Merge branches 'clk-range', 'clk-uniphier', 'clk-apple' and 'clk-qcom' into clk-next
[linux-2.6-microblaze.git] / arch / arm64 / kvm / vgic / vgic-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 #include <linux/irqchip/arm-gic-v3.h>
4 #include <linux/irq.h>
5 #include <linux/irqdomain.h>
6 #include <linux/kvm.h>
7 #include <linux/kvm_host.h>
8 #include <kvm/arm_vgic.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_asm.h>
12
13 #include "vgic.h"
14
15 static bool group0_trap;
16 static bool group1_trap;
17 static bool common_trap;
18 static bool dir_trap;
19 static bool gicv4_enable;
20
21 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
22 {
23         struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
24
25         cpuif->vgic_hcr |= ICH_HCR_UIE;
26 }
27
28 static bool lr_signals_eoi_mi(u64 lr_val)
29 {
30         return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
31                !(lr_val & ICH_LR_HW);
32 }
33
34 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
35 {
36         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
37         struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
38         u32 model = vcpu->kvm->arch.vgic.vgic_model;
39         int lr;
40
41         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
42
43         cpuif->vgic_hcr &= ~ICH_HCR_UIE;
44
45         for (lr = 0; lr < cpuif->used_lrs; lr++) {
46                 u64 val = cpuif->vgic_lr[lr];
47                 u32 intid, cpuid;
48                 struct vgic_irq *irq;
49                 bool is_v2_sgi = false;
50                 bool deactivated;
51
52                 cpuid = val & GICH_LR_PHYSID_CPUID;
53                 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
54
55                 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
56                         intid = val & ICH_LR_VIRTUAL_ID_MASK;
57                 } else {
58                         intid = val & GICH_LR_VIRTUALID;
59                         is_v2_sgi = vgic_irq_is_sgi(intid);
60                 }
61
62                 /* Notify fds when the guest EOI'ed a level-triggered IRQ */
63                 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
64                         kvm_notify_acked_irq(vcpu->kvm, 0,
65                                              intid - VGIC_NR_PRIVATE_IRQS);
66
67                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
68                 if (!irq)       /* An LPI could have been unmapped. */
69                         continue;
70
71                 raw_spin_lock(&irq->irq_lock);
72
73                 /* Always preserve the active bit, note deactivation */
74                 deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT);
75                 irq->active = !!(val & ICH_LR_ACTIVE_BIT);
76
77                 if (irq->active && is_v2_sgi)
78                         irq->active_source = cpuid;
79
80                 /* Edge is the only case where we preserve the pending bit */
81                 if (irq->config == VGIC_CONFIG_EDGE &&
82                     (val & ICH_LR_PENDING_BIT)) {
83                         irq->pending_latch = true;
84
85                         if (is_v2_sgi)
86                                 irq->source |= (1 << cpuid);
87                 }
88
89                 /*
90                  * Clear soft pending state when level irqs have been acked.
91                  */
92                 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
93                         irq->pending_latch = false;
94
95                 /* Handle resampling for mapped interrupts if required */
96                 vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT);
97
98                 raw_spin_unlock(&irq->irq_lock);
99                 vgic_put_irq(vcpu->kvm, irq);
100         }
101
102         cpuif->used_lrs = 0;
103 }
104
105 /* Requires the irq to be locked already */
106 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
107 {
108         u32 model = vcpu->kvm->arch.vgic.vgic_model;
109         u64 val = irq->intid;
110         bool allow_pending = true, is_v2_sgi;
111
112         is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
113                      model == KVM_DEV_TYPE_ARM_VGIC_V2);
114
115         if (irq->active) {
116                 val |= ICH_LR_ACTIVE_BIT;
117                 if (is_v2_sgi)
118                         val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
119                 if (vgic_irq_is_multi_sgi(irq)) {
120                         allow_pending = false;
121                         val |= ICH_LR_EOI;
122                 }
123         }
124
125         if (irq->hw && !vgic_irq_needs_resampling(irq)) {
126                 val |= ICH_LR_HW;
127                 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
128                 /*
129                  * Never set pending+active on a HW interrupt, as the
130                  * pending state is kept at the physical distributor
131                  * level.
132                  */
133                 if (irq->active)
134                         allow_pending = false;
135         } else {
136                 if (irq->config == VGIC_CONFIG_LEVEL) {
137                         val |= ICH_LR_EOI;
138
139                         /*
140                          * Software resampling doesn't work very well
141                          * if we allow P+A, so let's not do that.
142                          */
143                         if (irq->active)
144                                 allow_pending = false;
145                 }
146         }
147
148         if (allow_pending && irq_is_pending(irq)) {
149                 val |= ICH_LR_PENDING_BIT;
150
151                 if (irq->config == VGIC_CONFIG_EDGE)
152                         irq->pending_latch = false;
153
154                 if (vgic_irq_is_sgi(irq->intid) &&
155                     model == KVM_DEV_TYPE_ARM_VGIC_V2) {
156                         u32 src = ffs(irq->source);
157
158                         if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
159                                            irq->intid))
160                                 return;
161
162                         val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
163                         irq->source &= ~(1 << (src - 1));
164                         if (irq->source) {
165                                 irq->pending_latch = true;
166                                 val |= ICH_LR_EOI;
167                         }
168                 }
169         }
170
171         /*
172          * Level-triggered mapped IRQs are special because we only observe
173          * rising edges as input to the VGIC.  We therefore lower the line
174          * level here, so that we can take new virtual IRQs.  See
175          * vgic_v3_fold_lr_state for more info.
176          */
177         if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
178                 irq->line_level = false;
179
180         if (irq->group)
181                 val |= ICH_LR_GROUP;
182
183         val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
184
185         vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
186 }
187
188 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
189 {
190         vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
191 }
192
193 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
194 {
195         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
196         u32 model = vcpu->kvm->arch.vgic.vgic_model;
197         u32 vmcr;
198
199         if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
200                 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
201                         ICH_VMCR_ACK_CTL_MASK;
202                 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
203                         ICH_VMCR_FIQ_EN_MASK;
204         } else {
205                 /*
206                  * When emulating GICv3 on GICv3 with SRE=1 on the
207                  * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
208                  */
209                 vmcr = ICH_VMCR_FIQ_EN_MASK;
210         }
211
212         vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
213         vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
214         vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
215         vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
216         vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
217         vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
218         vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
219
220         cpu_if->vgic_vmcr = vmcr;
221 }
222
223 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
224 {
225         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
226         u32 model = vcpu->kvm->arch.vgic.vgic_model;
227         u32 vmcr;
228
229         vmcr = cpu_if->vgic_vmcr;
230
231         if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
232                 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
233                         ICH_VMCR_ACK_CTL_SHIFT;
234                 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
235                         ICH_VMCR_FIQ_EN_SHIFT;
236         } else {
237                 /*
238                  * When emulating GICv3 on GICv3 with SRE=1 on the
239                  * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
240                  */
241                 vmcrp->fiqen = 1;
242                 vmcrp->ackctl = 0;
243         }
244
245         vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
246         vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
247         vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
248         vmcrp->bpr  = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
249         vmcrp->pmr  = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
250         vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
251         vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
252 }
253
254 #define INITIAL_PENDBASER_VALUE                                           \
255         (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb)            | \
256         GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner)      | \
257         GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
258
259 void vgic_v3_enable(struct kvm_vcpu *vcpu)
260 {
261         struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
262
263         /*
264          * By forcing VMCR to zero, the GIC will restore the binary
265          * points to their reset values. Anything else resets to zero
266          * anyway.
267          */
268         vgic_v3->vgic_vmcr = 0;
269
270         /*
271          * If we are emulating a GICv3, we do it in an non-GICv2-compatible
272          * way, so we force SRE to 1 to demonstrate this to the guest.
273          * Also, we don't support any form of IRQ/FIQ bypass.
274          * This goes with the spec allowing the value to be RAO/WI.
275          */
276         if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
277                 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
278                                      ICC_SRE_EL1_DFB |
279                                      ICC_SRE_EL1_SRE);
280                 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
281         } else {
282                 vgic_v3->vgic_sre = 0;
283         }
284
285         vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
286                                            ICH_VTR_ID_BITS_MASK) >>
287                                            ICH_VTR_ID_BITS_SHIFT;
288         vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
289                                             ICH_VTR_PRI_BITS_MASK) >>
290                                             ICH_VTR_PRI_BITS_SHIFT) + 1;
291
292         /* Get the show on the road... */
293         vgic_v3->vgic_hcr = ICH_HCR_EN;
294         if (group0_trap)
295                 vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
296         if (group1_trap)
297                 vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
298         if (common_trap)
299                 vgic_v3->vgic_hcr |= ICH_HCR_TC;
300         if (dir_trap)
301                 vgic_v3->vgic_hcr |= ICH_HCR_TDIR;
302 }
303
304 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
305 {
306         struct kvm_vcpu *vcpu;
307         int byte_offset, bit_nr;
308         gpa_t pendbase, ptr;
309         bool status;
310         u8 val;
311         int ret;
312         unsigned long flags;
313
314 retry:
315         vcpu = irq->target_vcpu;
316         if (!vcpu)
317                 return 0;
318
319         pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
320
321         byte_offset = irq->intid / BITS_PER_BYTE;
322         bit_nr = irq->intid % BITS_PER_BYTE;
323         ptr = pendbase + byte_offset;
324
325         ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
326         if (ret)
327                 return ret;
328
329         status = val & (1 << bit_nr);
330
331         raw_spin_lock_irqsave(&irq->irq_lock, flags);
332         if (irq->target_vcpu != vcpu) {
333                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
334                 goto retry;
335         }
336         irq->pending_latch = status;
337         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
338
339         if (status) {
340                 /* clear consumed data */
341                 val &= ~(1 << bit_nr);
342                 ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
343                 if (ret)
344                         return ret;
345         }
346         return 0;
347 }
348
349 /*
350  * The deactivation of the doorbell interrupt will trigger the
351  * unmapping of the associated vPE.
352  */
353 static void unmap_all_vpes(struct vgic_dist *dist)
354 {
355         struct irq_desc *desc;
356         int i;
357
358         for (i = 0; i < dist->its_vm.nr_vpes; i++) {
359                 desc = irq_to_desc(dist->its_vm.vpes[i]->irq);
360                 irq_domain_deactivate_irq(irq_desc_get_irq_data(desc));
361         }
362 }
363
364 static void map_all_vpes(struct vgic_dist *dist)
365 {
366         struct irq_desc *desc;
367         int i;
368
369         for (i = 0; i < dist->its_vm.nr_vpes; i++) {
370                 desc = irq_to_desc(dist->its_vm.vpes[i]->irq);
371                 irq_domain_activate_irq(irq_desc_get_irq_data(desc), false);
372         }
373 }
374
375 /**
376  * vgic_v3_save_pending_tables - Save the pending tables into guest RAM
377  * kvm lock and all vcpu lock must be held
378  */
379 int vgic_v3_save_pending_tables(struct kvm *kvm)
380 {
381         struct vgic_dist *dist = &kvm->arch.vgic;
382         struct vgic_irq *irq;
383         gpa_t last_ptr = ~(gpa_t)0;
384         bool vlpi_avail = false;
385         int ret = 0;
386         u8 val;
387
388         if (unlikely(!vgic_initialized(kvm)))
389                 return -ENXIO;
390
391         /*
392          * A preparation for getting any VLPI states.
393          * The above vgic initialized check also ensures that the allocation
394          * and enabling of the doorbells have already been done.
395          */
396         if (kvm_vgic_global_state.has_gicv4_1) {
397                 unmap_all_vpes(dist);
398                 vlpi_avail = true;
399         }
400
401         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
402                 int byte_offset, bit_nr;
403                 struct kvm_vcpu *vcpu;
404                 gpa_t pendbase, ptr;
405                 bool is_pending;
406                 bool stored;
407
408                 vcpu = irq->target_vcpu;
409                 if (!vcpu)
410                         continue;
411
412                 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
413
414                 byte_offset = irq->intid / BITS_PER_BYTE;
415                 bit_nr = irq->intid % BITS_PER_BYTE;
416                 ptr = pendbase + byte_offset;
417
418                 if (ptr != last_ptr) {
419                         ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
420                         if (ret)
421                                 goto out;
422                         last_ptr = ptr;
423                 }
424
425                 stored = val & (1U << bit_nr);
426
427                 is_pending = irq->pending_latch;
428
429                 if (irq->hw && vlpi_avail)
430                         vgic_v4_get_vlpi_state(irq, &is_pending);
431
432                 if (stored == is_pending)
433                         continue;
434
435                 if (is_pending)
436                         val |= 1 << bit_nr;
437                 else
438                         val &= ~(1 << bit_nr);
439
440                 ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
441                 if (ret)
442                         goto out;
443         }
444
445 out:
446         if (vlpi_avail)
447                 map_all_vpes(dist);
448
449         return ret;
450 }
451
452 /**
453  * vgic_v3_rdist_overlap - check if a region overlaps with any
454  * existing redistributor region
455  *
456  * @kvm: kvm handle
457  * @base: base of the region
458  * @size: size of region
459  *
460  * Return: true if there is an overlap
461  */
462 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
463 {
464         struct vgic_dist *d = &kvm->arch.vgic;
465         struct vgic_redist_region *rdreg;
466
467         list_for_each_entry(rdreg, &d->rd_regions, list) {
468                 if ((base + size > rdreg->base) &&
469                         (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
470                         return true;
471         }
472         return false;
473 }
474
475 /*
476  * Check for overlapping regions and for regions crossing the end of memory
477  * for base addresses which have already been set.
478  */
479 bool vgic_v3_check_base(struct kvm *kvm)
480 {
481         struct vgic_dist *d = &kvm->arch.vgic;
482         struct vgic_redist_region *rdreg;
483
484         if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
485             d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
486                 return false;
487
488         list_for_each_entry(rdreg, &d->rd_regions, list) {
489                 size_t sz = vgic_v3_rd_region_size(kvm, rdreg);
490
491                 if (vgic_check_iorange(kvm, VGIC_ADDR_UNDEF,
492                                        rdreg->base, SZ_64K, sz))
493                         return false;
494         }
495
496         if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
497                 return true;
498
499         return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
500                                       KVM_VGIC_V3_DIST_SIZE);
501 }
502
503 /**
504  * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
505  * which has free space to put a new rdist region.
506  *
507  * @rd_regions: redistributor region list head
508  *
509  * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
510  * Stride between redistributors is 0 and regions are filled in the index order.
511  *
512  * Return: the redist region handle, if any, that has space to map a new rdist
513  * region.
514  */
515 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
516 {
517         struct vgic_redist_region *rdreg;
518
519         list_for_each_entry(rdreg, rd_regions, list) {
520                 if (!vgic_v3_redist_region_full(rdreg))
521                         return rdreg;
522         }
523         return NULL;
524 }
525
526 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
527                                                            u32 index)
528 {
529         struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
530         struct vgic_redist_region *rdreg;
531
532         list_for_each_entry(rdreg, rd_regions, list) {
533                 if (rdreg->index == index)
534                         return rdreg;
535         }
536         return NULL;
537 }
538
539
540 int vgic_v3_map_resources(struct kvm *kvm)
541 {
542         struct vgic_dist *dist = &kvm->arch.vgic;
543         struct kvm_vcpu *vcpu;
544         int ret = 0;
545         unsigned long c;
546
547         kvm_for_each_vcpu(c, vcpu, kvm) {
548                 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
549
550                 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
551                         kvm_debug("vcpu %ld redistributor base not set\n", c);
552                         return -ENXIO;
553                 }
554         }
555
556         if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
557                 kvm_debug("Need to set vgic distributor addresses first\n");
558                 return -ENXIO;
559         }
560
561         if (!vgic_v3_check_base(kvm)) {
562                 kvm_debug("VGIC redist and dist frames overlap\n");
563                 return -EINVAL;
564         }
565
566         /*
567          * For a VGICv3 we require the userland to explicitly initialize
568          * the VGIC before we need to use it.
569          */
570         if (!vgic_initialized(kvm)) {
571                 return -EBUSY;
572         }
573
574         ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
575         if (ret) {
576                 kvm_err("Unable to register VGICv3 dist MMIO regions\n");
577                 return ret;
578         }
579
580         if (kvm_vgic_global_state.has_gicv4_1)
581                 vgic_v4_configure_vsgis(kvm);
582
583         return 0;
584 }
585
586 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
587
588 static int __init early_group0_trap_cfg(char *buf)
589 {
590         return strtobool(buf, &group0_trap);
591 }
592 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
593
594 static int __init early_group1_trap_cfg(char *buf)
595 {
596         return strtobool(buf, &group1_trap);
597 }
598 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
599
600 static int __init early_common_trap_cfg(char *buf)
601 {
602         return strtobool(buf, &common_trap);
603 }
604 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
605
606 static int __init early_gicv4_enable(char *buf)
607 {
608         return strtobool(buf, &gicv4_enable);
609 }
610 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
611
612 static const struct midr_range broken_seis[] = {
613         MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM),
614         MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM),
615         {},
616 };
617
618 static bool vgic_v3_broken_seis(void)
619 {
620         return ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK) &&
621                 is_midr_in_range_list(read_cpuid_id(), broken_seis));
622 }
623
624 /**
625  * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller
626  * @info:       pointer to the GIC description
627  *
628  * Returns 0 if the VGICv3 has been probed successfully, returns an error code
629  * otherwise
630  */
631 int vgic_v3_probe(const struct gic_kvm_info *info)
632 {
633         u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config);
634         bool has_v2;
635         int ret;
636
637         has_v2 = ich_vtr_el2 >> 63;
638         ich_vtr_el2 = (u32)ich_vtr_el2;
639
640         /*
641          * The ListRegs field is 5 bits, but there is an architectural
642          * maximum of 16 list registers. Just ignore bit 4...
643          */
644         kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
645         kvm_vgic_global_state.can_emulate_gicv2 = false;
646         kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
647
648         /* GICv4 support? */
649         if (info->has_v4) {
650                 kvm_vgic_global_state.has_gicv4 = gicv4_enable;
651                 kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable;
652                 kvm_info("GICv4%s support %sabled\n",
653                          kvm_vgic_global_state.has_gicv4_1 ? ".1" : "",
654                          gicv4_enable ? "en" : "dis");
655         }
656
657         kvm_vgic_global_state.vcpu_base = 0;
658
659         if (!info->vcpu.start) {
660                 kvm_info("GICv3: no GICV resource entry\n");
661         } else if (!has_v2) {
662                 pr_warn(FW_BUG "CPU interface incapable of MMIO access\n");
663         } else if (!PAGE_ALIGNED(info->vcpu.start)) {
664                 pr_warn("GICV physical address 0x%llx not page aligned\n",
665                         (unsigned long long)info->vcpu.start);
666         } else if (kvm_get_mode() != KVM_MODE_PROTECTED) {
667                 kvm_vgic_global_state.vcpu_base = info->vcpu.start;
668                 kvm_vgic_global_state.can_emulate_gicv2 = true;
669                 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
670                 if (ret) {
671                         kvm_err("Cannot register GICv2 KVM device.\n");
672                         return ret;
673                 }
674                 kvm_info("vgic-v2@%llx\n", info->vcpu.start);
675         }
676         ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
677         if (ret) {
678                 kvm_err("Cannot register GICv3 KVM device.\n");
679                 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
680                 return ret;
681         }
682
683         if (kvm_vgic_global_state.vcpu_base == 0)
684                 kvm_info("disabling GICv2 emulation\n");
685
686         if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
687                 group0_trap = true;
688                 group1_trap = true;
689         }
690
691         if (vgic_v3_broken_seis()) {
692                 kvm_info("GICv3 with broken locally generated SEI\n");
693
694                 kvm_vgic_global_state.ich_vtr_el2 &= ~ICH_VTR_SEIS_MASK;
695                 group0_trap = true;
696                 group1_trap = true;
697                 if (ich_vtr_el2 & ICH_VTR_TDS_MASK)
698                         dir_trap = true;
699                 else
700                         common_trap = true;
701         }
702
703         if (group0_trap || group1_trap || common_trap | dir_trap) {
704                 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s%s], reduced performance)\n",
705                          group0_trap ? "G0" : "",
706                          group1_trap ? "G1" : "",
707                          common_trap ? "C"  : "",
708                          dir_trap    ? "D"  : "");
709                 static_branch_enable(&vgic_v3_cpuif_trap);
710         }
711
712         kvm_vgic_global_state.vctrl_base = NULL;
713         kvm_vgic_global_state.type = VGIC_V3;
714         kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
715
716         return 0;
717 }
718
719 void vgic_v3_load(struct kvm_vcpu *vcpu)
720 {
721         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
722
723         /*
724          * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
725          * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
726          * VMCR_EL2 save/restore in the world switch.
727          */
728         if (likely(cpu_if->vgic_sre))
729                 kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
730
731         kvm_call_hyp(__vgic_v3_restore_aprs, cpu_if);
732
733         if (has_vhe())
734                 __vgic_v3_activate_traps(cpu_if);
735
736         WARN_ON(vgic_v4_load(vcpu));
737 }
738
739 void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu)
740 {
741         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
742
743         if (likely(cpu_if->vgic_sre))
744                 cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr);
745 }
746
747 void vgic_v3_put(struct kvm_vcpu *vcpu)
748 {
749         struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
750
751         WARN_ON(vgic_v4_put(vcpu, false));
752
753         vgic_v3_vmcr_sync(vcpu);
754
755         kvm_call_hyp(__vgic_v3_save_aprs, cpu_if);
756
757         if (has_vhe())
758                 __vgic_v3_deactivate_traps(cpu_if);
759 }