f0f733b7ac5a1e27095cce857ab4c65fe06eabad
[linux-2.6-microblaze.git] / arch / csky / kernel / probes / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2
3 #include <linux/kprobes.h>
4 #include <linux/extable.h>
5 #include <linux/slab.h>
6 #include <linux/stop_machine.h>
7 #include <asm/ptrace.h>
8 #include <linux/uaccess.h>
9 #include <asm/sections.h>
10 #include <asm/cacheflush.h>
11
12 #include "decode-insn.h"
13
14 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
15 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
16
17 static void __kprobes
18 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
19
20 struct csky_insn_patch {
21         kprobe_opcode_t *addr;
22         u32             opcode;
23         atomic_t        cpu_count;
24 };
25
26 static int __kprobes patch_text_cb(void *priv)
27 {
28         struct csky_insn_patch *param = priv;
29         unsigned int addr = (unsigned int)param->addr;
30
31         if (atomic_inc_return(&param->cpu_count) == 1) {
32                 *(u16 *) addr = cpu_to_le16(param->opcode);
33                 dcache_wb_range(addr, addr + 2);
34                 atomic_inc(&param->cpu_count);
35         } else {
36                 while (atomic_read(&param->cpu_count) <= num_online_cpus())
37                         cpu_relax();
38         }
39
40         icache_inv_range(addr, addr + 2);
41
42         return 0;
43 }
44
45 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
46 {
47         struct csky_insn_patch param = { addr, opcode, ATOMIC_INIT(0) };
48
49         return stop_machine_cpuslocked(patch_text_cb, &param, cpu_online_mask);
50 }
51
52 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
53 {
54         unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
55
56         p->ainsn.api.restore = (unsigned long)p->addr + offset;
57
58         patch_text(p->ainsn.api.insn, p->opcode);
59 }
60
61 static void __kprobes arch_prepare_simulate(struct kprobe *p)
62 {
63         p->ainsn.api.restore = 0;
64 }
65
66 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
67 {
68         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
69
70         if (p->ainsn.api.handler)
71                 p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
72
73         post_kprobe_handler(kcb, regs);
74 }
75
76 int __kprobes arch_prepare_kprobe(struct kprobe *p)
77 {
78         unsigned long probe_addr = (unsigned long)p->addr;
79
80         if (probe_addr & 0x1) {
81                 pr_warn("Address not aligned.\n");
82                 return -EINVAL;
83         }
84
85         /* copy instruction */
86         p->opcode = le32_to_cpu(*p->addr);
87
88         /* decode instruction */
89         switch (csky_probe_decode_insn(p->addr, &p->ainsn.api)) {
90         case INSN_REJECTED:     /* insn not supported */
91                 return -EINVAL;
92
93         case INSN_GOOD_NO_SLOT: /* insn need simulation */
94                 p->ainsn.api.insn = NULL;
95                 break;
96
97         case INSN_GOOD: /* instruction uses slot */
98                 p->ainsn.api.insn = get_insn_slot();
99                 if (!p->ainsn.api.insn)
100                         return -ENOMEM;
101                 break;
102         }
103
104         /* prepare the instruction */
105         if (p->ainsn.api.insn)
106                 arch_prepare_ss_slot(p);
107         else
108                 arch_prepare_simulate(p);
109
110         return 0;
111 }
112
113 /* install breakpoint in text */
114 void __kprobes arch_arm_kprobe(struct kprobe *p)
115 {
116         patch_text(p->addr, USR_BKPT);
117 }
118
119 /* remove breakpoint from text */
120 void __kprobes arch_disarm_kprobe(struct kprobe *p)
121 {
122         patch_text(p->addr, p->opcode);
123 }
124
125 void __kprobes arch_remove_kprobe(struct kprobe *p)
126 {
127 }
128
129 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
130 {
131         kcb->prev_kprobe.kp = kprobe_running();
132         kcb->prev_kprobe.status = kcb->kprobe_status;
133 }
134
135 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
136 {
137         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
138         kcb->kprobe_status = kcb->prev_kprobe.status;
139 }
140
141 static void __kprobes set_current_kprobe(struct kprobe *p)
142 {
143         __this_cpu_write(current_kprobe, p);
144 }
145
146 /*
147  * Interrupts need to be disabled before single-step mode is set, and not
148  * reenabled until after single-step mode ends.
149  * Without disabling interrupt on local CPU, there is a chance of
150  * interrupt occurrence in the period of exception return and  start of
151  * out-of-line single-step, that result in wrongly single stepping
152  * into the interrupt handler.
153  */
154 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
155                                                 struct pt_regs *regs)
156 {
157         kcb->saved_sr = regs->sr;
158         regs->sr &= ~BIT(6);
159 }
160
161 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
162                                                 struct pt_regs *regs)
163 {
164         regs->sr = kcb->saved_sr;
165 }
166
167 static void __kprobes
168 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr, struct kprobe *p)
169 {
170         unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
171
172         kcb->ss_ctx.ss_pending = true;
173         kcb->ss_ctx.match_addr = addr + offset;
174 }
175
176 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
177 {
178         kcb->ss_ctx.ss_pending = false;
179         kcb->ss_ctx.match_addr = 0;
180 }
181
182 #define TRACE_MODE_SI           BIT(14)
183 #define TRACE_MODE_MASK         ~(0x3 << 14)
184 #define TRACE_MODE_RUN          0
185
186 static void __kprobes setup_singlestep(struct kprobe *p,
187                                        struct pt_regs *regs,
188                                        struct kprobe_ctlblk *kcb, int reenter)
189 {
190         unsigned long slot;
191
192         if (reenter) {
193                 save_previous_kprobe(kcb);
194                 set_current_kprobe(p);
195                 kcb->kprobe_status = KPROBE_REENTER;
196         } else {
197                 kcb->kprobe_status = KPROBE_HIT_SS;
198         }
199
200         if (p->ainsn.api.insn) {
201                 /* prepare for single stepping */
202                 slot = (unsigned long)p->ainsn.api.insn;
203
204                 set_ss_context(kcb, slot, p);   /* mark pending ss */
205
206                 /* IRQs and single stepping do not mix well. */
207                 kprobes_save_local_irqflag(kcb, regs);
208                 regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI;
209                 instruction_pointer_set(regs, slot);
210         } else {
211                 /* insn simulation */
212                 arch_simulate_insn(p, regs);
213         }
214 }
215
216 static int __kprobes reenter_kprobe(struct kprobe *p,
217                                     struct pt_regs *regs,
218                                     struct kprobe_ctlblk *kcb)
219 {
220         switch (kcb->kprobe_status) {
221         case KPROBE_HIT_SSDONE:
222         case KPROBE_HIT_ACTIVE:
223                 kprobes_inc_nmissed_count(p);
224                 setup_singlestep(p, regs, kcb, 1);
225                 break;
226         case KPROBE_HIT_SS:
227         case KPROBE_REENTER:
228                 pr_warn("Unrecoverable kprobe detected.\n");
229                 dump_kprobe(p);
230                 BUG();
231                 break;
232         default:
233                 WARN_ON(1);
234                 return 0;
235         }
236
237         return 1;
238 }
239
240 static void __kprobes
241 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
242 {
243         struct kprobe *cur = kprobe_running();
244
245         if (!cur)
246                 return;
247
248         /* return addr restore if non-branching insn */
249         if (cur->ainsn.api.restore != 0)
250                 regs->pc = cur->ainsn.api.restore;
251
252         /* restore back original saved kprobe variables and continue */
253         if (kcb->kprobe_status == KPROBE_REENTER) {
254                 restore_previous_kprobe(kcb);
255                 return;
256         }
257
258         /* call post handler */
259         kcb->kprobe_status = KPROBE_HIT_SSDONE;
260         if (cur->post_handler)  {
261                 /* post_handler can hit breakpoint and single step
262                  * again, so we enable D-flag for recursive exception.
263                  */
264                 cur->post_handler(cur, regs, 0);
265         }
266
267         reset_current_kprobe();
268 }
269
270 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr)
271 {
272         struct kprobe *cur = kprobe_running();
273         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
274
275         switch (kcb->kprobe_status) {
276         case KPROBE_HIT_SS:
277         case KPROBE_REENTER:
278                 /*
279                  * We are here because the instruction being single
280                  * stepped caused a page fault. We reset the current
281                  * kprobe and the ip points back to the probe address
282                  * and allow the page fault handler to continue as a
283                  * normal page fault.
284                  */
285                 regs->pc = (unsigned long) cur->addr;
286                 if (!instruction_pointer(regs))
287                         BUG();
288
289                 if (kcb->kprobe_status == KPROBE_REENTER)
290                         restore_previous_kprobe(kcb);
291                 else
292                         reset_current_kprobe();
293
294                 break;
295         case KPROBE_HIT_ACTIVE:
296         case KPROBE_HIT_SSDONE:
297                 /*
298                  * We increment the nmissed count for accounting,
299                  * we can also use npre/npostfault count for accounting
300                  * these specific fault cases.
301                  */
302                 kprobes_inc_nmissed_count(cur);
303
304                 /*
305                  * We come here because instructions in the pre/post
306                  * handler caused the page_fault, this could happen
307                  * if handler tries to access user space by
308                  * copy_from_user(), get_user() etc. Let the
309                  * user-specified handler try to fix it first.
310                  */
311                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
312                         return 1;
313
314                 /*
315                  * In case the user-specified fault handler returned
316                  * zero, try to fix up.
317                  */
318                 if (fixup_exception(regs))
319                         return 1;
320         }
321         return 0;
322 }
323
324 int __kprobes
325 kprobe_breakpoint_handler(struct pt_regs *regs)
326 {
327         struct kprobe *p, *cur_kprobe;
328         struct kprobe_ctlblk *kcb;
329         unsigned long addr = instruction_pointer(regs);
330
331         kcb = get_kprobe_ctlblk();
332         cur_kprobe = kprobe_running();
333
334         p = get_kprobe((kprobe_opcode_t *) addr);
335
336         if (p) {
337                 if (cur_kprobe) {
338                         if (reenter_kprobe(p, regs, kcb))
339                                 return 1;
340                 } else {
341                         /* Probe hit */
342                         set_current_kprobe(p);
343                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
344
345                         /*
346                          * If we have no pre-handler or it returned 0, we
347                          * continue with normal processing.  If we have a
348                          * pre-handler and it returned non-zero, it will
349                          * modify the execution path and no need to single
350                          * stepping. Let's just reset current kprobe and exit.
351                          *
352                          * pre_handler can hit a breakpoint and can step thru
353                          * before return.
354                          */
355                         if (!p->pre_handler || !p->pre_handler(p, regs))
356                                 setup_singlestep(p, regs, kcb, 0);
357                         else
358                                 reset_current_kprobe();
359                 }
360                 return 1;
361         }
362
363         /*
364          * The breakpoint instruction was removed right
365          * after we hit it.  Another cpu has removed
366          * either a probepoint or a debugger breakpoint
367          * at this address.  In either case, no further
368          * handling of this interrupt is appropriate.
369          * Return back to original instruction, and continue.
370          */
371         return 0;
372 }
373
374 int __kprobes
375 kprobe_single_step_handler(struct pt_regs *regs)
376 {
377         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
378
379         if ((kcb->ss_ctx.ss_pending)
380             && (kcb->ss_ctx.match_addr == instruction_pointer(regs))) {
381                 clear_ss_context(kcb);  /* clear pending ss */
382
383                 kprobes_restore_local_irqflag(kcb, regs);
384                 regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN;
385
386                 post_kprobe_handler(kcb, regs);
387                 return 1;
388         }
389         return 0;
390 }
391
392 /*
393  * Provide a blacklist of symbols identifying ranges which cannot be kprobed.
394  * This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
395  */
396 int __init arch_populate_kprobe_blacklist(void)
397 {
398         int ret;
399
400         ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
401                                         (unsigned long)__irqentry_text_end);
402         return ret;
403 }
404
405 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
406 {
407         struct kretprobe_instance *ri = NULL;
408         struct hlist_head *head, empty_rp;
409         struct hlist_node *tmp;
410         unsigned long flags, orig_ret_address = 0;
411         unsigned long trampoline_address =
412                 (unsigned long)&kretprobe_trampoline;
413         kprobe_opcode_t *correct_ret_addr = NULL;
414
415         INIT_HLIST_HEAD(&empty_rp);
416         kretprobe_hash_lock(current, &head, &flags);
417
418         /*
419          * It is possible to have multiple instances associated with a given
420          * task either because multiple functions in the call path have
421          * return probes installed on them, and/or more than one
422          * return probe was registered for a target function.
423          *
424          * We can handle this because:
425          *     - instances are always pushed into the head of the list
426          *     - when multiple return probes are registered for the same
427          *       function, the (chronologically) first instance's ret_addr
428          *       will be the real return address, and all the rest will
429          *       point to kretprobe_trampoline.
430          */
431         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
432                 if (ri->task != current)
433                         /* another task is sharing our hash bucket */
434                         continue;
435
436                 orig_ret_address = (unsigned long)ri->ret_addr;
437
438                 if (orig_ret_address != trampoline_address)
439                         /*
440                          * This is the real return address. Any other
441                          * instances associated with this task are for
442                          * other calls deeper on the call stack
443                          */
444                         break;
445         }
446
447         kretprobe_assert(ri, orig_ret_address, trampoline_address);
448
449         correct_ret_addr = ri->ret_addr;
450         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
451                 if (ri->task != current)
452                         /* another task is sharing our hash bucket */
453                         continue;
454
455                 orig_ret_address = (unsigned long)ri->ret_addr;
456                 if (ri->rp && ri->rp->handler) {
457                         __this_cpu_write(current_kprobe, &ri->rp->kp);
458                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
459                         ri->ret_addr = correct_ret_addr;
460                         ri->rp->handler(ri, regs);
461                         __this_cpu_write(current_kprobe, NULL);
462                 }
463
464                 recycle_rp_inst(ri, &empty_rp);
465
466                 if (orig_ret_address != trampoline_address)
467                         /*
468                          * This is the real return address. Any other
469                          * instances associated with this task are for
470                          * other calls deeper on the call stack
471                          */
472                         break;
473         }
474
475         kretprobe_hash_unlock(current, &flags);
476
477         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
478                 hlist_del(&ri->hlist);
479                 kfree(ri);
480         }
481         return (void *)orig_ret_address;
482 }
483
484 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
485                                       struct pt_regs *regs)
486 {
487         ri->ret_addr = (kprobe_opcode_t *)regs->lr;
488         regs->lr = (unsigned long) &kretprobe_trampoline;
489 }
490
491 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
492 {
493         return 0;
494 }
495
496 int __init arch_init_kprobes(void)
497 {
498         return 0;
499 }