efi: ia64: move IA64-only declarations to new asm/efi.h header
[linux-2.6-microblaze.git] / arch / ia64 / mm / init.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Initialize MMU support.
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *      David Mosberger-Tang <davidm@hpl.hp.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10
11 #include <linux/dma-map-ops.h>
12 #include <linux/dmar.h>
13 #include <linux/efi.h>
14 #include <linux/elf.h>
15 #include <linux/memblock.h>
16 #include <linux/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/mmzone.h>
19 #include <linux/module.h>
20 #include <linux/personality.h>
21 #include <linux/reboot.h>
22 #include <linux/slab.h>
23 #include <linux/swap.h>
24 #include <linux/proc_fs.h>
25 #include <linux/bitops.h>
26 #include <linux/kexec.h>
27 #include <linux/swiotlb.h>
28
29 #include <asm/dma.h>
30 #include <asm/efi.h>
31 #include <asm/io.h>
32 #include <asm/numa.h>
33 #include <asm/patch.h>
34 #include <asm/pgalloc.h>
35 #include <asm/sal.h>
36 #include <asm/sections.h>
37 #include <asm/tlb.h>
38 #include <linux/uaccess.h>
39 #include <asm/unistd.h>
40 #include <asm/mca.h>
41
42 extern void ia64_tlb_init (void);
43
44 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
45
46 #ifdef CONFIG_VIRTUAL_MEM_MAP
47 unsigned long VMALLOC_END = VMALLOC_END_INIT;
48 EXPORT_SYMBOL(VMALLOC_END);
49 struct page *vmem_map;
50 EXPORT_SYMBOL(vmem_map);
51 #endif
52
53 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
54 EXPORT_SYMBOL(zero_page_memmap_ptr);
55
56 void
57 __ia64_sync_icache_dcache (pte_t pte)
58 {
59         unsigned long addr;
60         struct page *page;
61
62         page = pte_page(pte);
63         addr = (unsigned long) page_address(page);
64
65         if (test_bit(PG_arch_1, &page->flags))
66                 return;                         /* i-cache is already coherent with d-cache */
67
68         flush_icache_range(addr, addr + page_size(page));
69         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
70 }
71
72 /*
73  * Since DMA is i-cache coherent, any (complete) pages that were written via
74  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
75  * flush them when they get mapped into an executable vm-area.
76  */
77 void arch_dma_mark_clean(phys_addr_t paddr, size_t size)
78 {
79         unsigned long pfn = PHYS_PFN(paddr);
80
81         do {
82                 set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
83         } while (++pfn <= PHYS_PFN(paddr + size - 1));
84 }
85
86 inline void
87 ia64_set_rbs_bot (void)
88 {
89         unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
90
91         if (stack_size > MAX_USER_STACK_SIZE)
92                 stack_size = MAX_USER_STACK_SIZE;
93         current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
94 }
95
96 /*
97  * This performs some platform-dependent address space initialization.
98  * On IA-64, we want to setup the VM area for the register backing
99  * store (which grows upwards) and install the gateway page which is
100  * used for signal trampolines, etc.
101  */
102 void
103 ia64_init_addr_space (void)
104 {
105         struct vm_area_struct *vma;
106
107         ia64_set_rbs_bot();
108
109         /*
110          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
111          * the problem.  When the process attempts to write to the register backing store
112          * for the first time, it will get a SEGFAULT in this case.
113          */
114         vma = vm_area_alloc(current->mm);
115         if (vma) {
116                 vma_set_anonymous(vma);
117                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
118                 vma->vm_end = vma->vm_start + PAGE_SIZE;
119                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
120                 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
121                 mmap_write_lock(current->mm);
122                 if (insert_vm_struct(current->mm, vma)) {
123                         mmap_write_unlock(current->mm);
124                         vm_area_free(vma);
125                         return;
126                 }
127                 mmap_write_unlock(current->mm);
128         }
129
130         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
131         if (!(current->personality & MMAP_PAGE_ZERO)) {
132                 vma = vm_area_alloc(current->mm);
133                 if (vma) {
134                         vma_set_anonymous(vma);
135                         vma->vm_end = PAGE_SIZE;
136                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
137                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
138                                         VM_DONTEXPAND | VM_DONTDUMP;
139                         mmap_write_lock(current->mm);
140                         if (insert_vm_struct(current->mm, vma)) {
141                                 mmap_write_unlock(current->mm);
142                                 vm_area_free(vma);
143                                 return;
144                         }
145                         mmap_write_unlock(current->mm);
146                 }
147         }
148 }
149
150 void
151 free_initmem (void)
152 {
153         free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
154                            -1, "unused kernel");
155 }
156
157 void __init
158 free_initrd_mem (unsigned long start, unsigned long end)
159 {
160         /*
161          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
162          * Thus EFI and the kernel may have different page sizes. It is
163          * therefore possible to have the initrd share the same page as
164          * the end of the kernel (given current setup).
165          *
166          * To avoid freeing/using the wrong page (kernel sized) we:
167          *      - align up the beginning of initrd
168          *      - align down the end of initrd
169          *
170          *  |             |
171          *  |=============| a000
172          *  |             |
173          *  |             |
174          *  |             | 9000
175          *  |/////////////|
176          *  |/////////////|
177          *  |=============| 8000
178          *  |///INITRD////|
179          *  |/////////////|
180          *  |/////////////| 7000
181          *  |             |
182          *  |KKKKKKKKKKKKK|
183          *  |=============| 6000
184          *  |KKKKKKKKKKKKK|
185          *  |KKKKKKKKKKKKK|
186          *  K=kernel using 8KB pages
187          *
188          * In this example, we must free page 8000 ONLY. So we must align up
189          * initrd_start and keep initrd_end as is.
190          */
191         start = PAGE_ALIGN(start);
192         end = end & PAGE_MASK;
193
194         if (start < end)
195                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
196
197         for (; start < end; start += PAGE_SIZE) {
198                 if (!virt_addr_valid(start))
199                         continue;
200                 free_reserved_page(virt_to_page(start));
201         }
202 }
203
204 /*
205  * This installs a clean page in the kernel's page table.
206  */
207 static struct page * __init
208 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
209 {
210         pgd_t *pgd;
211         p4d_t *p4d;
212         pud_t *pud;
213         pmd_t *pmd;
214         pte_t *pte;
215
216         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
217
218         {
219                 p4d = p4d_alloc(&init_mm, pgd, address);
220                 if (!p4d)
221                         goto out;
222                 pud = pud_alloc(&init_mm, p4d, address);
223                 if (!pud)
224                         goto out;
225                 pmd = pmd_alloc(&init_mm, pud, address);
226                 if (!pmd)
227                         goto out;
228                 pte = pte_alloc_kernel(pmd, address);
229                 if (!pte)
230                         goto out;
231                 if (!pte_none(*pte))
232                         goto out;
233                 set_pte(pte, mk_pte(page, pgprot));
234         }
235   out:
236         /* no need for flush_tlb */
237         return page;
238 }
239
240 static void __init
241 setup_gate (void)
242 {
243         struct page *page;
244
245         /*
246          * Map the gate page twice: once read-only to export the ELF
247          * headers etc. and once execute-only page to enable
248          * privilege-promotion via "epc":
249          */
250         page = virt_to_page(ia64_imva(__start_gate_section));
251         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
252 #ifdef HAVE_BUGGY_SEGREL
253         page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
254         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
255 #else
256         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
257         /* Fill in the holes (if any) with read-only zero pages: */
258         {
259                 unsigned long addr;
260
261                 for (addr = GATE_ADDR + PAGE_SIZE;
262                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
263                      addr += PAGE_SIZE)
264                 {
265                         put_kernel_page(ZERO_PAGE(0), addr,
266                                         PAGE_READONLY);
267                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
268                                         PAGE_READONLY);
269                 }
270         }
271 #endif
272         ia64_patch_gate();
273 }
274
275 static struct vm_area_struct gate_vma;
276
277 static int __init gate_vma_init(void)
278 {
279         vma_init(&gate_vma, NULL);
280         gate_vma.vm_start = FIXADDR_USER_START;
281         gate_vma.vm_end = FIXADDR_USER_END;
282         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
283         gate_vma.vm_page_prot = __P101;
284
285         return 0;
286 }
287 __initcall(gate_vma_init);
288
289 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
290 {
291         return &gate_vma;
292 }
293
294 int in_gate_area_no_mm(unsigned long addr)
295 {
296         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
297                 return 1;
298         return 0;
299 }
300
301 int in_gate_area(struct mm_struct *mm, unsigned long addr)
302 {
303         return in_gate_area_no_mm(addr);
304 }
305
306 void ia64_mmu_init(void *my_cpu_data)
307 {
308         unsigned long pta, impl_va_bits;
309         extern void tlb_init(void);
310
311 #ifdef CONFIG_DISABLE_VHPT
312 #       define VHPT_ENABLE_BIT  0
313 #else
314 #       define VHPT_ENABLE_BIT  1
315 #endif
316
317         /*
318          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
319          * address space.  The IA-64 architecture guarantees that at least 50 bits of
320          * virtual address space are implemented but if we pick a large enough page size
321          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
322          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
323          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
324          * problem in practice.  Alternatively, we could truncate the top of the mapped
325          * address space to not permit mappings that would overlap with the VMLPT.
326          * --davidm 00/12/06
327          */
328 #       define pte_bits                 3
329 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
330         /*
331          * The virtual page table has to cover the entire implemented address space within
332          * a region even though not all of this space may be mappable.  The reason for
333          * this is that the Access bit and Dirty bit fault handlers perform
334          * non-speculative accesses to the virtual page table, so the address range of the
335          * virtual page table itself needs to be covered by virtual page table.
336          */
337 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
338 #       define POW2(n)                  (1ULL << (n))
339
340         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
341
342         if (impl_va_bits < 51 || impl_va_bits > 61)
343                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
344         /*
345          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
346          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
347          * the test makes sure that our mapped space doesn't overlap the
348          * unimplemented hole in the middle of the region.
349          */
350         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
351             (mapped_space_bits > impl_va_bits - 1))
352                 panic("Cannot build a big enough virtual-linear page table"
353                       " to cover mapped address space.\n"
354                       " Try using a smaller page size.\n");
355
356
357         /* place the VMLPT at the end of each page-table mapped region: */
358         pta = POW2(61) - POW2(vmlpt_bits);
359
360         /*
361          * Set the (virtually mapped linear) page table address.  Bit
362          * 8 selects between the short and long format, bits 2-7 the
363          * size of the table, and bit 0 whether the VHPT walker is
364          * enabled.
365          */
366         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
367
368         ia64_tlb_init();
369
370 #ifdef  CONFIG_HUGETLB_PAGE
371         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
372         ia64_srlz_d();
373 #endif
374 }
375
376 #ifdef CONFIG_VIRTUAL_MEM_MAP
377 int vmemmap_find_next_valid_pfn(int node, int i)
378 {
379         unsigned long end_address, hole_next_pfn;
380         unsigned long stop_address;
381         pg_data_t *pgdat = NODE_DATA(node);
382
383         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
384         end_address = PAGE_ALIGN(end_address);
385         stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
386
387         do {
388                 pgd_t *pgd;
389                 p4d_t *p4d;
390                 pud_t *pud;
391                 pmd_t *pmd;
392                 pte_t *pte;
393
394                 pgd = pgd_offset_k(end_address);
395                 if (pgd_none(*pgd)) {
396                         end_address += PGDIR_SIZE;
397                         continue;
398                 }
399
400                 p4d = p4d_offset(pgd, end_address);
401                 if (p4d_none(*p4d)) {
402                         end_address += P4D_SIZE;
403                         continue;
404                 }
405
406                 pud = pud_offset(p4d, end_address);
407                 if (pud_none(*pud)) {
408                         end_address += PUD_SIZE;
409                         continue;
410                 }
411
412                 pmd = pmd_offset(pud, end_address);
413                 if (pmd_none(*pmd)) {
414                         end_address += PMD_SIZE;
415                         continue;
416                 }
417
418                 pte = pte_offset_kernel(pmd, end_address);
419 retry_pte:
420                 if (pte_none(*pte)) {
421                         end_address += PAGE_SIZE;
422                         pte++;
423                         if ((end_address < stop_address) &&
424                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
425                                 goto retry_pte;
426                         continue;
427                 }
428                 /* Found next valid vmem_map page */
429                 break;
430         } while (end_address < stop_address);
431
432         end_address = min(end_address, stop_address);
433         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
434         hole_next_pfn = end_address / sizeof(struct page);
435         return hole_next_pfn - pgdat->node_start_pfn;
436 }
437
438 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
439 {
440         unsigned long address, start_page, end_page;
441         struct page *map_start, *map_end;
442         int node;
443         pgd_t *pgd;
444         p4d_t *p4d;
445         pud_t *pud;
446         pmd_t *pmd;
447         pte_t *pte;
448
449         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
450         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
451
452         start_page = (unsigned long) map_start & PAGE_MASK;
453         end_page = PAGE_ALIGN((unsigned long) map_end);
454         node = paddr_to_nid(__pa(start));
455
456         for (address = start_page; address < end_page; address += PAGE_SIZE) {
457                 pgd = pgd_offset_k(address);
458                 if (pgd_none(*pgd)) {
459                         p4d = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
460                         if (!p4d)
461                                 goto err_alloc;
462                         pgd_populate(&init_mm, pgd, p4d);
463                 }
464                 p4d = p4d_offset(pgd, address);
465
466                 if (p4d_none(*p4d)) {
467                         pud = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
468                         if (!pud)
469                                 goto err_alloc;
470                         p4d_populate(&init_mm, p4d, pud);
471                 }
472                 pud = pud_offset(p4d, address);
473
474                 if (pud_none(*pud)) {
475                         pmd = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
476                         if (!pmd)
477                                 goto err_alloc;
478                         pud_populate(&init_mm, pud, pmd);
479                 }
480                 pmd = pmd_offset(pud, address);
481
482                 if (pmd_none(*pmd)) {
483                         pte = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
484                         if (!pte)
485                                 goto err_alloc;
486                         pmd_populate_kernel(&init_mm, pmd, pte);
487                 }
488                 pte = pte_offset_kernel(pmd, address);
489
490                 if (pte_none(*pte)) {
491                         void *page = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE,
492                                                          node);
493                         if (!page)
494                                 goto err_alloc;
495                         set_pte(pte, pfn_pte(__pa(page) >> PAGE_SHIFT,
496                                              PAGE_KERNEL));
497                 }
498         }
499         return 0;
500
501 err_alloc:
502         panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d\n",
503               __func__, PAGE_SIZE, PAGE_SIZE, node);
504         return -ENOMEM;
505 }
506
507 struct memmap_init_callback_data {
508         struct page *start;
509         struct page *end;
510         int nid;
511         unsigned long zone;
512 };
513
514 static int __meminit
515 virtual_memmap_init(u64 start, u64 end, void *arg)
516 {
517         struct memmap_init_callback_data *args;
518         struct page *map_start, *map_end;
519
520         args = (struct memmap_init_callback_data *) arg;
521         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
522         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
523
524         if (map_start < args->start)
525                 map_start = args->start;
526         if (map_end > args->end)
527                 map_end = args->end;
528
529         /*
530          * We have to initialize "out of bounds" struct page elements that fit completely
531          * on the same pages that were allocated for the "in bounds" elements because they
532          * may be referenced later (and found to be "reserved").
533          */
534         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
535         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
536                     / sizeof(struct page));
537
538         if (map_start < map_end)
539                 memmap_init_zone((unsigned long)(map_end - map_start),
540                                  args->nid, args->zone, page_to_pfn(map_start),
541                                  MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
542         return 0;
543 }
544
545 void __meminit
546 memmap_init (unsigned long size, int nid, unsigned long zone,
547              unsigned long start_pfn)
548 {
549         if (!vmem_map) {
550                 memmap_init_zone(size, nid, zone, start_pfn,
551                                  MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
552         } else {
553                 struct page *start;
554                 struct memmap_init_callback_data args;
555
556                 start = pfn_to_page(start_pfn);
557                 args.start = start;
558                 args.end = start + size;
559                 args.nid = nid;
560                 args.zone = zone;
561
562                 efi_memmap_walk(virtual_memmap_init, &args);
563         }
564 }
565
566 int
567 ia64_pfn_valid (unsigned long pfn)
568 {
569         char byte;
570         struct page *pg = pfn_to_page(pfn);
571
572         return     (__get_user(byte, (char __user *) pg) == 0)
573                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
574                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
575 }
576 EXPORT_SYMBOL(ia64_pfn_valid);
577
578 #endif /* CONFIG_VIRTUAL_MEM_MAP */
579
580 int __init register_active_ranges(u64 start, u64 len, int nid)
581 {
582         u64 end = start + len;
583
584 #ifdef CONFIG_KEXEC
585         if (start > crashk_res.start && start < crashk_res.end)
586                 start = crashk_res.end;
587         if (end > crashk_res.start && end < crashk_res.end)
588                 end = crashk_res.start;
589 #endif
590
591         if (start < end)
592                 memblock_add_node(__pa(start), end - start, nid);
593         return 0;
594 }
595
596 int
597 find_max_min_low_pfn (u64 start, u64 end, void *arg)
598 {
599         unsigned long pfn_start, pfn_end;
600 #ifdef CONFIG_FLATMEM
601         pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
602         pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
603 #else
604         pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
605         pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
606 #endif
607         min_low_pfn = min(min_low_pfn, pfn_start);
608         max_low_pfn = max(max_low_pfn, pfn_end);
609         return 0;
610 }
611
612 /*
613  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
614  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
615  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
616  * useful for performance testing, but conceivably could also come in handy for debugging
617  * purposes.
618  */
619
620 static int nolwsys __initdata;
621
622 static int __init
623 nolwsys_setup (char *s)
624 {
625         nolwsys = 1;
626         return 1;
627 }
628
629 __setup("nolwsys", nolwsys_setup);
630
631 void __init
632 mem_init (void)
633 {
634         int i;
635
636         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
637         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
638         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
639
640         /*
641          * This needs to be called _after_ the command line has been parsed but
642          * _before_ any drivers that may need the PCI DMA interface are
643          * initialized or bootmem has been freed.
644          */
645 #ifdef CONFIG_INTEL_IOMMU
646         detect_intel_iommu();
647         if (!iommu_detected)
648 #endif
649 #ifdef CONFIG_SWIOTLB
650                 swiotlb_init(1);
651 #endif
652
653 #ifdef CONFIG_FLATMEM
654         BUG_ON(!mem_map);
655 #endif
656
657         set_max_mapnr(max_low_pfn);
658         high_memory = __va(max_low_pfn * PAGE_SIZE);
659         memblock_free_all();
660         mem_init_print_info(NULL);
661
662         /*
663          * For fsyscall entrpoints with no light-weight handler, use the ordinary
664          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
665          * code can tell them apart.
666          */
667         for (i = 0; i < NR_syscalls; ++i) {
668                 extern unsigned long fsyscall_table[NR_syscalls];
669                 extern unsigned long sys_call_table[NR_syscalls];
670
671                 if (!fsyscall_table[i] || nolwsys)
672                         fsyscall_table[i] = sys_call_table[i] | 1;
673         }
674         setup_gate();
675 }
676
677 #ifdef CONFIG_MEMORY_HOTPLUG
678 int arch_add_memory(int nid, u64 start, u64 size,
679                     struct mhp_params *params)
680 {
681         unsigned long start_pfn = start >> PAGE_SHIFT;
682         unsigned long nr_pages = size >> PAGE_SHIFT;
683         int ret;
684
685         if (WARN_ON_ONCE(params->pgprot.pgprot != PAGE_KERNEL.pgprot))
686                 return -EINVAL;
687
688         ret = __add_pages(nid, start_pfn, nr_pages, params);
689         if (ret)
690                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
691                        __func__,  ret);
692
693         return ret;
694 }
695
696 void arch_remove_memory(int nid, u64 start, u64 size,
697                         struct vmem_altmap *altmap)
698 {
699         unsigned long start_pfn = start >> PAGE_SHIFT;
700         unsigned long nr_pages = size >> PAGE_SHIFT;
701
702         __remove_pages(start_pfn, nr_pages, altmap);
703 }
704 #endif