disable over this region.
974          */
975         local_irq_save(flags);
976         hard_irq_disable();
977
978         /* The TM SPRs are restored here, so that TEXASR.FS can be set
979          * before the trecheckpoint and no explosion occurs.
980          */
981         tm_restore_sprs(thread);
982
983         __tm_recheckpoint(thread);
984
985         local_irq_restore(flags);
986 }
987
988 static inline void tm_recheckpoint_new_task(struct task_struct *new)
989 {
990         if (!cpu_has_feature(CPU_FTR_TM))
991                 return;
992
993         /* Recheckpoint the registers of the thread we're about to switch to.
994          *
995          * If the task was using FP, we non-lazily reload both the original and
996          * the speculative FP register states.  This is because the kernel
997          * doesn't see if/when a TM rollback occurs, so if we take an FP
998          * unavailable later, we are unable to determine which set of FP regs
999          * need to be restored.
1000          */
1001         if (!tm_enabled(new))
1002                 return;
1003
1004         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1005                 tm_restore_sprs(&new->thread);
1006                 return;
1007         }
1008         /* Recheckpoint to restore original checkpointed register state. */
1009         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1010                  new->pid, new->thread.regs->msr);
1011
1012         tm_recheckpoint(&new->thread);
1013
1014         /*
1015          * The checkpointed state has been restored but the live state has
1016          * not, ensure all the math functionality is turned off to trigger
1017          * restore_math() to reload.
1018          */
1019         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1020
1021         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1022                  "(kernel msr 0x%lx)\n",
1023                  new->pid, mfmsr());
1024 }
1025
1026 static inline void __switch_to_tm(struct task_struct *prev,
1027                 struct task_struct *new)
1028 {
1029         if (cpu_has_feature(CPU_FTR_TM)) {
1030                 if (tm_enabled(prev) || tm_enabled(new))
1031                         tm_enable();
1032
1033                 if (tm_enabled(prev)) {
1034                         prev->thread.load_tm++;
1035                         tm_reclaim_task(prev);
1036                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1037                                 prev->thread.regs->msr &= ~MSR_TM;
1038                 }
1039
1040                 tm_recheckpoint_new_task(new);
1041         }
1042 }
1043
1044 /*
1045  * This is called if we are on the way out to userspace and the
1046  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1047  * FP and/or vector state and does so if necessary.
1048  * If userspace is inside a transaction (whether active or
1049  * suspended) and FP/VMX/VSX instructions have ever been enabled
1050  * inside that transaction, then we have to keep them enabled
1051  * and keep the FP/VMX/VSX state loaded while ever the transaction
1052  * continues.  The reason is that if we didn't, and subsequently
1053  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1054  * we don't know whether it's the same transaction, and thus we
1055  * don't know which of the checkpointed state and the transactional
1056  * state to use.
1057  */
1058 void restore_tm_state(struct pt_regs *regs)
1059 {
1060         unsigned long msr_diff;
1061
1062         /*
1063          * This is the only moment we should clear TIF_RESTORE_TM as
1064          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1065          * again, anything else could lead to an incorrect ckpt_msr being
1066          * saved and therefore incorrect signal contexts.
1067          */
1068         clear_thread_flag(TIF_RESTORE_TM);
1069         if (!MSR_TM_ACTIVE(regs->msr))
1070                 return;
1071
1072         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1073         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1074
1075         /* Ensure that restore_math() will restore */
1076         if (msr_diff & MSR_FP)
1077                 current->thread.load_fp = 1;
1078 #ifdef CONFIG_ALTIVEC
1079         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1080                 current->thread.load_vec = 1;
1081 #endif
1082         restore_math(regs);
1083
1084         regs->msr |= msr_diff;
1085 }
1086
1087 #else
1088 #define tm_recheckpoint_new_task(new)
1089 #define __switch_to_tm(prev, new)
1090 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1091
1092 static inline void save_sprs(struct thread_struct *t)
1093 {
1094 #ifdef CONFIG_ALTIVEC
1095         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1096                 t->vrsave = mfspr(SPRN_VRSAVE);
1097 #endif
1098 #ifdef CONFIG_PPC_BOOK3S_64
1099         if (cpu_has_feature(CPU_FTR_DSCR))
1100                 t->dscr = mfspr(SPRN_DSCR);
1101
1102         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1103                 t->bescr = mfspr(SPRN_BESCR);
1104                 t->ebbhr = mfspr(SPRN_EBBHR);
1105                 t->ebbrr = mfspr(SPRN_EBBRR);
1106
1107                 t->fscr = mfspr(SPRN_FSCR);
1108
1109                 /*
1110                  * Note that the TAR is not available for use in the kernel.
1111                  * (To provide this, the TAR should be backed up/restored on
1112                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1113                  * this should be in pt_regs anyway (for debug).)
1114                  */
1115                 t->tar = mfspr(SPRN_TAR);
1116         }
1117 #endif
1118
1119         thread_pkey_regs_save(t);
1120 }
1121
1122 static inline void restore_sprs(struct thread_struct *old_thread,
1123                                 struct thread_struct *new_thread)
1124 {
1125 #ifdef CONFIG_ALTIVEC
1126         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1127             old_thread->vrsave != new_thread->vrsave)
1128                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1129 #endif
1130 #ifdef CONFIG_PPC_BOOK3S_64
1131         if (cpu_has_feature(CPU_FTR_DSCR)) {
1132                 u64 dscr = get_paca()->dscr_default;
1133                 if (new_thread->dscr_inherit)
1134                         dscr = new_thread->dscr;
1135
1136                 if (old_thread->dscr != dscr)
1137                         mtspr(SPRN_DSCR, dscr);
1138         }
1139
1140         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1141                 if (old_thread->bescr != new_thread->bescr)
1142                         mtspr(SPRN_BESCR, new_thread->bescr);
1143                 if (old_thread->ebbhr != new_thread->ebbhr)
1144                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1145                 if (old_thread->ebbrr != new_thread->ebbrr)
1146                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1147
1148                 if (old_thread->fscr != new_thread->fscr)
1149                         mtspr(SPRN_FSCR, new_thread->fscr);
1150
1151                 if (old_thread->tar != new_thread->tar)
1152                         mtspr(SPRN_TAR, new_thread->tar);
1153         }
1154
1155         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1156             old_thread->tidr != new_thread->tidr)
1157                 mtspr(SPRN_TIDR, new_thread->tidr);
1158 #endif
1159
1160         thread_pkey_regs_restore(new_thread, old_thread);
1161 }
1162
1163 #ifdef CONFIG_PPC_BOOK3S_64
1164 #define CP_SIZE 128
1165 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1166 #endif
1167
1168 struct task_struct *__switch_to(struct task_struct *prev,
1169         struct task_struct *new)
1170 {
1171         struct thread_struct *new_thread, *old_thread;
1172         struct task_struct *last;
1173 #ifdef CONFIG_PPC_BOOK3S_64
1174         struct ppc64_tlb_batch *batch;
1175 #endif
1176
1177         new_thread = &new->thread;
1178         old_thread = &current->thread;
1179
1180         WARN_ON(!irqs_disabled());
1181
1182 #ifdef CONFIG_PPC_BOOK3S_64
1183         batch = this_cpu_ptr(&ppc64_tlb_batch);
1184         if (batch->active) {
1185                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1186                 if (batch->index)
1187                         __flush_tlb_pending(batch);
1188                 batch->active = 0;
1189         }
1190 #endif /* CONFIG_PPC_BOOK3S_64 */
1191
1192 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1193         switch_booke_debug_regs(&new->thread.debug);
1194 #else
1195 /*
1196  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1197  * schedule DABR
1198  */
1199 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1200         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1201                 __set_breakpoint(&new->thread.hw_brk);
1202 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1203 #endif
1204
1205         /*
1206          * We need to save SPRs before treclaim/trecheckpoint as these will
1207          * change a number of them.
1208          */
1209         save_sprs(&prev->thread);
1210
1211         /* Save FPU, Altivec, VSX and SPE state */
1212         giveup_all(prev);
1213
1214         __switch_to_tm(prev, new);
1215
1216         if (!radix_enabled()) {
1217                 /*
1218                  * We can't take a PMU exception inside _switch() since there
1219                  * is a window where the kernel stack SLB and the kernel stack
1220                  * are out of sync. Hard disable here.
1221                  */
1222                 hard_irq_disable();
1223         }
1224
1225         /*
1226          * Call restore_sprs() before calling _switch(). If we move it after
1227          * _switch() then we miss out on calling it for new tasks. The reason
1228          * for this is we manually create a stack frame for new tasks that
1229          * directly returns through ret_from_fork() or
1230          * ret_from_kernel_thread(). See copy_thread() for details.
1231          */
1232         restore_sprs(old_thread, new_thread);
1233
1234         last = _switch(old_thread, new_thread);
1235
1236 #ifdef CONFIG_PPC_BOOK3S_64
1237         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1238                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1239                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1240                 batch->active = 1;
1241         }
1242
1243         if (current_thread_info()->task->thread.regs) {
1244                 restore_math(current_thread_info()->task->thread.regs);
1245
1246                 /*
1247                  * The copy-paste buffer can only store into foreign real
1248                  * addresses, so unprivileged processes can not see the
1249                  * data or use it in any way unless they have foreign real
1250                  * mappings. If the new process has the foreign real address
1251                  * mappings, we must issue a cp_abort to clear any state and
1252                  * prevent snooping, corruption or a covert channel.
1253                  */
1254                 if (current_thread_info()->task->thread.used_vas)
1255                         asm volatile(PPC_CP_ABORT);
1256         }
1257 #endif /* CONFIG_PPC_BOOK3S_64 */
1258
1259         return last;
1260 }
1261
1262 static int instructions_to_print = 16;
1263
1264 static void show_instructions(struct pt_regs *regs)
1265 {
1266         int i;
1267         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1268                         sizeof(int));
1269
1270         printk("Instruction dump:");
1271
1272         for (i = 0; i < instructions_to_print; i++) {
1273                 int instr;
1274
1275                 if (!(i % 8))
1276                         pr_cont("\n");
1277
1278 #if !defined(CONFIG_BOOKE)
1279                 /* If executing with the IMMU off, adjust pc rather
1280                  * than print XXXXXXXX.
1281                  */
1282                 if (!(regs->msr & MSR_IR))
1283                         pc = (unsigned long)phys_to_virt(pc);
1284 #endif
1285
1286                 if (!__kernel_text_address(pc) ||
1287                      probe_kernel_address((unsigned int __user *)pc, instr)) {
1288                         pr_cont("XXXXXXXX ");
1289                 } else {
1290                         if (regs->nip == pc)
1291                                 pr_cont("<%08x> ", instr);
1292                         else
1293                                 pr_cont("%08x ", instr);
1294                 }
1295
1296                 pc += sizeof(int);
1297         }
1298
1299         pr_cont("\n");
1300 }
1301
1302 void show_user_instructions(struct pt_regs *regs)
1303 {
1304         unsigned long pc;
1305         int i;
1306
1307         pc = regs->nip - (instructions_to_print * 3 / 4 * sizeof(int));
1308
1309         /*
1310          * Make sure the NIP points at userspace, not kernel text/data or
1311          * elsewhere.
1312          */
1313         if (!__access_ok(pc, instructions_to_print * sizeof(int), USER_DS)) {
1314                 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1315                         current->comm, current->pid);
1316                 return;
1317         }
1318
1319         pr_info("%s[%d]: code: ", current->comm, current->pid);
1320
1321         for (i = 0; i < instructions_to_print; i++) {
1322                 int instr;
1323
1324                 if (!(i % 8) && (i > 0)) {
1325                         pr_cont("\n");
1326                         pr_info("%s[%d]: code: ", current->comm, current->pid);
1327                 }
1328
1329                 if (probe_kernel_address((unsigned int __user *)pc, instr)) {
1330                         pr_cont("XXXXXXXX ");
1331                 } else {
1332                         if (regs->nip == pc)
1333                                 pr_cont("<%08x> ", instr);
1334                         else
1335                                 pr_cont("%08x ", instr);
1336                 }
1337
1338                 pc += sizeof(int);
1339         }
1340
1341         pr_cont("\n");
1342 }
1343
1344 struct regbit {
1345         unsigned long bit;
1346         const char *name;
1347 };
1348
1349 static struct regbit msr_bits[] = {
1350 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1351         {MSR_SF,        "SF"},
1352         {MSR_HV,        "HV"},
1353 #endif
1354         {MSR_VEC,       "VEC"},
1355         {MSR_VSX,       "VSX"},
1356 #ifdef CONFIG_BOOKE
1357         {MSR_CE,        "CE"},
1358 #endif
1359         {MSR_EE,        "EE"},
1360         {MSR_PR,        "PR"},
1361         {MSR_FP,        "FP"},
1362         {MSR_ME,        "ME"},
1363 #ifdef CONFIG_BOOKE
1364         {MSR_DE,        "DE"},
1365 #else
1366         {MSR_SE,        "SE"},
1367         {MSR_BE,        "BE"},
1368 #endif
1369         {MSR_IR,        "IR"},
1370         {MSR_DR,        "DR"},
1371         {MSR_PMM,       "PMM"},
1372 #ifndef CONFIG_BOOKE
1373         {MSR_RI,        "RI"},
1374         {MSR_LE,        "LE"},
1375 #endif
1376         {0,             NULL}
1377 };
1378
1379 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1380 {
1381         const char *s = "";
1382
1383         for (; bits->bit; ++bits)
1384                 if (val & bits->bit) {
1385                         pr_cont("%s%s", s, bits->name);
1386                         s = sep;
1387                 }
1388 }
1389
1390 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1391 static struct regbit msr_tm_bits[] = {
1392         {MSR_TS_T,      "T"},
1393         {MSR_TS_S,      "S"},
1394         {MSR_TM,        "E"},
1395         {0,             NULL}
1396 };
1397
1398 static void print_tm_bits(unsigned long val)
1399 {
1400 /*
1401  * This only prints something if at least one of the TM bit is set.
1402  * Inside the TM[], the output means:
1403  *   E: Enabled         (bit 32)
1404  *   S: Suspended       (bit 33)
1405  *   T: Transactional   (bit 34)
1406  */
1407         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1408                 pr_cont(",TM[");
1409                 print_bits(val, msr_tm_bits, "");
1410                 pr_cont("]");
1411         }
1412 }
1413 #else
1414 static void print_tm_bits(unsigned long val) {}
1415 #endif
1416
1417 static void print_msr_bits(unsigned long val)
1418 {
1419         pr_cont("<");
1420         print_bits(val, msr_bits, ",");
1421         print_tm_bits(val);
1422         pr_cont(">");
1423 }
1424
1425 #ifdef CONFIG_PPC64
1426 #define REG             "%016lx"
1427 #define REGS_PER_LINE   4
1428 #define LAST_VOLATILE   13
1429 #else
1430 #define REG             "%08lx"
1431 #define REGS_PER_LINE   8
1432 #define LAST_VOLATILE   12
1433 #endif
1434
1435 void show_regs(struct pt_regs * regs)
1436 {
1437         int i, trap;
1438
1439         show_regs_print_info(KERN_DEFAULT);
1440
1441         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1442                regs->nip, regs->link, regs->ctr);
1443         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1444                regs, regs->trap, print_tainted(), init_utsname()->release);
1445         printk("MSR:  "REG" ", regs->msr);
1446         print_msr_bits(regs->msr);
1447         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1448         trap = TRAP(regs);
1449         if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1450                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1451         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1452 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1453                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1454 #else
1455                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1456 #endif
1457 #ifdef CONFIG_PPC64
1458         pr_cont("IRQMASK: %lx ", regs->softe);
1459 #endif
1460 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1461         if (MSR_TM_ACTIVE(regs->msr))
1462                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1463 #endif
1464
1465         for (i = 0;  i < 32;  i++) {
1466                 if ((i % REGS_PER_LINE) == 0)
1467                         pr_cont("\nGPR%02d: ", i);
1468                 pr_cont(REG " ", regs->gpr[i]);
1469                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1470                         break;
1471         }
1472         pr_cont("\n");
1473 #ifdef CONFIG_KALLSYMS
1474         /*
1475          * Lookup NIP late so we have the best change of getting the
1476          * above info out without failing
1477          */
1478         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1479         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1480 #endif
1481         show_stack(current, (unsigned long *) regs->gpr[1]);
1482         if (!user_mode(regs))
1483                 show_instructions(regs);
1484 }
1485
1486 void flush_thread(void)
1487 {
1488 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1489         flush_ptrace_hw_breakpoint(current);
1490 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1491         set_debug_reg_defaults(&current->thread);
1492 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1493 }
1494
1495 int set_thread_uses_vas(void)
1496 {
1497 #ifdef CONFIG_PPC_BOOK3S_64
1498         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1499                 return -EINVAL;
1500
1501         current->thread.used_vas = 1;
1502
1503         /*
1504          * Even a process that has no foreign real address mapping can use
1505          * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1506          * to clear any pending COPY and prevent a covert channel.
1507          *
1508          * __switch_to() will issue CP_ABORT on future context switches.
1509          */
1510         asm volatile(PPC_CP_ABORT);
1511
1512 #endif /* CONFIG_PPC_BOOK3S_64 */
1513         return 0;
1514 }
1515
1516 #ifdef CONFIG_PPC64
1517 /**
1518  * Assign a TIDR (thread ID) for task @t and set it in the thread
1519  * structure. For now, we only support setting TIDR for 'current' task.
1520  *
1521  * Since the TID value is a truncated form of it PID, it is possible
1522  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1523  * that 2 threads share the same TID and are waiting, one of the following
1524  * cases will happen:
1525  *
1526  * 1. The correct thread is running, the wrong thread is not
1527  * In this situation, the correct thread is woken and proceeds to pass it's
1528  * condition check.
1529  *
1530  * 2. Neither threads are running
1531  * In this situation, neither thread will be woken. When scheduled, the waiting
1532  * threads will execute either a wait, which will return immediately, followed
1533  * by a condition check, which will pass for the correct thread and fail
1534  * for the wrong thread, or they will execute the condition check immediately.
1535  *
1536  * 3. The wrong thread is running, the correct thread is not
1537  * The wrong thread will be woken, but will fail it's condition check and
1538  * re-execute wait. The correct thread, when scheduled, will execute either
1539  * it's condition check (which will pass), or wait, which returns immediately
1540  * when called the first time after the thread is scheduled, followed by it's
1541  * condition check (which will pass).
1542  *
1543  * 4. Both threads are running
1544  * Both threads will be woken. The wrong thread will fail it's condition check
1545  * and execute another wait, while the correct thread will pass it's condition
1546  * check.
1547  *
1548  * @t: the task to set the thread ID for
1549  */
1550 int set_thread_tidr(struct task_struct *t)
1551 {
1552         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1553                 return -EINVAL;
1554
1555         if (t != current)
1556                 return -EINVAL;
1557
1558         if (t->thread.tidr)
1559                 return 0;
1560
1561         t->thread.tidr = (u16)task_pid_nr(t);
1562         mtspr(SPRN_TIDR, t->thread.tidr);
1563
1564         return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(set_thread_tidr);
1567
1568 #endif /* CONFIG_PPC64 */
1569
1570 void
1571 release_thread(struct task_struct *t)
1572 {
1573 }
1574
1575 /*
1576  * this gets called so that we can store coprocessor state into memory and
1577  * copy the current task into the new thread.
1578  */
1579 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1580 {
1581         flush_all_to_thread(src);
1582         /*
1583          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1584          * flush but it removes the checkpointed state from the current CPU and
1585          * transitions the CPU out of TM mode.  Hence we need to call
1586          * tm_recheckpoint_new_task() (on the same task) to restore the
1587          * checkpointed state back and the TM mode.
1588          *
1589          * Can't pass dst because it isn't ready. Doesn't matter, passing
1590          * dst is only important for __switch_to()
1591          */
1592         __switch_to_tm(src, src);
1593
1594         *dst = *src;
1595
1596         clear_task_ebb(dst);
1597
1598         return 0;
1599 }
1600
1601 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1602 {
1603 #ifdef CONFIG_PPC_BOOK3S_64
1604         unsigned long sp_vsid;
1605         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1606
1607         if (radix_enabled())
1608                 return;
1609
1610         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1611                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1612                         << SLB_VSID_SHIFT_1T;
1613         else
1614                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1615                         << SLB_VSID_SHIFT;
1616         sp_vsid |= SLB_VSID_KERNEL | llp;
1617         p->thread.ksp_vsid = sp_vsid;
1618 #endif
1619 }
1620
1621 /*
1622  * Copy a thread..
1623  */
1624
1625 /*
1626  * Copy architecture-specific thread state
1627  */
1628 int copy_thread(unsigned long clone_flags, unsigned long usp,
1629                 unsigned long kthread_arg, struct task_struct *p)
1630 {
1631         struct pt_regs *childregs, *kregs;
1632         extern void ret_from_fork(void);
1633         extern void ret_from_kernel_thread(void);
1634         void (*f)(void);
1635         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1636         struct thread_info *ti = task_thread_info(p);
1637
1638         klp_init_thread_info(ti);
1639
1640         /* Copy registers */
1641         sp -= sizeof(struct pt_regs);
1642         childregs = (struct pt_regs *) sp;
1643         if (unlikely(p->flags & PF_KTHREAD)) {
1644                 /* kernel thread */
1645                 memset(childregs, 0, sizeof(struct pt_regs));
1646                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1647                 /* function */
1648                 if (usp)
1649                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1650 #ifdef CONFIG_PPC64
1651                 clear_tsk_thread_flag(p, TIF_32BIT);
1652                 childregs->softe = IRQS_ENABLED;
1653 #endif
1654                 childregs->gpr[15] = kthread_arg;
1655                 p->thread.regs = NULL;  /* no user register state */
1656                 ti->flags |= _TIF_RESTOREALL;
1657                 f = ret_from_kernel_thread;
1658         } else {
1659                 /* user thread */
1660                 struct pt_regs *regs = current_pt_regs();
1661                 CHECK_FULL_REGS(regs);
1662                 *childregs = *regs;
1663                 if (usp)
1664                         childregs->gpr[1] = usp;
1665                 p->thread.regs = childregs;
1666                 childregs->gpr[3] = 0;  /* Result from fork() */
1667                 if (clone_flags & CLONE_SETTLS) {
1668 #ifdef CONFIG_PPC64
1669                         if (!is_32bit_task())
1670                                 childregs->gpr[13] = childregs->gpr[6];
1671                         else
1672 #endif
1673                                 childregs->gpr[2] = childregs->gpr[6];
1674                 }
1675
1676                 f = ret_from_fork;
1677         }
1678         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1679         sp -= STACK_FRAME_OVERHEAD;
1680
1681         /*
1682          * The way this works is that at some point in the future
1683          * some task will call _switch to switch to the new task.
1684          * That will pop off the stack frame created below and start
1685          * the new task running at ret_from_fork.  The new task will
1686          * do some house keeping and then return from the fork or clone
1687          * system call, using the stack frame created above.
1688          */
1689         ((unsigned long *)sp)[0] = 0;
1690         sp -= sizeof(struct pt_regs);
1691         kregs = (struct pt_regs *) sp;
1692         sp -= STACK_FRAME_OVERHEAD;
1693         p->thread.ksp = sp;
1694 #ifdef CONFIG_PPC32
1695         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1696                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1697 #endif
1698 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1699         p->thread.ptrace_bps[0] = NULL;
1700 #endif
1701
1702         p->thread.fp_save_area = NULL;
1703 #ifdef CONFIG_ALTIVEC
1704         p->thread.vr_save_area = NULL;
1705 #endif
1706
1707         setup_ksp_vsid(p, sp);
1708
1709 #ifdef CONFIG_PPC64 
1710         if (cpu_has_feature(CPU_FTR_DSCR)) {
1711                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1712                 p->thread.dscr = mfspr(SPRN_DSCR);
1713         }
1714         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1715                 p->thread.ppr = INIT_PPR;
1716
1717         p->thread.tidr = 0;
1718 #endif
1719         kregs->nip = ppc_function_entry(f);
1720         return 0;
1721 }
1722
1723 /*
1724  * Set up a thread for executing a new program
1725  */
1726 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1727 {
1728 #ifdef CONFIG_PPC64
1729         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1730 #endif
1731
1732         /*
1733          * If we exec out of a kernel thread then thread.regs will not be
1734          * set.  Do it now.
1735          */
1736         if (!current->thread.regs) {
1737                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1738                 current->thread.regs = regs - 1;
1739         }
1740
1741 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1742         /*
1743          * Clear any transactional state, we're exec()ing. The cause is
1744          * not important as there will never be a recheckpoint so it's not
1745          * user visible.
1746          */
1747         if (MSR_TM_SUSPENDED(mfmsr()))
1748                 tm_reclaim_current(0);
1749 #endif
1750
1751         memset(regs->gpr, 0, sizeof(regs->gpr));
1752         regs->ctr = 0;
1753         regs->link = 0;
1754         regs->xer = 0;
1755         regs->ccr = 0;
1756         regs->gpr[1] = sp;
1757
1758         /*
1759          * We have just cleared all the nonvolatile GPRs, so make
1760          * FULL_REGS(regs) return true.  This is necessary to allow
1761          * ptrace to examine the thread immediately after exec.
1762          */
1763         regs->trap &= ~1UL;
1764
1765 #ifdef CONFIG_PPC32
1766         regs->mq = 0;
1767         regs->nip = start;
1768         regs->msr = MSR_USER;
1769 #else
1770         if (!is_32bit_task()) {
1771                 unsigned long entry;
1772
1773                 if (is_elf2_task()) {
1774                         /* Look ma, no function descriptors! */
1775                         entry = start;
1776
1777                         /*
1778                          * Ulrich says:
1779                          *   The latest iteration of the ABI requires that when
1780                          *   calling a function (at its global entry point),
1781                          *   the caller must ensure r12 holds the entry point
1782                          *   address (so that the function can quickly
1783                          *   establish addressability).
1784                          */
1785                         regs->gpr[12] = start;
1786                         /* Make sure that's restored on entry to userspace. */
1787                         set_thread_flag(TIF_RESTOREALL);
1788                 } else {
1789                         unsigned long toc;
1790
1791                         /* start is a relocated pointer to the function
1792                          * descriptor for the elf _start routine.  The first
1793                          * entry in the function descriptor is the entry
1794                          * address of _start and the second entry is the TOC
1795                          * value we need to use.
1796                          */
1797                         __get_user(entry, (unsigned long __user *)start);
1798                         __get_user(toc, (unsigned long __user *)start+1);
1799
1800                         /* Check whether the e_entry function descriptor entries
1801                          * need to be relocated before we can use them.
1802                          */
1803                         if (load_addr != 0) {
1804                                 entry += load_addr;
1805                                 toc   += load_addr;
1806                         }
1807                         regs->gpr[2] = toc;
1808                 }
1809                 regs->nip = entry;
1810                 regs->msr = MSR_USER64;
1811         } else {
1812                 regs->nip = start;
1813                 regs->gpr[2] = 0;
1814                 regs->msr = MSR_USER32;
1815         }
1816 #endif
1817 #ifdef CONFIG_VSX
1818         current->thread.used_vsr = 0;
1819 #endif
1820         current->thread.load_fp = 0;
1821         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1822         current->thread.fp_save_area = NULL;
1823 #ifdef CONFIG_ALTIVEC
1824         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1825         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1826         current->thread.vr_save_area = NULL;
1827         current->thread.vrsave = 0;
1828         current->thread.used_vr = 0;
1829         current->thread.load_vec = 0;
1830 #endif /* CONFIG_ALTIVEC */
1831 #ifdef CONFIG_SPE
1832         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1833         current->thread.acc = 0;
1834         current->thread.spefscr = 0;
1835         current->thread.used_spe = 0;
1836 #endif /* CONFIG_SPE */
1837 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1838         current->thread.tm_tfhar = 0;
1839         current->thread.tm_texasr = 0;
1840         current->thread.tm_tfiar = 0;
1841         current->thread.load_tm = 0;
1842 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1843
1844         thread_pkey_regs_init(&current->thread);
1845 }
1846 EXPORT_SYMBOL(start_thread);
1847
1848 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1849                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1850
1851 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1852 {
1853         struct pt_regs *regs = tsk->thread.regs;
1854
1855         /* This is a bit hairy.  If we are an SPE enabled  processor
1856          * (have embedded fp) we store the IEEE exception enable flags in
1857          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1858          * mode (asyn, precise, disabled) for 'Classic' FP. */
1859         if (val & PR_FP_EXC_SW_ENABLE) {
1860 #ifdef CONFIG_SPE
1861                 if (cpu_has_feature(CPU_FTR_SPE)) {
1862                         /*
1863                          * When the sticky exception bits are set
1864                          * directly by userspace, it must call prctl
1865                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1866                          * in the existing prctl settings) or
1867                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1868                          * the bits being set).  <fenv.h> functions
1869                          * saving and restoring the whole
1870                          * floating-point environment need to do so
1871                          * anyway to restore the prctl settings from
1872                          * the saved environment.
1873                          */
1874                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1875                         tsk->thread.fpexc_mode = val &
1876                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1877                         return 0;
1878                 } else {
1879                         return -EINVAL;
1880                 }
1881 #else
1882                 return -EINVAL;
1883 #endif
1884         }
1885
1886         /* on a CONFIG_SPE this does not hurt us.  The bits that
1887          * __pack_fe01 use do not overlap with bits used for
1888          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1889          * on CONFIG_SPE implementations are reserved so writing to
1890          * them does not change anything */
1891         if (val > PR_FP_EXC_PRECISE)
1892                 return -EINVAL;
1893         tsk->thread.fpexc_mode = __pack_fe01(val);
1894         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1895                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1896                         | tsk->thread.fpexc_mode;
1897         return 0;
1898 }
1899
1900 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1901 {
1902         unsigned int val;
1903
1904         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1905 #ifdef CONFIG_SPE
1906                 if (cpu_has_feature(CPU_FTR_SPE)) {
1907                         /*
1908                          * When the sticky exception bits are set
1909                          * directly by userspace, it must call prctl
1910                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1911                          * in the existing prctl settings) or
1912                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1913                          * the bits being set).  <fenv.h> functions
1914                          * saving and restoring the whole
1915                          * floating-point environment need to do so
1916                          * anyway to restore the prctl settings from
1917                          * the saved environment.
1918                          */
1919                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1920                         val = tsk->thread.fpexc_mode;
1921                 } else
1922                         return -EINVAL;
1923 #else
1924                 return -EINVAL;
1925 #endif
1926         else
1927                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1928         return put_user(val, (unsigned int __user *) adr);
1929 }
1930
1931 int set_endian(struct task_struct *tsk, unsigned int val)
1932 {
1933         struct pt_regs *regs = tsk->thread.regs;
1934
1935         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1936             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1937                 return -EINVAL;
1938
1939         if (regs == NULL)
1940                 return -EINVAL;
1941
1942         if (val == PR_ENDIAN_BIG)
1943                 regs->msr &= ~MSR_LE;
1944         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1945                 regs->msr |= MSR_LE;
1946         else
1947                 return -EINVAL;
1948
1949         return 0;
1950 }
1951
1952 int get_endian(struct task_struct *tsk, unsigned long adr)
1953 {
1954         struct pt_regs *regs = tsk->thread.regs;
1955         unsigned int val;
1956
1957         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1958             !cpu_has_feature(CPU_FTR_REAL_LE))
1959                 return -EINVAL;
1960
1961         if (regs == NULL)
1962                 return -EINVAL;
1963
1964         if (regs->msr & MSR_LE) {
1965                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1966                         val = PR_ENDIAN_LITTLE;
1967                 else
1968                         val = PR_ENDIAN_PPC_LITTLE;
1969         } else
1970                 val = PR_ENDIAN_BIG;
1971
1972         return put_user(val, (unsigned int __user *)adr);
1973 }
1974
1975 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1976 {
1977         tsk->thread.align_ctl = val;
1978         return 0;
1979 }
1980
1981 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1982 {
1983         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1984 }
1985
1986 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1987                                   unsigned long nbytes)
1988 {
1989         unsigned long stack_page;
1990         unsigned long cpu = task_cpu(p);
1991
1992         /*
1993          * Avoid crashing if the stack has overflowed and corrupted
1994          * task_cpu(p), which is in the thread_info struct.
1995          */
1996         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1997                 stack_page = (unsigned long) hardirq_ctx[cpu];
1998                 if (sp >= stack_page + sizeof(struct thread_struct)
1999                     && sp <= stack_page + THREAD_SIZE - nbytes)
2000                         return 1;
2001
2002                 stack_page = (unsigned long) softirq_ctx[cpu];
2003                 if (sp >= stack_page + sizeof(struct thread_struct)
2004                     && sp <= stack_page + THREAD_SIZE - nbytes)
2005                         return 1;
2006         }
2007         return 0;
2008 }
2009
2010 int validate_sp(unsigned long sp, struct task_struct *p,
2011                        unsigned long nbytes)
2012 {
2013         unsigned long stack_page = (unsigned long)task_stack_page(p);
2014
2015         if (sp >= stack_page + sizeof(struct thread_struct)
2016             && sp <= stack_page + THREAD_SIZE - nbytes)
2017                 return 1;
2018
2019         return valid_irq_stack(sp, p, nbytes);
2020 }
2021
2022 EXPORT_SYMBOL(validate_sp);
2023
2024 unsigned long get_wchan(struct task_struct *p)
2025 {
2026         unsigned long ip, sp;
2027         int count = 0;
2028
2029         if (!p || p == current || p->state == TASK_RUNNING)
2030                 return 0;
2031
2032         sp = p->thread.ksp;
2033         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2034                 return 0;
2035
2036         do {
2037                 sp = *(unsigned long *)sp;
2038                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2039                     p->state == TASK_RUNNING)
2040                         return 0;
2041                 if (count > 0) {
2042                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2043                         if (!in_sched_functions(ip))
2044                                 return ip;
2045                 }
2046         } while (count++ < 16);
2047         return 0;
2048 }
2049
2050 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2051
2052 void show_stack(struct task_struct *tsk, unsigned long *stack)
2053 {
2054         unsigned long sp, ip, lr, newsp;
2055         int count = 0;
2056         int firstframe = 1;
2057 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2058         int curr_frame = current->curr_ret_stack;
2059         extern void return_to_handler(void);
2060         unsigned long rth = (unsigned long)return_to_handler;
2061 #endif
2062
2063         sp = (unsigned long) stack;
2064         if (tsk == NULL)
2065                 tsk = current;
2066         if (sp == 0) {
2067                 if (tsk == current)
2068                         sp = current_stack_pointer();
2069                 else
2070                         sp = tsk->thread.ksp;
2071         }
2072
2073         lr = 0;
2074         printk("Call Trace:\n");
2075         do {
2076                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2077                         return;
2078
2079                 stack = (unsigned long *) sp;
2080                 newsp = stack[0];
2081                 ip = stack[STACK_FRAME_LR_SAVE];
2082                 if (!firstframe || ip != lr) {
2083                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2084 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2085                         if ((ip == rth) && curr_frame >= 0) {
2086                                 pr_cont(" (%pS)",
2087                                        (void *)current->ret_stack[curr_frame].ret);
2088                                 curr_frame--;
2089                         }
2090 #endif
2091                         if (firstframe)
2092                                 pr_cont(" (unreliable)");
2093                         pr_cont("\n");
2094                 }
2095                 firstframe = 0;
2096
2097                 /*
2098                  * See if this is an exception frame.
2099                  * We look for the "regshere" marker in the current frame.
2100                  */
2101                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2102                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2103                         struct pt_regs *regs = (struct pt_regs *)
2104                                 (sp + STACK_FRAME_OVERHEAD);
2105                         lr = regs->link;
2106                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2107                                regs->trap, (void *)regs->nip, (void *)lr);
2108                         firstframe = 1;
2109                 }
2110
2111                 sp = newsp;
2112         } while (count++ < kstack_depth_to_print);
2113 }
2114
2115 #ifdef CONFIG_PPC64
2116 /* Called with hard IRQs off */
2117 void notrace __ppc64_runlatch_on(void)
2118 {
2119         struct thread_info *ti = current_thread_info();
2120
2121         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2122                 /*
2123                  * Least significant bit (RUN) is the only writable bit of
2124                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2125                  * earliest ISA where this is the case, but it's convenient.
2126                  */
2127                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2128         } else {
2129                 unsigned long ctrl;
2130
2131                 /*
2132                  * Some architectures (e.g., Cell) have writable fields other
2133                  * than RUN, so do the read-modify-write.
2134                  */
2135                 ctrl = mfspr(SPRN_CTRLF);
2136                 ctrl |= CTRL_RUNLATCH;
2137                 mtspr(SPRN_CTRLT, ctrl);
2138         }
2139
2140         ti->local_flags |= _TLF_RUNLATCH;
2141 }
2142
2143 /* Called with hard IRQs off */
2144 void notrace __ppc64_runlatch_off(void)
2145 {
2146         struct thread_info *ti = current_thread_info();
2147
2148         ti->local_flags &= ~_TLF_RUNLATCH;
2149
2150         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2151                 mtspr(SPRN_CTRLT, 0);
2152         } else {
2153                 unsigned long ctrl;
2154
2155                 ctrl = mfspr(SPRN_CTRLF);
2156                 ctrl &= ~CTRL_RUNLATCH;
2157                 mtspr(SPRN_CTRLT, ctrl);
2158         }
2159 }
2160 #endif /* CONFIG_PPC64 */
2161
2162 unsigned long arch_align_stack(unsigned long sp)
2163 {
2164         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2165                 sp -= get_random_int() & ~PAGE_MASK;
2166         return sp & ~0xf;
2167 }
2168
2169 static inline unsigned long brk_rnd(void)
2170 {
2171         unsigned long rnd = 0;
2172
2173         /* 8MB for 32bit, 1GB for 64bit */
2174         if (is_32bit_task())
2175                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2176         else
2177                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2178
2179         return rnd << PAGE_SHIFT;
2180 }
2181
2182 unsigned long arch_randomize_brk(struct mm_struct *mm)
2183 {
2184         unsigned long base = mm->brk;
2185         unsigned long ret;
2186
2187 #ifdef CONFIG_PPC_BOOK3S_64
2188         /*
2189          * If we are using 1TB segments and we are allowed to randomise
2190          * the heap, we can put it above 1TB so it is backed by a 1TB
2191          * segment. Otherwise the heap will be in the bottom 1TB
2192          * which always uses 256MB segments and this may result in a
2193          * performance penalty. We don't need to worry about radix. For
2194          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2195          */
2196         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2197                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2198 #endif
2199
2200         ret = PAGE_ALIGN(base + brk_rnd());
2201
2202         if (ret < mm->brk)
2203                 return mm->brk;
2204
2205         return ret;
2206 }
2207