powerpc/64s: Fix restore_math unnecessarily changing MSR
[linux-2.6-microblaze.git] / arch / powerpc / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #include <asm/hw_irq.h>
58 #endif
59 #include <asm/code-patching.h>
60 #include <asm/exec.h>
61 #include <asm/livepatch.h>
62 #include <asm/cpu_has_feature.h>
63 #include <asm/asm-prototypes.h>
64 #include <asm/stacktrace.h>
65 #include <asm/hw_breakpoint.h>
66
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76
77 extern unsigned long _get_SP(void);
78
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 /*
81  * Are we running in "Suspend disabled" mode? If so we have to block any
82  * sigreturn that would get us into suspended state, and we also warn in some
83  * other paths that we should never reach with suspend disabled.
84  */
85 bool tm_suspend_disabled __ro_after_init = false;
86
87 static void check_if_tm_restore_required(struct task_struct *tsk)
88 {
89         /*
90          * If we are saving the current thread's registers, and the
91          * thread is in a transactional state, set the TIF_RESTORE_TM
92          * bit so that we know to restore the registers before
93          * returning to userspace.
94          */
95         if (tsk == current && tsk->thread.regs &&
96             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
97             !test_thread_flag(TIF_RESTORE_TM)) {
98                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99                 set_thread_flag(TIF_RESTORE_TM);
100         }
101 }
102
103 #else
104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
106
107 bool strict_msr_control;
108 EXPORT_SYMBOL(strict_msr_control);
109
110 static int __init enable_strict_msr_control(char *str)
111 {
112         strict_msr_control = true;
113         pr_info("Enabling strict facility control\n");
114
115         return 0;
116 }
117 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
118
119 /* notrace because it's called by restore_math */
120 unsigned long notrace msr_check_and_set(unsigned long bits)
121 {
122         unsigned long oldmsr = mfmsr();
123         unsigned long newmsr;
124
125         newmsr = oldmsr | bits;
126
127 #ifdef CONFIG_VSX
128         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129                 newmsr |= MSR_VSX;
130 #endif
131
132         if (oldmsr != newmsr)
133                 mtmsr_isync(newmsr);
134
135         return newmsr;
136 }
137 EXPORT_SYMBOL_GPL(msr_check_and_set);
138
139 /* notrace because it's called by restore_math */
140 void notrace __msr_check_and_clear(unsigned long bits)
141 {
142         unsigned long oldmsr = mfmsr();
143         unsigned long newmsr;
144
145         newmsr = oldmsr & ~bits;
146
147 #ifdef CONFIG_VSX
148         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149                 newmsr &= ~MSR_VSX;
150 #endif
151
152         if (oldmsr != newmsr)
153                 mtmsr_isync(newmsr);
154 }
155 EXPORT_SYMBOL(__msr_check_and_clear);
156
157 #ifdef CONFIG_PPC_FPU
158 static void __giveup_fpu(struct task_struct *tsk)
159 {
160         unsigned long msr;
161
162         save_fpu(tsk);
163         msr = tsk->thread.regs->msr;
164         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
165 #ifdef CONFIG_VSX
166         if (cpu_has_feature(CPU_FTR_VSX))
167                 msr &= ~MSR_VSX;
168 #endif
169         tsk->thread.regs->msr = msr;
170 }
171
172 void giveup_fpu(struct task_struct *tsk)
173 {
174         check_if_tm_restore_required(tsk);
175
176         msr_check_and_set(MSR_FP);
177         __giveup_fpu(tsk);
178         msr_check_and_clear(MSR_FP);
179 }
180 EXPORT_SYMBOL(giveup_fpu);
181
182 /*
183  * Make sure the floating-point register state in the
184  * the thread_struct is up to date for task tsk.
185  */
186 void flush_fp_to_thread(struct task_struct *tsk)
187 {
188         if (tsk->thread.regs) {
189                 /*
190                  * We need to disable preemption here because if we didn't,
191                  * another process could get scheduled after the regs->msr
192                  * test but before we have finished saving the FP registers
193                  * to the thread_struct.  That process could take over the
194                  * FPU, and then when we get scheduled again we would store
195                  * bogus values for the remaining FP registers.
196                  */
197                 preempt_disable();
198                 if (tsk->thread.regs->msr & MSR_FP) {
199                         /*
200                          * This should only ever be called for current or
201                          * for a stopped child process.  Since we save away
202                          * the FP register state on context switch,
203                          * there is something wrong if a stopped child appears
204                          * to still have its FP state in the CPU registers.
205                          */
206                         BUG_ON(tsk != current);
207                         giveup_fpu(tsk);
208                 }
209                 preempt_enable();
210         }
211 }
212 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
213
214 void enable_kernel_fp(void)
215 {
216         unsigned long cpumsr;
217
218         WARN_ON(preemptible());
219
220         cpumsr = msr_check_and_set(MSR_FP);
221
222         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
223                 check_if_tm_restore_required(current);
224                 /*
225                  * If a thread has already been reclaimed then the
226                  * checkpointed registers are on the CPU but have definitely
227                  * been saved by the reclaim code. Don't need to and *cannot*
228                  * giveup as this would save  to the 'live' structure not the
229                  * checkpointed structure.
230                  */
231                 if (!MSR_TM_ACTIVE(cpumsr) &&
232                      MSR_TM_ACTIVE(current->thread.regs->msr))
233                         return;
234                 __giveup_fpu(current);
235         }
236 }
237 EXPORT_SYMBOL(enable_kernel_fp);
238 #endif /* CONFIG_PPC_FPU */
239
240 #ifdef CONFIG_ALTIVEC
241 static void __giveup_altivec(struct task_struct *tsk)
242 {
243         unsigned long msr;
244
245         save_altivec(tsk);
246         msr = tsk->thread.regs->msr;
247         msr &= ~MSR_VEC;
248 #ifdef CONFIG_VSX
249         if (cpu_has_feature(CPU_FTR_VSX))
250                 msr &= ~MSR_VSX;
251 #endif
252         tsk->thread.regs->msr = msr;
253 }
254
255 void giveup_altivec(struct task_struct *tsk)
256 {
257         check_if_tm_restore_required(tsk);
258
259         msr_check_and_set(MSR_VEC);
260         __giveup_altivec(tsk);
261         msr_check_and_clear(MSR_VEC);
262 }
263 EXPORT_SYMBOL(giveup_altivec);
264
265 void enable_kernel_altivec(void)
266 {
267         unsigned long cpumsr;
268
269         WARN_ON(preemptible());
270
271         cpumsr = msr_check_and_set(MSR_VEC);
272
273         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
274                 check_if_tm_restore_required(current);
275                 /*
276                  * If a thread has already been reclaimed then the
277                  * checkpointed registers are on the CPU but have definitely
278                  * been saved by the reclaim code. Don't need to and *cannot*
279                  * giveup as this would save  to the 'live' structure not the
280                  * checkpointed structure.
281                  */
282                 if (!MSR_TM_ACTIVE(cpumsr) &&
283                      MSR_TM_ACTIVE(current->thread.regs->msr))
284                         return;
285                 __giveup_altivec(current);
286         }
287 }
288 EXPORT_SYMBOL(enable_kernel_altivec);
289
290 /*
291  * Make sure the VMX/Altivec register state in the
292  * the thread_struct is up to date for task tsk.
293  */
294 void flush_altivec_to_thread(struct task_struct *tsk)
295 {
296         if (tsk->thread.regs) {
297                 preempt_disable();
298                 if (tsk->thread.regs->msr & MSR_VEC) {
299                         BUG_ON(tsk != current);
300                         giveup_altivec(tsk);
301                 }
302                 preempt_enable();
303         }
304 }
305 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
306 #endif /* CONFIG_ALTIVEC */
307
308 #ifdef CONFIG_VSX
309 static void __giveup_vsx(struct task_struct *tsk)
310 {
311         unsigned long msr = tsk->thread.regs->msr;
312
313         /*
314          * We should never be ssetting MSR_VSX without also setting
315          * MSR_FP and MSR_VEC
316          */
317         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
318
319         /* __giveup_fpu will clear MSR_VSX */
320         if (msr & MSR_FP)
321                 __giveup_fpu(tsk);
322         if (msr & MSR_VEC)
323                 __giveup_altivec(tsk);
324 }
325
326 static void giveup_vsx(struct task_struct *tsk)
327 {
328         check_if_tm_restore_required(tsk);
329
330         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
331         __giveup_vsx(tsk);
332         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
333 }
334
335 void enable_kernel_vsx(void)
336 {
337         unsigned long cpumsr;
338
339         WARN_ON(preemptible());
340
341         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
342
343         if (current->thread.regs &&
344             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
345                 check_if_tm_restore_required(current);
346                 /*
347                  * If a thread has already been reclaimed then the
348                  * checkpointed registers are on the CPU but have definitely
349                  * been saved by the reclaim code. Don't need to and *cannot*
350                  * giveup as this would save  to the 'live' structure not the
351                  * checkpointed structure.
352                  */
353                 if (!MSR_TM_ACTIVE(cpumsr) &&
354                      MSR_TM_ACTIVE(current->thread.regs->msr))
355                         return;
356                 __giveup_vsx(current);
357         }
358 }
359 EXPORT_SYMBOL(enable_kernel_vsx);
360
361 void flush_vsx_to_thread(struct task_struct *tsk)
362 {
363         if (tsk->thread.regs) {
364                 preempt_disable();
365                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
366                         BUG_ON(tsk != current);
367                         giveup_vsx(tsk);
368                 }
369                 preempt_enable();
370         }
371 }
372 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
373 #endif /* CONFIG_VSX */
374
375 #ifdef CONFIG_SPE
376 void giveup_spe(struct task_struct *tsk)
377 {
378         check_if_tm_restore_required(tsk);
379
380         msr_check_and_set(MSR_SPE);
381         __giveup_spe(tsk);
382         msr_check_and_clear(MSR_SPE);
383 }
384 EXPORT_SYMBOL(giveup_spe);
385
386 void enable_kernel_spe(void)
387 {
388         WARN_ON(preemptible());
389
390         msr_check_and_set(MSR_SPE);
391
392         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
393                 check_if_tm_restore_required(current);
394                 __giveup_spe(current);
395         }
396 }
397 EXPORT_SYMBOL(enable_kernel_spe);
398
399 void flush_spe_to_thread(struct task_struct *tsk)
400 {
401         if (tsk->thread.regs) {
402                 preempt_disable();
403                 if (tsk->thread.regs->msr & MSR_SPE) {
404                         BUG_ON(tsk != current);
405                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
406                         giveup_spe(tsk);
407                 }
408                 preempt_enable();
409         }
410 }
411 #endif /* CONFIG_SPE */
412
413 static unsigned long msr_all_available;
414
415 static int __init init_msr_all_available(void)
416 {
417 #ifdef CONFIG_PPC_FPU
418         msr_all_available |= MSR_FP;
419 #endif
420 #ifdef CONFIG_ALTIVEC
421         if (cpu_has_feature(CPU_FTR_ALTIVEC))
422                 msr_all_available |= MSR_VEC;
423 #endif
424 #ifdef CONFIG_VSX
425         if (cpu_has_feature(CPU_FTR_VSX))
426                 msr_all_available |= MSR_VSX;
427 #endif
428 #ifdef CONFIG_SPE
429         if (cpu_has_feature(CPU_FTR_SPE))
430                 msr_all_available |= MSR_SPE;
431 #endif
432
433         return 0;
434 }
435 early_initcall(init_msr_all_available);
436
437 void giveup_all(struct task_struct *tsk)
438 {
439         unsigned long usermsr;
440
441         if (!tsk->thread.regs)
442                 return;
443
444         check_if_tm_restore_required(tsk);
445
446         usermsr = tsk->thread.regs->msr;
447
448         if ((usermsr & msr_all_available) == 0)
449                 return;
450
451         msr_check_and_set(msr_all_available);
452
453         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
454
455 #ifdef CONFIG_PPC_FPU
456         if (usermsr & MSR_FP)
457                 __giveup_fpu(tsk);
458 #endif
459 #ifdef CONFIG_ALTIVEC
460         if (usermsr & MSR_VEC)
461                 __giveup_altivec(tsk);
462 #endif
463 #ifdef CONFIG_SPE
464         if (usermsr & MSR_SPE)
465                 __giveup_spe(tsk);
466 #endif
467
468         msr_check_and_clear(msr_all_available);
469 }
470 EXPORT_SYMBOL(giveup_all);
471
472 #ifdef CONFIG_PPC_BOOK3S_64
473 #ifdef CONFIG_PPC_FPU
474 static bool should_restore_fp(void)
475 {
476         if (current->thread.load_fp) {
477                 current->thread.load_fp++;
478                 return true;
479         }
480         return false;
481 }
482
483 static void do_restore_fp(void)
484 {
485         load_fp_state(&current->thread.fp_state);
486 }
487 #else
488 static bool should_restore_fp(void) { return false; }
489 static void do_restore_fp(void) { }
490 #endif /* CONFIG_PPC_FPU */
491
492 #ifdef CONFIG_ALTIVEC
493 static bool should_restore_altivec(void)
494 {
495         if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
496                 current->thread.load_vec++;
497                 return true;
498         }
499         return false;
500 }
501
502 static void do_restore_altivec(void)
503 {
504         load_vr_state(&current->thread.vr_state);
505         current->thread.used_vr = 1;
506 }
507 #else
508 static bool should_restore_altivec(void) { return false; }
509 static void do_restore_altivec(void) { }
510 #endif /* CONFIG_ALTIVEC */
511
512 #ifdef CONFIG_VSX
513 static bool should_restore_vsx(void)
514 {
515         if (cpu_has_feature(CPU_FTR_VSX))
516                 return true;
517         return false;
518 }
519 static void do_restore_vsx(void)
520 {
521         current->thread.used_vsr = 1;
522 }
523 #else
524 static bool should_restore_vsx(void) { return false; }
525 static void do_restore_vsx(void) { }
526 #endif /* CONFIG_VSX */
527
528 /*
529  * The exception exit path calls restore_math() with interrupts hard disabled
530  * but the soft irq state not "reconciled". ftrace code that calls
531  * local_irq_save/restore causes warnings.
532  *
533  * Rather than complicate the exit path, just don't trace restore_math. This
534  * could be done by having ftrace entry code check for this un-reconciled
535  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
536  * temporarily fix it up for the duration of the ftrace call.
537  */
538 void notrace restore_math(struct pt_regs *regs)
539 {
540         unsigned long msr;
541         unsigned long new_msr = 0;
542
543         msr = regs->msr;
544
545         /*
546          * new_msr tracks the facilities that are to be restored. Only reload
547          * if the bit is not set in the user MSR (if it is set, the registers
548          * are live for the user thread).
549          */
550         if ((!(msr & MSR_FP)) && should_restore_fp())
551                 new_msr |= MSR_FP | current->thread.fpexc_mode;
552
553         if ((!(msr & MSR_VEC)) && should_restore_altivec())
554                 new_msr |= MSR_VEC;
555
556         if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
557                 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
558                         new_msr |= MSR_VSX;
559         }
560
561         if (new_msr) {
562                 msr_check_and_set(new_msr);
563
564                 if (new_msr & MSR_FP)
565                         do_restore_fp();
566
567                 if (new_msr & MSR_VEC)
568                         do_restore_altivec();
569
570                 if (new_msr & MSR_VSX)
571                         do_restore_vsx();
572
573                 msr_check_and_clear(new_msr);
574
575                 regs->msr |= new_msr;
576         }
577 }
578 #endif
579
580 static void save_all(struct task_struct *tsk)
581 {
582         unsigned long usermsr;
583
584         if (!tsk->thread.regs)
585                 return;
586
587         usermsr = tsk->thread.regs->msr;
588
589         if ((usermsr & msr_all_available) == 0)
590                 return;
591
592         msr_check_and_set(msr_all_available);
593
594         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
595
596         if (usermsr & MSR_FP)
597                 save_fpu(tsk);
598
599         if (usermsr & MSR_VEC)
600                 save_altivec(tsk);
601
602         if (usermsr & MSR_SPE)
603                 __giveup_spe(tsk);
604
605         msr_check_and_clear(msr_all_available);
606         thread_pkey_regs_save(&tsk->thread);
607 }
608
609 void flush_all_to_thread(struct task_struct *tsk)
610 {
611         if (tsk->thread.regs) {
612                 preempt_disable();
613                 BUG_ON(tsk != current);
614 #ifdef CONFIG_SPE
615                 if (tsk->thread.regs->msr & MSR_SPE)
616                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
617 #endif
618                 save_all(tsk);
619
620                 preempt_enable();
621         }
622 }
623 EXPORT_SYMBOL(flush_all_to_thread);
624
625 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
626 void do_send_trap(struct pt_regs *regs, unsigned long address,
627                   unsigned long error_code, int breakpt)
628 {
629         current->thread.trap_nr = TRAP_HWBKPT;
630         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
631                         11, SIGSEGV) == NOTIFY_STOP)
632                 return;
633
634         /* Deliver the signal to userspace */
635         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
636                                     (void __user *)address);
637 }
638 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
639 void do_break (struct pt_regs *regs, unsigned long address,
640                     unsigned long error_code)
641 {
642         current->thread.trap_nr = TRAP_HWBKPT;
643         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
644                         11, SIGSEGV) == NOTIFY_STOP)
645                 return;
646
647         if (debugger_break_match(regs))
648                 return;
649
650         /* Deliver the signal to userspace */
651         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
652 }
653 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
654
655 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
656
657 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
658 /*
659  * Set the debug registers back to their default "safe" values.
660  */
661 static void set_debug_reg_defaults(struct thread_struct *thread)
662 {
663         thread->debug.iac1 = thread->debug.iac2 = 0;
664 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
665         thread->debug.iac3 = thread->debug.iac4 = 0;
666 #endif
667         thread->debug.dac1 = thread->debug.dac2 = 0;
668 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
669         thread->debug.dvc1 = thread->debug.dvc2 = 0;
670 #endif
671         thread->debug.dbcr0 = 0;
672 #ifdef CONFIG_BOOKE
673         /*
674          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
675          */
676         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
677                         DBCR1_IAC3US | DBCR1_IAC4US;
678         /*
679          * Force Data Address Compare User/Supervisor bits to be User-only
680          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
681          */
682         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
683 #else
684         thread->debug.dbcr1 = 0;
685 #endif
686 }
687
688 static void prime_debug_regs(struct debug_reg *debug)
689 {
690         /*
691          * We could have inherited MSR_DE from userspace, since
692          * it doesn't get cleared on exception entry.  Make sure
693          * MSR_DE is clear before we enable any debug events.
694          */
695         mtmsr(mfmsr() & ~MSR_DE);
696
697         mtspr(SPRN_IAC1, debug->iac1);
698         mtspr(SPRN_IAC2, debug->iac2);
699 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
700         mtspr(SPRN_IAC3, debug->iac3);
701         mtspr(SPRN_IAC4, debug->iac4);
702 #endif
703         mtspr(SPRN_DAC1, debug->dac1);
704         mtspr(SPRN_DAC2, debug->dac2);
705 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
706         mtspr(SPRN_DVC1, debug->dvc1);
707         mtspr(SPRN_DVC2, debug->dvc2);
708 #endif
709         mtspr(SPRN_DBCR0, debug->dbcr0);
710         mtspr(SPRN_DBCR1, debug->dbcr1);
711 #ifdef CONFIG_BOOKE
712         mtspr(SPRN_DBCR2, debug->dbcr2);
713 #endif
714 }
715 /*
716  * Unless neither the old or new thread are making use of the
717  * debug registers, set the debug registers from the values
718  * stored in the new thread.
719  */
720 void switch_booke_debug_regs(struct debug_reg *new_debug)
721 {
722         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
723                 || (new_debug->dbcr0 & DBCR0_IDM))
724                         prime_debug_regs(new_debug);
725 }
726 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
727 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
728 #ifndef CONFIG_HAVE_HW_BREAKPOINT
729 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
730 {
731         preempt_disable();
732         __set_breakpoint(i, brk);
733         preempt_enable();
734 }
735
736 static void set_debug_reg_defaults(struct thread_struct *thread)
737 {
738         int i;
739         struct arch_hw_breakpoint null_brk = {0};
740
741         for (i = 0; i < nr_wp_slots(); i++) {
742                 thread->hw_brk[i] = null_brk;
743                 if (ppc_breakpoint_available())
744                         set_breakpoint(i, &thread->hw_brk[i]);
745         }
746 }
747
748 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
749                                 struct arch_hw_breakpoint *b)
750 {
751         if (a->address != b->address)
752                 return false;
753         if (a->type != b->type)
754                 return false;
755         if (a->len != b->len)
756                 return false;
757         /* no need to check hw_len. it's calculated from address and len */
758         return true;
759 }
760
761 static void switch_hw_breakpoint(struct task_struct *new)
762 {
763         int i;
764
765         for (i = 0; i < nr_wp_slots(); i++) {
766                 if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
767                                         &new->thread.hw_brk[i])))
768                         continue;
769
770                 __set_breakpoint(i, &new->thread.hw_brk[i]);
771         }
772 }
773 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
774 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
775
776 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
777 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
778 {
779         mtspr(SPRN_DAC1, dabr);
780 #ifdef CONFIG_PPC_47x
781         isync();
782 #endif
783         return 0;
784 }
785 #elif defined(CONFIG_PPC_BOOK3S)
786 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
787 {
788         mtspr(SPRN_DABR, dabr);
789         if (cpu_has_feature(CPU_FTR_DABRX))
790                 mtspr(SPRN_DABRX, dabrx);
791         return 0;
792 }
793 #else
794 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
795 {
796         return -EINVAL;
797 }
798 #endif
799
800 static inline int set_dabr(struct arch_hw_breakpoint *brk)
801 {
802         unsigned long dabr, dabrx;
803
804         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
805         dabrx = ((brk->type >> 3) & 0x7);
806
807         if (ppc_md.set_dabr)
808                 return ppc_md.set_dabr(dabr, dabrx);
809
810         return __set_dabr(dabr, dabrx);
811 }
812
813 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
814 {
815         unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
816                                LCTRL1_CRWF_RW;
817         unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
818         unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
819         unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
820
821         if (start_addr == 0)
822                 lctrl2 |= LCTRL2_LW0LA_F;
823         else if (end_addr == 0)
824                 lctrl2 |= LCTRL2_LW0LA_E;
825         else
826                 lctrl2 |= LCTRL2_LW0LA_EandF;
827
828         mtspr(SPRN_LCTRL2, 0);
829
830         if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
831                 return 0;
832
833         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
834                 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
835         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
836                 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
837
838         mtspr(SPRN_CMPE, start_addr - 1);
839         mtspr(SPRN_CMPF, end_addr);
840         mtspr(SPRN_LCTRL1, lctrl1);
841         mtspr(SPRN_LCTRL2, lctrl2);
842
843         return 0;
844 }
845
846 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
847 {
848         memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
849
850         if (dawr_enabled())
851                 // Power8 or later
852                 set_dawr(nr, brk);
853         else if (IS_ENABLED(CONFIG_PPC_8xx))
854                 set_breakpoint_8xx(brk);
855         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
856                 // Power7 or earlier
857                 set_dabr(brk);
858         else
859                 // Shouldn't happen due to higher level checks
860                 WARN_ON_ONCE(1);
861 }
862
863 /* Check if we have DAWR or DABR hardware */
864 bool ppc_breakpoint_available(void)
865 {
866         if (dawr_enabled())
867                 return true; /* POWER8 DAWR or POWER9 forced DAWR */
868         if (cpu_has_feature(CPU_FTR_ARCH_207S))
869                 return false; /* POWER9 with DAWR disabled */
870         /* DABR: Everything but POWER8 and POWER9 */
871         return true;
872 }
873 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
874
875 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
876
877 static inline bool tm_enabled(struct task_struct *tsk)
878 {
879         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
880 }
881
882 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
883 {
884         /*
885          * Use the current MSR TM suspended bit to track if we have
886          * checkpointed state outstanding.
887          * On signal delivery, we'd normally reclaim the checkpointed
888          * state to obtain stack pointer (see:get_tm_stackpointer()).
889          * This will then directly return to userspace without going
890          * through __switch_to(). However, if the stack frame is bad,
891          * we need to exit this thread which calls __switch_to() which
892          * will again attempt to reclaim the already saved tm state.
893          * Hence we need to check that we've not already reclaimed
894          * this state.
895          * We do this using the current MSR, rather tracking it in
896          * some specific thread_struct bit, as it has the additional
897          * benefit of checking for a potential TM bad thing exception.
898          */
899         if (!MSR_TM_SUSPENDED(mfmsr()))
900                 return;
901
902         giveup_all(container_of(thr, struct task_struct, thread));
903
904         tm_reclaim(thr, cause);
905
906         /*
907          * If we are in a transaction and FP is off then we can't have
908          * used FP inside that transaction. Hence the checkpointed
909          * state is the same as the live state. We need to copy the
910          * live state to the checkpointed state so that when the
911          * transaction is restored, the checkpointed state is correct
912          * and the aborted transaction sees the correct state. We use
913          * ckpt_regs.msr here as that's what tm_reclaim will use to
914          * determine if it's going to write the checkpointed state or
915          * not. So either this will write the checkpointed registers,
916          * or reclaim will. Similarly for VMX.
917          */
918         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
919                 memcpy(&thr->ckfp_state, &thr->fp_state,
920                        sizeof(struct thread_fp_state));
921         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
922                 memcpy(&thr->ckvr_state, &thr->vr_state,
923                        sizeof(struct thread_vr_state));
924 }
925
926 void tm_reclaim_current(uint8_t cause)
927 {
928         tm_enable();
929         tm_reclaim_thread(&current->thread, cause);
930 }
931
932 static inline void tm_reclaim_task(struct task_struct *tsk)
933 {
934         /* We have to work out if we're switching from/to a task that's in the
935          * middle of a transaction.
936          *
937          * In switching we need to maintain a 2nd register state as
938          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
939          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
940          * ckvr_state
941          *
942          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
943          */
944         struct thread_struct *thr = &tsk->thread;
945
946         if (!thr->regs)
947                 return;
948
949         if (!MSR_TM_ACTIVE(thr->regs->msr))
950                 goto out_and_saveregs;
951
952         WARN_ON(tm_suspend_disabled);
953
954         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
955                  "ccr=%lx, msr=%lx, trap=%lx)\n",
956                  tsk->pid, thr->regs->nip,
957                  thr->regs->ccr, thr->regs->msr,
958                  thr->regs->trap);
959
960         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
961
962         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
963                  tsk->pid);
964
965 out_and_saveregs:
966         /* Always save the regs here, even if a transaction's not active.
967          * This context-switches a thread's TM info SPRs.  We do it here to
968          * be consistent with the restore path (in recheckpoint) which
969          * cannot happen later in _switch().
970          */
971         tm_save_sprs(thr);
972 }
973
974 extern void __tm_recheckpoint(struct thread_struct *thread);
975
976 void tm_recheckpoint(struct thread_struct *thread)
977 {
978         unsigned long flags;
979
980         if (!(thread->regs->msr & MSR_TM))
981                 return;
982
983         /* We really can't be interrupted here as the TEXASR registers can't
984          * change and later in the trecheckpoint code, we have a userspace R1.
985          * So let's hard disable over this region.
986          */
987         local_irq_save(flags);
988         hard_irq_disable();
989
990         /* The TM SPRs are restored here, so that TEXASR.FS can be set
991          * before the trecheckpoint and no explosion occurs.
992          */
993         tm_restore_sprs(thread);
994
995         __tm_recheckpoint(thread);
996
997         local_irq_restore(flags);
998 }
999
1000 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1001 {
1002         if (!cpu_has_feature(CPU_FTR_TM))
1003                 return;
1004
1005         /* Recheckpoint the registers of the thread we're about to switch to.
1006          *
1007          * If the task was using FP, we non-lazily reload both the original and
1008          * the speculative FP register states.  This is because the kernel
1009          * doesn't see if/when a TM rollback occurs, so if we take an FP
1010          * unavailable later, we are unable to determine which set of FP regs
1011          * need to be restored.
1012          */
1013         if (!tm_enabled(new))
1014                 return;
1015
1016         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1017                 tm_restore_sprs(&new->thread);
1018                 return;
1019         }
1020         /* Recheckpoint to restore original checkpointed register state. */
1021         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1022                  new->pid, new->thread.regs->msr);
1023
1024         tm_recheckpoint(&new->thread);
1025
1026         /*
1027          * The checkpointed state has been restored but the live state has
1028          * not, ensure all the math functionality is turned off to trigger
1029          * restore_math() to reload.
1030          */
1031         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1032
1033         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1034                  "(kernel msr 0x%lx)\n",
1035                  new->pid, mfmsr());
1036 }
1037
1038 static inline void __switch_to_tm(struct task_struct *prev,
1039                 struct task_struct *new)
1040 {
1041         if (cpu_has_feature(CPU_FTR_TM)) {
1042                 if (tm_enabled(prev) || tm_enabled(new))
1043                         tm_enable();
1044
1045                 if (tm_enabled(prev)) {
1046                         prev->thread.load_tm++;
1047                         tm_reclaim_task(prev);
1048                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1049                                 prev->thread.regs->msr &= ~MSR_TM;
1050                 }
1051
1052                 tm_recheckpoint_new_task(new);
1053         }
1054 }
1055
1056 /*
1057  * This is called if we are on the way out to userspace and the
1058  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1059  * FP and/or vector state and does so if necessary.
1060  * If userspace is inside a transaction (whether active or
1061  * suspended) and FP/VMX/VSX instructions have ever been enabled
1062  * inside that transaction, then we have to keep them enabled
1063  * and keep the FP/VMX/VSX state loaded while ever the transaction
1064  * continues.  The reason is that if we didn't, and subsequently
1065  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1066  * we don't know whether it's the same transaction, and thus we
1067  * don't know which of the checkpointed state and the transactional
1068  * state to use.
1069  */
1070 void restore_tm_state(struct pt_regs *regs)
1071 {
1072         unsigned long msr_diff;
1073
1074         /*
1075          * This is the only moment we should clear TIF_RESTORE_TM as
1076          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1077          * again, anything else could lead to an incorrect ckpt_msr being
1078          * saved and therefore incorrect signal contexts.
1079          */
1080         clear_thread_flag(TIF_RESTORE_TM);
1081         if (!MSR_TM_ACTIVE(regs->msr))
1082                 return;
1083
1084         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1085         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1086
1087         /* Ensure that restore_math() will restore */
1088         if (msr_diff & MSR_FP)
1089                 current->thread.load_fp = 1;
1090 #ifdef CONFIG_ALTIVEC
1091         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1092                 current->thread.load_vec = 1;
1093 #endif
1094         restore_math(regs);
1095
1096         regs->msr |= msr_diff;
1097 }
1098
1099 #else
1100 #define tm_recheckpoint_new_task(new)
1101 #define __switch_to_tm(prev, new)
1102 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1103
1104 static inline void save_sprs(struct thread_struct *t)
1105 {
1106 #ifdef CONFIG_ALTIVEC
1107         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1108                 t->vrsave = mfspr(SPRN_VRSAVE);
1109 #endif
1110 #ifdef CONFIG_PPC_BOOK3S_64
1111         if (cpu_has_feature(CPU_FTR_DSCR))
1112                 t->dscr = mfspr(SPRN_DSCR);
1113
1114         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1115                 t->bescr = mfspr(SPRN_BESCR);
1116                 t->ebbhr = mfspr(SPRN_EBBHR);
1117                 t->ebbrr = mfspr(SPRN_EBBRR);
1118
1119                 t->fscr = mfspr(SPRN_FSCR);
1120
1121                 /*
1122                  * Note that the TAR is not available for use in the kernel.
1123                  * (To provide this, the TAR should be backed up/restored on
1124                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1125                  * this should be in pt_regs anyway (for debug).)
1126                  */
1127                 t->tar = mfspr(SPRN_TAR);
1128         }
1129 #endif
1130
1131         thread_pkey_regs_save(t);
1132 }
1133
1134 static inline void restore_sprs(struct thread_struct *old_thread,
1135                                 struct thread_struct *new_thread)
1136 {
1137 #ifdef CONFIG_ALTIVEC
1138         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1139             old_thread->vrsave != new_thread->vrsave)
1140                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1141 #endif
1142 #ifdef CONFIG_PPC_BOOK3S_64
1143         if (cpu_has_feature(CPU_FTR_DSCR)) {
1144                 u64 dscr = get_paca()->dscr_default;
1145                 if (new_thread->dscr_inherit)
1146                         dscr = new_thread->dscr;
1147
1148                 if (old_thread->dscr != dscr)
1149                         mtspr(SPRN_DSCR, dscr);
1150         }
1151
1152         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1153                 if (old_thread->bescr != new_thread->bescr)
1154                         mtspr(SPRN_BESCR, new_thread->bescr);
1155                 if (old_thread->ebbhr != new_thread->ebbhr)
1156                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1157                 if (old_thread->ebbrr != new_thread->ebbrr)
1158                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1159
1160                 if (old_thread->fscr != new_thread->fscr)
1161                         mtspr(SPRN_FSCR, new_thread->fscr);
1162
1163                 if (old_thread->tar != new_thread->tar)
1164                         mtspr(SPRN_TAR, new_thread->tar);
1165         }
1166
1167         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1168             old_thread->tidr != new_thread->tidr)
1169                 mtspr(SPRN_TIDR, new_thread->tidr);
1170 #endif
1171
1172         thread_pkey_regs_restore(new_thread, old_thread);
1173 }
1174
1175 struct task_struct *__switch_to(struct task_struct *prev,
1176         struct task_struct *new)
1177 {
1178         struct thread_struct *new_thread, *old_thread;
1179         struct task_struct *last;
1180 #ifdef CONFIG_PPC_BOOK3S_64
1181         struct ppc64_tlb_batch *batch;
1182 #endif
1183
1184         new_thread = &new->thread;
1185         old_thread = &current->thread;
1186
1187         WARN_ON(!irqs_disabled());
1188
1189 #ifdef CONFIG_PPC_BOOK3S_64
1190         batch = this_cpu_ptr(&ppc64_tlb_batch);
1191         if (batch->active) {
1192                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1193                 if (batch->index)
1194                         __flush_tlb_pending(batch);
1195                 batch->active = 0;
1196         }
1197 #endif /* CONFIG_PPC_BOOK3S_64 */
1198
1199 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1200         switch_booke_debug_regs(&new->thread.debug);
1201 #else
1202 /*
1203  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1204  * schedule DABR
1205  */
1206 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1207         switch_hw_breakpoint(new);
1208 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1209 #endif
1210
1211         /*
1212          * We need to save SPRs before treclaim/trecheckpoint as these will
1213          * change a number of them.
1214          */
1215         save_sprs(&prev->thread);
1216
1217         /* Save FPU, Altivec, VSX and SPE state */
1218         giveup_all(prev);
1219
1220         __switch_to_tm(prev, new);
1221
1222         if (!radix_enabled()) {
1223                 /*
1224                  * We can't take a PMU exception inside _switch() since there
1225                  * is a window where the kernel stack SLB and the kernel stack
1226                  * are out of sync. Hard disable here.
1227                  */
1228                 hard_irq_disable();
1229         }
1230
1231         /*
1232          * Call restore_sprs() before calling _switch(). If we move it after
1233          * _switch() then we miss out on calling it for new tasks. The reason
1234          * for this is we manually create a stack frame for new tasks that
1235          * directly returns through ret_from_fork() or
1236          * ret_from_kernel_thread(). See copy_thread() for details.
1237          */
1238         restore_sprs(old_thread, new_thread);
1239
1240         last = _switch(old_thread, new_thread);
1241
1242 #ifdef CONFIG_PPC_BOOK3S_64
1243         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1244                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1245                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1246                 batch->active = 1;
1247         }
1248
1249         if (current->thread.regs) {
1250                 restore_math(current->thread.regs);
1251
1252                 /*
1253                  * The copy-paste buffer can only store into foreign real
1254                  * addresses, so unprivileged processes can not see the
1255                  * data or use it in any way unless they have foreign real
1256                  * mappings. If the new process has the foreign real address
1257                  * mappings, we must issue a cp_abort to clear any state and
1258                  * prevent snooping, corruption or a covert channel.
1259                  */
1260                 if (current->mm &&
1261                         atomic_read(&current->mm->context.vas_windows))
1262                         asm volatile(PPC_CP_ABORT);
1263         }
1264 #endif /* CONFIG_PPC_BOOK3S_64 */
1265
1266         return last;
1267 }
1268
1269 #define NR_INSN_TO_PRINT        16
1270
1271 static void show_instructions(struct pt_regs *regs)
1272 {
1273         int i;
1274         unsigned long nip = regs->nip;
1275         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1276
1277         printk("Instruction dump:");
1278
1279         /*
1280          * If we were executing with the MMU off for instructions, adjust pc
1281          * rather than printing XXXXXXXX.
1282          */
1283         if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1284                 pc = (unsigned long)phys_to_virt(pc);
1285                 nip = (unsigned long)phys_to_virt(regs->nip);
1286         }
1287
1288         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1289                 int instr;
1290
1291                 if (!(i % 8))
1292                         pr_cont("\n");
1293
1294                 if (!__kernel_text_address(pc) ||
1295                     get_kernel_nofault(instr, (const void *)pc)) {
1296                         pr_cont("XXXXXXXX ");
1297                 } else {
1298                         if (nip == pc)
1299                                 pr_cont("<%08x> ", instr);
1300                         else
1301                                 pr_cont("%08x ", instr);
1302                 }
1303
1304                 pc += sizeof(int);
1305         }
1306
1307         pr_cont("\n");
1308 }
1309
1310 void show_user_instructions(struct pt_regs *regs)
1311 {
1312         unsigned long pc;
1313         int n = NR_INSN_TO_PRINT;
1314         struct seq_buf s;
1315         char buf[96]; /* enough for 8 times 9 + 2 chars */
1316
1317         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1318
1319         seq_buf_init(&s, buf, sizeof(buf));
1320
1321         while (n) {
1322                 int i;
1323
1324                 seq_buf_clear(&s);
1325
1326                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1327                         int instr;
1328
1329                         if (copy_from_user_nofault(&instr, (void __user *)pc,
1330                                         sizeof(instr))) {
1331                                 seq_buf_printf(&s, "XXXXXXXX ");
1332                                 continue;
1333                         }
1334                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1335                 }
1336
1337                 if (!seq_buf_has_overflowed(&s))
1338                         pr_info("%s[%d]: code: %s\n", current->comm,
1339                                 current->pid, s.buffer);
1340         }
1341 }
1342
1343 struct regbit {
1344         unsigned long bit;
1345         const char *name;
1346 };
1347
1348 static struct regbit msr_bits[] = {
1349 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1350         {MSR_SF,        "SF"},
1351         {MSR_HV,        "HV"},
1352 #endif
1353         {MSR_VEC,       "VEC"},
1354         {MSR_VSX,       "VSX"},
1355 #ifdef CONFIG_BOOKE
1356         {MSR_CE,        "CE"},
1357 #endif
1358         {MSR_EE,        "EE"},
1359         {MSR_PR,        "PR"},
1360         {MSR_FP,        "FP"},
1361         {MSR_ME,        "ME"},
1362 #ifdef CONFIG_BOOKE
1363         {MSR_DE,        "DE"},
1364 #else
1365         {MSR_SE,        "SE"},
1366         {MSR_BE,        "BE"},
1367 #endif
1368         {MSR_IR,        "IR"},
1369         {MSR_DR,        "DR"},
1370         {MSR_PMM,       "PMM"},
1371 #ifndef CONFIG_BOOKE
1372         {MSR_RI,        "RI"},
1373         {MSR_LE,        "LE"},
1374 #endif
1375         {0,             NULL}
1376 };
1377
1378 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1379 {
1380         const char *s = "";
1381
1382         for (; bits->bit; ++bits)
1383                 if (val & bits->bit) {
1384                         pr_cont("%s%s", s, bits->name);
1385                         s = sep;
1386                 }
1387 }
1388
1389 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1390 static struct regbit msr_tm_bits[] = {
1391         {MSR_TS_T,      "T"},
1392         {MSR_TS_S,      "S"},
1393         {MSR_TM,        "E"},
1394         {0,             NULL}
1395 };
1396
1397 static void print_tm_bits(unsigned long val)
1398 {
1399 /*
1400  * This only prints something if at least one of the TM bit is set.
1401  * Inside the TM[], the output means:
1402  *   E: Enabled         (bit 32)
1403  *   S: Suspended       (bit 33)
1404  *   T: Transactional   (bit 34)
1405  */
1406         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1407                 pr_cont(",TM[");
1408                 print_bits(val, msr_tm_bits, "");
1409                 pr_cont("]");
1410         }
1411 }
1412 #else
1413 static void print_tm_bits(unsigned long val) {}
1414 #endif
1415
1416 static void print_msr_bits(unsigned long val)
1417 {
1418         pr_cont("<");
1419         print_bits(val, msr_bits, ",");
1420         print_tm_bits(val);
1421         pr_cont(">");
1422 }
1423
1424 #ifdef CONFIG_PPC64
1425 #define REG             "%016lx"
1426 #define REGS_PER_LINE   4
1427 #define LAST_VOLATILE   13
1428 #else
1429 #define REG             "%08lx"
1430 #define REGS_PER_LINE   8
1431 #define LAST_VOLATILE   12
1432 #endif
1433
1434 void show_regs(struct pt_regs * regs)
1435 {
1436         int i, trap;
1437
1438         show_regs_print_info(KERN_DEFAULT);
1439
1440         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1441                regs->nip, regs->link, regs->ctr);
1442         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1443                regs, regs->trap, print_tainted(), init_utsname()->release);
1444         printk("MSR:  "REG" ", regs->msr);
1445         print_msr_bits(regs->msr);
1446         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1447         trap = TRAP(regs);
1448         if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1449                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1450         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1451 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1452                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1453 #else
1454                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1455 #endif
1456 #ifdef CONFIG_PPC64
1457         pr_cont("IRQMASK: %lx ", regs->softe);
1458 #endif
1459 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1460         if (MSR_TM_ACTIVE(regs->msr))
1461                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1462 #endif
1463
1464         for (i = 0;  i < 32;  i++) {
1465                 if ((i % REGS_PER_LINE) == 0)
1466                         pr_cont("\nGPR%02d: ", i);
1467                 pr_cont(REG " ", regs->gpr[i]);
1468                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1469                         break;
1470         }
1471         pr_cont("\n");
1472 #ifdef CONFIG_KALLSYMS
1473         /*
1474          * Lookup NIP late so we have the best change of getting the
1475          * above info out without failing
1476          */
1477         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1478         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1479 #endif
1480         show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1481         if (!user_mode(regs))
1482                 show_instructions(regs);
1483 }
1484
1485 void flush_thread(void)
1486 {
1487 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1488         flush_ptrace_hw_breakpoint(current);
1489 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1490         set_debug_reg_defaults(&current->thread);
1491 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1492 }
1493
1494 #ifdef CONFIG_PPC_BOOK3S_64
1495 void arch_setup_new_exec(void)
1496 {
1497         if (radix_enabled())
1498                 return;
1499         hash__setup_new_exec();
1500 }
1501 #endif
1502
1503 #ifdef CONFIG_PPC64
1504 /**
1505  * Assign a TIDR (thread ID) for task @t and set it in the thread
1506  * structure. For now, we only support setting TIDR for 'current' task.
1507  *
1508  * Since the TID value is a truncated form of it PID, it is possible
1509  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1510  * that 2 threads share the same TID and are waiting, one of the following
1511  * cases will happen:
1512  *
1513  * 1. The correct thread is running, the wrong thread is not
1514  * In this situation, the correct thread is woken and proceeds to pass it's
1515  * condition check.
1516  *
1517  * 2. Neither threads are running
1518  * In this situation, neither thread will be woken. When scheduled, the waiting
1519  * threads will execute either a wait, which will return immediately, followed
1520  * by a condition check, which will pass for the correct thread and fail
1521  * for the wrong thread, or they will execute the condition check immediately.
1522  *
1523  * 3. The wrong thread is running, the correct thread is not
1524  * The wrong thread will be woken, but will fail it's condition check and
1525  * re-execute wait. The correct thread, when scheduled, will execute either
1526  * it's condition check (which will pass), or wait, which returns immediately
1527  * when called the first time after the thread is scheduled, followed by it's
1528  * condition check (which will pass).
1529  *
1530  * 4. Both threads are running
1531  * Both threads will be woken. The wrong thread will fail it's condition check
1532  * and execute another wait, while the correct thread will pass it's condition
1533  * check.
1534  *
1535  * @t: the task to set the thread ID for
1536  */
1537 int set_thread_tidr(struct task_struct *t)
1538 {
1539         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1540                 return -EINVAL;
1541
1542         if (t != current)
1543                 return -EINVAL;
1544
1545         if (t->thread.tidr)
1546                 return 0;
1547
1548         t->thread.tidr = (u16)task_pid_nr(t);
1549         mtspr(SPRN_TIDR, t->thread.tidr);
1550
1551         return 0;
1552 }
1553 EXPORT_SYMBOL_GPL(set_thread_tidr);
1554
1555 #endif /* CONFIG_PPC64 */
1556
1557 void
1558 release_thread(struct task_struct *t)
1559 {
1560 }
1561
1562 /*
1563  * this gets called so that we can store coprocessor state into memory and
1564  * copy the current task into the new thread.
1565  */
1566 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1567 {
1568         flush_all_to_thread(src);
1569         /*
1570          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1571          * flush but it removes the checkpointed state from the current CPU and
1572          * transitions the CPU out of TM mode.  Hence we need to call
1573          * tm_recheckpoint_new_task() (on the same task) to restore the
1574          * checkpointed state back and the TM mode.
1575          *
1576          * Can't pass dst because it isn't ready. Doesn't matter, passing
1577          * dst is only important for __switch_to()
1578          */
1579         __switch_to_tm(src, src);
1580
1581         *dst = *src;
1582
1583         clear_task_ebb(dst);
1584
1585         return 0;
1586 }
1587
1588 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1589 {
1590 #ifdef CONFIG_PPC_BOOK3S_64
1591         unsigned long sp_vsid;
1592         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1593
1594         if (radix_enabled())
1595                 return;
1596
1597         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1598                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1599                         << SLB_VSID_SHIFT_1T;
1600         else
1601                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1602                         << SLB_VSID_SHIFT;
1603         sp_vsid |= SLB_VSID_KERNEL | llp;
1604         p->thread.ksp_vsid = sp_vsid;
1605 #endif
1606 }
1607
1608 /*
1609  * Copy a thread..
1610  */
1611
1612 /*
1613  * Copy architecture-specific thread state
1614  */
1615 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
1616                 unsigned long kthread_arg, struct task_struct *p,
1617                 unsigned long tls)
1618 {
1619         struct pt_regs *childregs, *kregs;
1620         extern void ret_from_fork(void);
1621         extern void ret_from_kernel_thread(void);
1622         void (*f)(void);
1623         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1624         struct thread_info *ti = task_thread_info(p);
1625 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1626         int i;
1627 #endif
1628
1629         klp_init_thread_info(p);
1630
1631         /* Copy registers */
1632         sp -= sizeof(struct pt_regs);
1633         childregs = (struct pt_regs *) sp;
1634         if (unlikely(p->flags & PF_KTHREAD)) {
1635                 /* kernel thread */
1636                 memset(childregs, 0, sizeof(struct pt_regs));
1637                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1638                 /* function */
1639                 if (usp)
1640                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1641 #ifdef CONFIG_PPC64
1642                 clear_tsk_thread_flag(p, TIF_32BIT);
1643                 childregs->softe = IRQS_ENABLED;
1644 #endif
1645                 childregs->gpr[15] = kthread_arg;
1646                 p->thread.regs = NULL;  /* no user register state */
1647                 ti->flags |= _TIF_RESTOREALL;
1648                 f = ret_from_kernel_thread;
1649         } else {
1650                 /* user thread */
1651                 struct pt_regs *regs = current_pt_regs();
1652                 CHECK_FULL_REGS(regs);
1653                 *childregs = *regs;
1654                 if (usp)
1655                         childregs->gpr[1] = usp;
1656                 p->thread.regs = childregs;
1657                 childregs->gpr[3] = 0;  /* Result from fork() */
1658                 if (clone_flags & CLONE_SETTLS) {
1659                         if (!is_32bit_task())
1660                                 childregs->gpr[13] = tls;
1661                         else
1662                                 childregs->gpr[2] = tls;
1663                 }
1664
1665                 f = ret_from_fork;
1666         }
1667         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1668         sp -= STACK_FRAME_OVERHEAD;
1669
1670         /*
1671          * The way this works is that at some point in the future
1672          * some task will call _switch to switch to the new task.
1673          * That will pop off the stack frame created below and start
1674          * the new task running at ret_from_fork.  The new task will
1675          * do some house keeping and then return from the fork or clone
1676          * system call, using the stack frame created above.
1677          */
1678         ((unsigned long *)sp)[0] = 0;
1679         sp -= sizeof(struct pt_regs);
1680         kregs = (struct pt_regs *) sp;
1681         sp -= STACK_FRAME_OVERHEAD;
1682         p->thread.ksp = sp;
1683 #ifdef CONFIG_PPC32
1684         p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1685 #endif
1686 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1687         for (i = 0; i < nr_wp_slots(); i++)
1688                 p->thread.ptrace_bps[i] = NULL;
1689 #endif
1690
1691         p->thread.fp_save_area = NULL;
1692 #ifdef CONFIG_ALTIVEC
1693         p->thread.vr_save_area = NULL;
1694 #endif
1695
1696         setup_ksp_vsid(p, sp);
1697
1698 #ifdef CONFIG_PPC64 
1699         if (cpu_has_feature(CPU_FTR_DSCR)) {
1700                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1701                 p->thread.dscr = mfspr(SPRN_DSCR);
1702         }
1703         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1704                 childregs->ppr = DEFAULT_PPR;
1705
1706         p->thread.tidr = 0;
1707 #endif
1708         kregs->nip = ppc_function_entry(f);
1709         return 0;
1710 }
1711
1712 void preload_new_slb_context(unsigned long start, unsigned long sp);
1713
1714 /*
1715  * Set up a thread for executing a new program
1716  */
1717 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1718 {
1719 #ifdef CONFIG_PPC64
1720         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1721
1722 #ifdef CONFIG_PPC_BOOK3S_64
1723         if (!radix_enabled())
1724                 preload_new_slb_context(start, sp);
1725 #endif
1726 #endif
1727
1728         /*
1729          * If we exec out of a kernel thread then thread.regs will not be
1730          * set.  Do it now.
1731          */
1732         if (!current->thread.regs) {
1733                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1734                 current->thread.regs = regs - 1;
1735         }
1736
1737 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1738         /*
1739          * Clear any transactional state, we're exec()ing. The cause is
1740          * not important as there will never be a recheckpoint so it's not
1741          * user visible.
1742          */
1743         if (MSR_TM_SUSPENDED(mfmsr()))
1744                 tm_reclaim_current(0);
1745 #endif
1746
1747         memset(regs->gpr, 0, sizeof(regs->gpr));
1748         regs->ctr = 0;
1749         regs->link = 0;
1750         regs->xer = 0;
1751         regs->ccr = 0;
1752         regs->gpr[1] = sp;
1753
1754         /*
1755          * We have just cleared all the nonvolatile GPRs, so make
1756          * FULL_REGS(regs) return true.  This is necessary to allow
1757          * ptrace to examine the thread immediately after exec.
1758          */
1759         SET_FULL_REGS(regs);
1760
1761 #ifdef CONFIG_PPC32
1762         regs->mq = 0;
1763         regs->nip = start;
1764         regs->msr = MSR_USER;
1765 #else
1766         if (!is_32bit_task()) {
1767                 unsigned long entry;
1768
1769                 if (is_elf2_task()) {
1770                         /* Look ma, no function descriptors! */
1771                         entry = start;
1772
1773                         /*
1774                          * Ulrich says:
1775                          *   The latest iteration of the ABI requires that when
1776                          *   calling a function (at its global entry point),
1777                          *   the caller must ensure r12 holds the entry point
1778                          *   address (so that the function can quickly
1779                          *   establish addressability).
1780                          */
1781                         regs->gpr[12] = start;
1782                         /* Make sure that's restored on entry to userspace. */
1783                         set_thread_flag(TIF_RESTOREALL);
1784                 } else {
1785                         unsigned long toc;
1786
1787                         /* start is a relocated pointer to the function
1788                          * descriptor for the elf _start routine.  The first
1789                          * entry in the function descriptor is the entry
1790                          * address of _start and the second entry is the TOC
1791                          * value we need to use.
1792                          */
1793                         __get_user(entry, (unsigned long __user *)start);
1794                         __get_user(toc, (unsigned long __user *)start+1);
1795
1796                         /* Check whether the e_entry function descriptor entries
1797                          * need to be relocated before we can use them.
1798                          */
1799                         if (load_addr != 0) {
1800                                 entry += load_addr;
1801                                 toc   += load_addr;
1802                         }
1803                         regs->gpr[2] = toc;
1804                 }
1805                 regs->nip = entry;
1806                 regs->msr = MSR_USER64;
1807         } else {
1808                 regs->nip = start;
1809                 regs->gpr[2] = 0;
1810                 regs->msr = MSR_USER32;
1811         }
1812 #endif
1813 #ifdef CONFIG_VSX
1814         current->thread.used_vsr = 0;
1815 #endif
1816         current->thread.load_slb = 0;
1817         current->thread.load_fp = 0;
1818         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1819         current->thread.fp_save_area = NULL;
1820 #ifdef CONFIG_ALTIVEC
1821         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1822         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1823         current->thread.vr_save_area = NULL;
1824         current->thread.vrsave = 0;
1825         current->thread.used_vr = 0;
1826         current->thread.load_vec = 0;
1827 #endif /* CONFIG_ALTIVEC */
1828 #ifdef CONFIG_SPE
1829         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1830         current->thread.acc = 0;
1831         current->thread.spefscr = 0;
1832         current->thread.used_spe = 0;
1833 #endif /* CONFIG_SPE */
1834 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1835         current->thread.tm_tfhar = 0;
1836         current->thread.tm_texasr = 0;
1837         current->thread.tm_tfiar = 0;
1838         current->thread.load_tm = 0;
1839 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1840
1841         thread_pkey_regs_init(&current->thread);
1842 }
1843 EXPORT_SYMBOL(start_thread);
1844
1845 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1846                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1847
1848 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1849 {
1850         struct pt_regs *regs = tsk->thread.regs;
1851
1852         /* This is a bit hairy.  If we are an SPE enabled  processor
1853          * (have embedded fp) we store the IEEE exception enable flags in
1854          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1855          * mode (asyn, precise, disabled) for 'Classic' FP. */
1856         if (val & PR_FP_EXC_SW_ENABLE) {
1857 #ifdef CONFIG_SPE
1858                 if (cpu_has_feature(CPU_FTR_SPE)) {
1859                         /*
1860                          * When the sticky exception bits are set
1861                          * directly by userspace, it must call prctl
1862                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1863                          * in the existing prctl settings) or
1864                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1865                          * the bits being set).  <fenv.h> functions
1866                          * saving and restoring the whole
1867                          * floating-point environment need to do so
1868                          * anyway to restore the prctl settings from
1869                          * the saved environment.
1870                          */
1871                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1872                         tsk->thread.fpexc_mode = val &
1873                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1874                         return 0;
1875                 } else {
1876                         return -EINVAL;
1877                 }
1878 #else
1879                 return -EINVAL;
1880 #endif
1881         }
1882
1883         /* on a CONFIG_SPE this does not hurt us.  The bits that
1884          * __pack_fe01 use do not overlap with bits used for
1885          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1886          * on CONFIG_SPE implementations are reserved so writing to
1887          * them does not change anything */
1888         if (val > PR_FP_EXC_PRECISE)
1889                 return -EINVAL;
1890         tsk->thread.fpexc_mode = __pack_fe01(val);
1891         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1892                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1893                         | tsk->thread.fpexc_mode;
1894         return 0;
1895 }
1896
1897 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1898 {
1899         unsigned int val;
1900
1901         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1902 #ifdef CONFIG_SPE
1903                 if (cpu_has_feature(CPU_FTR_SPE)) {
1904                         /*
1905                          * When the sticky exception bits are set
1906                          * directly by userspace, it must call prctl
1907                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1908                          * in the existing prctl settings) or
1909                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1910                          * the bits being set).  <fenv.h> functions
1911                          * saving and restoring the whole
1912                          * floating-point environment need to do so
1913                          * anyway to restore the prctl settings from
1914                          * the saved environment.
1915                          */
1916                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1917                         val = tsk->thread.fpexc_mode;
1918                 } else
1919                         return -EINVAL;
1920 #else
1921                 return -EINVAL;
1922 #endif
1923         else
1924                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1925         return put_user(val, (unsigned int __user *) adr);
1926 }
1927
1928 int set_endian(struct task_struct *tsk, unsigned int val)
1929 {
1930         struct pt_regs *regs = tsk->thread.regs;
1931
1932         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1933             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1934                 return -EINVAL;
1935
1936         if (regs == NULL)
1937                 return -EINVAL;
1938
1939         if (val == PR_ENDIAN_BIG)
1940                 regs->msr &= ~MSR_LE;
1941         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1942                 regs->msr |= MSR_LE;
1943         else
1944                 return -EINVAL;
1945
1946         return 0;
1947 }
1948
1949 int get_endian(struct task_struct *tsk, unsigned long adr)
1950 {
1951         struct pt_regs *regs = tsk->thread.regs;
1952         unsigned int val;
1953
1954         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1955             !cpu_has_feature(CPU_FTR_REAL_LE))
1956                 return -EINVAL;
1957
1958         if (regs == NULL)
1959                 return -EINVAL;
1960
1961         if (regs->msr & MSR_LE) {
1962                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1963                         val = PR_ENDIAN_LITTLE;
1964                 else
1965                         val = PR_ENDIAN_PPC_LITTLE;
1966         } else
1967                 val = PR_ENDIAN_BIG;
1968
1969         return put_user(val, (unsigned int __user *)adr);
1970 }
1971
1972 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1973 {
1974         tsk->thread.align_ctl = val;
1975         return 0;
1976 }
1977
1978 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1979 {
1980         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1981 }
1982
1983 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1984                                   unsigned long nbytes)
1985 {
1986         unsigned long stack_page;
1987         unsigned long cpu = task_cpu(p);
1988
1989         stack_page = (unsigned long)hardirq_ctx[cpu];
1990         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1991                 return 1;
1992
1993         stack_page = (unsigned long)softirq_ctx[cpu];
1994         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1995                 return 1;
1996
1997         return 0;
1998 }
1999
2000 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2001                                         unsigned long nbytes)
2002 {
2003 #ifdef CONFIG_PPC64
2004         unsigned long stack_page;
2005         unsigned long cpu = task_cpu(p);
2006
2007         stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2008         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2009                 return 1;
2010
2011 # ifdef CONFIG_PPC_BOOK3S_64
2012         stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2013         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2014                 return 1;
2015
2016         stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2017         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2018                 return 1;
2019 # endif
2020 #endif
2021
2022         return 0;
2023 }
2024
2025
2026 int validate_sp(unsigned long sp, struct task_struct *p,
2027                        unsigned long nbytes)
2028 {
2029         unsigned long stack_page = (unsigned long)task_stack_page(p);
2030
2031         if (sp < THREAD_SIZE)
2032                 return 0;
2033
2034         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2035                 return 1;
2036
2037         if (valid_irq_stack(sp, p, nbytes))
2038                 return 1;
2039
2040         return valid_emergency_stack(sp, p, nbytes);
2041 }
2042
2043 EXPORT_SYMBOL(validate_sp);
2044
2045 static unsigned long __get_wchan(struct task_struct *p)
2046 {
2047         unsigned long ip, sp;
2048         int count = 0;
2049
2050         if (!p || p == current || p->state == TASK_RUNNING)
2051                 return 0;
2052
2053         sp = p->thread.ksp;
2054         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2055                 return 0;
2056
2057         do {
2058                 sp = *(unsigned long *)sp;
2059                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2060                     p->state == TASK_RUNNING)
2061                         return 0;
2062                 if (count > 0) {
2063                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2064                         if (!in_sched_functions(ip))
2065                                 return ip;
2066                 }
2067         } while (count++ < 16);
2068         return 0;
2069 }
2070
2071 unsigned long get_wchan(struct task_struct *p)
2072 {
2073         unsigned long ret;
2074
2075         if (!try_get_task_stack(p))
2076                 return 0;
2077
2078         ret = __get_wchan(p);
2079
2080         put_task_stack(p);
2081
2082         return ret;
2083 }
2084
2085 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2086
2087 void show_stack(struct task_struct *tsk, unsigned long *stack,
2088                 const char *loglvl)
2089 {
2090         unsigned long sp, ip, lr, newsp;
2091         int count = 0;
2092         int firstframe = 1;
2093 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2094         unsigned long ret_addr;
2095         int ftrace_idx = 0;
2096 #endif
2097
2098         if (tsk == NULL)
2099                 tsk = current;
2100
2101         if (!try_get_task_stack(tsk))
2102                 return;
2103
2104         sp = (unsigned long) stack;
2105         if (sp == 0) {
2106                 if (tsk == current)
2107                         sp = current_stack_frame();
2108                 else
2109                         sp = tsk->thread.ksp;
2110         }
2111
2112         lr = 0;
2113         printk("%sCall Trace:\n", loglvl);
2114         do {
2115                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2116                         break;
2117
2118                 stack = (unsigned long *) sp;
2119                 newsp = stack[0];
2120                 ip = stack[STACK_FRAME_LR_SAVE];
2121                 if (!firstframe || ip != lr) {
2122                         printk("%s["REG"] ["REG"] %pS",
2123                                 loglvl, sp, ip, (void *)ip);
2124 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2125                         ret_addr = ftrace_graph_ret_addr(current,
2126                                                 &ftrace_idx, ip, stack);
2127                         if (ret_addr != ip)
2128                                 pr_cont(" (%pS)", (void *)ret_addr);
2129 #endif
2130                         if (firstframe)
2131                                 pr_cont(" (unreliable)");
2132                         pr_cont("\n");
2133                 }
2134                 firstframe = 0;
2135
2136                 /*
2137                  * See if this is an exception frame.
2138                  * We look for the "regshere" marker in the current frame.
2139                  */
2140                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2141                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2142                         struct pt_regs *regs = (struct pt_regs *)
2143                                 (sp + STACK_FRAME_OVERHEAD);
2144                         lr = regs->link;
2145                         printk("%s--- interrupt: %lx at %pS\n    LR = %pS\n",
2146                                loglvl, regs->trap,
2147                                (void *)regs->nip, (void *)lr);
2148                         firstframe = 1;
2149                 }
2150
2151                 sp = newsp;
2152         } while (count++ < kstack_depth_to_print);
2153
2154         put_task_stack(tsk);
2155 }
2156
2157 #ifdef CONFIG_PPC64
2158 /* Called with hard IRQs off */
2159 void notrace __ppc64_runlatch_on(void)
2160 {
2161         struct thread_info *ti = current_thread_info();
2162
2163         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2164                 /*
2165                  * Least significant bit (RUN) is the only writable bit of
2166                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2167                  * earliest ISA where this is the case, but it's convenient.
2168                  */
2169                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2170         } else {
2171                 unsigned long ctrl;
2172
2173                 /*
2174                  * Some architectures (e.g., Cell) have writable fields other
2175                  * than RUN, so do the read-modify-write.
2176                  */
2177                 ctrl = mfspr(SPRN_CTRLF);
2178                 ctrl |= CTRL_RUNLATCH;
2179                 mtspr(SPRN_CTRLT, ctrl);
2180         }
2181
2182         ti->local_flags |= _TLF_RUNLATCH;
2183 }
2184
2185 /* Called with hard IRQs off */
2186 void notrace __ppc64_runlatch_off(void)
2187 {
2188         struct thread_info *ti = current_thread_info();
2189
2190         ti->local_flags &= ~_TLF_RUNLATCH;
2191
2192         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2193                 mtspr(SPRN_CTRLT, 0);
2194         } else {
2195                 unsigned long ctrl;
2196
2197                 ctrl = mfspr(SPRN_CTRLF);
2198                 ctrl &= ~CTRL_RUNLATCH;
2199                 mtspr(SPRN_CTRLT, ctrl);
2200         }
2201 }
2202 #endif /* CONFIG_PPC64 */
2203
2204 unsigned long arch_align_stack(unsigned long sp)
2205 {
2206         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2207                 sp -= get_random_int() & ~PAGE_MASK;
2208         return sp & ~0xf;
2209 }
2210
2211 static inline unsigned long brk_rnd(void)
2212 {
2213         unsigned long rnd = 0;
2214
2215         /* 8MB for 32bit, 1GB for 64bit */
2216         if (is_32bit_task())
2217                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2218         else
2219                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2220
2221         return rnd << PAGE_SHIFT;
2222 }
2223
2224 unsigned long arch_randomize_brk(struct mm_struct *mm)
2225 {
2226         unsigned long base = mm->brk;
2227         unsigned long ret;
2228
2229 #ifdef CONFIG_PPC_BOOK3S_64
2230         /*
2231          * If we are using 1TB segments and we are allowed to randomise
2232          * the heap, we can put it above 1TB so it is backed by a 1TB
2233          * segment. Otherwise the heap will be in the bottom 1TB
2234          * which always uses 256MB segments and this may result in a
2235          * performance penalty. We don't need to worry about radix. For
2236          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2237          */
2238         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2239                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2240 #endif
2241
2242         ret = PAGE_ALIGN(base + brk_rnd());
2243
2244         if (ret < mm->brk)
2245                 return mm->brk;
2246
2247         return ret;
2248 }
2249