Merge tag 'iomap-5.8-merge-1' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / arch / powerpc / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #include <asm/hw_irq.h>
58 #endif
59 #include <asm/code-patching.h>
60 #include <asm/exec.h>
61 #include <asm/livepatch.h>
62 #include <asm/cpu_has_feature.h>
63 #include <asm/asm-prototypes.h>
64 #include <asm/stacktrace.h>
65 #include <asm/hw_breakpoint.h>
66
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76
77 extern unsigned long _get_SP(void);
78
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 /*
81  * Are we running in "Suspend disabled" mode? If so we have to block any
82  * sigreturn that would get us into suspended state, and we also warn in some
83  * other paths that we should never reach with suspend disabled.
84  */
85 bool tm_suspend_disabled __ro_after_init = false;
86
87 static void check_if_tm_restore_required(struct task_struct *tsk)
88 {
89         /*
90          * If we are saving the current thread's registers, and the
91          * thread is in a transactional state, set the TIF_RESTORE_TM
92          * bit so that we know to restore the registers before
93          * returning to userspace.
94          */
95         if (tsk == current && tsk->thread.regs &&
96             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
97             !test_thread_flag(TIF_RESTORE_TM)) {
98                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99                 set_thread_flag(TIF_RESTORE_TM);
100         }
101 }
102
103 #else
104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
106
107 bool strict_msr_control;
108 EXPORT_SYMBOL(strict_msr_control);
109
110 static int __init enable_strict_msr_control(char *str)
111 {
112         strict_msr_control = true;
113         pr_info("Enabling strict facility control\n");
114
115         return 0;
116 }
117 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
118
119 /* notrace because it's called by restore_math */
120 unsigned long notrace msr_check_and_set(unsigned long bits)
121 {
122         unsigned long oldmsr = mfmsr();
123         unsigned long newmsr;
124
125         newmsr = oldmsr | bits;
126
127 #ifdef CONFIG_VSX
128         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129                 newmsr |= MSR_VSX;
130 #endif
131
132         if (oldmsr != newmsr)
133                 mtmsr_isync(newmsr);
134
135         return newmsr;
136 }
137 EXPORT_SYMBOL_GPL(msr_check_and_set);
138
139 /* notrace because it's called by restore_math */
140 void notrace __msr_check_and_clear(unsigned long bits)
141 {
142         unsigned long oldmsr = mfmsr();
143         unsigned long newmsr;
144
145         newmsr = oldmsr & ~bits;
146
147 #ifdef CONFIG_VSX
148         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149                 newmsr &= ~MSR_VSX;
150 #endif
151
152         if (oldmsr != newmsr)
153                 mtmsr_isync(newmsr);
154 }
155 EXPORT_SYMBOL(__msr_check_and_clear);
156
157 #ifdef CONFIG_PPC_FPU
158 static void __giveup_fpu(struct task_struct *tsk)
159 {
160         unsigned long msr;
161
162         save_fpu(tsk);
163         msr = tsk->thread.regs->msr;
164         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
165 #ifdef CONFIG_VSX
166         if (cpu_has_feature(CPU_FTR_VSX))
167                 msr &= ~MSR_VSX;
168 #endif
169         tsk->thread.regs->msr = msr;
170 }
171
172 void giveup_fpu(struct task_struct *tsk)
173 {
174         check_if_tm_restore_required(tsk);
175
176         msr_check_and_set(MSR_FP);
177         __giveup_fpu(tsk);
178         msr_check_and_clear(MSR_FP);
179 }
180 EXPORT_SYMBOL(giveup_fpu);
181
182 /*
183  * Make sure the floating-point register state in the
184  * the thread_struct is up to date for task tsk.
185  */
186 void flush_fp_to_thread(struct task_struct *tsk)
187 {
188         if (tsk->thread.regs) {
189                 /*
190                  * We need to disable preemption here because if we didn't,
191                  * another process could get scheduled after the regs->msr
192                  * test but before we have finished saving the FP registers
193                  * to the thread_struct.  That process could take over the
194                  * FPU, and then when we get scheduled again we would store
195                  * bogus values for the remaining FP registers.
196                  */
197                 preempt_disable();
198                 if (tsk->thread.regs->msr & MSR_FP) {
199                         /*
200                          * This should only ever be called for current or
201                          * for a stopped child process.  Since we save away
202                          * the FP register state on context switch,
203                          * there is something wrong if a stopped child appears
204                          * to still have its FP state in the CPU registers.
205                          */
206                         BUG_ON(tsk != current);
207                         giveup_fpu(tsk);
208                 }
209                 preempt_enable();
210         }
211 }
212 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
213
214 void enable_kernel_fp(void)
215 {
216         unsigned long cpumsr;
217
218         WARN_ON(preemptible());
219
220         cpumsr = msr_check_and_set(MSR_FP);
221
222         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
223                 check_if_tm_restore_required(current);
224                 /*
225                  * If a thread has already been reclaimed then the
226                  * checkpointed registers are on the CPU but have definitely
227                  * been saved by the reclaim code. Don't need to and *cannot*
228                  * giveup as this would save  to the 'live' structure not the
229                  * checkpointed structure.
230                  */
231                 if (!MSR_TM_ACTIVE(cpumsr) &&
232                      MSR_TM_ACTIVE(current->thread.regs->msr))
233                         return;
234                 __giveup_fpu(current);
235         }
236 }
237 EXPORT_SYMBOL(enable_kernel_fp);
238 #endif /* CONFIG_PPC_FPU */
239
240 #ifdef CONFIG_ALTIVEC
241 static void __giveup_altivec(struct task_struct *tsk)
242 {
243         unsigned long msr;
244
245         save_altivec(tsk);
246         msr = tsk->thread.regs->msr;
247         msr &= ~MSR_VEC;
248 #ifdef CONFIG_VSX
249         if (cpu_has_feature(CPU_FTR_VSX))
250                 msr &= ~MSR_VSX;
251 #endif
252         tsk->thread.regs->msr = msr;
253 }
254
255 void giveup_altivec(struct task_struct *tsk)
256 {
257         check_if_tm_restore_required(tsk);
258
259         msr_check_and_set(MSR_VEC);
260         __giveup_altivec(tsk);
261         msr_check_and_clear(MSR_VEC);
262 }
263 EXPORT_SYMBOL(giveup_altivec);
264
265 void enable_kernel_altivec(void)
266 {
267         unsigned long cpumsr;
268
269         WARN_ON(preemptible());
270
271         cpumsr = msr_check_and_set(MSR_VEC);
272
273         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
274                 check_if_tm_restore_required(current);
275                 /*
276                  * If a thread has already been reclaimed then the
277                  * checkpointed registers are on the CPU but have definitely
278                  * been saved by the reclaim code. Don't need to and *cannot*
279                  * giveup as this would save  to the 'live' structure not the
280                  * checkpointed structure.
281                  */
282                 if (!MSR_TM_ACTIVE(cpumsr) &&
283                      MSR_TM_ACTIVE(current->thread.regs->msr))
284                         return;
285                 __giveup_altivec(current);
286         }
287 }
288 EXPORT_SYMBOL(enable_kernel_altivec);
289
290 /*
291  * Make sure the VMX/Altivec register state in the
292  * the thread_struct is up to date for task tsk.
293  */
294 void flush_altivec_to_thread(struct task_struct *tsk)
295 {
296         if (tsk->thread.regs) {
297                 preempt_disable();
298                 if (tsk->thread.regs->msr & MSR_VEC) {
299                         BUG_ON(tsk != current);
300                         giveup_altivec(tsk);
301                 }
302                 preempt_enable();
303         }
304 }
305 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
306 #endif /* CONFIG_ALTIVEC */
307
308 #ifdef CONFIG_VSX
309 static void __giveup_vsx(struct task_struct *tsk)
310 {
311         unsigned long msr = tsk->thread.regs->msr;
312
313         /*
314          * We should never be ssetting MSR_VSX without also setting
315          * MSR_FP and MSR_VEC
316          */
317         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
318
319         /* __giveup_fpu will clear MSR_VSX */
320         if (msr & MSR_FP)
321                 __giveup_fpu(tsk);
322         if (msr & MSR_VEC)
323                 __giveup_altivec(tsk);
324 }
325
326 static void giveup_vsx(struct task_struct *tsk)
327 {
328         check_if_tm_restore_required(tsk);
329
330         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
331         __giveup_vsx(tsk);
332         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
333 }
334
335 void enable_kernel_vsx(void)
336 {
337         unsigned long cpumsr;
338
339         WARN_ON(preemptible());
340
341         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
342
343         if (current->thread.regs &&
344             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
345                 check_if_tm_restore_required(current);
346                 /*
347                  * If a thread has already been reclaimed then the
348                  * checkpointed registers are on the CPU but have definitely
349                  * been saved by the reclaim code. Don't need to and *cannot*
350                  * giveup as this would save  to the 'live' structure not the
351                  * checkpointed structure.
352                  */
353                 if (!MSR_TM_ACTIVE(cpumsr) &&
354                      MSR_TM_ACTIVE(current->thread.regs->msr))
355                         return;
356                 __giveup_vsx(current);
357         }
358 }
359 EXPORT_SYMBOL(enable_kernel_vsx);
360
361 void flush_vsx_to_thread(struct task_struct *tsk)
362 {
363         if (tsk->thread.regs) {
364                 preempt_disable();
365                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
366                         BUG_ON(tsk != current);
367                         giveup_vsx(tsk);
368                 }
369                 preempt_enable();
370         }
371 }
372 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
373 #endif /* CONFIG_VSX */
374
375 #ifdef CONFIG_SPE
376 void giveup_spe(struct task_struct *tsk)
377 {
378         check_if_tm_restore_required(tsk);
379
380         msr_check_and_set(MSR_SPE);
381         __giveup_spe(tsk);
382         msr_check_and_clear(MSR_SPE);
383 }
384 EXPORT_SYMBOL(giveup_spe);
385
386 void enable_kernel_spe(void)
387 {
388         WARN_ON(preemptible());
389
390         msr_check_and_set(MSR_SPE);
391
392         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
393                 check_if_tm_restore_required(current);
394                 __giveup_spe(current);
395         }
396 }
397 EXPORT_SYMBOL(enable_kernel_spe);
398
399 void flush_spe_to_thread(struct task_struct *tsk)
400 {
401         if (tsk->thread.regs) {
402                 preempt_disable();
403                 if (tsk->thread.regs->msr & MSR_SPE) {
404                         BUG_ON(tsk != current);
405                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
406                         giveup_spe(tsk);
407                 }
408                 preempt_enable();
409         }
410 }
411 #endif /* CONFIG_SPE */
412
413 static unsigned long msr_all_available;
414
415 static int __init init_msr_all_available(void)
416 {
417 #ifdef CONFIG_PPC_FPU
418         msr_all_available |= MSR_FP;
419 #endif
420 #ifdef CONFIG_ALTIVEC
421         if (cpu_has_feature(CPU_FTR_ALTIVEC))
422                 msr_all_available |= MSR_VEC;
423 #endif
424 #ifdef CONFIG_VSX
425         if (cpu_has_feature(CPU_FTR_VSX))
426                 msr_all_available |= MSR_VSX;
427 #endif
428 #ifdef CONFIG_SPE
429         if (cpu_has_feature(CPU_FTR_SPE))
430                 msr_all_available |= MSR_SPE;
431 #endif
432
433         return 0;
434 }
435 early_initcall(init_msr_all_available);
436
437 void giveup_all(struct task_struct *tsk)
438 {
439         unsigned long usermsr;
440
441         if (!tsk->thread.regs)
442                 return;
443
444         check_if_tm_restore_required(tsk);
445
446         usermsr = tsk->thread.regs->msr;
447
448         if ((usermsr & msr_all_available) == 0)
449                 return;
450
451         msr_check_and_set(msr_all_available);
452
453         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
454
455 #ifdef CONFIG_PPC_FPU
456         if (usermsr & MSR_FP)
457                 __giveup_fpu(tsk);
458 #endif
459 #ifdef CONFIG_ALTIVEC
460         if (usermsr & MSR_VEC)
461                 __giveup_altivec(tsk);
462 #endif
463 #ifdef CONFIG_SPE
464         if (usermsr & MSR_SPE)
465                 __giveup_spe(tsk);
466 #endif
467
468         msr_check_and_clear(msr_all_available);
469 }
470 EXPORT_SYMBOL(giveup_all);
471
472 #ifdef CONFIG_PPC_BOOK3S_64
473 #ifdef CONFIG_PPC_FPU
474 static int restore_fp(struct task_struct *tsk)
475 {
476         if (tsk->thread.load_fp) {
477                 load_fp_state(&current->thread.fp_state);
478                 current->thread.load_fp++;
479                 return 1;
480         }
481         return 0;
482 }
483 #else
484 static int restore_fp(struct task_struct *tsk) { return 0; }
485 #endif /* CONFIG_PPC_FPU */
486
487 #ifdef CONFIG_ALTIVEC
488 #define loadvec(thr) ((thr).load_vec)
489 static int restore_altivec(struct task_struct *tsk)
490 {
491         if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) {
492                 load_vr_state(&tsk->thread.vr_state);
493                 tsk->thread.used_vr = 1;
494                 tsk->thread.load_vec++;
495
496                 return 1;
497         }
498         return 0;
499 }
500 #else
501 #define loadvec(thr) 0
502 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
503 #endif /* CONFIG_ALTIVEC */
504
505 #ifdef CONFIG_VSX
506 static int restore_vsx(struct task_struct *tsk)
507 {
508         if (cpu_has_feature(CPU_FTR_VSX)) {
509                 tsk->thread.used_vsr = 1;
510                 return 1;
511         }
512
513         return 0;
514 }
515 #else
516 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
517 #endif /* CONFIG_VSX */
518
519 /*
520  * The exception exit path calls restore_math() with interrupts hard disabled
521  * but the soft irq state not "reconciled". ftrace code that calls
522  * local_irq_save/restore causes warnings.
523  *
524  * Rather than complicate the exit path, just don't trace restore_math. This
525  * could be done by having ftrace entry code check for this un-reconciled
526  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
527  * temporarily fix it up for the duration of the ftrace call.
528  */
529 void notrace restore_math(struct pt_regs *regs)
530 {
531         unsigned long msr;
532
533         if (!MSR_TM_ACTIVE(regs->msr) &&
534                 !current->thread.load_fp && !loadvec(current->thread))
535                 return;
536
537         msr = regs->msr;
538         msr_check_and_set(msr_all_available);
539
540         /*
541          * Only reload if the bit is not set in the user MSR, the bit BEING set
542          * indicates that the registers are hot
543          */
544         if ((!(msr & MSR_FP)) && restore_fp(current))
545                 msr |= MSR_FP | current->thread.fpexc_mode;
546
547         if ((!(msr & MSR_VEC)) && restore_altivec(current))
548                 msr |= MSR_VEC;
549
550         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
551                         restore_vsx(current)) {
552                 msr |= MSR_VSX;
553         }
554
555         msr_check_and_clear(msr_all_available);
556
557         regs->msr = msr;
558 }
559 #endif
560
561 static void save_all(struct task_struct *tsk)
562 {
563         unsigned long usermsr;
564
565         if (!tsk->thread.regs)
566                 return;
567
568         usermsr = tsk->thread.regs->msr;
569
570         if ((usermsr & msr_all_available) == 0)
571                 return;
572
573         msr_check_and_set(msr_all_available);
574
575         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
576
577         if (usermsr & MSR_FP)
578                 save_fpu(tsk);
579
580         if (usermsr & MSR_VEC)
581                 save_altivec(tsk);
582
583         if (usermsr & MSR_SPE)
584                 __giveup_spe(tsk);
585
586         msr_check_and_clear(msr_all_available);
587         thread_pkey_regs_save(&tsk->thread);
588 }
589
590 void flush_all_to_thread(struct task_struct *tsk)
591 {
592         if (tsk->thread.regs) {
593                 preempt_disable();
594                 BUG_ON(tsk != current);
595 #ifdef CONFIG_SPE
596                 if (tsk->thread.regs->msr & MSR_SPE)
597                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
598 #endif
599                 save_all(tsk);
600
601                 preempt_enable();
602         }
603 }
604 EXPORT_SYMBOL(flush_all_to_thread);
605
606 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
607 void do_send_trap(struct pt_regs *regs, unsigned long address,
608                   unsigned long error_code, int breakpt)
609 {
610         current->thread.trap_nr = TRAP_HWBKPT;
611         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
612                         11, SIGSEGV) == NOTIFY_STOP)
613                 return;
614
615         /* Deliver the signal to userspace */
616         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
617                                     (void __user *)address);
618 }
619 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
620 void do_break (struct pt_regs *regs, unsigned long address,
621                     unsigned long error_code)
622 {
623         current->thread.trap_nr = TRAP_HWBKPT;
624         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
625                         11, SIGSEGV) == NOTIFY_STOP)
626                 return;
627
628         if (debugger_break_match(regs))
629                 return;
630
631         /* Deliver the signal to userspace */
632         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
633 }
634 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
635
636 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
637
638 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
639 /*
640  * Set the debug registers back to their default "safe" values.
641  */
642 static void set_debug_reg_defaults(struct thread_struct *thread)
643 {
644         thread->debug.iac1 = thread->debug.iac2 = 0;
645 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
646         thread->debug.iac3 = thread->debug.iac4 = 0;
647 #endif
648         thread->debug.dac1 = thread->debug.dac2 = 0;
649 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
650         thread->debug.dvc1 = thread->debug.dvc2 = 0;
651 #endif
652         thread->debug.dbcr0 = 0;
653 #ifdef CONFIG_BOOKE
654         /*
655          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
656          */
657         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
658                         DBCR1_IAC3US | DBCR1_IAC4US;
659         /*
660          * Force Data Address Compare User/Supervisor bits to be User-only
661          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
662          */
663         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
664 #else
665         thread->debug.dbcr1 = 0;
666 #endif
667 }
668
669 static void prime_debug_regs(struct debug_reg *debug)
670 {
671         /*
672          * We could have inherited MSR_DE from userspace, since
673          * it doesn't get cleared on exception entry.  Make sure
674          * MSR_DE is clear before we enable any debug events.
675          */
676         mtmsr(mfmsr() & ~MSR_DE);
677
678         mtspr(SPRN_IAC1, debug->iac1);
679         mtspr(SPRN_IAC2, debug->iac2);
680 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
681         mtspr(SPRN_IAC3, debug->iac3);
682         mtspr(SPRN_IAC4, debug->iac4);
683 #endif
684         mtspr(SPRN_DAC1, debug->dac1);
685         mtspr(SPRN_DAC2, debug->dac2);
686 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
687         mtspr(SPRN_DVC1, debug->dvc1);
688         mtspr(SPRN_DVC2, debug->dvc2);
689 #endif
690         mtspr(SPRN_DBCR0, debug->dbcr0);
691         mtspr(SPRN_DBCR1, debug->dbcr1);
692 #ifdef CONFIG_BOOKE
693         mtspr(SPRN_DBCR2, debug->dbcr2);
694 #endif
695 }
696 /*
697  * Unless neither the old or new thread are making use of the
698  * debug registers, set the debug registers from the values
699  * stored in the new thread.
700  */
701 void switch_booke_debug_regs(struct debug_reg *new_debug)
702 {
703         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
704                 || (new_debug->dbcr0 & DBCR0_IDM))
705                         prime_debug_regs(new_debug);
706 }
707 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
708 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
709 #ifndef CONFIG_HAVE_HW_BREAKPOINT
710 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
711 {
712         preempt_disable();
713         __set_breakpoint(i, brk);
714         preempt_enable();
715 }
716
717 static void set_debug_reg_defaults(struct thread_struct *thread)
718 {
719         int i;
720         struct arch_hw_breakpoint null_brk = {0};
721
722         for (i = 0; i < nr_wp_slots(); i++) {
723                 thread->hw_brk[i] = null_brk;
724                 if (ppc_breakpoint_available())
725                         set_breakpoint(i, &thread->hw_brk[i]);
726         }
727 }
728
729 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
730                                 struct arch_hw_breakpoint *b)
731 {
732         if (a->address != b->address)
733                 return false;
734         if (a->type != b->type)
735                 return false;
736         if (a->len != b->len)
737                 return false;
738         /* no need to check hw_len. it's calculated from address and len */
739         return true;
740 }
741
742 static void switch_hw_breakpoint(struct task_struct *new)
743 {
744         int i;
745
746         for (i = 0; i < nr_wp_slots(); i++) {
747                 if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
748                                         &new->thread.hw_brk[i])))
749                         continue;
750
751                 __set_breakpoint(i, &new->thread.hw_brk[i]);
752         }
753 }
754 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
755 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
756
757 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
758 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
759 {
760         mtspr(SPRN_DAC1, dabr);
761 #ifdef CONFIG_PPC_47x
762         isync();
763 #endif
764         return 0;
765 }
766 #elif defined(CONFIG_PPC_BOOK3S)
767 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
768 {
769         mtspr(SPRN_DABR, dabr);
770         if (cpu_has_feature(CPU_FTR_DABRX))
771                 mtspr(SPRN_DABRX, dabrx);
772         return 0;
773 }
774 #else
775 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
776 {
777         return -EINVAL;
778 }
779 #endif
780
781 static inline int set_dabr(struct arch_hw_breakpoint *brk)
782 {
783         unsigned long dabr, dabrx;
784
785         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
786         dabrx = ((brk->type >> 3) & 0x7);
787
788         if (ppc_md.set_dabr)
789                 return ppc_md.set_dabr(dabr, dabrx);
790
791         return __set_dabr(dabr, dabrx);
792 }
793
794 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
795 {
796         unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
797                                LCTRL1_CRWF_RW;
798         unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
799         unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
800         unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
801
802         if (start_addr == 0)
803                 lctrl2 |= LCTRL2_LW0LA_F;
804         else if (end_addr == 0)
805                 lctrl2 |= LCTRL2_LW0LA_E;
806         else
807                 lctrl2 |= LCTRL2_LW0LA_EandF;
808
809         mtspr(SPRN_LCTRL2, 0);
810
811         if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
812                 return 0;
813
814         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
815                 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
816         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
817                 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
818
819         mtspr(SPRN_CMPE, start_addr - 1);
820         mtspr(SPRN_CMPF, end_addr);
821         mtspr(SPRN_LCTRL1, lctrl1);
822         mtspr(SPRN_LCTRL2, lctrl2);
823
824         return 0;
825 }
826
827 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
828 {
829         memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
830
831         if (dawr_enabled())
832                 // Power8 or later
833                 set_dawr(nr, brk);
834         else if (IS_ENABLED(CONFIG_PPC_8xx))
835                 set_breakpoint_8xx(brk);
836         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
837                 // Power7 or earlier
838                 set_dabr(brk);
839         else
840                 // Shouldn't happen due to higher level checks
841                 WARN_ON_ONCE(1);
842 }
843
844 /* Check if we have DAWR or DABR hardware */
845 bool ppc_breakpoint_available(void)
846 {
847         if (dawr_enabled())
848                 return true; /* POWER8 DAWR or POWER9 forced DAWR */
849         if (cpu_has_feature(CPU_FTR_ARCH_207S))
850                 return false; /* POWER9 with DAWR disabled */
851         /* DABR: Everything but POWER8 and POWER9 */
852         return true;
853 }
854 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
855
856 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
857
858 static inline bool tm_enabled(struct task_struct *tsk)
859 {
860         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
861 }
862
863 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
864 {
865         /*
866          * Use the current MSR TM suspended bit to track if we have
867          * checkpointed state outstanding.
868          * On signal delivery, we'd normally reclaim the checkpointed
869          * state to obtain stack pointer (see:get_tm_stackpointer()).
870          * This will then directly return to userspace without going
871          * through __switch_to(). However, if the stack frame is bad,
872          * we need to exit this thread which calls __switch_to() which
873          * will again attempt to reclaim the already saved tm state.
874          * Hence we need to check that we've not already reclaimed
875          * this state.
876          * We do this using the current MSR, rather tracking it in
877          * some specific thread_struct bit, as it has the additional
878          * benefit of checking for a potential TM bad thing exception.
879          */
880         if (!MSR_TM_SUSPENDED(mfmsr()))
881                 return;
882
883         giveup_all(container_of(thr, struct task_struct, thread));
884
885         tm_reclaim(thr, cause);
886
887         /*
888          * If we are in a transaction and FP is off then we can't have
889          * used FP inside that transaction. Hence the checkpointed
890          * state is the same as the live state. We need to copy the
891          * live state to the checkpointed state so that when the
892          * transaction is restored, the checkpointed state is correct
893          * and the aborted transaction sees the correct state. We use
894          * ckpt_regs.msr here as that's what tm_reclaim will use to
895          * determine if it's going to write the checkpointed state or
896          * not. So either this will write the checkpointed registers,
897          * or reclaim will. Similarly for VMX.
898          */
899         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
900                 memcpy(&thr->ckfp_state, &thr->fp_state,
901                        sizeof(struct thread_fp_state));
902         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
903                 memcpy(&thr->ckvr_state, &thr->vr_state,
904                        sizeof(struct thread_vr_state));
905 }
906
907 void tm_reclaim_current(uint8_t cause)
908 {
909         tm_enable();
910         tm_reclaim_thread(&current->thread, cause);
911 }
912
913 static inline void tm_reclaim_task(struct task_struct *tsk)
914 {
915         /* We have to work out if we're switching from/to a task that's in the
916          * middle of a transaction.
917          *
918          * In switching we need to maintain a 2nd register state as
919          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
920          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
921          * ckvr_state
922          *
923          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
924          */
925         struct thread_struct *thr = &tsk->thread;
926
927         if (!thr->regs)
928                 return;
929
930         if (!MSR_TM_ACTIVE(thr->regs->msr))
931                 goto out_and_saveregs;
932
933         WARN_ON(tm_suspend_disabled);
934
935         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
936                  "ccr=%lx, msr=%lx, trap=%lx)\n",
937                  tsk->pid, thr->regs->nip,
938                  thr->regs->ccr, thr->regs->msr,
939                  thr->regs->trap);
940
941         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
942
943         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
944                  tsk->pid);
945
946 out_and_saveregs:
947         /* Always save the regs here, even if a transaction's not active.
948          * This context-switches a thread's TM info SPRs.  We do it here to
949          * be consistent with the restore path (in recheckpoint) which
950          * cannot happen later in _switch().
951          */
952         tm_save_sprs(thr);
953 }
954
955 extern void __tm_recheckpoint(struct thread_struct *thread);
956
957 void tm_recheckpoint(struct thread_struct *thread)
958 {
959         unsigned long flags;
960
961         if (!(thread->regs->msr & MSR_TM))
962                 return;
963
964         /* We really can't be interrupted here as the TEXASR registers can't
965          * change and later in the trecheckpoint code, we have a userspace R1.
966          * So let's hard disable over this region.
967          */
968         local_irq_save(flags);
969         hard_irq_disable();
970
971         /* The TM SPRs are restored here, so that TEXASR.FS can be set
972          * before the trecheckpoint and no explosion occurs.
973          */
974         tm_restore_sprs(thread);
975
976         __tm_recheckpoint(thread);
977
978         local_irq_restore(flags);
979 }
980
981 static inline void tm_recheckpoint_new_task(struct task_struct *new)
982 {
983         if (!cpu_has_feature(CPU_FTR_TM))
984                 return;
985
986         /* Recheckpoint the registers of the thread we're about to switch to.
987          *
988          * If the task was using FP, we non-lazily reload both the original and
989          * the speculative FP register states.  This is because the kernel
990          * doesn't see if/when a TM rollback occurs, so if we take an FP
991          * unavailable later, we are unable to determine which set of FP regs
992          * need to be restored.
993          */
994         if (!tm_enabled(new))
995                 return;
996
997         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
998                 tm_restore_sprs(&new->thread);
999                 return;
1000         }
1001         /* Recheckpoint to restore original checkpointed register state. */
1002         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1003                  new->pid, new->thread.regs->msr);
1004
1005         tm_recheckpoint(&new->thread);
1006
1007         /*
1008          * The checkpointed state has been restored but the live state has
1009          * not, ensure all the math functionality is turned off to trigger
1010          * restore_math() to reload.
1011          */
1012         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1013
1014         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1015                  "(kernel msr 0x%lx)\n",
1016                  new->pid, mfmsr());
1017 }
1018
1019 static inline void __switch_to_tm(struct task_struct *prev,
1020                 struct task_struct *new)
1021 {
1022         if (cpu_has_feature(CPU_FTR_TM)) {
1023                 if (tm_enabled(prev) || tm_enabled(new))
1024                         tm_enable();
1025
1026                 if (tm_enabled(prev)) {
1027                         prev->thread.load_tm++;
1028                         tm_reclaim_task(prev);
1029                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1030                                 prev->thread.regs->msr &= ~MSR_TM;
1031                 }
1032
1033                 tm_recheckpoint_new_task(new);
1034         }
1035 }
1036
1037 /*
1038  * This is called if we are on the way out to userspace and the
1039  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1040  * FP and/or vector state and does so if necessary.
1041  * If userspace is inside a transaction (whether active or
1042  * suspended) and FP/VMX/VSX instructions have ever been enabled
1043  * inside that transaction, then we have to keep them enabled
1044  * and keep the FP/VMX/VSX state loaded while ever the transaction
1045  * continues.  The reason is that if we didn't, and subsequently
1046  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1047  * we don't know whether it's the same transaction, and thus we
1048  * don't know which of the checkpointed state and the transactional
1049  * state to use.
1050  */
1051 void restore_tm_state(struct pt_regs *regs)
1052 {
1053         unsigned long msr_diff;
1054
1055         /*
1056          * This is the only moment we should clear TIF_RESTORE_TM as
1057          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1058          * again, anything else could lead to an incorrect ckpt_msr being
1059          * saved and therefore incorrect signal contexts.
1060          */
1061         clear_thread_flag(TIF_RESTORE_TM);
1062         if (!MSR_TM_ACTIVE(regs->msr))
1063                 return;
1064
1065         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1066         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1067
1068         /* Ensure that restore_math() will restore */
1069         if (msr_diff & MSR_FP)
1070                 current->thread.load_fp = 1;
1071 #ifdef CONFIG_ALTIVEC
1072         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1073                 current->thread.load_vec = 1;
1074 #endif
1075         restore_math(regs);
1076
1077         regs->msr |= msr_diff;
1078 }
1079
1080 #else
1081 #define tm_recheckpoint_new_task(new)
1082 #define __switch_to_tm(prev, new)
1083 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1084
1085 static inline void save_sprs(struct thread_struct *t)
1086 {
1087 #ifdef CONFIG_ALTIVEC
1088         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1089                 t->vrsave = mfspr(SPRN_VRSAVE);
1090 #endif
1091 #ifdef CONFIG_PPC_BOOK3S_64
1092         if (cpu_has_feature(CPU_FTR_DSCR))
1093                 t->dscr = mfspr(SPRN_DSCR);
1094
1095         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1096                 t->bescr = mfspr(SPRN_BESCR);
1097                 t->ebbhr = mfspr(SPRN_EBBHR);
1098                 t->ebbrr = mfspr(SPRN_EBBRR);
1099
1100                 t->fscr = mfspr(SPRN_FSCR);
1101
1102                 /*
1103                  * Note that the TAR is not available for use in the kernel.
1104                  * (To provide this, the TAR should be backed up/restored on
1105                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1106                  * this should be in pt_regs anyway (for debug).)
1107                  */
1108                 t->tar = mfspr(SPRN_TAR);
1109         }
1110 #endif
1111
1112         thread_pkey_regs_save(t);
1113 }
1114
1115 static inline void restore_sprs(struct thread_struct *old_thread,
1116                                 struct thread_struct *new_thread)
1117 {
1118 #ifdef CONFIG_ALTIVEC
1119         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1120             old_thread->vrsave != new_thread->vrsave)
1121                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1122 #endif
1123 #ifdef CONFIG_PPC_BOOK3S_64
1124         if (cpu_has_feature(CPU_FTR_DSCR)) {
1125                 u64 dscr = get_paca()->dscr_default;
1126                 if (new_thread->dscr_inherit)
1127                         dscr = new_thread->dscr;
1128
1129                 if (old_thread->dscr != dscr)
1130                         mtspr(SPRN_DSCR, dscr);
1131         }
1132
1133         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1134                 if (old_thread->bescr != new_thread->bescr)
1135                         mtspr(SPRN_BESCR, new_thread->bescr);
1136                 if (old_thread->ebbhr != new_thread->ebbhr)
1137                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1138                 if (old_thread->ebbrr != new_thread->ebbrr)
1139                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1140
1141                 if (old_thread->fscr != new_thread->fscr)
1142                         mtspr(SPRN_FSCR, new_thread->fscr);
1143
1144                 if (old_thread->tar != new_thread->tar)
1145                         mtspr(SPRN_TAR, new_thread->tar);
1146         }
1147
1148         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1149             old_thread->tidr != new_thread->tidr)
1150                 mtspr(SPRN_TIDR, new_thread->tidr);
1151 #endif
1152
1153         thread_pkey_regs_restore(new_thread, old_thread);
1154 }
1155
1156 struct task_struct *__switch_to(struct task_struct *prev,
1157         struct task_struct *new)
1158 {
1159         struct thread_struct *new_thread, *old_thread;
1160         struct task_struct *last;
1161 #ifdef CONFIG_PPC_BOOK3S_64
1162         struct ppc64_tlb_batch *batch;
1163 #endif
1164
1165         new_thread = &new->thread;
1166         old_thread = &current->thread;
1167
1168         WARN_ON(!irqs_disabled());
1169
1170 #ifdef CONFIG_PPC_BOOK3S_64
1171         batch = this_cpu_ptr(&ppc64_tlb_batch);
1172         if (batch->active) {
1173                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1174                 if (batch->index)
1175                         __flush_tlb_pending(batch);
1176                 batch->active = 0;
1177         }
1178 #endif /* CONFIG_PPC_BOOK3S_64 */
1179
1180 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1181         switch_booke_debug_regs(&new->thread.debug);
1182 #else
1183 /*
1184  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1185  * schedule DABR
1186  */
1187 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1188         switch_hw_breakpoint(new);
1189 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1190 #endif
1191
1192         /*
1193          * We need to save SPRs before treclaim/trecheckpoint as these will
1194          * change a number of them.
1195          */
1196         save_sprs(&prev->thread);
1197
1198         /* Save FPU, Altivec, VSX and SPE state */
1199         giveup_all(prev);
1200
1201         __switch_to_tm(prev, new);
1202
1203         if (!radix_enabled()) {
1204                 /*
1205                  * We can't take a PMU exception inside _switch() since there
1206                  * is a window where the kernel stack SLB and the kernel stack
1207                  * are out of sync. Hard disable here.
1208                  */
1209                 hard_irq_disable();
1210         }
1211
1212         /*
1213          * Call restore_sprs() before calling _switch(). If we move it after
1214          * _switch() then we miss out on calling it for new tasks. The reason
1215          * for this is we manually create a stack frame for new tasks that
1216          * directly returns through ret_from_fork() or
1217          * ret_from_kernel_thread(). See copy_thread() for details.
1218          */
1219         restore_sprs(old_thread, new_thread);
1220
1221         last = _switch(old_thread, new_thread);
1222
1223 #ifdef CONFIG_PPC_BOOK3S_64
1224         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1225                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1226                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1227                 batch->active = 1;
1228         }
1229
1230         if (current->thread.regs) {
1231                 restore_math(current->thread.regs);
1232
1233                 /*
1234                  * The copy-paste buffer can only store into foreign real
1235                  * addresses, so unprivileged processes can not see the
1236                  * data or use it in any way unless they have foreign real
1237                  * mappings. If the new process has the foreign real address
1238                  * mappings, we must issue a cp_abort to clear any state and
1239                  * prevent snooping, corruption or a covert channel.
1240                  */
1241                 if (current->mm &&
1242                         atomic_read(&current->mm->context.vas_windows))
1243                         asm volatile(PPC_CP_ABORT);
1244         }
1245 #endif /* CONFIG_PPC_BOOK3S_64 */
1246
1247         return last;
1248 }
1249
1250 #define NR_INSN_TO_PRINT        16
1251
1252 static void show_instructions(struct pt_regs *regs)
1253 {
1254         int i;
1255         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1256
1257         printk("Instruction dump:");
1258
1259         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1260                 int instr;
1261
1262                 if (!(i % 8))
1263                         pr_cont("\n");
1264
1265 #if !defined(CONFIG_BOOKE)
1266                 /* If executing with the IMMU off, adjust pc rather
1267                  * than print XXXXXXXX.
1268                  */
1269                 if (!(regs->msr & MSR_IR))
1270                         pc = (unsigned long)phys_to_virt(pc);
1271 #endif
1272
1273                 if (!__kernel_text_address(pc) ||
1274                     probe_kernel_address((const void *)pc, instr)) {
1275                         pr_cont("XXXXXXXX ");
1276                 } else {
1277                         if (regs->nip == pc)
1278                                 pr_cont("<%08x> ", instr);
1279                         else
1280                                 pr_cont("%08x ", instr);
1281                 }
1282
1283                 pc += sizeof(int);
1284         }
1285
1286         pr_cont("\n");
1287 }
1288
1289 void show_user_instructions(struct pt_regs *regs)
1290 {
1291         unsigned long pc;
1292         int n = NR_INSN_TO_PRINT;
1293         struct seq_buf s;
1294         char buf[96]; /* enough for 8 times 9 + 2 chars */
1295
1296         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1297
1298         seq_buf_init(&s, buf, sizeof(buf));
1299
1300         while (n) {
1301                 int i;
1302
1303                 seq_buf_clear(&s);
1304
1305                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1306                         int instr;
1307
1308                         if (probe_user_read(&instr, (void __user *)pc, sizeof(instr))) {
1309                                 seq_buf_printf(&s, "XXXXXXXX ");
1310                                 continue;
1311                         }
1312                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1313                 }
1314
1315                 if (!seq_buf_has_overflowed(&s))
1316                         pr_info("%s[%d]: code: %s\n", current->comm,
1317                                 current->pid, s.buffer);
1318         }
1319 }
1320
1321 struct regbit {
1322         unsigned long bit;
1323         const char *name;
1324 };
1325
1326 static struct regbit msr_bits[] = {
1327 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1328         {MSR_SF,        "SF"},
1329         {MSR_HV,        "HV"},
1330 #endif
1331         {MSR_VEC,       "VEC"},
1332         {MSR_VSX,       "VSX"},
1333 #ifdef CONFIG_BOOKE
1334         {MSR_CE,        "CE"},
1335 #endif
1336         {MSR_EE,        "EE"},
1337         {MSR_PR,        "PR"},
1338         {MSR_FP,        "FP"},
1339         {MSR_ME,        "ME"},
1340 #ifdef CONFIG_BOOKE
1341         {MSR_DE,        "DE"},
1342 #else
1343         {MSR_SE,        "SE"},
1344         {MSR_BE,        "BE"},
1345 #endif
1346         {MSR_IR,        "IR"},
1347         {MSR_DR,        "DR"},
1348         {MSR_PMM,       "PMM"},
1349 #ifndef CONFIG_BOOKE
1350         {MSR_RI,        "RI"},
1351         {MSR_LE,        "LE"},
1352 #endif
1353         {0,             NULL}
1354 };
1355
1356 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1357 {
1358         const char *s = "";
1359
1360         for (; bits->bit; ++bits)
1361                 if (val & bits->bit) {
1362                         pr_cont("%s%s", s, bits->name);
1363                         s = sep;
1364                 }
1365 }
1366
1367 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1368 static struct regbit msr_tm_bits[] = {
1369         {MSR_TS_T,      "T"},
1370         {MSR_TS_S,      "S"},
1371         {MSR_TM,        "E"},
1372         {0,             NULL}
1373 };
1374
1375 static void print_tm_bits(unsigned long val)
1376 {
1377 /*
1378  * This only prints something if at least one of the TM bit is set.
1379  * Inside the TM[], the output means:
1380  *   E: Enabled         (bit 32)
1381  *   S: Suspended       (bit 33)
1382  *   T: Transactional   (bit 34)
1383  */
1384         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1385                 pr_cont(",TM[");
1386                 print_bits(val, msr_tm_bits, "");
1387                 pr_cont("]");
1388         }
1389 }
1390 #else
1391 static void print_tm_bits(unsigned long val) {}
1392 #endif
1393
1394 static void print_msr_bits(unsigned long val)
1395 {
1396         pr_cont("<");
1397         print_bits(val, msr_bits, ",");
1398         print_tm_bits(val);
1399         pr_cont(">");
1400 }
1401
1402 #ifdef CONFIG_PPC64
1403 #define REG             "%016lx"
1404 #define REGS_PER_LINE   4
1405 #define LAST_VOLATILE   13
1406 #else
1407 #define REG             "%08lx"
1408 #define REGS_PER_LINE   8
1409 #define LAST_VOLATILE   12
1410 #endif
1411
1412 void show_regs(struct pt_regs * regs)
1413 {
1414         int i, trap;
1415
1416         show_regs_print_info(KERN_DEFAULT);
1417
1418         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1419                regs->nip, regs->link, regs->ctr);
1420         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1421                regs, regs->trap, print_tainted(), init_utsname()->release);
1422         printk("MSR:  "REG" ", regs->msr);
1423         print_msr_bits(regs->msr);
1424         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1425         trap = TRAP(regs);
1426         if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1427                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1428         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1429 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1430                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1431 #else
1432                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1433 #endif
1434 #ifdef CONFIG_PPC64
1435         pr_cont("IRQMASK: %lx ", regs->softe);
1436 #endif
1437 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1438         if (MSR_TM_ACTIVE(regs->msr))
1439                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1440 #endif
1441
1442         for (i = 0;  i < 32;  i++) {
1443                 if ((i % REGS_PER_LINE) == 0)
1444                         pr_cont("\nGPR%02d: ", i);
1445                 pr_cont(REG " ", regs->gpr[i]);
1446                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1447                         break;
1448         }
1449         pr_cont("\n");
1450 #ifdef CONFIG_KALLSYMS
1451         /*
1452          * Lookup NIP late so we have the best change of getting the
1453          * above info out without failing
1454          */
1455         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1456         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1457 #endif
1458         show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1459         if (!user_mode(regs))
1460                 show_instructions(regs);
1461 }
1462
1463 void flush_thread(void)
1464 {
1465 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1466         flush_ptrace_hw_breakpoint(current);
1467 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1468         set_debug_reg_defaults(&current->thread);
1469 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1470 }
1471
1472 #ifdef CONFIG_PPC_BOOK3S_64
1473 void arch_setup_new_exec(void)
1474 {
1475         if (radix_enabled())
1476                 return;
1477         hash__setup_new_exec();
1478 }
1479 #endif
1480
1481 #ifdef CONFIG_PPC64
1482 /**
1483  * Assign a TIDR (thread ID) for task @t and set it in the thread
1484  * structure. For now, we only support setting TIDR for 'current' task.
1485  *
1486  * Since the TID value is a truncated form of it PID, it is possible
1487  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1488  * that 2 threads share the same TID and are waiting, one of the following
1489  * cases will happen:
1490  *
1491  * 1. The correct thread is running, the wrong thread is not
1492  * In this situation, the correct thread is woken and proceeds to pass it's
1493  * condition check.
1494  *
1495  * 2. Neither threads are running
1496  * In this situation, neither thread will be woken. When scheduled, the waiting
1497  * threads will execute either a wait, which will return immediately, followed
1498  * by a condition check, which will pass for the correct thread and fail
1499  * for the wrong thread, or they will execute the condition check immediately.
1500  *
1501  * 3. The wrong thread is running, the correct thread is not
1502  * The wrong thread will be woken, but will fail it's condition check and
1503  * re-execute wait. The correct thread, when scheduled, will execute either
1504  * it's condition check (which will pass), or wait, which returns immediately
1505  * when called the first time after the thread is scheduled, followed by it's
1506  * condition check (which will pass).
1507  *
1508  * 4. Both threads are running
1509  * Both threads will be woken. The wrong thread will fail it's condition check
1510  * and execute another wait, while the correct thread will pass it's condition
1511  * check.
1512  *
1513  * @t: the task to set the thread ID for
1514  */
1515 int set_thread_tidr(struct task_struct *t)
1516 {
1517         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1518                 return -EINVAL;
1519
1520         if (t != current)
1521                 return -EINVAL;
1522
1523         if (t->thread.tidr)
1524                 return 0;
1525
1526         t->thread.tidr = (u16)task_pid_nr(t);
1527         mtspr(SPRN_TIDR, t->thread.tidr);
1528
1529         return 0;
1530 }
1531 EXPORT_SYMBOL_GPL(set_thread_tidr);
1532
1533 #endif /* CONFIG_PPC64 */
1534
1535 void
1536 release_thread(struct task_struct *t)
1537 {
1538 }
1539
1540 /*
1541  * this gets called so that we can store coprocessor state into memory and
1542  * copy the current task into the new thread.
1543  */
1544 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1545 {
1546         flush_all_to_thread(src);
1547         /*
1548          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1549          * flush but it removes the checkpointed state from the current CPU and
1550          * transitions the CPU out of TM mode.  Hence we need to call
1551          * tm_recheckpoint_new_task() (on the same task) to restore the
1552          * checkpointed state back and the TM mode.
1553          *
1554          * Can't pass dst because it isn't ready. Doesn't matter, passing
1555          * dst is only important for __switch_to()
1556          */
1557         __switch_to_tm(src, src);
1558
1559         *dst = *src;
1560
1561         clear_task_ebb(dst);
1562
1563         return 0;
1564 }
1565
1566 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1567 {
1568 #ifdef CONFIG_PPC_BOOK3S_64
1569         unsigned long sp_vsid;
1570         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1571
1572         if (radix_enabled())
1573                 return;
1574
1575         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1576                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1577                         << SLB_VSID_SHIFT_1T;
1578         else
1579                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1580                         << SLB_VSID_SHIFT;
1581         sp_vsid |= SLB_VSID_KERNEL | llp;
1582         p->thread.ksp_vsid = sp_vsid;
1583 #endif
1584 }
1585
1586 /*
1587  * Copy a thread..
1588  */
1589
1590 /*
1591  * Copy architecture-specific thread state
1592  */
1593 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
1594                 unsigned long kthread_arg, struct task_struct *p,
1595                 unsigned long tls)
1596 {
1597         struct pt_regs *childregs, *kregs;
1598         extern void ret_from_fork(void);
1599         extern void ret_from_kernel_thread(void);
1600         void (*f)(void);
1601         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1602         struct thread_info *ti = task_thread_info(p);
1603 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1604         int i;
1605 #endif
1606
1607         klp_init_thread_info(p);
1608
1609         /* Copy registers */
1610         sp -= sizeof(struct pt_regs);
1611         childregs = (struct pt_regs *) sp;
1612         if (unlikely(p->flags & PF_KTHREAD)) {
1613                 /* kernel thread */
1614                 memset(childregs, 0, sizeof(struct pt_regs));
1615                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1616                 /* function */
1617                 if (usp)
1618                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1619 #ifdef CONFIG_PPC64
1620                 clear_tsk_thread_flag(p, TIF_32BIT);
1621                 childregs->softe = IRQS_ENABLED;
1622 #endif
1623                 childregs->gpr[15] = kthread_arg;
1624                 p->thread.regs = NULL;  /* no user register state */
1625                 ti->flags |= _TIF_RESTOREALL;
1626                 f = ret_from_kernel_thread;
1627         } else {
1628                 /* user thread */
1629                 struct pt_regs *regs = current_pt_regs();
1630                 CHECK_FULL_REGS(regs);
1631                 *childregs = *regs;
1632                 if (usp)
1633                         childregs->gpr[1] = usp;
1634                 p->thread.regs = childregs;
1635                 childregs->gpr[3] = 0;  /* Result from fork() */
1636                 if (clone_flags & CLONE_SETTLS) {
1637                         if (!is_32bit_task())
1638                                 childregs->gpr[13] = tls;
1639                         else
1640                                 childregs->gpr[2] = tls;
1641                 }
1642
1643                 f = ret_from_fork;
1644         }
1645         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1646         sp -= STACK_FRAME_OVERHEAD;
1647
1648         /*
1649          * The way this works is that at some point in the future
1650          * some task will call _switch to switch to the new task.
1651          * That will pop off the stack frame created below and start
1652          * the new task running at ret_from_fork.  The new task will
1653          * do some house keeping and then return from the fork or clone
1654          * system call, using the stack frame created above.
1655          */
1656         ((unsigned long *)sp)[0] = 0;
1657         sp -= sizeof(struct pt_regs);
1658         kregs = (struct pt_regs *) sp;
1659         sp -= STACK_FRAME_OVERHEAD;
1660         p->thread.ksp = sp;
1661 #ifdef CONFIG_PPC32
1662         p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1663 #endif
1664 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1665         for (i = 0; i < nr_wp_slots(); i++)
1666                 p->thread.ptrace_bps[i] = NULL;
1667 #endif
1668
1669         p->thread.fp_save_area = NULL;
1670 #ifdef CONFIG_ALTIVEC
1671         p->thread.vr_save_area = NULL;
1672 #endif
1673
1674         setup_ksp_vsid(p, sp);
1675
1676 #ifdef CONFIG_PPC64 
1677         if (cpu_has_feature(CPU_FTR_DSCR)) {
1678                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1679                 p->thread.dscr = mfspr(SPRN_DSCR);
1680         }
1681         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1682                 childregs->ppr = DEFAULT_PPR;
1683
1684         p->thread.tidr = 0;
1685 #endif
1686         kregs->nip = ppc_function_entry(f);
1687         return 0;
1688 }
1689
1690 void preload_new_slb_context(unsigned long start, unsigned long sp);
1691
1692 /*
1693  * Set up a thread for executing a new program
1694  */
1695 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1696 {
1697 #ifdef CONFIG_PPC64
1698         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1699
1700 #ifdef CONFIG_PPC_BOOK3S_64
1701         if (!radix_enabled())
1702                 preload_new_slb_context(start, sp);
1703 #endif
1704 #endif
1705
1706         /*
1707          * If we exec out of a kernel thread then thread.regs will not be
1708          * set.  Do it now.
1709          */
1710         if (!current->thread.regs) {
1711                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1712                 current->thread.regs = regs - 1;
1713         }
1714
1715 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1716         /*
1717          * Clear any transactional state, we're exec()ing. The cause is
1718          * not important as there will never be a recheckpoint so it's not
1719          * user visible.
1720          */
1721         if (MSR_TM_SUSPENDED(mfmsr()))
1722                 tm_reclaim_current(0);
1723 #endif
1724
1725         memset(regs->gpr, 0, sizeof(regs->gpr));
1726         regs->ctr = 0;
1727         regs->link = 0;
1728         regs->xer = 0;
1729         regs->ccr = 0;
1730         regs->gpr[1] = sp;
1731
1732         /*
1733          * We have just cleared all the nonvolatile GPRs, so make
1734          * FULL_REGS(regs) return true.  This is necessary to allow
1735          * ptrace to examine the thread immediately after exec.
1736          */
1737         SET_FULL_REGS(regs);
1738
1739 #ifdef CONFIG_PPC32
1740         regs->mq = 0;
1741         regs->nip = start;
1742         regs->msr = MSR_USER;
1743 #else
1744         if (!is_32bit_task()) {
1745                 unsigned long entry;
1746
1747                 if (is_elf2_task()) {
1748                         /* Look ma, no function descriptors! */
1749                         entry = start;
1750
1751                         /*
1752                          * Ulrich says:
1753                          *   The latest iteration of the ABI requires that when
1754                          *   calling a function (at its global entry point),
1755                          *   the caller must ensure r12 holds the entry point
1756                          *   address (so that the function can quickly
1757                          *   establish addressability).
1758                          */
1759                         regs->gpr[12] = start;
1760                         /* Make sure that's restored on entry to userspace. */
1761                         set_thread_flag(TIF_RESTOREALL);
1762                 } else {
1763                         unsigned long toc;
1764
1765                         /* start is a relocated pointer to the function
1766                          * descriptor for the elf _start routine.  The first
1767                          * entry in the function descriptor is the entry
1768                          * address of _start and the second entry is the TOC
1769                          * value we need to use.
1770                          */
1771                         __get_user(entry, (unsigned long __user *)start);
1772                         __get_user(toc, (unsigned long __user *)start+1);
1773
1774                         /* Check whether the e_entry function descriptor entries
1775                          * need to be relocated before we can use them.
1776                          */
1777                         if (load_addr != 0) {
1778                                 entry += load_addr;
1779                                 toc   += load_addr;
1780                         }
1781                         regs->gpr[2] = toc;
1782                 }
1783                 regs->nip = entry;
1784                 regs->msr = MSR_USER64;
1785         } else {
1786                 regs->nip = start;
1787                 regs->gpr[2] = 0;
1788                 regs->msr = MSR_USER32;
1789         }
1790 #endif
1791 #ifdef CONFIG_VSX
1792         current->thread.used_vsr = 0;
1793 #endif
1794         current->thread.load_slb = 0;
1795         current->thread.load_fp = 0;
1796         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1797         current->thread.fp_save_area = NULL;
1798 #ifdef CONFIG_ALTIVEC
1799         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1800         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1801         current->thread.vr_save_area = NULL;
1802         current->thread.vrsave = 0;
1803         current->thread.used_vr = 0;
1804         current->thread.load_vec = 0;
1805 #endif /* CONFIG_ALTIVEC */
1806 #ifdef CONFIG_SPE
1807         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1808         current->thread.acc = 0;
1809         current->thread.spefscr = 0;
1810         current->thread.used_spe = 0;
1811 #endif /* CONFIG_SPE */
1812 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1813         current->thread.tm_tfhar = 0;
1814         current->thread.tm_texasr = 0;
1815         current->thread.tm_tfiar = 0;
1816         current->thread.load_tm = 0;
1817 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1818
1819         thread_pkey_regs_init(&current->thread);
1820 }
1821 EXPORT_SYMBOL(start_thread);
1822
1823 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1824                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1825
1826 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1827 {
1828         struct pt_regs *regs = tsk->thread.regs;
1829
1830         /* This is a bit hairy.  If we are an SPE enabled  processor
1831          * (have embedded fp) we store the IEEE exception enable flags in
1832          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1833          * mode (asyn, precise, disabled) for 'Classic' FP. */
1834         if (val & PR_FP_EXC_SW_ENABLE) {
1835 #ifdef CONFIG_SPE
1836                 if (cpu_has_feature(CPU_FTR_SPE)) {
1837                         /*
1838                          * When the sticky exception bits are set
1839                          * directly by userspace, it must call prctl
1840                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1841                          * in the existing prctl settings) or
1842                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1843                          * the bits being set).  <fenv.h> functions
1844                          * saving and restoring the whole
1845                          * floating-point environment need to do so
1846                          * anyway to restore the prctl settings from
1847                          * the saved environment.
1848                          */
1849                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1850                         tsk->thread.fpexc_mode = val &
1851                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1852                         return 0;
1853                 } else {
1854                         return -EINVAL;
1855                 }
1856 #else
1857                 return -EINVAL;
1858 #endif
1859         }
1860
1861         /* on a CONFIG_SPE this does not hurt us.  The bits that
1862          * __pack_fe01 use do not overlap with bits used for
1863          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1864          * on CONFIG_SPE implementations are reserved so writing to
1865          * them does not change anything */
1866         if (val > PR_FP_EXC_PRECISE)
1867                 return -EINVAL;
1868         tsk->thread.fpexc_mode = __pack_fe01(val);
1869         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1870                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1871                         | tsk->thread.fpexc_mode;
1872         return 0;
1873 }
1874
1875 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1876 {
1877         unsigned int val;
1878
1879         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1880 #ifdef CONFIG_SPE
1881                 if (cpu_has_feature(CPU_FTR_SPE)) {
1882                         /*
1883                          * When the sticky exception bits are set
1884                          * directly by userspace, it must call prctl
1885                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1886                          * in the existing prctl settings) or
1887                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1888                          * the bits being set).  <fenv.h> functions
1889                          * saving and restoring the whole
1890                          * floating-point environment need to do so
1891                          * anyway to restore the prctl settings from
1892                          * the saved environment.
1893                          */
1894                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1895                         val = tsk->thread.fpexc_mode;
1896                 } else
1897                         return -EINVAL;
1898 #else
1899                 return -EINVAL;
1900 #endif
1901         else
1902                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1903         return put_user(val, (unsigned int __user *) adr);
1904 }
1905
1906 int set_endian(struct task_struct *tsk, unsigned int val)
1907 {
1908         struct pt_regs *regs = tsk->thread.regs;
1909
1910         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1911             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1912                 return -EINVAL;
1913
1914         if (regs == NULL)
1915                 return -EINVAL;
1916
1917         if (val == PR_ENDIAN_BIG)
1918                 regs->msr &= ~MSR_LE;
1919         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1920                 regs->msr |= MSR_LE;
1921         else
1922                 return -EINVAL;
1923
1924         return 0;
1925 }
1926
1927 int get_endian(struct task_struct *tsk, unsigned long adr)
1928 {
1929         struct pt_regs *regs = tsk->thread.regs;
1930         unsigned int val;
1931
1932         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1933             !cpu_has_feature(CPU_FTR_REAL_LE))
1934                 return -EINVAL;
1935
1936         if (regs == NULL)
1937                 return -EINVAL;
1938
1939         if (regs->msr & MSR_LE) {
1940                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1941                         val = PR_ENDIAN_LITTLE;
1942                 else
1943                         val = PR_ENDIAN_PPC_LITTLE;
1944         } else
1945                 val = PR_ENDIAN_BIG;
1946
1947         return put_user(val, (unsigned int __user *)adr);
1948 }
1949
1950 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1951 {
1952         tsk->thread.align_ctl = val;
1953         return 0;
1954 }
1955
1956 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1957 {
1958         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1959 }
1960
1961 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1962                                   unsigned long nbytes)
1963 {
1964         unsigned long stack_page;
1965         unsigned long cpu = task_cpu(p);
1966
1967         stack_page = (unsigned long)hardirq_ctx[cpu];
1968         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1969                 return 1;
1970
1971         stack_page = (unsigned long)softirq_ctx[cpu];
1972         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1973                 return 1;
1974
1975         return 0;
1976 }
1977
1978 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
1979                                         unsigned long nbytes)
1980 {
1981 #ifdef CONFIG_PPC64
1982         unsigned long stack_page;
1983         unsigned long cpu = task_cpu(p);
1984
1985         stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
1986         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1987                 return 1;
1988
1989 # ifdef CONFIG_PPC_BOOK3S_64
1990         stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
1991         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1992                 return 1;
1993
1994         stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
1995         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1996                 return 1;
1997 # endif
1998 #endif
1999
2000         return 0;
2001 }
2002
2003
2004 int validate_sp(unsigned long sp, struct task_struct *p,
2005                        unsigned long nbytes)
2006 {
2007         unsigned long stack_page = (unsigned long)task_stack_page(p);
2008
2009         if (sp < THREAD_SIZE)
2010                 return 0;
2011
2012         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2013                 return 1;
2014
2015         if (valid_irq_stack(sp, p, nbytes))
2016                 return 1;
2017
2018         return valid_emergency_stack(sp, p, nbytes);
2019 }
2020
2021 EXPORT_SYMBOL(validate_sp);
2022
2023 static unsigned long __get_wchan(struct task_struct *p)
2024 {
2025         unsigned long ip, sp;
2026         int count = 0;
2027
2028         if (!p || p == current || p->state == TASK_RUNNING)
2029                 return 0;
2030
2031         sp = p->thread.ksp;
2032         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2033                 return 0;
2034
2035         do {
2036                 sp = *(unsigned long *)sp;
2037                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2038                     p->state == TASK_RUNNING)
2039                         return 0;
2040                 if (count > 0) {
2041                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2042                         if (!in_sched_functions(ip))
2043                                 return ip;
2044                 }
2045         } while (count++ < 16);
2046         return 0;
2047 }
2048
2049 unsigned long get_wchan(struct task_struct *p)
2050 {
2051         unsigned long ret;
2052
2053         if (!try_get_task_stack(p))
2054                 return 0;
2055
2056         ret = __get_wchan(p);
2057
2058         put_task_stack(p);
2059
2060         return ret;
2061 }
2062
2063 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2064
2065 void show_stack(struct task_struct *tsk, unsigned long *stack,
2066                 const char *loglvl)
2067 {
2068         unsigned long sp, ip, lr, newsp;
2069         int count = 0;
2070         int firstframe = 1;
2071 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2072         unsigned long ret_addr;
2073         int ftrace_idx = 0;
2074 #endif
2075
2076         if (tsk == NULL)
2077                 tsk = current;
2078
2079         if (!try_get_task_stack(tsk))
2080                 return;
2081
2082         sp = (unsigned long) stack;
2083         if (sp == 0) {
2084                 if (tsk == current)
2085                         sp = current_stack_frame();
2086                 else
2087                         sp = tsk->thread.ksp;
2088         }
2089
2090         lr = 0;
2091         printk("%sCall Trace:\n", loglvl);
2092         do {
2093                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2094                         break;
2095
2096                 stack = (unsigned long *) sp;
2097                 newsp = stack[0];
2098                 ip = stack[STACK_FRAME_LR_SAVE];
2099                 if (!firstframe || ip != lr) {
2100                         printk("%s["REG"] ["REG"] %pS",
2101                                 loglvl, sp, ip, (void *)ip);
2102 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2103                         ret_addr = ftrace_graph_ret_addr(current,
2104                                                 &ftrace_idx, ip, stack);
2105                         if (ret_addr != ip)
2106                                 pr_cont(" (%pS)", (void *)ret_addr);
2107 #endif
2108                         if (firstframe)
2109                                 pr_cont(" (unreliable)");
2110                         pr_cont("\n");
2111                 }
2112                 firstframe = 0;
2113
2114                 /*
2115                  * See if this is an exception frame.
2116                  * We look for the "regshere" marker in the current frame.
2117                  */
2118                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2119                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2120                         struct pt_regs *regs = (struct pt_regs *)
2121                                 (sp + STACK_FRAME_OVERHEAD);
2122                         lr = regs->link;
2123                         printk("%s--- interrupt: %lx at %pS\n    LR = %pS\n",
2124                                loglvl, regs->trap,
2125                                (void *)regs->nip, (void *)lr);
2126                         firstframe = 1;
2127                 }
2128
2129                 sp = newsp;
2130         } while (count++ < kstack_depth_to_print);
2131
2132         put_task_stack(tsk);
2133 }
2134
2135 #ifdef CONFIG_PPC64
2136 /* Called with hard IRQs off */
2137 void notrace __ppc64_runlatch_on(void)
2138 {
2139         struct thread_info *ti = current_thread_info();
2140
2141         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2142                 /*
2143                  * Least significant bit (RUN) is the only writable bit of
2144                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2145                  * earliest ISA where this is the case, but it's convenient.
2146                  */
2147                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2148         } else {
2149                 unsigned long ctrl;
2150
2151                 /*
2152                  * Some architectures (e.g., Cell) have writable fields other
2153                  * than RUN, so do the read-modify-write.
2154                  */
2155                 ctrl = mfspr(SPRN_CTRLF);
2156                 ctrl |= CTRL_RUNLATCH;
2157                 mtspr(SPRN_CTRLT, ctrl);
2158         }
2159
2160         ti->local_flags |= _TLF_RUNLATCH;
2161 }
2162
2163 /* Called with hard IRQs off */
2164 void notrace __ppc64_runlatch_off(void)
2165 {
2166         struct thread_info *ti = current_thread_info();
2167
2168         ti->local_flags &= ~_TLF_RUNLATCH;
2169
2170         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2171                 mtspr(SPRN_CTRLT, 0);
2172         } else {
2173                 unsigned long ctrl;
2174
2175                 ctrl = mfspr(SPRN_CTRLF);
2176                 ctrl &= ~CTRL_RUNLATCH;
2177                 mtspr(SPRN_CTRLT, ctrl);
2178         }
2179 }
2180 #endif /* CONFIG_PPC64 */
2181
2182 unsigned long arch_align_stack(unsigned long sp)
2183 {
2184         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2185                 sp -= get_random_int() & ~PAGE_MASK;
2186         return sp & ~0xf;
2187 }
2188
2189 static inline unsigned long brk_rnd(void)
2190 {
2191         unsigned long rnd = 0;
2192
2193         /* 8MB for 32bit, 1GB for 64bit */
2194         if (is_32bit_task())
2195                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2196         else
2197                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2198
2199         return rnd << PAGE_SHIFT;
2200 }
2201
2202 unsigned long arch_randomize_brk(struct mm_struct *mm)
2203 {
2204         unsigned long base = mm->brk;
2205         unsigned long ret;
2206
2207 #ifdef CONFIG_PPC_BOOK3S_64
2208         /*
2209          * If we are using 1TB segments and we are allowed to randomise
2210          * the heap, we can put it above 1TB so it is backed by a 1TB
2211          * segment. Otherwise the heap will be in the bottom 1TB
2212          * which always uses 256MB segments and this may result in a
2213          * performance penalty. We don't need to worry about radix. For
2214          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2215          */
2216         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2217                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2218 #endif
2219
2220         ret = PAGE_ALIGN(base + brk_rnd());
2221
2222         if (ret < mm->brk)
2223                 return mm->brk;
2224
2225         return ret;
2226 }
2227