efi: ia64: move IA64-only declarations to new asm/efi.h header
[linux-2.6-microblaze.git] / arch / ia64 / kernel / efi.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Extensible Firmware Interface
4  *
5  * Based on Extensible Firmware Interface Specification version 0.9
6  * April 30, 1999
7  *
8  * Copyright (C) 1999 VA Linux Systems
9  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
10  * Copyright (C) 1999-2003 Hewlett-Packard Co.
11  *      David Mosberger-Tang <davidm@hpl.hp.com>
12  *      Stephane Eranian <eranian@hpl.hp.com>
13  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
14  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
15  *
16  * All EFI Runtime Services are not implemented yet as EFI only
17  * supports physical mode addressing on SoftSDV. This is to be fixed
18  * in a future version.  --drummond 1999-07-20
19  *
20  * Implemented EFI runtime services and virtual mode calls.  --davidm
21  *
22  * Goutham Rao: <goutham.rao@intel.com>
23  *      Skip non-WB memory and ignore empty memory ranges.
24  */
25 #include <linux/module.h>
26 #include <linux/memblock.h>
27 #include <linux/crash_dump.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/time.h>
33 #include <linux/efi.h>
34 #include <linux/kexec.h>
35 #include <linux/mm.h>
36
37 #include <asm/efi.h>
38 #include <asm/io.h>
39 #include <asm/kregs.h>
40 #include <asm/meminit.h>
41 #include <asm/processor.h>
42 #include <asm/mca.h>
43 #include <asm/setup.h>
44 #include <asm/tlbflush.h>
45
46 #define EFI_DEBUG       0
47
48 #define ESI_TABLE_GUID                                  \
49     EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3,          \
50              0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
51
52 static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR;
53 static __initdata unsigned long palo_phys;
54
55 unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR;
56 unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR;
57 unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
58
59 static const efi_config_table_type_t arch_tables[] __initconst = {
60         {ESI_TABLE_GUID,                                &esi_phys,              "ESI"           },
61         {HCDP_TABLE_GUID,                               &hcdp_phys,             "HCDP"          },
62         {MPS_TABLE_GUID,                                &mps_phys,              "MPS"           },
63         {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID,    &palo_phys,             "PALO"          },
64         {SAL_SYSTEM_TABLE_GUID,                         &sal_systab_phys,       "SALsystab"     },
65         {},
66 };
67
68 extern efi_status_t efi_call_phys (void *, ...);
69
70 static efi_runtime_services_t *runtime;
71 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
72
73 #define efi_call_virt(f, args...)       (*(f))(args)
74
75 #define STUB_GET_TIME(prefix, adjust_arg)                                      \
76 static efi_status_t                                                            \
77 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
78 {                                                                              \
79         struct ia64_fpreg fr[6];                                               \
80         efi_time_cap_t *atc = NULL;                                            \
81         efi_status_t ret;                                                      \
82                                                                                \
83         if (tc)                                                                \
84                 atc = adjust_arg(tc);                                          \
85         ia64_save_scratch_fpregs(fr);                                          \
86         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
87                                 adjust_arg(tm), atc);                          \
88         ia64_load_scratch_fpregs(fr);                                          \
89         return ret;                                                            \
90 }
91
92 #define STUB_SET_TIME(prefix, adjust_arg)                                      \
93 static efi_status_t                                                            \
94 prefix##_set_time (efi_time_t *tm)                                             \
95 {                                                                              \
96         struct ia64_fpreg fr[6];                                               \
97         efi_status_t ret;                                                      \
98                                                                                \
99         ia64_save_scratch_fpregs(fr);                                          \
100         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
101                                 adjust_arg(tm));                               \
102         ia64_load_scratch_fpregs(fr);                                          \
103         return ret;                                                            \
104 }
105
106 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
107 static efi_status_t                                                            \
108 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
109                           efi_time_t *tm)                                      \
110 {                                                                              \
111         struct ia64_fpreg fr[6];                                               \
112         efi_status_t ret;                                                      \
113                                                                                \
114         ia64_save_scratch_fpregs(fr);                                          \
115         ret = efi_call_##prefix(                                               \
116                 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
117                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
118         ia64_load_scratch_fpregs(fr);                                          \
119         return ret;                                                            \
120 }
121
122 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
123 static efi_status_t                                                            \
124 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
125 {                                                                              \
126         struct ia64_fpreg fr[6];                                               \
127         efi_time_t *atm = NULL;                                                \
128         efi_status_t ret;                                                      \
129                                                                                \
130         if (tm)                                                                \
131                 atm = adjust_arg(tm);                                          \
132         ia64_save_scratch_fpregs(fr);                                          \
133         ret = efi_call_##prefix(                                               \
134                 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
135                 enabled, atm);                                                 \
136         ia64_load_scratch_fpregs(fr);                                          \
137         return ret;                                                            \
138 }
139
140 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
141 static efi_status_t                                                            \
142 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
143                        unsigned long *data_size, void *data)                   \
144 {                                                                              \
145         struct ia64_fpreg fr[6];                                               \
146         u32 *aattr = NULL;                                                     \
147         efi_status_t ret;                                                      \
148                                                                                \
149         if (attr)                                                              \
150                 aattr = adjust_arg(attr);                                      \
151         ia64_save_scratch_fpregs(fr);                                          \
152         ret = efi_call_##prefix(                                               \
153                 (efi_get_variable_t *) __va(runtime->get_variable),            \
154                 adjust_arg(name), adjust_arg(vendor), aattr,                   \
155                 adjust_arg(data_size), adjust_arg(data));                      \
156         ia64_load_scratch_fpregs(fr);                                          \
157         return ret;                                                            \
158 }
159
160 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
161 static efi_status_t                                                            \
162 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
163                             efi_guid_t *vendor)                                \
164 {                                                                              \
165         struct ia64_fpreg fr[6];                                               \
166         efi_status_t ret;                                                      \
167                                                                                \
168         ia64_save_scratch_fpregs(fr);                                          \
169         ret = efi_call_##prefix(                                               \
170                 (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
171                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
172         ia64_load_scratch_fpregs(fr);                                          \
173         return ret;                                                            \
174 }
175
176 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
177 static efi_status_t                                                            \
178 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
179                        u32 attr, unsigned long data_size,                      \
180                        void *data)                                             \
181 {                                                                              \
182         struct ia64_fpreg fr[6];                                               \
183         efi_status_t ret;                                                      \
184                                                                                \
185         ia64_save_scratch_fpregs(fr);                                          \
186         ret = efi_call_##prefix(                                               \
187                 (efi_set_variable_t *) __va(runtime->set_variable),            \
188                 adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
189                 adjust_arg(data));                                             \
190         ia64_load_scratch_fpregs(fr);                                          \
191         return ret;                                                            \
192 }
193
194 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
195 static efi_status_t                                                            \
196 prefix##_get_next_high_mono_count (u32 *count)                                 \
197 {                                                                              \
198         struct ia64_fpreg fr[6];                                               \
199         efi_status_t ret;                                                      \
200                                                                                \
201         ia64_save_scratch_fpregs(fr);                                          \
202         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
203                                 __va(runtime->get_next_high_mono_count),       \
204                                 adjust_arg(count));                            \
205         ia64_load_scratch_fpregs(fr);                                          \
206         return ret;                                                            \
207 }
208
209 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
210 static void                                                                    \
211 prefix##_reset_system (int reset_type, efi_status_t status,                    \
212                        unsigned long data_size, efi_char16_t *data)            \
213 {                                                                              \
214         struct ia64_fpreg fr[6];                                               \
215         efi_char16_t *adata = NULL;                                            \
216                                                                                \
217         if (data)                                                              \
218                 adata = adjust_arg(data);                                      \
219                                                                                \
220         ia64_save_scratch_fpregs(fr);                                          \
221         efi_call_##prefix(                                                     \
222                 (efi_reset_system_t *) __va(runtime->reset_system),            \
223                 reset_type, status, data_size, adata);                         \
224         /* should not return, but just in case... */                           \
225         ia64_load_scratch_fpregs(fr);                                          \
226 }
227
228 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
229
230 STUB_GET_TIME(phys, phys_ptr)
231 STUB_SET_TIME(phys, phys_ptr)
232 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
233 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
234 STUB_GET_VARIABLE(phys, phys_ptr)
235 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
236 STUB_SET_VARIABLE(phys, phys_ptr)
237 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
238 STUB_RESET_SYSTEM(phys, phys_ptr)
239
240 #define id(arg) arg
241
242 STUB_GET_TIME(virt, id)
243 STUB_SET_TIME(virt, id)
244 STUB_GET_WAKEUP_TIME(virt, id)
245 STUB_SET_WAKEUP_TIME(virt, id)
246 STUB_GET_VARIABLE(virt, id)
247 STUB_GET_NEXT_VARIABLE(virt, id)
248 STUB_SET_VARIABLE(virt, id)
249 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
250 STUB_RESET_SYSTEM(virt, id)
251
252 void
253 efi_gettimeofday (struct timespec64 *ts)
254 {
255         efi_time_t tm;
256
257         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
258                 memset(ts, 0, sizeof(*ts));
259                 return;
260         }
261
262         ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
263                             tm.hour, tm.minute, tm.second);
264         ts->tv_nsec = tm.nanosecond;
265 }
266
267 static int
268 is_memory_available (efi_memory_desc_t *md)
269 {
270         if (!(md->attribute & EFI_MEMORY_WB))
271                 return 0;
272
273         switch (md->type) {
274               case EFI_LOADER_CODE:
275               case EFI_LOADER_DATA:
276               case EFI_BOOT_SERVICES_CODE:
277               case EFI_BOOT_SERVICES_DATA:
278               case EFI_CONVENTIONAL_MEMORY:
279                 return 1;
280         }
281         return 0;
282 }
283
284 typedef struct kern_memdesc {
285         u64 attribute;
286         u64 start;
287         u64 num_pages;
288 } kern_memdesc_t;
289
290 static kern_memdesc_t *kern_memmap;
291
292 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
293
294 static inline u64
295 kmd_end(kern_memdesc_t *kmd)
296 {
297         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
298 }
299
300 static inline u64
301 efi_md_end(efi_memory_desc_t *md)
302 {
303         return (md->phys_addr + efi_md_size(md));
304 }
305
306 static inline int
307 efi_wb(efi_memory_desc_t *md)
308 {
309         return (md->attribute & EFI_MEMORY_WB);
310 }
311
312 static inline int
313 efi_uc(efi_memory_desc_t *md)
314 {
315         return (md->attribute & EFI_MEMORY_UC);
316 }
317
318 static void
319 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
320 {
321         kern_memdesc_t *k;
322         u64 start, end, voff;
323
324         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
325         for (k = kern_memmap; k->start != ~0UL; k++) {
326                 if (k->attribute != attr)
327                         continue;
328                 start = PAGE_ALIGN(k->start);
329                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
330                 if (start < end)
331                         if ((*callback)(start + voff, end + voff, arg) < 0)
332                                 return;
333         }
334 }
335
336 /*
337  * Walk the EFI memory map and call CALLBACK once for each EFI memory
338  * descriptor that has memory that is available for OS use.
339  */
340 void
341 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
342 {
343         walk(callback, arg, EFI_MEMORY_WB);
344 }
345
346 /*
347  * Walk the EFI memory map and call CALLBACK once for each EFI memory
348  * descriptor that has memory that is available for uncached allocator.
349  */
350 void
351 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
352 {
353         walk(callback, arg, EFI_MEMORY_UC);
354 }
355
356 /*
357  * Look for the PAL_CODE region reported by EFI and map it using an
358  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
359  * Abstraction Layer chapter 11 in ADAG
360  */
361 void *
362 efi_get_pal_addr (void)
363 {
364         void *efi_map_start, *efi_map_end, *p;
365         efi_memory_desc_t *md;
366         u64 efi_desc_size;
367         int pal_code_count = 0;
368         u64 vaddr, mask;
369
370         efi_map_start = __va(ia64_boot_param->efi_memmap);
371         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
372         efi_desc_size = ia64_boot_param->efi_memdesc_size;
373
374         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
375                 md = p;
376                 if (md->type != EFI_PAL_CODE)
377                         continue;
378
379                 if (++pal_code_count > 1) {
380                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
381                                "dropped @ %llx\n", md->phys_addr);
382                         continue;
383                 }
384                 /*
385                  * The only ITLB entry in region 7 that is used is the one
386                  * installed by __start().  That entry covers a 64MB range.
387                  */
388                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
389                 vaddr = PAGE_OFFSET + md->phys_addr;
390
391                 /*
392                  * We must check that the PAL mapping won't overlap with the
393                  * kernel mapping.
394                  *
395                  * PAL code is guaranteed to be aligned on a power of 2 between
396                  * 4k and 256KB and that only one ITR is needed to map it. This
397                  * implies that the PAL code is always aligned on its size,
398                  * i.e., the closest matching page size supported by the TLB.
399                  * Therefore PAL code is guaranteed never to cross a 64MB unless
400                  * it is bigger than 64MB (very unlikely!).  So for now the
401                  * following test is enough to determine whether or not we need
402                  * a dedicated ITR for the PAL code.
403                  */
404                 if ((vaddr & mask) == (KERNEL_START & mask)) {
405                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
406                                __func__);
407                         continue;
408                 }
409
410                 if (efi_md_size(md) > IA64_GRANULE_SIZE)
411                         panic("Whoa!  PAL code size bigger than a granule!");
412
413 #if EFI_DEBUG
414                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
415
416                 printk(KERN_INFO "CPU %d: mapping PAL code "
417                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
418                        smp_processor_id(), md->phys_addr,
419                        md->phys_addr + efi_md_size(md),
420                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
421 #endif
422                 return __va(md->phys_addr);
423         }
424         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
425                __func__);
426         return NULL;
427 }
428
429
430 static u8 __init palo_checksum(u8 *buffer, u32 length)
431 {
432         u8 sum = 0;
433         u8 *end = buffer + length;
434
435         while (buffer < end)
436                 sum = (u8) (sum + *(buffer++));
437
438         return sum;
439 }
440
441 /*
442  * Parse and handle PALO table which is published at:
443  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
444  */
445 static void __init handle_palo(unsigned long phys_addr)
446 {
447         struct palo_table *palo = __va(phys_addr);
448         u8  checksum;
449
450         if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
451                 printk(KERN_INFO "PALO signature incorrect.\n");
452                 return;
453         }
454
455         checksum = palo_checksum((u8 *)palo, palo->length);
456         if (checksum) {
457                 printk(KERN_INFO "PALO checksum incorrect.\n");
458                 return;
459         }
460
461         setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
462 }
463
464 void
465 efi_map_pal_code (void)
466 {
467         void *pal_vaddr = efi_get_pal_addr ();
468         u64 psr;
469
470         if (!pal_vaddr)
471                 return;
472
473         /*
474          * Cannot write to CRx with PSR.ic=1
475          */
476         psr = ia64_clear_ic();
477         ia64_itr(0x1, IA64_TR_PALCODE,
478                  GRANULEROUNDDOWN((unsigned long) pal_vaddr),
479                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
480                  IA64_GRANULE_SHIFT);
481         ia64_set_psr(psr);              /* restore psr */
482 }
483
484 void __init
485 efi_init (void)
486 {
487         const efi_system_table_t *efi_systab;
488         void *efi_map_start, *efi_map_end;
489         u64 efi_desc_size;
490         char *cp;
491
492         set_bit(EFI_BOOT, &efi.flags);
493         set_bit(EFI_64BIT, &efi.flags);
494
495         /*
496          * It's too early to be able to use the standard kernel command line
497          * support...
498          */
499         for (cp = boot_command_line; *cp; ) {
500                 if (memcmp(cp, "mem=", 4) == 0) {
501                         mem_limit = memparse(cp + 4, &cp);
502                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
503                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
504                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
505                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
506                 } else {
507                         while (*cp != ' ' && *cp)
508                                 ++cp;
509                         while (*cp == ' ')
510                                 ++cp;
511                 }
512         }
513         if (min_addr != 0UL)
514                 printk(KERN_INFO "Ignoring memory below %lluMB\n",
515                        min_addr >> 20);
516         if (max_addr != ~0UL)
517                 printk(KERN_INFO "Ignoring memory above %lluMB\n",
518                        max_addr >> 20);
519
520         efi_systab = __va(ia64_boot_param->efi_systab);
521
522         /*
523          * Verify the EFI Table
524          */
525         if (efi_systab == NULL)
526                 panic("Whoa! Can't find EFI system table.\n");
527         if (efi_systab_check_header(&efi_systab->hdr, 1))
528                 panic("Whoa! EFI system table signature incorrect\n");
529
530         efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
531
532         palo_phys      = EFI_INVALID_TABLE_ADDR;
533
534         if (efi_config_parse_tables(__va(efi_systab->tables),
535                                     efi_systab->nr_tables,
536                                     arch_tables) != 0)
537                 return;
538
539         if (palo_phys != EFI_INVALID_TABLE_ADDR)
540                 handle_palo(palo_phys);
541
542         runtime = __va(efi_systab->runtime);
543         efi.get_time = phys_get_time;
544         efi.set_time = phys_set_time;
545         efi.get_wakeup_time = phys_get_wakeup_time;
546         efi.set_wakeup_time = phys_set_wakeup_time;
547         efi.get_variable = phys_get_variable;
548         efi.get_next_variable = phys_get_next_variable;
549         efi.set_variable = phys_set_variable;
550         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
551         efi.reset_system = phys_reset_system;
552
553         efi_map_start = __va(ia64_boot_param->efi_memmap);
554         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
555         efi_desc_size = ia64_boot_param->efi_memdesc_size;
556
557 #if EFI_DEBUG
558         /* print EFI memory map: */
559         {
560                 efi_memory_desc_t *md;
561                 void *p;
562
563                 for (i = 0, p = efi_map_start; p < efi_map_end;
564                      ++i, p += efi_desc_size)
565                 {
566                         const char *unit;
567                         unsigned long size;
568                         char buf[64];
569
570                         md = p;
571                         size = md->num_pages << EFI_PAGE_SHIFT;
572
573                         if ((size >> 40) > 0) {
574                                 size >>= 40;
575                                 unit = "TB";
576                         } else if ((size >> 30) > 0) {
577                                 size >>= 30;
578                                 unit = "GB";
579                         } else if ((size >> 20) > 0) {
580                                 size >>= 20;
581                                 unit = "MB";
582                         } else {
583                                 size >>= 10;
584                                 unit = "KB";
585                         }
586
587                         printk("mem%02d: %s "
588                                "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
589                                i, efi_md_typeattr_format(buf, sizeof(buf), md),
590                                md->phys_addr,
591                                md->phys_addr + efi_md_size(md), size, unit);
592                 }
593         }
594 #endif
595
596         efi_map_pal_code();
597         efi_enter_virtual_mode();
598 }
599
600 void
601 efi_enter_virtual_mode (void)
602 {
603         void *efi_map_start, *efi_map_end, *p;
604         efi_memory_desc_t *md;
605         efi_status_t status;
606         u64 efi_desc_size;
607
608         efi_map_start = __va(ia64_boot_param->efi_memmap);
609         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
610         efi_desc_size = ia64_boot_param->efi_memdesc_size;
611
612         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
613                 md = p;
614                 if (md->attribute & EFI_MEMORY_RUNTIME) {
615                         /*
616                          * Some descriptors have multiple bits set, so the
617                          * order of the tests is relevant.
618                          */
619                         if (md->attribute & EFI_MEMORY_WB) {
620                                 md->virt_addr = (u64) __va(md->phys_addr);
621                         } else if (md->attribute & EFI_MEMORY_UC) {
622                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
623                         } else if (md->attribute & EFI_MEMORY_WC) {
624 #if 0
625                                 md->virt_addr = ia64_remap(md->phys_addr,
626                                                            (_PAGE_A |
627                                                             _PAGE_P |
628                                                             _PAGE_D |
629                                                             _PAGE_MA_WC |
630                                                             _PAGE_PL_0 |
631                                                             _PAGE_AR_RW));
632 #else
633                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
634                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
635 #endif
636                         } else if (md->attribute & EFI_MEMORY_WT) {
637 #if 0
638                                 md->virt_addr = ia64_remap(md->phys_addr,
639                                                            (_PAGE_A |
640                                                             _PAGE_P |
641                                                             _PAGE_D |
642                                                             _PAGE_MA_WT |
643                                                             _PAGE_PL_0 |
644                                                             _PAGE_AR_RW));
645 #else
646                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
647                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
648 #endif
649                         }
650                 }
651         }
652
653         status = efi_call_phys(__va(runtime->set_virtual_address_map),
654                                ia64_boot_param->efi_memmap_size,
655                                efi_desc_size,
656                                ia64_boot_param->efi_memdesc_version,
657                                ia64_boot_param->efi_memmap);
658         if (status != EFI_SUCCESS) {
659                 printk(KERN_WARNING "warning: unable to switch EFI into "
660                        "virtual mode (status=%lu)\n", status);
661                 return;
662         }
663
664         set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
665
666         /*
667          * Now that EFI is in virtual mode, we call the EFI functions more
668          * efficiently:
669          */
670         efi.get_time = virt_get_time;
671         efi.set_time = virt_set_time;
672         efi.get_wakeup_time = virt_get_wakeup_time;
673         efi.set_wakeup_time = virt_set_wakeup_time;
674         efi.get_variable = virt_get_variable;
675         efi.get_next_variable = virt_get_next_variable;
676         efi.set_variable = virt_set_variable;
677         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
678         efi.reset_system = virt_reset_system;
679 }
680
681 /*
682  * Walk the EFI memory map looking for the I/O port range.  There can only be
683  * one entry of this type, other I/O port ranges should be described via ACPI.
684  */
685 u64
686 efi_get_iobase (void)
687 {
688         void *efi_map_start, *efi_map_end, *p;
689         efi_memory_desc_t *md;
690         u64 efi_desc_size;
691
692         efi_map_start = __va(ia64_boot_param->efi_memmap);
693         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
694         efi_desc_size = ia64_boot_param->efi_memdesc_size;
695
696         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
697                 md = p;
698                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
699                         if (md->attribute & EFI_MEMORY_UC)
700                                 return md->phys_addr;
701                 }
702         }
703         return 0;
704 }
705
706 static struct kern_memdesc *
707 kern_memory_descriptor (unsigned long phys_addr)
708 {
709         struct kern_memdesc *md;
710
711         for (md = kern_memmap; md->start != ~0UL; md++) {
712                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
713                          return md;
714         }
715         return NULL;
716 }
717
718 static efi_memory_desc_t *
719 efi_memory_descriptor (unsigned long phys_addr)
720 {
721         void *efi_map_start, *efi_map_end, *p;
722         efi_memory_desc_t *md;
723         u64 efi_desc_size;
724
725         efi_map_start = __va(ia64_boot_param->efi_memmap);
726         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
727         efi_desc_size = ia64_boot_param->efi_memdesc_size;
728
729         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
730                 md = p;
731
732                 if (phys_addr - md->phys_addr < efi_md_size(md))
733                          return md;
734         }
735         return NULL;
736 }
737
738 static int
739 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
740 {
741         void *efi_map_start, *efi_map_end, *p;
742         efi_memory_desc_t *md;
743         u64 efi_desc_size;
744         unsigned long end;
745
746         efi_map_start = __va(ia64_boot_param->efi_memmap);
747         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
748         efi_desc_size = ia64_boot_param->efi_memdesc_size;
749
750         end = phys_addr + size;
751
752         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
753                 md = p;
754                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
755                         return 1;
756         }
757         return 0;
758 }
759
760 int
761 efi_mem_type (unsigned long phys_addr)
762 {
763         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
764
765         if (md)
766                 return md->type;
767         return -EINVAL;
768 }
769
770 u64
771 efi_mem_attributes (unsigned long phys_addr)
772 {
773         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
774
775         if (md)
776                 return md->attribute;
777         return 0;
778 }
779 EXPORT_SYMBOL(efi_mem_attributes);
780
781 u64
782 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
783 {
784         unsigned long end = phys_addr + size;
785         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
786         u64 attr;
787
788         if (!md)
789                 return 0;
790
791         /*
792          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
793          * the kernel that firmware needs this region mapped.
794          */
795         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
796         do {
797                 unsigned long md_end = efi_md_end(md);
798
799                 if (end <= md_end)
800                         return attr;
801
802                 md = efi_memory_descriptor(md_end);
803                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
804                         return 0;
805         } while (md);
806         return 0;       /* never reached */
807 }
808
809 u64
810 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
811 {
812         unsigned long end = phys_addr + size;
813         struct kern_memdesc *md;
814         u64 attr;
815
816         /*
817          * This is a hack for ioremap calls before we set up kern_memmap.
818          * Maybe we should do efi_memmap_init() earlier instead.
819          */
820         if (!kern_memmap) {
821                 attr = efi_mem_attribute(phys_addr, size);
822                 if (attr & EFI_MEMORY_WB)
823                         return EFI_MEMORY_WB;
824                 return 0;
825         }
826
827         md = kern_memory_descriptor(phys_addr);
828         if (!md)
829                 return 0;
830
831         attr = md->attribute;
832         do {
833                 unsigned long md_end = kmd_end(md);
834
835                 if (end <= md_end)
836                         return attr;
837
838                 md = kern_memory_descriptor(md_end);
839                 if (!md || md->attribute != attr)
840                         return 0;
841         } while (md);
842         return 0;       /* never reached */
843 }
844
845 int
846 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
847 {
848         u64 attr;
849
850         /*
851          * /dev/mem reads and writes use copy_to_user(), which implicitly
852          * uses a granule-sized kernel identity mapping.  It's really
853          * only safe to do this for regions in kern_memmap.  For more
854          * details, see Documentation/ia64/aliasing.rst.
855          */
856         attr = kern_mem_attribute(phys_addr, size);
857         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
858                 return 1;
859         return 0;
860 }
861
862 int
863 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
864 {
865         unsigned long phys_addr = pfn << PAGE_SHIFT;
866         u64 attr;
867
868         attr = efi_mem_attribute(phys_addr, size);
869
870         /*
871          * /dev/mem mmap uses normal user pages, so we don't need the entire
872          * granule, but the entire region we're mapping must support the same
873          * attribute.
874          */
875         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
876                 return 1;
877
878         /*
879          * Intel firmware doesn't tell us about all the MMIO regions, so
880          * in general we have to allow mmap requests.  But if EFI *does*
881          * tell us about anything inside this region, we should deny it.
882          * The user can always map a smaller region to avoid the overlap.
883          */
884         if (efi_memmap_intersects(phys_addr, size))
885                 return 0;
886
887         return 1;
888 }
889
890 pgprot_t
891 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
892                      pgprot_t vma_prot)
893 {
894         unsigned long phys_addr = pfn << PAGE_SHIFT;
895         u64 attr;
896
897         /*
898          * For /dev/mem mmap, we use user mappings, but if the region is
899          * in kern_memmap (and hence may be covered by a kernel mapping),
900          * we must use the same attribute as the kernel mapping.
901          */
902         attr = kern_mem_attribute(phys_addr, size);
903         if (attr & EFI_MEMORY_WB)
904                 return pgprot_cacheable(vma_prot);
905         else if (attr & EFI_MEMORY_UC)
906                 return pgprot_noncached(vma_prot);
907
908         /*
909          * Some chipsets don't support UC access to memory.  If
910          * WB is supported, we prefer that.
911          */
912         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
913                 return pgprot_cacheable(vma_prot);
914
915         return pgprot_noncached(vma_prot);
916 }
917
918 int __init
919 efi_uart_console_only(void)
920 {
921         efi_status_t status;
922         char *s, name[] = "ConOut";
923         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
924         efi_char16_t *utf16, name_utf16[32];
925         unsigned char data[1024];
926         unsigned long size = sizeof(data);
927         struct efi_generic_dev_path *hdr, *end_addr;
928         int uart = 0;
929
930         /* Convert to UTF-16 */
931         utf16 = name_utf16;
932         s = name;
933         while (*s)
934                 *utf16++ = *s++ & 0x7f;
935         *utf16 = 0;
936
937         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
938         if (status != EFI_SUCCESS) {
939                 printk(KERN_ERR "No EFI %s variable?\n", name);
940                 return 0;
941         }
942
943         hdr = (struct efi_generic_dev_path *) data;
944         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
945         while (hdr < end_addr) {
946                 if (hdr->type == EFI_DEV_MSG &&
947                     hdr->sub_type == EFI_DEV_MSG_UART)
948                         uart = 1;
949                 else if (hdr->type == EFI_DEV_END_PATH ||
950                           hdr->type == EFI_DEV_END_PATH2) {
951                         if (!uart)
952                                 return 0;
953                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
954                                 return 1;
955                         uart = 0;
956                 }
957                 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
958         }
959         printk(KERN_ERR "Malformed %s value\n", name);
960         return 0;
961 }
962
963 /*
964  * Look for the first granule aligned memory descriptor memory
965  * that is big enough to hold EFI memory map. Make sure this
966  * descriptor is at least granule sized so it does not get trimmed
967  */
968 struct kern_memdesc *
969 find_memmap_space (void)
970 {
971         u64     contig_low=0, contig_high=0;
972         u64     as = 0, ae;
973         void *efi_map_start, *efi_map_end, *p, *q;
974         efi_memory_desc_t *md, *pmd = NULL, *check_md;
975         u64     space_needed, efi_desc_size;
976         unsigned long total_mem = 0;
977
978         efi_map_start = __va(ia64_boot_param->efi_memmap);
979         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
980         efi_desc_size = ia64_boot_param->efi_memdesc_size;
981
982         /*
983          * Worst case: we need 3 kernel descriptors for each efi descriptor
984          * (if every entry has a WB part in the middle, and UC head and tail),
985          * plus one for the end marker.
986          */
987         space_needed = sizeof(kern_memdesc_t) *
988                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
989
990         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
991                 md = p;
992                 if (!efi_wb(md)) {
993                         continue;
994                 }
995                 if (pmd == NULL || !efi_wb(pmd) ||
996                     efi_md_end(pmd) != md->phys_addr) {
997                         contig_low = GRANULEROUNDUP(md->phys_addr);
998                         contig_high = efi_md_end(md);
999                         for (q = p + efi_desc_size; q < efi_map_end;
1000                              q += efi_desc_size) {
1001                                 check_md = q;
1002                                 if (!efi_wb(check_md))
1003                                         break;
1004                                 if (contig_high != check_md->phys_addr)
1005                                         break;
1006                                 contig_high = efi_md_end(check_md);
1007                         }
1008                         contig_high = GRANULEROUNDDOWN(contig_high);
1009                 }
1010                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1011                         continue;
1012
1013                 /* Round ends inward to granule boundaries */
1014                 as = max(contig_low, md->phys_addr);
1015                 ae = min(contig_high, efi_md_end(md));
1016
1017                 /* keep within max_addr= and min_addr= command line arg */
1018                 as = max(as, min_addr);
1019                 ae = min(ae, max_addr);
1020                 if (ae <= as)
1021                         continue;
1022
1023                 /* avoid going over mem= command line arg */
1024                 if (total_mem + (ae - as) > mem_limit)
1025                         ae -= total_mem + (ae - as) - mem_limit;
1026
1027                 if (ae <= as)
1028                         continue;
1029
1030                 if (ae - as > space_needed)
1031                         break;
1032         }
1033         if (p >= efi_map_end)
1034                 panic("Can't allocate space for kernel memory descriptors");
1035
1036         return __va(as);
1037 }
1038
1039 /*
1040  * Walk the EFI memory map and gather all memory available for kernel
1041  * to use.  We can allocate partial granules only if the unavailable
1042  * parts exist, and are WB.
1043  */
1044 unsigned long
1045 efi_memmap_init(u64 *s, u64 *e)
1046 {
1047         struct kern_memdesc *k, *prev = NULL;
1048         u64     contig_low=0, contig_high=0;
1049         u64     as, ae, lim;
1050         void *efi_map_start, *efi_map_end, *p, *q;
1051         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1052         u64     efi_desc_size;
1053         unsigned long total_mem = 0;
1054
1055         k = kern_memmap = find_memmap_space();
1056
1057         efi_map_start = __va(ia64_boot_param->efi_memmap);
1058         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1059         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1060
1061         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1062                 md = p;
1063                 if (!efi_wb(md)) {
1064                         if (efi_uc(md) &&
1065                             (md->type == EFI_CONVENTIONAL_MEMORY ||
1066                              md->type == EFI_BOOT_SERVICES_DATA)) {
1067                                 k->attribute = EFI_MEMORY_UC;
1068                                 k->start = md->phys_addr;
1069                                 k->num_pages = md->num_pages;
1070                                 k++;
1071                         }
1072                         continue;
1073                 }
1074                 if (pmd == NULL || !efi_wb(pmd) ||
1075                     efi_md_end(pmd) != md->phys_addr) {
1076                         contig_low = GRANULEROUNDUP(md->phys_addr);
1077                         contig_high = efi_md_end(md);
1078                         for (q = p + efi_desc_size; q < efi_map_end;
1079                              q += efi_desc_size) {
1080                                 check_md = q;
1081                                 if (!efi_wb(check_md))
1082                                         break;
1083                                 if (contig_high != check_md->phys_addr)
1084                                         break;
1085                                 contig_high = efi_md_end(check_md);
1086                         }
1087                         contig_high = GRANULEROUNDDOWN(contig_high);
1088                 }
1089                 if (!is_memory_available(md))
1090                         continue;
1091
1092                 /*
1093                  * Round ends inward to granule boundaries
1094                  * Give trimmings to uncached allocator
1095                  */
1096                 if (md->phys_addr < contig_low) {
1097                         lim = min(efi_md_end(md), contig_low);
1098                         if (efi_uc(md)) {
1099                                 if (k > kern_memmap &&
1100                                     (k-1)->attribute == EFI_MEMORY_UC &&
1101                                     kmd_end(k-1) == md->phys_addr) {
1102                                         (k-1)->num_pages +=
1103                                                 (lim - md->phys_addr)
1104                                                 >> EFI_PAGE_SHIFT;
1105                                 } else {
1106                                         k->attribute = EFI_MEMORY_UC;
1107                                         k->start = md->phys_addr;
1108                                         k->num_pages = (lim - md->phys_addr)
1109                                                 >> EFI_PAGE_SHIFT;
1110                                         k++;
1111                                 }
1112                         }
1113                         as = contig_low;
1114                 } else
1115                         as = md->phys_addr;
1116
1117                 if (efi_md_end(md) > contig_high) {
1118                         lim = max(md->phys_addr, contig_high);
1119                         if (efi_uc(md)) {
1120                                 if (lim == md->phys_addr && k > kern_memmap &&
1121                                     (k-1)->attribute == EFI_MEMORY_UC &&
1122                                     kmd_end(k-1) == md->phys_addr) {
1123                                         (k-1)->num_pages += md->num_pages;
1124                                 } else {
1125                                         k->attribute = EFI_MEMORY_UC;
1126                                         k->start = lim;
1127                                         k->num_pages = (efi_md_end(md) - lim)
1128                                                 >> EFI_PAGE_SHIFT;
1129                                         k++;
1130                                 }
1131                         }
1132                         ae = contig_high;
1133                 } else
1134                         ae = efi_md_end(md);
1135
1136                 /* keep within max_addr= and min_addr= command line arg */
1137                 as = max(as, min_addr);
1138                 ae = min(ae, max_addr);
1139                 if (ae <= as)
1140                         continue;
1141
1142                 /* avoid going over mem= command line arg */
1143                 if (total_mem + (ae - as) > mem_limit)
1144                         ae -= total_mem + (ae - as) - mem_limit;
1145
1146                 if (ae <= as)
1147                         continue;
1148                 if (prev && kmd_end(prev) == md->phys_addr) {
1149                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1150                         total_mem += ae - as;
1151                         continue;
1152                 }
1153                 k->attribute = EFI_MEMORY_WB;
1154                 k->start = as;
1155                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1156                 total_mem += ae - as;
1157                 prev = k++;
1158         }
1159         k->start = ~0L; /* end-marker */
1160
1161         /* reserve the memory we are using for kern_memmap */
1162         *s = (u64)kern_memmap;
1163         *e = (u64)++k;
1164
1165         return total_mem;
1166 }
1167
1168 void
1169 efi_initialize_iomem_resources(struct resource *code_resource,
1170                                struct resource *data_resource,
1171                                struct resource *bss_resource)
1172 {
1173         struct resource *res;
1174         void *efi_map_start, *efi_map_end, *p;
1175         efi_memory_desc_t *md;
1176         u64 efi_desc_size;
1177         char *name;
1178         unsigned long flags, desc;
1179
1180         efi_map_start = __va(ia64_boot_param->efi_memmap);
1181         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1182         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1183
1184         res = NULL;
1185
1186         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1187                 md = p;
1188
1189                 if (md->num_pages == 0) /* should not happen */
1190                         continue;
1191
1192                 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1193                 desc = IORES_DESC_NONE;
1194
1195                 switch (md->type) {
1196
1197                         case EFI_MEMORY_MAPPED_IO:
1198                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1199                                 continue;
1200
1201                         case EFI_LOADER_CODE:
1202                         case EFI_LOADER_DATA:
1203                         case EFI_BOOT_SERVICES_DATA:
1204                         case EFI_BOOT_SERVICES_CODE:
1205                         case EFI_CONVENTIONAL_MEMORY:
1206                                 if (md->attribute & EFI_MEMORY_WP) {
1207                                         name = "System ROM";
1208                                         flags |= IORESOURCE_READONLY;
1209                                 } else if (md->attribute == EFI_MEMORY_UC) {
1210                                         name = "Uncached RAM";
1211                                 } else {
1212                                         name = "System RAM";
1213                                         flags |= IORESOURCE_SYSRAM;
1214                                 }
1215                                 break;
1216
1217                         case EFI_ACPI_MEMORY_NVS:
1218                                 name = "ACPI Non-volatile Storage";
1219                                 desc = IORES_DESC_ACPI_NV_STORAGE;
1220                                 break;
1221
1222                         case EFI_UNUSABLE_MEMORY:
1223                                 name = "reserved";
1224                                 flags |= IORESOURCE_DISABLED;
1225                                 break;
1226
1227                         case EFI_PERSISTENT_MEMORY:
1228                                 name = "Persistent Memory";
1229                                 desc = IORES_DESC_PERSISTENT_MEMORY;
1230                                 break;
1231
1232                         case EFI_RESERVED_TYPE:
1233                         case EFI_RUNTIME_SERVICES_CODE:
1234                         case EFI_RUNTIME_SERVICES_DATA:
1235                         case EFI_ACPI_RECLAIM_MEMORY:
1236                         default:
1237                                 name = "reserved";
1238                                 break;
1239                 }
1240
1241                 if ((res = kzalloc(sizeof(struct resource),
1242                                    GFP_KERNEL)) == NULL) {
1243                         printk(KERN_ERR
1244                                "failed to allocate resource for iomem\n");
1245                         return;
1246                 }
1247
1248                 res->name = name;
1249                 res->start = md->phys_addr;
1250                 res->end = md->phys_addr + efi_md_size(md) - 1;
1251                 res->flags = flags;
1252                 res->desc = desc;
1253
1254                 if (insert_resource(&iomem_resource, res) < 0)
1255                         kfree(res);
1256                 else {
1257                         /*
1258                          * We don't know which region contains
1259                          * kernel data so we try it repeatedly and
1260                          * let the resource manager test it.
1261                          */
1262                         insert_resource(res, code_resource);
1263                         insert_resource(res, data_resource);
1264                         insert_resource(res, bss_resource);
1265 #ifdef CONFIG_KEXEC
1266                         insert_resource(res, &efi_memmap_res);
1267                         insert_resource(res, &boot_param_res);
1268                         if (crashk_res.end > crashk_res.start)
1269                                 insert_resource(res, &crashk_res);
1270 #endif
1271                 }
1272         }
1273 }
1274
1275 #ifdef CONFIG_KEXEC
1276 /* find a block of memory aligned to 64M exclude reserved regions
1277    rsvd_regions are sorted
1278  */
1279 unsigned long __init
1280 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1281 {
1282         int i;
1283         u64 start, end;
1284         u64 alignment = 1UL << _PAGE_SIZE_64M;
1285         void *efi_map_start, *efi_map_end, *p;
1286         efi_memory_desc_t *md;
1287         u64 efi_desc_size;
1288
1289         efi_map_start = __va(ia64_boot_param->efi_memmap);
1290         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1291         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1292
1293         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1294                 md = p;
1295                 if (!efi_wb(md))
1296                         continue;
1297                 start = ALIGN(md->phys_addr, alignment);
1298                 end = efi_md_end(md);
1299                 for (i = 0; i < n; i++) {
1300                         if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1301                                 if (__pa(r[i].start) > start + size)
1302                                         return start;
1303                                 start = ALIGN(__pa(r[i].end), alignment);
1304                                 if (i < n-1 &&
1305                                     __pa(r[i+1].start) < start + size)
1306                                         continue;
1307                                 else
1308                                         break;
1309                         }
1310                 }
1311                 if (end > start + size)
1312                         return start;
1313         }
1314
1315         printk(KERN_WARNING
1316                "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1317         return ~0UL;
1318 }
1319 #endif
1320
1321 #ifdef CONFIG_CRASH_DUMP
1322 /* locate the size find a the descriptor at a certain address */
1323 unsigned long __init
1324 vmcore_find_descriptor_size (unsigned long address)
1325 {
1326         void *efi_map_start, *efi_map_end, *p;
1327         efi_memory_desc_t *md;
1328         u64 efi_desc_size;
1329         unsigned long ret = 0;
1330
1331         efi_map_start = __va(ia64_boot_param->efi_memmap);
1332         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1333         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1334
1335         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1336                 md = p;
1337                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1338                     && md->phys_addr == address) {
1339                         ret = efi_md_size(md);
1340                         break;
1341                 }
1342         }
1343
1344         if (ret == 0)
1345                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1346
1347         return ret;
1348 }
1349 #endif
1350
1351 char *efi_systab_show_arch(char *str)
1352 {
1353         if (mps_phys != EFI_INVALID_TABLE_ADDR)
1354                 str += sprintf(str, "MPS=0x%lx\n", mps_phys);
1355         if (hcdp_phys != EFI_INVALID_TABLE_ADDR)
1356                 str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys);
1357         return str;
1358 }