02d691bda9b603e8da2ebf93fb63e71800093bb2
[linux-2.6-microblaze.git] / arch / powerpc / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #include <asm/hw_irq.h>
58 #endif
59 #include <asm/code-patching.h>
60 #include <asm/exec.h>
61 #include <asm/livepatch.h>
62 #include <asm/cpu_has_feature.h>
63 #include <asm/asm-prototypes.h>
64 #include <asm/stacktrace.h>
65 #include <asm/hw_breakpoint.h>
66
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76
77 extern unsigned long _get_SP(void);
78
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 /*
81  * Are we running in "Suspend disabled" mode? If so we have to block any
82  * sigreturn that would get us into suspended state, and we also warn in some
83  * other paths that we should never reach with suspend disabled.
84  */
85 bool tm_suspend_disabled __ro_after_init = false;
86
87 static void check_if_tm_restore_required(struct task_struct *tsk)
88 {
89         /*
90          * If we are saving the current thread's registers, and the
91          * thread is in a transactional state, set the TIF_RESTORE_TM
92          * bit so that we know to restore the registers before
93          * returning to userspace.
94          */
95         if (tsk == current && tsk->thread.regs &&
96             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
97             !test_thread_flag(TIF_RESTORE_TM)) {
98                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99                 set_thread_flag(TIF_RESTORE_TM);
100         }
101 }
102
103 #else
104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
106
107 bool strict_msr_control;
108 EXPORT_SYMBOL(strict_msr_control);
109
110 static int __init enable_strict_msr_control(char *str)
111 {
112         strict_msr_control = true;
113         pr_info("Enabling strict facility control\n");
114
115         return 0;
116 }
117 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
118
119 /* notrace because it's called by restore_math */
120 unsigned long notrace msr_check_and_set(unsigned long bits)
121 {
122         unsigned long oldmsr = mfmsr();
123         unsigned long newmsr;
124
125         newmsr = oldmsr | bits;
126
127 #ifdef CONFIG_VSX
128         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129                 newmsr |= MSR_VSX;
130 #endif
131
132         if (oldmsr != newmsr)
133                 mtmsr_isync(newmsr);
134
135         return newmsr;
136 }
137 EXPORT_SYMBOL_GPL(msr_check_and_set);
138
139 /* notrace because it's called by restore_math */
140 void notrace __msr_check_and_clear(unsigned long bits)
141 {
142         unsigned long oldmsr = mfmsr();
143         unsigned long newmsr;
144
145         newmsr = oldmsr & ~bits;
146
147 #ifdef CONFIG_VSX
148         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149                 newmsr &= ~MSR_VSX;
150 #endif
151
152         if (oldmsr != newmsr)
153                 mtmsr_isync(newmsr);
154 }
155 EXPORT_SYMBOL(__msr_check_and_clear);
156
157 #ifdef CONFIG_PPC_FPU
158 static void __giveup_fpu(struct task_struct *tsk)
159 {
160         unsigned long msr;
161
162         save_fpu(tsk);
163         msr = tsk->thread.regs->msr;
164         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
165 #ifdef CONFIG_VSX
166         if (cpu_has_feature(CPU_FTR_VSX))
167                 msr &= ~MSR_VSX;
168 #endif
169         tsk->thread.regs->msr = msr;
170 }
171
172 void giveup_fpu(struct task_struct *tsk)
173 {
174         check_if_tm_restore_required(tsk);
175
176         msr_check_and_set(MSR_FP);
177         __giveup_fpu(tsk);
178         msr_check_and_clear(MSR_FP);
179 }
180 EXPORT_SYMBOL(giveup_fpu);
181
182 /*
183  * Make sure the floating-point register state in the
184  * the thread_struct is up to date for task tsk.
185  */
186 void flush_fp_to_thread(struct task_struct *tsk)
187 {
188         if (tsk->thread.regs) {
189                 /*
190                  * We need to disable preemption here because if we didn't,
191                  * another process could get scheduled after the regs->msr
192                  * test but before we have finished saving the FP registers
193                  * to the thread_struct.  That process could take over the
194                  * FPU, and then when we get scheduled again we would store
195                  * bogus values for the remaining FP registers.
196                  */
197                 preempt_disable();
198                 if (tsk->thread.regs->msr & MSR_FP) {
199                         /*
200                          * This should only ever be called for current or
201                          * for a stopped child process.  Since we save away
202                          * the FP register state on context switch,
203                          * there is something wrong if a stopped child appears
204                          * to still have its FP state in the CPU registers.
205                          */
206                         BUG_ON(tsk != current);
207                         giveup_fpu(tsk);
208                 }
209                 preempt_enable();
210         }
211 }
212 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
213
214 void enable_kernel_fp(void)
215 {
216         unsigned long cpumsr;
217
218         WARN_ON(preemptible());
219
220         cpumsr = msr_check_and_set(MSR_FP);
221
222         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
223                 check_if_tm_restore_required(current);
224                 /*
225                  * If a thread has already been reclaimed then the
226                  * checkpointed registers are on the CPU but have definitely
227                  * been saved by the reclaim code. Don't need to and *cannot*
228                  * giveup as this would save  to the 'live' structure not the
229                  * checkpointed structure.
230                  */
231                 if (!MSR_TM_ACTIVE(cpumsr) &&
232                      MSR_TM_ACTIVE(current->thread.regs->msr))
233                         return;
234                 __giveup_fpu(current);
235         }
236 }
237 EXPORT_SYMBOL(enable_kernel_fp);
238 #endif /* CONFIG_PPC_FPU */
239
240 #ifdef CONFIG_ALTIVEC
241 static void __giveup_altivec(struct task_struct *tsk)
242 {
243         unsigned long msr;
244
245         save_altivec(tsk);
246         msr = tsk->thread.regs->msr;
247         msr &= ~MSR_VEC;
248 #ifdef CONFIG_VSX
249         if (cpu_has_feature(CPU_FTR_VSX))
250                 msr &= ~MSR_VSX;
251 #endif
252         tsk->thread.regs->msr = msr;
253 }
254
255 void giveup_altivec(struct task_struct *tsk)
256 {
257         check_if_tm_restore_required(tsk);
258
259         msr_check_and_set(MSR_VEC);
260         __giveup_altivec(tsk);
261         msr_check_and_clear(MSR_VEC);
262 }
263 EXPORT_SYMBOL(giveup_altivec);
264
265 void enable_kernel_altivec(void)
266 {
267         unsigned long cpumsr;
268
269         WARN_ON(preemptible());
270
271         cpumsr = msr_check_and_set(MSR_VEC);
272
273         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
274                 check_if_tm_restore_required(current);
275                 /*
276                  * If a thread has already been reclaimed then the
277                  * checkpointed registers are on the CPU but have definitely
278                  * been saved by the reclaim code. Don't need to and *cannot*
279                  * giveup as this would save  to the 'live' structure not the
280                  * checkpointed structure.
281                  */
282                 if (!MSR_TM_ACTIVE(cpumsr) &&
283                      MSR_TM_ACTIVE(current->thread.regs->msr))
284                         return;
285                 __giveup_altivec(current);
286         }
287 }
288 EXPORT_SYMBOL(enable_kernel_altivec);
289
290 /*
291  * Make sure the VMX/Altivec register state in the
292  * the thread_struct is up to date for task tsk.
293  */
294 void flush_altivec_to_thread(struct task_struct *tsk)
295 {
296         if (tsk->thread.regs) {
297                 preempt_disable();
298                 if (tsk->thread.regs->msr & MSR_VEC) {
299                         BUG_ON(tsk != current);
300                         giveup_altivec(tsk);
301                 }
302                 preempt_enable();
303         }
304 }
305 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
306 #endif /* CONFIG_ALTIVEC */
307
308 #ifdef CONFIG_VSX
309 static void __giveup_vsx(struct task_struct *tsk)
310 {
311         unsigned long msr = tsk->thread.regs->msr;
312
313         /*
314          * We should never be ssetting MSR_VSX without also setting
315          * MSR_FP and MSR_VEC
316          */
317         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
318
319         /* __giveup_fpu will clear MSR_VSX */
320         if (msr & MSR_FP)
321                 __giveup_fpu(tsk);
322         if (msr & MSR_VEC)
323                 __giveup_altivec(tsk);
324 }
325
326 static void giveup_vsx(struct task_struct *tsk)
327 {
328         check_if_tm_restore_required(tsk);
329
330         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
331         __giveup_vsx(tsk);
332         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
333 }
334
335 void enable_kernel_vsx(void)
336 {
337         unsigned long cpumsr;
338
339         WARN_ON(preemptible());
340
341         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
342
343         if (current->thread.regs &&
344             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
345                 check_if_tm_restore_required(current);
346                 /*
347                  * If a thread has already been reclaimed then the
348                  * checkpointed registers are on the CPU but have definitely
349                  * been saved by the reclaim code. Don't need to and *cannot*
350                  * giveup as this would save  to the 'live' structure not the
351                  * checkpointed structure.
352                  */
353                 if (!MSR_TM_ACTIVE(cpumsr) &&
354                      MSR_TM_ACTIVE(current->thread.regs->msr))
355                         return;
356                 __giveup_vsx(current);
357         }
358 }
359 EXPORT_SYMBOL(enable_kernel_vsx);
360
361 void flush_vsx_to_thread(struct task_struct *tsk)
362 {
363         if (tsk->thread.regs) {
364                 preempt_disable();
365                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
366                         BUG_ON(tsk != current);
367                         giveup_vsx(tsk);
368                 }
369                 preempt_enable();
370         }
371 }
372 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
373 #endif /* CONFIG_VSX */
374
375 #ifdef CONFIG_SPE
376 void giveup_spe(struct task_struct *tsk)
377 {
378         check_if_tm_restore_required(tsk);
379
380         msr_check_and_set(MSR_SPE);
381         __giveup_spe(tsk);
382         msr_check_and_clear(MSR_SPE);
383 }
384 EXPORT_SYMBOL(giveup_spe);
385
386 void enable_kernel_spe(void)
387 {
388         WARN_ON(preemptible());
389
390         msr_check_and_set(MSR_SPE);
391
392         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
393                 check_if_tm_restore_required(current);
394                 __giveup_spe(current);
395         }
396 }
397 EXPORT_SYMBOL(enable_kernel_spe);
398
399 void flush_spe_to_thread(struct task_struct *tsk)
400 {
401         if (tsk->thread.regs) {
402                 preempt_disable();
403                 if (tsk->thread.regs->msr & MSR_SPE) {
404                         BUG_ON(tsk != current);
405                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
406                         giveup_spe(tsk);
407                 }
408                 preempt_enable();
409         }
410 }
411 #endif /* CONFIG_SPE */
412
413 static unsigned long msr_all_available;
414
415 static int __init init_msr_all_available(void)
416 {
417 #ifdef CONFIG_PPC_FPU
418         msr_all_available |= MSR_FP;
419 #endif
420 #ifdef CONFIG_ALTIVEC
421         if (cpu_has_feature(CPU_FTR_ALTIVEC))
422                 msr_all_available |= MSR_VEC;
423 #endif
424 #ifdef CONFIG_VSX
425         if (cpu_has_feature(CPU_FTR_VSX))
426                 msr_all_available |= MSR_VSX;
427 #endif
428 #ifdef CONFIG_SPE
429         if (cpu_has_feature(CPU_FTR_SPE))
430                 msr_all_available |= MSR_SPE;
431 #endif
432
433         return 0;
434 }
435 early_initcall(init_msr_all_available);
436
437 void giveup_all(struct task_struct *tsk)
438 {
439         unsigned long usermsr;
440
441         if (!tsk->thread.regs)
442                 return;
443
444         check_if_tm_restore_required(tsk);
445
446         usermsr = tsk->thread.regs->msr;
447
448         if ((usermsr & msr_all_available) == 0)
449                 return;
450
451         msr_check_and_set(msr_all_available);
452
453         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
454
455 #ifdef CONFIG_PPC_FPU
456         if (usermsr & MSR_FP)
457                 __giveup_fpu(tsk);
458 #endif
459 #ifdef CONFIG_ALTIVEC
460         if (usermsr & MSR_VEC)
461                 __giveup_altivec(tsk);
462 #endif
463 #ifdef CONFIG_SPE
464         if (usermsr & MSR_SPE)
465                 __giveup_spe(tsk);
466 #endif
467
468         msr_check_and_clear(msr_all_available);
469 }
470 EXPORT_SYMBOL(giveup_all);
471
472 #ifdef CONFIG_PPC_BOOK3S_64
473 #ifdef CONFIG_PPC_FPU
474 static int restore_fp(struct task_struct *tsk)
475 {
476         if (tsk->thread.load_fp) {
477                 load_fp_state(&current->thread.fp_state);
478                 current->thread.load_fp++;
479                 return 1;
480         }
481         return 0;
482 }
483 #else
484 static int restore_fp(struct task_struct *tsk) { return 0; }
485 #endif /* CONFIG_PPC_FPU */
486
487 #ifdef CONFIG_ALTIVEC
488 #define loadvec(thr) ((thr).load_vec)
489 static int restore_altivec(struct task_struct *tsk)
490 {
491         if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) {
492                 load_vr_state(&tsk->thread.vr_state);
493                 tsk->thread.used_vr = 1;
494                 tsk->thread.load_vec++;
495
496                 return 1;
497         }
498         return 0;
499 }
500 #else
501 #define loadvec(thr) 0
502 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
503 #endif /* CONFIG_ALTIVEC */
504
505 #ifdef CONFIG_VSX
506 static int restore_vsx(struct task_struct *tsk)
507 {
508         if (cpu_has_feature(CPU_FTR_VSX)) {
509                 tsk->thread.used_vsr = 1;
510                 return 1;
511         }
512
513         return 0;
514 }
515 #else
516 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
517 #endif /* CONFIG_VSX */
518
519 /*
520  * The exception exit path calls restore_math() with interrupts hard disabled
521  * but the soft irq state not "reconciled". ftrace code that calls
522  * local_irq_save/restore causes warnings.
523  *
524  * Rather than complicate the exit path, just don't trace restore_math. This
525  * could be done by having ftrace entry code check for this un-reconciled
526  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
527  * temporarily fix it up for the duration of the ftrace call.
528  */
529 void notrace restore_math(struct pt_regs *regs)
530 {
531         unsigned long msr;
532
533         if (!current->thread.load_fp && !loadvec(current->thread))
534                 return;
535
536         msr = regs->msr;
537         msr_check_and_set(msr_all_available);
538
539         /*
540          * Only reload if the bit is not set in the user MSR, the bit BEING set
541          * indicates that the registers are hot
542          */
543         if ((!(msr & MSR_FP)) && restore_fp(current))
544                 msr |= MSR_FP | current->thread.fpexc_mode;
545
546         if ((!(msr & MSR_VEC)) && restore_altivec(current))
547                 msr |= MSR_VEC;
548
549         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
550                         restore_vsx(current)) {
551                 msr |= MSR_VSX;
552         }
553
554         msr_check_and_clear(msr_all_available);
555
556         regs->msr = msr;
557 }
558 #endif
559
560 static void save_all(struct task_struct *tsk)
561 {
562         unsigned long usermsr;
563
564         if (!tsk->thread.regs)
565                 return;
566
567         usermsr = tsk->thread.regs->msr;
568
569         if ((usermsr & msr_all_available) == 0)
570                 return;
571
572         msr_check_and_set(msr_all_available);
573
574         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
575
576         if (usermsr & MSR_FP)
577                 save_fpu(tsk);
578
579         if (usermsr & MSR_VEC)
580                 save_altivec(tsk);
581
582         if (usermsr & MSR_SPE)
583                 __giveup_spe(tsk);
584
585         msr_check_and_clear(msr_all_available);
586         thread_pkey_regs_save(&tsk->thread);
587 }
588
589 void flush_all_to_thread(struct task_struct *tsk)
590 {
591         if (tsk->thread.regs) {
592                 preempt_disable();
593                 BUG_ON(tsk != current);
594 #ifdef CONFIG_SPE
595                 if (tsk->thread.regs->msr & MSR_SPE)
596                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
597 #endif
598                 save_all(tsk);
599
600                 preempt_enable();
601         }
602 }
603 EXPORT_SYMBOL(flush_all_to_thread);
604
605 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
606 void do_send_trap(struct pt_regs *regs, unsigned long address,
607                   unsigned long error_code, int breakpt)
608 {
609         current->thread.trap_nr = TRAP_HWBKPT;
610         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
611                         11, SIGSEGV) == NOTIFY_STOP)
612                 return;
613
614         /* Deliver the signal to userspace */
615         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
616                                     (void __user *)address);
617 }
618 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
619 void do_break (struct pt_regs *regs, unsigned long address,
620                     unsigned long error_code)
621 {
622         current->thread.trap_nr = TRAP_HWBKPT;
623         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
624                         11, SIGSEGV) == NOTIFY_STOP)
625                 return;
626
627         if (debugger_break_match(regs))
628                 return;
629
630         /* Deliver the signal to userspace */
631         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
632 }
633 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
634
635 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
636
637 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
638 /*
639  * Set the debug registers back to their default "safe" values.
640  */
641 static void set_debug_reg_defaults(struct thread_struct *thread)
642 {
643         thread->debug.iac1 = thread->debug.iac2 = 0;
644 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
645         thread->debug.iac3 = thread->debug.iac4 = 0;
646 #endif
647         thread->debug.dac1 = thread->debug.dac2 = 0;
648 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
649         thread->debug.dvc1 = thread->debug.dvc2 = 0;
650 #endif
651         thread->debug.dbcr0 = 0;
652 #ifdef CONFIG_BOOKE
653         /*
654          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
655          */
656         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
657                         DBCR1_IAC3US | DBCR1_IAC4US;
658         /*
659          * Force Data Address Compare User/Supervisor bits to be User-only
660          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
661          */
662         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
663 #else
664         thread->debug.dbcr1 = 0;
665 #endif
666 }
667
668 static void prime_debug_regs(struct debug_reg *debug)
669 {
670         /*
671          * We could have inherited MSR_DE from userspace, since
672          * it doesn't get cleared on exception entry.  Make sure
673          * MSR_DE is clear before we enable any debug events.
674          */
675         mtmsr(mfmsr() & ~MSR_DE);
676
677         mtspr(SPRN_IAC1, debug->iac1);
678         mtspr(SPRN_IAC2, debug->iac2);
679 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
680         mtspr(SPRN_IAC3, debug->iac3);
681         mtspr(SPRN_IAC4, debug->iac4);
682 #endif
683         mtspr(SPRN_DAC1, debug->dac1);
684         mtspr(SPRN_DAC2, debug->dac2);
685 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
686         mtspr(SPRN_DVC1, debug->dvc1);
687         mtspr(SPRN_DVC2, debug->dvc2);
688 #endif
689         mtspr(SPRN_DBCR0, debug->dbcr0);
690         mtspr(SPRN_DBCR1, debug->dbcr1);
691 #ifdef CONFIG_BOOKE
692         mtspr(SPRN_DBCR2, debug->dbcr2);
693 #endif
694 }
695 /*
696  * Unless neither the old or new thread are making use of the
697  * debug registers, set the debug registers from the values
698  * stored in the new thread.
699  */
700 void switch_booke_debug_regs(struct debug_reg *new_debug)
701 {
702         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
703                 || (new_debug->dbcr0 & DBCR0_IDM))
704                         prime_debug_regs(new_debug);
705 }
706 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
707 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
708 #ifndef CONFIG_HAVE_HW_BREAKPOINT
709 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
710 {
711         preempt_disable();
712         __set_breakpoint(i, brk);
713         preempt_enable();
714 }
715
716 static void set_debug_reg_defaults(struct thread_struct *thread)
717 {
718         int i;
719         struct arch_hw_breakpoint null_brk = {0};
720
721         for (i = 0; i < nr_wp_slots(); i++) {
722                 thread->hw_brk[i] = null_brk;
723                 if (ppc_breakpoint_available())
724                         set_breakpoint(i, &thread->hw_brk[i]);
725         }
726 }
727
728 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
729                                 struct arch_hw_breakpoint *b)
730 {
731         if (a->address != b->address)
732                 return false;
733         if (a->type != b->type)
734                 return false;
735         if (a->len != b->len)
736                 return false;
737         /* no need to check hw_len. it's calculated from address and len */
738         return true;
739 }
740
741 static void switch_hw_breakpoint(struct task_struct *new)
742 {
743         int i;
744
745         for (i = 0; i < nr_wp_slots(); i++) {
746                 if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
747                                         &new->thread.hw_brk[i])))
748                         continue;
749
750                 __set_breakpoint(i, &new->thread.hw_brk[i]);
751         }
752 }
753 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
754 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
755
756 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
757 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
758 {
759         mtspr(SPRN_DAC1, dabr);
760 #ifdef CONFIG_PPC_47x
761         isync();
762 #endif
763         return 0;
764 }
765 #elif defined(CONFIG_PPC_BOOK3S)
766 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
767 {
768         mtspr(SPRN_DABR, dabr);
769         if (cpu_has_feature(CPU_FTR_DABRX))
770                 mtspr(SPRN_DABRX, dabrx);
771         return 0;
772 }
773 #else
774 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
775 {
776         return -EINVAL;
777 }
778 #endif
779
780 static inline int set_dabr(struct arch_hw_breakpoint *brk)
781 {
782         unsigned long dabr, dabrx;
783
784         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
785         dabrx = ((brk->type >> 3) & 0x7);
786
787         if (ppc_md.set_dabr)
788                 return ppc_md.set_dabr(dabr, dabrx);
789
790         return __set_dabr(dabr, dabrx);
791 }
792
793 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
794 {
795         unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
796                                LCTRL1_CRWF_RW;
797         unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
798         unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
799         unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
800
801         if (start_addr == 0)
802                 lctrl2 |= LCTRL2_LW0LA_F;
803         else if (end_addr == 0)
804                 lctrl2 |= LCTRL2_LW0LA_E;
805         else
806                 lctrl2 |= LCTRL2_LW0LA_EandF;
807
808         mtspr(SPRN_LCTRL2, 0);
809
810         if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
811                 return 0;
812
813         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
814                 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
815         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
816                 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
817
818         mtspr(SPRN_CMPE, start_addr - 1);
819         mtspr(SPRN_CMPF, end_addr);
820         mtspr(SPRN_LCTRL1, lctrl1);
821         mtspr(SPRN_LCTRL2, lctrl2);
822
823         return 0;
824 }
825
826 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
827 {
828         memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
829
830         if (dawr_enabled())
831                 // Power8 or later
832                 set_dawr(nr, brk);
833         else if (IS_ENABLED(CONFIG_PPC_8xx))
834                 set_breakpoint_8xx(brk);
835         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
836                 // Power7 or earlier
837                 set_dabr(brk);
838         else
839                 // Shouldn't happen due to higher level checks
840                 WARN_ON_ONCE(1);
841 }
842
843 /* Check if we have DAWR or DABR hardware */
844 bool ppc_breakpoint_available(void)
845 {
846         if (dawr_enabled())
847                 return true; /* POWER8 DAWR or POWER9 forced DAWR */
848         if (cpu_has_feature(CPU_FTR_ARCH_207S))
849                 return false; /* POWER9 with DAWR disabled */
850         /* DABR: Everything but POWER8 and POWER9 */
851         return true;
852 }
853 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
854
855 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
856
857 static inline bool tm_enabled(struct task_struct *tsk)
858 {
859         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
860 }
861
862 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
863 {
864         /*
865          * Use the current MSR TM suspended bit to track if we have
866          * checkpointed state outstanding.
867          * On signal delivery, we'd normally reclaim the checkpointed
868          * state to obtain stack pointer (see:get_tm_stackpointer()).
869          * This will then directly return to userspace without going
870          * through __switch_to(). However, if the stack frame is bad,
871          * we need to exit this thread which calls __switch_to() which
872          * will again attempt to reclaim the already saved tm state.
873          * Hence we need to check that we've not already reclaimed
874          * this state.
875          * We do this using the current MSR, rather tracking it in
876          * some specific thread_struct bit, as it has the additional
877          * benefit of checking for a potential TM bad thing exception.
878          */
879         if (!MSR_TM_SUSPENDED(mfmsr()))
880                 return;
881
882         giveup_all(container_of(thr, struct task_struct, thread));
883
884         tm_reclaim(thr, cause);
885
886         /*
887          * If we are in a transaction and FP is off then we can't have
888          * used FP inside that transaction. Hence the checkpointed
889          * state is the same as the live state. We need to copy the
890          * live state to the checkpointed state so that when the
891          * transaction is restored, the checkpointed state is correct
892          * and the aborted transaction sees the correct state. We use
893          * ckpt_regs.msr here as that's what tm_reclaim will use to
894          * determine if it's going to write the checkpointed state or
895          * not. So either this will write the checkpointed registers,
896          * or reclaim will. Similarly for VMX.
897          */
898         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
899                 memcpy(&thr->ckfp_state, &thr->fp_state,
900                        sizeof(struct thread_fp_state));
901         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
902                 memcpy(&thr->ckvr_state, &thr->vr_state,
903                        sizeof(struct thread_vr_state));
904 }
905
906 void tm_reclaim_current(uint8_t cause)
907 {
908         tm_enable();
909         tm_reclaim_thread(&current->thread, cause);
910 }
911
912 static inline void tm_reclaim_task(struct task_struct *tsk)
913 {
914         /* We have to work out if we're switching from/to a task that's in the
915          * middle of a transaction.
916          *
917          * In switching we need to maintain a 2nd register state as
918          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
919          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
920          * ckvr_state
921          *
922          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
923          */
924         struct thread_struct *thr = &tsk->thread;
925
926         if (!thr->regs)
927                 return;
928
929         if (!MSR_TM_ACTIVE(thr->regs->msr))
930                 goto out_and_saveregs;
931
932         WARN_ON(tm_suspend_disabled);
933
934         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
935                  "ccr=%lx, msr=%lx, trap=%lx)\n",
936                  tsk->pid, thr->regs->nip,
937                  thr->regs->ccr, thr->regs->msr,
938                  thr->regs->trap);
939
940         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
941
942         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
943                  tsk->pid);
944
945 out_and_saveregs:
946         /* Always save the regs here, even if a transaction's not active.
947          * This context-switches a thread's TM info SPRs.  We do it here to
948          * be consistent with the restore path (in recheckpoint) which
949          * cannot happen later in _switch().
950          */
951         tm_save_sprs(thr);
952 }
953
954 extern void __tm_recheckpoint(struct thread_struct *thread);
955
956 void tm_recheckpoint(struct thread_struct *thread)
957 {
958         unsigned long flags;
959
960         if (!(thread->regs->msr & MSR_TM))
961                 return;
962
963         /* We really can't be interrupted here as the TEXASR registers can't
964          * change and later in the trecheckpoint code, we have a userspace R1.
965          * So let's hard disable over this region.
966          */
967         local_irq_save(flags);
968         hard_irq_disable();
969
970         /* The TM SPRs are restored here, so that TEXASR.FS can be set
971          * before the trecheckpoint and no explosion occurs.
972          */
973         tm_restore_sprs(thread);
974
975         __tm_recheckpoint(thread);
976
977         local_irq_restore(flags);
978 }
979
980 static inline void tm_recheckpoint_new_task(struct task_struct *new)
981 {
982         if (!cpu_has_feature(CPU_FTR_TM))
983                 return;
984
985         /* Recheckpoint the registers of the thread we're about to switch to.
986          *
987          * If the task was using FP, we non-lazily reload both the original and
988          * the speculative FP register states.  This is because the kernel
989          * doesn't see if/when a TM rollback occurs, so if we take an FP
990          * unavailable later, we are unable to determine which set of FP regs
991          * need to be restored.
992          */
993         if (!tm_enabled(new))
994                 return;
995
996         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
997                 tm_restore_sprs(&new->thread);
998                 return;
999         }
1000         /* Recheckpoint to restore original checkpointed register state. */
1001         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1002                  new->pid, new->thread.regs->msr);
1003
1004         tm_recheckpoint(&new->thread);
1005
1006         /*
1007          * The checkpointed state has been restored but the live state has
1008          * not, ensure all the math functionality is turned off to trigger
1009          * restore_math() to reload.
1010          */
1011         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1012
1013         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1014                  "(kernel msr 0x%lx)\n",
1015                  new->pid, mfmsr());
1016 }
1017
1018 static inline void __switch_to_tm(struct task_struct *prev,
1019                 struct task_struct *new)
1020 {
1021         if (cpu_has_feature(CPU_FTR_TM)) {
1022                 if (tm_enabled(prev) || tm_enabled(new))
1023                         tm_enable();
1024
1025                 if (tm_enabled(prev)) {
1026                         prev->thread.load_tm++;
1027                         tm_reclaim_task(prev);
1028                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1029                                 prev->thread.regs->msr &= ~MSR_TM;
1030                 }
1031
1032                 tm_recheckpoint_new_task(new);
1033         }
1034 }
1035
1036 /*
1037  * This is called if we are on the way out to userspace and the
1038  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1039  * FP and/or vector state and does so if necessary.
1040  * If userspace is inside a transaction (whether active or
1041  * suspended) and FP/VMX/VSX instructions have ever been enabled
1042  * inside that transaction, then we have to keep them enabled
1043  * and keep the FP/VMX/VSX state loaded while ever the transaction
1044  * continues.  The reason is that if we didn't, and subsequently
1045  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1046  * we don't know whether it's the same transaction, and thus we
1047  * don't know which of the checkpointed state and the transactional
1048  * state to use.
1049  */
1050 void restore_tm_state(struct pt_regs *regs)
1051 {
1052         unsigned long msr_diff;
1053
1054         /*
1055          * This is the only moment we should clear TIF_RESTORE_TM as
1056          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1057          * again, anything else could lead to an incorrect ckpt_msr being
1058          * saved and therefore incorrect signal contexts.
1059          */
1060         clear_thread_flag(TIF_RESTORE_TM);
1061         if (!MSR_TM_ACTIVE(regs->msr))
1062                 return;
1063
1064         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1065         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1066
1067         /* Ensure that restore_math() will restore */
1068         if (msr_diff & MSR_FP)
1069                 current->thread.load_fp = 1;
1070 #ifdef CONFIG_ALTIVEC
1071         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1072                 current->thread.load_vec = 1;
1073 #endif
1074         restore_math(regs);
1075
1076         regs->msr |= msr_diff;
1077 }
1078
1079 #else
1080 #define tm_recheckpoint_new_task(new)
1081 #define __switch_to_tm(prev, new)
1082 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1083
1084 static inline void save_sprs(struct thread_struct *t)
1085 {
1086 #ifdef CONFIG_ALTIVEC
1087         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1088                 t->vrsave = mfspr(SPRN_VRSAVE);
1089 #endif
1090 #ifdef CONFIG_PPC_BOOK3S_64
1091         if (cpu_has_feature(CPU_FTR_DSCR))
1092                 t->dscr = mfspr(SPRN_DSCR);
1093
1094         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1095                 t->bescr = mfspr(SPRN_BESCR);
1096                 t->ebbhr = mfspr(SPRN_EBBHR);
1097                 t->ebbrr = mfspr(SPRN_EBBRR);
1098
1099                 t->fscr = mfspr(SPRN_FSCR);
1100
1101                 /*
1102                  * Note that the TAR is not available for use in the kernel.
1103                  * (To provide this, the TAR should be backed up/restored on
1104                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1105                  * this should be in pt_regs anyway (for debug).)
1106                  */
1107                 t->tar = mfspr(SPRN_TAR);
1108         }
1109 #endif
1110
1111         thread_pkey_regs_save(t);
1112 }
1113
1114 static inline void restore_sprs(struct thread_struct *old_thread,
1115                                 struct thread_struct *new_thread)
1116 {
1117 #ifdef CONFIG_ALTIVEC
1118         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1119             old_thread->vrsave != new_thread->vrsave)
1120                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1121 #endif
1122 #ifdef CONFIG_PPC_BOOK3S_64
1123         if (cpu_has_feature(CPU_FTR_DSCR)) {
1124                 u64 dscr = get_paca()->dscr_default;
1125                 if (new_thread->dscr_inherit)
1126                         dscr = new_thread->dscr;
1127
1128                 if (old_thread->dscr != dscr)
1129                         mtspr(SPRN_DSCR, dscr);
1130         }
1131
1132         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1133                 if (old_thread->bescr != new_thread->bescr)
1134                         mtspr(SPRN_BESCR, new_thread->bescr);
1135                 if (old_thread->ebbhr != new_thread->ebbhr)
1136                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1137                 if (old_thread->ebbrr != new_thread->ebbrr)
1138                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1139
1140                 if (old_thread->fscr != new_thread->fscr)
1141                         mtspr(SPRN_FSCR, new_thread->fscr);
1142
1143                 if (old_thread->tar != new_thread->tar)
1144                         mtspr(SPRN_TAR, new_thread->tar);
1145         }
1146
1147         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1148             old_thread->tidr != new_thread->tidr)
1149                 mtspr(SPRN_TIDR, new_thread->tidr);
1150 #endif
1151
1152         thread_pkey_regs_restore(new_thread, old_thread);
1153 }
1154
1155 struct task_struct *__switch_to(struct task_struct *prev,
1156         struct task_struct *new)
1157 {
1158         struct thread_struct *new_thread, *old_thread;
1159         struct task_struct *last;
1160 #ifdef CONFIG_PPC_BOOK3S_64
1161         struct ppc64_tlb_batch *batch;
1162 #endif
1163
1164         new_thread = &new->thread;
1165         old_thread = &current->thread;
1166
1167         WARN_ON(!irqs_disabled());
1168
1169 #ifdef CONFIG_PPC_BOOK3S_64
1170         batch = this_cpu_ptr(&ppc64_tlb_batch);
1171         if (batch->active) {
1172                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1173                 if (batch->index)
1174                         __flush_tlb_pending(batch);
1175                 batch->active = 0;
1176         }
1177 #endif /* CONFIG_PPC_BOOK3S_64 */
1178
1179 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1180         switch_booke_debug_regs(&new->thread.debug);
1181 #else
1182 /*
1183  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1184  * schedule DABR
1185  */
1186 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1187         switch_hw_breakpoint(new);
1188 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1189 #endif
1190
1191         /*
1192          * We need to save SPRs before treclaim/trecheckpoint as these will
1193          * change a number of them.
1194          */
1195         save_sprs(&prev->thread);
1196
1197         /* Save FPU, Altivec, VSX and SPE state */
1198         giveup_all(prev);
1199
1200         __switch_to_tm(prev, new);
1201
1202         if (!radix_enabled()) {
1203                 /*
1204                  * We can't take a PMU exception inside _switch() since there
1205                  * is a window where the kernel stack SLB and the kernel stack
1206                  * are out of sync. Hard disable here.
1207                  */
1208                 hard_irq_disable();
1209         }
1210
1211         /*
1212          * Call restore_sprs() before calling _switch(). If we move it after
1213          * _switch() then we miss out on calling it for new tasks. The reason
1214          * for this is we manually create a stack frame for new tasks that
1215          * directly returns through ret_from_fork() or
1216          * ret_from_kernel_thread(). See copy_thread() for details.
1217          */
1218         restore_sprs(old_thread, new_thread);
1219
1220         last = _switch(old_thread, new_thread);
1221
1222 #ifdef CONFIG_PPC_BOOK3S_64
1223         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1224                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1225                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1226                 batch->active = 1;
1227         }
1228
1229         if (current->thread.regs) {
1230                 restore_math(current->thread.regs);
1231
1232                 /*
1233                  * The copy-paste buffer can only store into foreign real
1234                  * addresses, so unprivileged processes can not see the
1235                  * data or use it in any way unless they have foreign real
1236                  * mappings. If the new process has the foreign real address
1237                  * mappings, we must issue a cp_abort to clear any state and
1238                  * prevent snooping, corruption or a covert channel.
1239                  */
1240                 if (current->mm &&
1241                         atomic_read(&current->mm->context.vas_windows))
1242                         asm volatile(PPC_CP_ABORT);
1243         }
1244 #endif /* CONFIG_PPC_BOOK3S_64 */
1245
1246         return last;
1247 }
1248
1249 #define NR_INSN_TO_PRINT        16
1250
1251 static void show_instructions(struct pt_regs *regs)
1252 {
1253         int i;
1254         unsigned long nip = regs->nip;
1255         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1256
1257         printk("Instruction dump:");
1258
1259         /*
1260          * If we were executing with the MMU off for instructions, adjust pc
1261          * rather than printing XXXXXXXX.
1262          */
1263         if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1264                 pc = (unsigned long)phys_to_virt(pc);
1265                 nip = (unsigned long)phys_to_virt(regs->nip);
1266         }
1267
1268         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1269                 int instr;
1270
1271                 if (!(i % 8))
1272                         pr_cont("\n");
1273
1274                 if (!__kernel_text_address(pc) ||
1275                     get_kernel_nofault(instr, (const void *)pc)) {
1276                         pr_cont("XXXXXXXX ");
1277                 } else {
1278                         if (nip == pc)
1279                                 pr_cont("<%08x> ", instr);
1280                         else
1281                                 pr_cont("%08x ", instr);
1282                 }
1283
1284                 pc += sizeof(int);
1285         }
1286
1287         pr_cont("\n");
1288 }
1289
1290 void show_user_instructions(struct pt_regs *regs)
1291 {
1292         unsigned long pc;
1293         int n = NR_INSN_TO_PRINT;
1294         struct seq_buf s;
1295         char buf[96]; /* enough for 8 times 9 + 2 chars */
1296
1297         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1298
1299         seq_buf_init(&s, buf, sizeof(buf));
1300
1301         while (n) {
1302                 int i;
1303
1304                 seq_buf_clear(&s);
1305
1306                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1307                         int instr;
1308
1309                         if (copy_from_user_nofault(&instr, (void __user *)pc,
1310                                         sizeof(instr))) {
1311                                 seq_buf_printf(&s, "XXXXXXXX ");
1312                                 continue;
1313                         }
1314                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1315                 }
1316
1317                 if (!seq_buf_has_overflowed(&s))
1318                         pr_info("%s[%d]: code: %s\n", current->comm,
1319                                 current->pid, s.buffer);
1320         }
1321 }
1322
1323 struct regbit {
1324         unsigned long bit;
1325         const char *name;
1326 };
1327
1328 static struct regbit msr_bits[] = {
1329 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1330         {MSR_SF,        "SF"},
1331         {MSR_HV,        "HV"},
1332 #endif
1333         {MSR_VEC,       "VEC"},
1334         {MSR_VSX,       "VSX"},
1335 #ifdef CONFIG_BOOKE
1336         {MSR_CE,        "CE"},
1337 #endif
1338         {MSR_EE,        "EE"},
1339         {MSR_PR,        "PR"},
1340         {MSR_FP,        "FP"},
1341         {MSR_ME,        "ME"},
1342 #ifdef CONFIG_BOOKE
1343         {MSR_DE,        "DE"},
1344 #else
1345         {MSR_SE,        "SE"},
1346         {MSR_BE,        "BE"},
1347 #endif
1348         {MSR_IR,        "IR"},
1349         {MSR_DR,        "DR"},
1350         {MSR_PMM,       "PMM"},
1351 #ifndef CONFIG_BOOKE
1352         {MSR_RI,        "RI"},
1353         {MSR_LE,        "LE"},
1354 #endif
1355         {0,             NULL}
1356 };
1357
1358 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1359 {
1360         const char *s = "";
1361
1362         for (; bits->bit; ++bits)
1363                 if (val & bits->bit) {
1364                         pr_cont("%s%s", s, bits->name);
1365                         s = sep;
1366                 }
1367 }
1368
1369 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1370 static struct regbit msr_tm_bits[] = {
1371         {MSR_TS_T,      "T"},
1372         {MSR_TS_S,      "S"},
1373         {MSR_TM,        "E"},
1374         {0,             NULL}
1375 };
1376
1377 static void print_tm_bits(unsigned long val)
1378 {
1379 /*
1380  * This only prints something if at least one of the TM bit is set.
1381  * Inside the TM[], the output means:
1382  *   E: Enabled         (bit 32)
1383  *   S: Suspended       (bit 33)
1384  *   T: Transactional   (bit 34)
1385  */
1386         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1387                 pr_cont(",TM[");
1388                 print_bits(val, msr_tm_bits, "");
1389                 pr_cont("]");
1390         }
1391 }
1392 #else
1393 static void print_tm_bits(unsigned long val) {}
1394 #endif
1395
1396 static void print_msr_bits(unsigned long val)
1397 {
1398         pr_cont("<");
1399         print_bits(val, msr_bits, ",");
1400         print_tm_bits(val);
1401         pr_cont(">");
1402 }
1403
1404 #ifdef CONFIG_PPC64
1405 #define REG             "%016lx"
1406 #define REGS_PER_LINE   4
1407 #define LAST_VOLATILE   13
1408 #else
1409 #define REG             "%08lx"
1410 #define REGS_PER_LINE   8
1411 #define LAST_VOLATILE   12
1412 #endif
1413
1414 void show_regs(struct pt_regs * regs)
1415 {
1416         int i, trap;
1417
1418         show_regs_print_info(KERN_DEFAULT);
1419
1420         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1421                regs->nip, regs->link, regs->ctr);
1422         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1423                regs, regs->trap, print_tainted(), init_utsname()->release);
1424         printk("MSR:  "REG" ", regs->msr);
1425         print_msr_bits(regs->msr);
1426         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1427         trap = TRAP(regs);
1428         if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1429                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1430         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1431 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1432                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1433 #else
1434                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1435 #endif
1436 #ifdef CONFIG_PPC64
1437         pr_cont("IRQMASK: %lx ", regs->softe);
1438 #endif
1439 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1440         if (MSR_TM_ACTIVE(regs->msr))
1441                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1442 #endif
1443
1444         for (i = 0;  i < 32;  i++) {
1445                 if ((i % REGS_PER_LINE) == 0)
1446                         pr_cont("\nGPR%02d: ", i);
1447                 pr_cont(REG " ", regs->gpr[i]);
1448                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1449                         break;
1450         }
1451         pr_cont("\n");
1452 #ifdef CONFIG_KALLSYMS
1453         /*
1454          * Lookup NIP late so we have the best change of getting the
1455          * above info out without failing
1456          */
1457         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1458         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1459 #endif
1460         show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1461         if (!user_mode(regs))
1462                 show_instructions(regs);
1463 }
1464
1465 void flush_thread(void)
1466 {
1467 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1468         flush_ptrace_hw_breakpoint(current);
1469 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1470         set_debug_reg_defaults(&current->thread);
1471 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1472 }
1473
1474 #ifdef CONFIG_PPC_BOOK3S_64
1475 void arch_setup_new_exec(void)
1476 {
1477         if (radix_enabled())
1478                 return;
1479         hash__setup_new_exec();
1480 }
1481 #endif
1482
1483 #ifdef CONFIG_PPC64
1484 /**
1485  * Assign a TIDR (thread ID) for task @t and set it in the thread
1486  * structure. For now, we only support setting TIDR for 'current' task.
1487  *
1488  * Since the TID value is a truncated form of it PID, it is possible
1489  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1490  * that 2 threads share the same TID and are waiting, one of the following
1491  * cases will happen:
1492  *
1493  * 1. The correct thread is running, the wrong thread is not
1494  * In this situation, the correct thread is woken and proceeds to pass it's
1495  * condition check.
1496  *
1497  * 2. Neither threads are running
1498  * In this situation, neither thread will be woken. When scheduled, the waiting
1499  * threads will execute either a wait, which will return immediately, followed
1500  * by a condition check, which will pass for the correct thread and fail
1501  * for the wrong thread, or they will execute the condition check immediately.
1502  *
1503  * 3. The wrong thread is running, the correct thread is not
1504  * The wrong thread will be woken, but will fail it's condition check and
1505  * re-execute wait. The correct thread, when scheduled, will execute either
1506  * it's condition check (which will pass), or wait, which returns immediately
1507  * when called the first time after the thread is scheduled, followed by it's
1508  * condition check (which will pass).
1509  *
1510  * 4. Both threads are running
1511  * Both threads will be woken. The wrong thread will fail it's condition check
1512  * and execute another wait, while the correct thread will pass it's condition
1513  * check.
1514  *
1515  * @t: the task to set the thread ID for
1516  */
1517 int set_thread_tidr(struct task_struct *t)
1518 {
1519         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1520                 return -EINVAL;
1521
1522         if (t != current)
1523                 return -EINVAL;
1524
1525         if (t->thread.tidr)
1526                 return 0;
1527
1528         t->thread.tidr = (u16)task_pid_nr(t);
1529         mtspr(SPRN_TIDR, t->thread.tidr);
1530
1531         return 0;
1532 }
1533 EXPORT_SYMBOL_GPL(set_thread_tidr);
1534
1535 #endif /* CONFIG_PPC64 */
1536
1537 void
1538 release_thread(struct task_struct *t)
1539 {
1540 }
1541
1542 /*
1543  * this gets called so that we can store coprocessor state into memory and
1544  * copy the current task into the new thread.
1545  */
1546 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1547 {
1548         flush_all_to_thread(src);
1549         /*
1550          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1551          * flush but it removes the checkpointed state from the current CPU and
1552          * transitions the CPU out of TM mode.  Hence we need to call
1553          * tm_recheckpoint_new_task() (on the same task) to restore the
1554          * checkpointed state back and the TM mode.
1555          *
1556          * Can't pass dst because it isn't ready. Doesn't matter, passing
1557          * dst is only important for __switch_to()
1558          */
1559         __switch_to_tm(src, src);
1560
1561         *dst = *src;
1562
1563         clear_task_ebb(dst);
1564
1565         return 0;
1566 }
1567
1568 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1569 {
1570 #ifdef CONFIG_PPC_BOOK3S_64
1571         unsigned long sp_vsid;
1572         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1573
1574         if (radix_enabled())
1575                 return;
1576
1577         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1578                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1579                         << SLB_VSID_SHIFT_1T;
1580         else
1581                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1582                         << SLB_VSID_SHIFT;
1583         sp_vsid |= SLB_VSID_KERNEL | llp;
1584         p->thread.ksp_vsid = sp_vsid;
1585 #endif
1586 }
1587
1588 /*
1589  * Copy a thread..
1590  */
1591
1592 /*
1593  * Copy architecture-specific thread state
1594  */
1595 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
1596                 unsigned long kthread_arg, struct task_struct *p,
1597                 unsigned long tls)
1598 {
1599         struct pt_regs *childregs, *kregs;
1600         extern void ret_from_fork(void);
1601         extern void ret_from_kernel_thread(void);
1602         void (*f)(void);
1603         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1604         struct thread_info *ti = task_thread_info(p);
1605 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1606         int i;
1607 #endif
1608
1609         klp_init_thread_info(p);
1610
1611         /* Copy registers */
1612         sp -= sizeof(struct pt_regs);
1613         childregs = (struct pt_regs *) sp;
1614         if (unlikely(p->flags & PF_KTHREAD)) {
1615                 /* kernel thread */
1616                 memset(childregs, 0, sizeof(struct pt_regs));
1617                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1618                 /* function */
1619                 if (usp)
1620                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1621 #ifdef CONFIG_PPC64
1622                 clear_tsk_thread_flag(p, TIF_32BIT);
1623                 childregs->softe = IRQS_ENABLED;
1624 #endif
1625                 childregs->gpr[15] = kthread_arg;
1626                 p->thread.regs = NULL;  /* no user register state */
1627                 ti->flags |= _TIF_RESTOREALL;
1628                 f = ret_from_kernel_thread;
1629         } else {
1630                 /* user thread */
1631                 struct pt_regs *regs = current_pt_regs();
1632                 CHECK_FULL_REGS(regs);
1633                 *childregs = *regs;
1634                 if (usp)
1635                         childregs->gpr[1] = usp;
1636                 p->thread.regs = childregs;
1637                 childregs->gpr[3] = 0;  /* Result from fork() */
1638                 if (clone_flags & CLONE_SETTLS) {
1639                         if (!is_32bit_task())
1640                                 childregs->gpr[13] = tls;
1641                         else
1642                                 childregs->gpr[2] = tls;
1643                 }
1644
1645                 f = ret_from_fork;
1646         }
1647         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1648         sp -= STACK_FRAME_OVERHEAD;
1649
1650         /*
1651          * The way this works is that at some point in the future
1652          * some task will call _switch to switch to the new task.
1653          * That will pop off the stack frame created below and start
1654          * the new task running at ret_from_fork.  The new task will
1655          * do some house keeping and then return from the fork or clone
1656          * system call, using the stack frame created above.
1657          */
1658         ((unsigned long *)sp)[0] = 0;
1659         sp -= sizeof(struct pt_regs);
1660         kregs = (struct pt_regs *) sp;
1661         sp -= STACK_FRAME_OVERHEAD;
1662         p->thread.ksp = sp;
1663 #ifdef CONFIG_PPC32
1664         p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1665 #endif
1666 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1667         for (i = 0; i < nr_wp_slots(); i++)
1668                 p->thread.ptrace_bps[i] = NULL;
1669 #endif
1670
1671         p->thread.fp_save_area = NULL;
1672 #ifdef CONFIG_ALTIVEC
1673         p->thread.vr_save_area = NULL;
1674 #endif
1675
1676         setup_ksp_vsid(p, sp);
1677
1678 #ifdef CONFIG_PPC64 
1679         if (cpu_has_feature(CPU_FTR_DSCR)) {
1680                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1681                 p->thread.dscr = mfspr(SPRN_DSCR);
1682         }
1683         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1684                 childregs->ppr = DEFAULT_PPR;
1685
1686         p->thread.tidr = 0;
1687 #endif
1688         kregs->nip = ppc_function_entry(f);
1689         return 0;
1690 }
1691
1692 void preload_new_slb_context(unsigned long start, unsigned long sp);
1693
1694 /*
1695  * Set up a thread for executing a new program
1696  */
1697 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1698 {
1699 #ifdef CONFIG_PPC64
1700         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1701
1702 #ifdef CONFIG_PPC_BOOK3S_64
1703         if (!radix_enabled())
1704                 preload_new_slb_context(start, sp);
1705 #endif
1706 #endif
1707
1708         /*
1709          * If we exec out of a kernel thread then thread.regs will not be
1710          * set.  Do it now.
1711          */
1712         if (!current->thread.regs) {
1713                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1714                 current->thread.regs = regs - 1;
1715         }
1716
1717 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1718         /*
1719          * Clear any transactional state, we're exec()ing. The cause is
1720          * not important as there will never be a recheckpoint so it's not
1721          * user visible.
1722          */
1723         if (MSR_TM_SUSPENDED(mfmsr()))
1724                 tm_reclaim_current(0);
1725 #endif
1726
1727         memset(regs->gpr, 0, sizeof(regs->gpr));
1728         regs->ctr = 0;
1729         regs->link = 0;
1730         regs->xer = 0;
1731         regs->ccr = 0;
1732         regs->gpr[1] = sp;
1733
1734         /*
1735          * We have just cleared all the nonvolatile GPRs, so make
1736          * FULL_REGS(regs) return true.  This is necessary to allow
1737          * ptrace to examine the thread immediately after exec.
1738          */
1739         SET_FULL_REGS(regs);
1740
1741 #ifdef CONFIG_PPC32
1742         regs->mq = 0;
1743         regs->nip = start;
1744         regs->msr = MSR_USER;
1745 #else
1746         if (!is_32bit_task()) {
1747                 unsigned long entry;
1748
1749                 if (is_elf2_task()) {
1750                         /* Look ma, no function descriptors! */
1751                         entry = start;
1752
1753                         /*
1754                          * Ulrich says:
1755                          *   The latest iteration of the ABI requires that when
1756                          *   calling a function (at its global entry point),
1757                          *   the caller must ensure r12 holds the entry point
1758                          *   address (so that the function can quickly
1759                          *   establish addressability).
1760                          */
1761                         regs->gpr[12] = start;
1762                         /* Make sure that's restored on entry to userspace. */
1763                         set_thread_flag(TIF_RESTOREALL);
1764                 } else {
1765                         unsigned long toc;
1766
1767                         /* start is a relocated pointer to the function
1768                          * descriptor for the elf _start routine.  The first
1769                          * entry in the function descriptor is the entry
1770                          * address of _start and the second entry is the TOC
1771                          * value we need to use.
1772                          */
1773                         __get_user(entry, (unsigned long __user *)start);
1774                         __get_user(toc, (unsigned long __user *)start+1);
1775
1776                         /* Check whether the e_entry function descriptor entries
1777                          * need to be relocated before we can use them.
1778                          */
1779                         if (load_addr != 0) {
1780                                 entry += load_addr;
1781                                 toc   += load_addr;
1782                         }
1783                         regs->gpr[2] = toc;
1784                 }
1785                 regs->nip = entry;
1786                 regs->msr = MSR_USER64;
1787         } else {
1788                 regs->nip = start;
1789                 regs->gpr[2] = 0;
1790                 regs->msr = MSR_USER32;
1791         }
1792 #endif
1793 #ifdef CONFIG_VSX
1794         current->thread.used_vsr = 0;
1795 #endif
1796         current->thread.load_slb = 0;
1797         current->thread.load_fp = 0;
1798         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1799         current->thread.fp_save_area = NULL;
1800 #ifdef CONFIG_ALTIVEC
1801         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1802         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1803         current->thread.vr_save_area = NULL;
1804         current->thread.vrsave = 0;
1805         current->thread.used_vr = 0;
1806         current->thread.load_vec = 0;
1807 #endif /* CONFIG_ALTIVEC */
1808 #ifdef CONFIG_SPE
1809         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1810         current->thread.acc = 0;
1811         current->thread.spefscr = 0;
1812         current->thread.used_spe = 0;
1813 #endif /* CONFIG_SPE */
1814 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1815         current->thread.tm_tfhar = 0;
1816         current->thread.tm_texasr = 0;
1817         current->thread.tm_tfiar = 0;
1818         current->thread.load_tm = 0;
1819 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1820
1821         thread_pkey_regs_init(&current->thread);
1822 }
1823 EXPORT_SYMBOL(start_thread);
1824
1825 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1826                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1827
1828 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1829 {
1830         struct pt_regs *regs = tsk->thread.regs;
1831
1832         /* This is a bit hairy.  If we are an SPE enabled  processor
1833          * (have embedded fp) we store the IEEE exception enable flags in
1834          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1835          * mode (asyn, precise, disabled) for 'Classic' FP. */
1836         if (val & PR_FP_EXC_SW_ENABLE) {
1837 #ifdef CONFIG_SPE
1838                 if (cpu_has_feature(CPU_FTR_SPE)) {
1839                         /*
1840                          * When the sticky exception bits are set
1841                          * directly by userspace, it must call prctl
1842                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1843                          * in the existing prctl settings) or
1844                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1845                          * the bits being set).  <fenv.h> functions
1846                          * saving and restoring the whole
1847                          * floating-point environment need to do so
1848                          * anyway to restore the prctl settings from
1849                          * the saved environment.
1850                          */
1851                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1852                         tsk->thread.fpexc_mode = val &
1853                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1854                         return 0;
1855                 } else {
1856                         return -EINVAL;
1857                 }
1858 #else
1859                 return -EINVAL;
1860 #endif
1861         }
1862
1863         /* on a CONFIG_SPE this does not hurt us.  The bits that
1864          * __pack_fe01 use do not overlap with bits used for
1865          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1866          * on CONFIG_SPE implementations are reserved so writing to
1867          * them does not change anything */
1868         if (val > PR_FP_EXC_PRECISE)
1869                 return -EINVAL;
1870         tsk->thread.fpexc_mode = __pack_fe01(val);
1871         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1872                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1873                         | tsk->thread.fpexc_mode;
1874         return 0;
1875 }
1876
1877 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1878 {
1879         unsigned int val;
1880
1881         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1882 #ifdef CONFIG_SPE
1883                 if (cpu_has_feature(CPU_FTR_SPE)) {
1884                         /*
1885                          * When the sticky exception bits are set
1886                          * directly by userspace, it must call prctl
1887                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1888                          * in the existing prctl settings) or
1889                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1890                          * the bits being set).  <fenv.h> functions
1891                          * saving and restoring the whole
1892                          * floating-point environment need to do so
1893                          * anyway to restore the prctl settings from
1894                          * the saved environment.
1895                          */
1896                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1897                         val = tsk->thread.fpexc_mode;
1898                 } else
1899                         return -EINVAL;
1900 #else
1901                 return -EINVAL;
1902 #endif
1903         else
1904                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1905         return put_user(val, (unsigned int __user *) adr);
1906 }
1907
1908 int set_endian(struct task_struct *tsk, unsigned int val)
1909 {
1910         struct pt_regs *regs = tsk->thread.regs;
1911
1912         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1913             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1914                 return -EINVAL;
1915
1916         if (regs == NULL)
1917                 return -EINVAL;
1918
1919         if (val == PR_ENDIAN_BIG)
1920                 regs->msr &= ~MSR_LE;
1921         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1922                 regs->msr |= MSR_LE;
1923         else
1924                 return -EINVAL;
1925
1926         return 0;
1927 }
1928
1929 int get_endian(struct task_struct *tsk, unsigned long adr)
1930 {
1931         struct pt_regs *regs = tsk->thread.regs;
1932         unsigned int val;
1933
1934         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1935             !cpu_has_feature(CPU_FTR_REAL_LE))
1936                 return -EINVAL;
1937
1938         if (regs == NULL)
1939                 return -EINVAL;
1940
1941         if (regs->msr & MSR_LE) {
1942                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1943                         val = PR_ENDIAN_LITTLE;
1944                 else
1945                         val = PR_ENDIAN_PPC_LITTLE;
1946         } else
1947                 val = PR_ENDIAN_BIG;
1948
1949         return put_user(val, (unsigned int __user *)adr);
1950 }
1951
1952 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1953 {
1954         tsk->thread.align_ctl = val;
1955         return 0;
1956 }
1957
1958 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1959 {
1960         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1961 }
1962
1963 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1964                                   unsigned long nbytes)
1965 {
1966         unsigned long stack_page;
1967         unsigned long cpu = task_cpu(p);
1968
1969         stack_page = (unsigned long)hardirq_ctx[cpu];
1970         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1971                 return 1;
1972
1973         stack_page = (unsigned long)softirq_ctx[cpu];
1974         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1975                 return 1;
1976
1977         return 0;
1978 }
1979
1980 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
1981                                         unsigned long nbytes)
1982 {
1983 #ifdef CONFIG_PPC64
1984         unsigned long stack_page;
1985         unsigned long cpu = task_cpu(p);
1986
1987         stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
1988         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1989                 return 1;
1990
1991 # ifdef CONFIG_PPC_BOOK3S_64
1992         stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
1993         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1994                 return 1;
1995
1996         stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
1997         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1998                 return 1;
1999 # endif
2000 #endif
2001
2002         return 0;
2003 }
2004
2005
2006 int validate_sp(unsigned long sp, struct task_struct *p,
2007                        unsigned long nbytes)
2008 {
2009         unsigned long stack_page = (unsigned long)task_stack_page(p);
2010
2011         if (sp < THREAD_SIZE)
2012                 return 0;
2013
2014         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2015                 return 1;
2016
2017         if (valid_irq_stack(sp, p, nbytes))
2018                 return 1;
2019
2020         return valid_emergency_stack(sp, p, nbytes);
2021 }
2022
2023 EXPORT_SYMBOL(validate_sp);
2024
2025 static unsigned long __get_wchan(struct task_struct *p)
2026 {
2027         unsigned long ip, sp;
2028         int count = 0;
2029
2030         if (!p || p == current || p->state == TASK_RUNNING)
2031                 return 0;
2032
2033         sp = p->thread.ksp;
2034         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2035                 return 0;
2036
2037         do {
2038                 sp = *(unsigned long *)sp;
2039                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2040                     p->state == TASK_RUNNING)
2041                         return 0;
2042                 if (count > 0) {
2043                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2044                         if (!in_sched_functions(ip))
2045                                 return ip;
2046                 }
2047         } while (count++ < 16);
2048         return 0;
2049 }
2050
2051 unsigned long get_wchan(struct task_struct *p)
2052 {
2053         unsigned long ret;
2054
2055         if (!try_get_task_stack(p))
2056                 return 0;
2057
2058         ret = __get_wchan(p);
2059
2060         put_task_stack(p);
2061
2062         return ret;
2063 }
2064
2065 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2066
2067 void show_stack(struct task_struct *tsk, unsigned long *stack,
2068                 const char *loglvl)
2069 {
2070         unsigned long sp, ip, lr, newsp;
2071         int count = 0;
2072         int firstframe = 1;
2073 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2074         unsigned long ret_addr;
2075         int ftrace_idx = 0;
2076 #endif
2077
2078         if (tsk == NULL)
2079                 tsk = current;
2080
2081         if (!try_get_task_stack(tsk))
2082                 return;
2083
2084         sp = (unsigned long) stack;
2085         if (sp == 0) {
2086                 if (tsk == current)
2087                         sp = current_stack_frame();
2088                 else
2089                         sp = tsk->thread.ksp;
2090         }
2091
2092         lr = 0;
2093         printk("%sCall Trace:\n", loglvl);
2094         do {
2095                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2096                         break;
2097
2098                 stack = (unsigned long *) sp;
2099                 newsp = stack[0];
2100                 ip = stack[STACK_FRAME_LR_SAVE];
2101                 if (!firstframe || ip != lr) {
2102                         printk("%s["REG"] ["REG"] %pS",
2103                                 loglvl, sp, ip, (void *)ip);
2104 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2105                         ret_addr = ftrace_graph_ret_addr(current,
2106                                                 &ftrace_idx, ip, stack);
2107                         if (ret_addr != ip)
2108                                 pr_cont(" (%pS)", (void *)ret_addr);
2109 #endif
2110                         if (firstframe)
2111                                 pr_cont(" (unreliable)");
2112                         pr_cont("\n");
2113                 }
2114                 firstframe = 0;
2115
2116                 /*
2117                  * See if this is an exception frame.
2118                  * We look for the "regshere" marker in the current frame.
2119                  */
2120                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2121                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2122                         struct pt_regs *regs = (struct pt_regs *)
2123                                 (sp + STACK_FRAME_OVERHEAD);
2124                         lr = regs->link;
2125                         printk("%s--- interrupt: %lx at %pS\n    LR = %pS\n",
2126                                loglvl, regs->trap,
2127                                (void *)regs->nip, (void *)lr);
2128                         firstframe = 1;
2129                 }
2130
2131                 sp = newsp;
2132         } while (count++ < kstack_depth_to_print);
2133
2134         put_task_stack(tsk);
2135 }
2136
2137 #ifdef CONFIG_PPC64
2138 /* Called with hard IRQs off */
2139 void notrace __ppc64_runlatch_on(void)
2140 {
2141         struct thread_info *ti = current_thread_info();
2142
2143         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2144                 /*
2145                  * Least significant bit (RUN) is the only writable bit of
2146                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2147                  * earliest ISA where this is the case, but it's convenient.
2148                  */
2149                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2150         } else {
2151                 unsigned long ctrl;
2152
2153                 /*
2154                  * Some architectures (e.g., Cell) have writable fields other
2155                  * than RUN, so do the read-modify-write.
2156                  */
2157                 ctrl = mfspr(SPRN_CTRLF);
2158                 ctrl |= CTRL_RUNLATCH;
2159                 mtspr(SPRN_CTRLT, ctrl);
2160         }
2161
2162         ti->local_flags |= _TLF_RUNLATCH;
2163 }
2164
2165 /* Called with hard IRQs off */
2166 void notrace __ppc64_runlatch_off(void)
2167 {
2168         struct thread_info *ti = current_thread_info();
2169
2170         ti->local_flags &= ~_TLF_RUNLATCH;
2171
2172         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2173                 mtspr(SPRN_CTRLT, 0);
2174         } else {
2175                 unsigned long ctrl;
2176
2177                 ctrl = mfspr(SPRN_CTRLF);
2178                 ctrl &= ~CTRL_RUNLATCH;
2179                 mtspr(SPRN_CTRLT, ctrl);
2180         }
2181 }
2182 #endif /* CONFIG_PPC64 */
2183
2184 unsigned long arch_align_stack(unsigned long sp)
2185 {
2186         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2187                 sp -= get_random_int() & ~PAGE_MASK;
2188         return sp & ~0xf;
2189 }
2190
2191 static inline unsigned long brk_rnd(void)
2192 {
2193         unsigned long rnd = 0;
2194
2195         /* 8MB for 32bit, 1GB for 64bit */
2196         if (is_32bit_task())
2197                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2198         else
2199                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2200
2201         return rnd << PAGE_SHIFT;
2202 }
2203
2204 unsigned long arch_randomize_brk(struct mm_struct *mm)
2205 {
2206         unsigned long base = mm->brk;
2207         unsigned long ret;
2208
2209 #ifdef CONFIG_PPC_BOOK3S_64
2210         /*
2211          * If we are using 1TB segments and we are allowed to randomise
2212          * the heap, we can put it above 1TB so it is backed by a 1TB
2213          * segment. Otherwise the heap will be in the bottom 1TB
2214          * which always uses 256MB segments and this may result in a
2215          * performance penalty. We don't need to worry about radix. For
2216          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2217          */
2218         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2219                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2220 #endif
2221
2222         ret = PAGE_ALIGN(base + brk_rnd());
2223
2224         if (ret < mm->brk)
2225                 return mm->brk;
2226
2227         return ret;
2228 }
2229