Merge tag 'x86-timers-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29
30 #include <trace/events/kvm.h>
31
32 #include "sys_regs.h"
33
34 #include "trace.h"
35
36 /*
37  * All of this file is extremely similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46
47 static bool read_from_write_only(struct kvm_vcpu *vcpu,
48                                  struct sys_reg_params *params,
49                                  const struct sys_reg_desc *r)
50 {
51         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
52         print_sys_reg_instr(params);
53         kvm_inject_undefined(vcpu);
54         return false;
55 }
56
57 static bool write_to_read_only(struct kvm_vcpu *vcpu,
58                                struct sys_reg_params *params,
59                                const struct sys_reg_desc *r)
60 {
61         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
62         print_sys_reg_instr(params);
63         kvm_inject_undefined(vcpu);
64         return false;
65 }
66
67 static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
68 {
69         /*
70          * System registers listed in the switch are not saved on every
71          * exit from the guest but are only saved on vcpu_put.
72          *
73          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
74          * should never be listed below, because the guest cannot modify its
75          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
76          * thread when emulating cross-VCPU communication.
77          */
78         switch (reg) {
79         case CSSELR_EL1:        *val = read_sysreg_s(SYS_CSSELR_EL1);   break;
80         case SCTLR_EL1:         *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
81         case CPACR_EL1:         *val = read_sysreg_s(SYS_CPACR_EL12);   break;
82         case TTBR0_EL1:         *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
83         case TTBR1_EL1:         *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
84         case TCR_EL1:           *val = read_sysreg_s(SYS_TCR_EL12);     break;
85         case ESR_EL1:           *val = read_sysreg_s(SYS_ESR_EL12);     break;
86         case AFSR0_EL1:         *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
87         case AFSR1_EL1:         *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
88         case FAR_EL1:           *val = read_sysreg_s(SYS_FAR_EL12);     break;
89         case MAIR_EL1:          *val = read_sysreg_s(SYS_MAIR_EL12);    break;
90         case VBAR_EL1:          *val = read_sysreg_s(SYS_VBAR_EL12);    break;
91         case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
92         case TPIDR_EL0:         *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
93         case TPIDRRO_EL0:       *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
94         case TPIDR_EL1:         *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
95         case AMAIR_EL1:         *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
96         case CNTKCTL_EL1:       *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
97         case PAR_EL1:           *val = read_sysreg_s(SYS_PAR_EL1);      break;
98         case DACR32_EL2:        *val = read_sysreg_s(SYS_DACR32_EL2);   break;
99         case IFSR32_EL2:        *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
100         case DBGVCR32_EL2:      *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
101         default:                return false;
102         }
103
104         return true;
105 }
106
107 static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
108 {
109         /*
110          * System registers listed in the switch are not restored on every
111          * entry to the guest but are only restored on vcpu_load.
112          *
113          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
114          * should never be listed below, because the MPIDR should only be set
115          * once, before running the VCPU, and never changed later.
116          */
117         switch (reg) {
118         case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    break;
119         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    break;
120         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    break;
121         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    break;
122         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    break;
123         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      break;
124         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      break;
125         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    break;
126         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    break;
127         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      break;
128         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     break;
129         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     break;
130         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
131         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     break;
132         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
133         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     break;
134         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    break;
135         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
136         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       break;
137         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    break;
138         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    break;
139         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
140         default:                return false;
141         }
142
143         return true;
144 }
145
146 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
147 {
148         u64 val = 0x8badf00d8badf00d;
149
150         if (vcpu->arch.sysregs_loaded_on_cpu &&
151             __vcpu_read_sys_reg_from_cpu(reg, &val))
152                 return val;
153
154         return __vcpu_sys_reg(vcpu, reg);
155 }
156
157 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
158 {
159         if (vcpu->arch.sysregs_loaded_on_cpu &&
160             __vcpu_write_sys_reg_to_cpu(val, reg))
161                 return;
162
163          __vcpu_sys_reg(vcpu, reg) = val;
164 }
165
166 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
167 static u32 cache_levels;
168
169 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
170 #define CSSELR_MAX 12
171
172 /* Which cache CCSIDR represents depends on CSSELR value. */
173 static u32 get_ccsidr(u32 csselr)
174 {
175         u32 ccsidr;
176
177         /* Make sure noone else changes CSSELR during this! */
178         local_irq_disable();
179         write_sysreg(csselr, csselr_el1);
180         isb();
181         ccsidr = read_sysreg(ccsidr_el1);
182         local_irq_enable();
183
184         return ccsidr;
185 }
186
187 /*
188  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
189  */
190 static bool access_dcsw(struct kvm_vcpu *vcpu,
191                         struct sys_reg_params *p,
192                         const struct sys_reg_desc *r)
193 {
194         if (!p->is_write)
195                 return read_from_write_only(vcpu, p, r);
196
197         /*
198          * Only track S/W ops if we don't have FWB. It still indicates
199          * that the guest is a bit broken (S/W operations should only
200          * be done by firmware, knowing that there is only a single
201          * CPU left in the system, and certainly not from non-secure
202          * software).
203          */
204         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
205                 kvm_set_way_flush(vcpu);
206
207         return true;
208 }
209
210 /*
211  * Generic accessor for VM registers. Only called as long as HCR_TVM
212  * is set. If the guest enables the MMU, we stop trapping the VM
213  * sys_regs and leave it in complete control of the caches.
214  */
215 static bool access_vm_reg(struct kvm_vcpu *vcpu,
216                           struct sys_reg_params *p,
217                           const struct sys_reg_desc *r)
218 {
219         bool was_enabled = vcpu_has_cache_enabled(vcpu);
220         u64 val;
221         int reg = r->reg;
222
223         BUG_ON(!p->is_write);
224
225         /* See the 32bit mapping in kvm_host.h */
226         if (p->is_aarch32)
227                 reg = r->reg / 2;
228
229         if (!p->is_aarch32 || !p->is_32bit) {
230                 val = p->regval;
231         } else {
232                 val = vcpu_read_sys_reg(vcpu, reg);
233                 if (r->reg % 2)
234                         val = (p->regval << 32) | (u64)lower_32_bits(val);
235                 else
236                         val = ((u64)upper_32_bits(val) << 32) |
237                                 lower_32_bits(p->regval);
238         }
239         vcpu_write_sys_reg(vcpu, val, reg);
240
241         kvm_toggle_cache(vcpu, was_enabled);
242         return true;
243 }
244
245 /*
246  * Trap handler for the GICv3 SGI generation system register.
247  * Forward the request to the VGIC emulation.
248  * The cp15_64 code makes sure this automatically works
249  * for both AArch64 and AArch32 accesses.
250  */
251 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
252                            struct sys_reg_params *p,
253                            const struct sys_reg_desc *r)
254 {
255         bool g1;
256
257         if (!p->is_write)
258                 return read_from_write_only(vcpu, p, r);
259
260         /*
261          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
262          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
263          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
264          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
265          * group.
266          */
267         if (p->is_aarch32) {
268                 switch (p->Op1) {
269                 default:                /* Keep GCC quiet */
270                 case 0:                 /* ICC_SGI1R */
271                         g1 = true;
272                         break;
273                 case 1:                 /* ICC_ASGI1R */
274                 case 2:                 /* ICC_SGI0R */
275                         g1 = false;
276                         break;
277                 }
278         } else {
279                 switch (p->Op2) {
280                 default:                /* Keep GCC quiet */
281                 case 5:                 /* ICC_SGI1R_EL1 */
282                         g1 = true;
283                         break;
284                 case 6:                 /* ICC_ASGI1R_EL1 */
285                 case 7:                 /* ICC_SGI0R_EL1 */
286                         g1 = false;
287                         break;
288                 }
289         }
290
291         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
292
293         return true;
294 }
295
296 static bool access_gic_sre(struct kvm_vcpu *vcpu,
297                            struct sys_reg_params *p,
298                            const struct sys_reg_desc *r)
299 {
300         if (p->is_write)
301                 return ignore_write(vcpu, p);
302
303         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
304         return true;
305 }
306
307 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
308                         struct sys_reg_params *p,
309                         const struct sys_reg_desc *r)
310 {
311         if (p->is_write)
312                 return ignore_write(vcpu, p);
313         else
314                 return read_zero(vcpu, p);
315 }
316
317 /*
318  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
319  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
320  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
321  * treat it separately.
322  */
323 static bool trap_loregion(struct kvm_vcpu *vcpu,
324                           struct sys_reg_params *p,
325                           const struct sys_reg_desc *r)
326 {
327         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
328         u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
329                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
330
331         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
332                 kvm_inject_undefined(vcpu);
333                 return false;
334         }
335
336         if (p->is_write && sr == SYS_LORID_EL1)
337                 return write_to_read_only(vcpu, p, r);
338
339         return trap_raz_wi(vcpu, p, r);
340 }
341
342 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
343                            struct sys_reg_params *p,
344                            const struct sys_reg_desc *r)
345 {
346         if (p->is_write) {
347                 return ignore_write(vcpu, p);
348         } else {
349                 p->regval = (1 << 3);
350                 return true;
351         }
352 }
353
354 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
355                                    struct sys_reg_params *p,
356                                    const struct sys_reg_desc *r)
357 {
358         if (p->is_write) {
359                 return ignore_write(vcpu, p);
360         } else {
361                 p->regval = read_sysreg(dbgauthstatus_el1);
362                 return true;
363         }
364 }
365
366 /*
367  * We want to avoid world-switching all the DBG registers all the
368  * time:
369  * 
370  * - If we've touched any debug register, it is likely that we're
371  *   going to touch more of them. It then makes sense to disable the
372  *   traps and start doing the save/restore dance
373  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
374  *   then mandatory to save/restore the registers, as the guest
375  *   depends on them.
376  * 
377  * For this, we use a DIRTY bit, indicating the guest has modified the
378  * debug registers, used as follow:
379  *
380  * On guest entry:
381  * - If the dirty bit is set (because we're coming back from trapping),
382  *   disable the traps, save host registers, restore guest registers.
383  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
384  *   set the dirty bit, disable the traps, save host registers,
385  *   restore guest registers.
386  * - Otherwise, enable the traps
387  *
388  * On guest exit:
389  * - If the dirty bit is set, save guest registers, restore host
390  *   registers and clear the dirty bit. This ensure that the host can
391  *   now use the debug registers.
392  */
393 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
394                             struct sys_reg_params *p,
395                             const struct sys_reg_desc *r)
396 {
397         if (p->is_write) {
398                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
399                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
400         } else {
401                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
402         }
403
404         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
405
406         return true;
407 }
408
409 /*
410  * reg_to_dbg/dbg_to_reg
411  *
412  * A 32 bit write to a debug register leave top bits alone
413  * A 32 bit read from a debug register only returns the bottom bits
414  *
415  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
416  * hyp.S code switches between host and guest values in future.
417  */
418 static void reg_to_dbg(struct kvm_vcpu *vcpu,
419                        struct sys_reg_params *p,
420                        u64 *dbg_reg)
421 {
422         u64 val = p->regval;
423
424         if (p->is_32bit) {
425                 val &= 0xffffffffUL;
426                 val |= ((*dbg_reg >> 32) << 32);
427         }
428
429         *dbg_reg = val;
430         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
431 }
432
433 static void dbg_to_reg(struct kvm_vcpu *vcpu,
434                        struct sys_reg_params *p,
435                        u64 *dbg_reg)
436 {
437         p->regval = *dbg_reg;
438         if (p->is_32bit)
439                 p->regval &= 0xffffffffUL;
440 }
441
442 static bool trap_bvr(struct kvm_vcpu *vcpu,
443                      struct sys_reg_params *p,
444                      const struct sys_reg_desc *rd)
445 {
446         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
447
448         if (p->is_write)
449                 reg_to_dbg(vcpu, p, dbg_reg);
450         else
451                 dbg_to_reg(vcpu, p, dbg_reg);
452
453         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
454
455         return true;
456 }
457
458 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
459                 const struct kvm_one_reg *reg, void __user *uaddr)
460 {
461         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
462
463         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
464                 return -EFAULT;
465         return 0;
466 }
467
468 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
469         const struct kvm_one_reg *reg, void __user *uaddr)
470 {
471         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
472
473         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
474                 return -EFAULT;
475         return 0;
476 }
477
478 static void reset_bvr(struct kvm_vcpu *vcpu,
479                       const struct sys_reg_desc *rd)
480 {
481         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
482 }
483
484 static bool trap_bcr(struct kvm_vcpu *vcpu,
485                      struct sys_reg_params *p,
486                      const struct sys_reg_desc *rd)
487 {
488         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
489
490         if (p->is_write)
491                 reg_to_dbg(vcpu, p, dbg_reg);
492         else
493                 dbg_to_reg(vcpu, p, dbg_reg);
494
495         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
496
497         return true;
498 }
499
500 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
501                 const struct kvm_one_reg *reg, void __user *uaddr)
502 {
503         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
504
505         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
506                 return -EFAULT;
507
508         return 0;
509 }
510
511 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
512         const struct kvm_one_reg *reg, void __user *uaddr)
513 {
514         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
515
516         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
517                 return -EFAULT;
518         return 0;
519 }
520
521 static void reset_bcr(struct kvm_vcpu *vcpu,
522                       const struct sys_reg_desc *rd)
523 {
524         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
525 }
526
527 static bool trap_wvr(struct kvm_vcpu *vcpu,
528                      struct sys_reg_params *p,
529                      const struct sys_reg_desc *rd)
530 {
531         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
532
533         if (p->is_write)
534                 reg_to_dbg(vcpu, p, dbg_reg);
535         else
536                 dbg_to_reg(vcpu, p, dbg_reg);
537
538         trace_trap_reg(__func__, rd->reg, p->is_write,
539                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
540
541         return true;
542 }
543
544 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
545                 const struct kvm_one_reg *reg, void __user *uaddr)
546 {
547         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
548
549         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
550                 return -EFAULT;
551         return 0;
552 }
553
554 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
555         const struct kvm_one_reg *reg, void __user *uaddr)
556 {
557         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
558
559         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
560                 return -EFAULT;
561         return 0;
562 }
563
564 static void reset_wvr(struct kvm_vcpu *vcpu,
565                       const struct sys_reg_desc *rd)
566 {
567         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
568 }
569
570 static bool trap_wcr(struct kvm_vcpu *vcpu,
571                      struct sys_reg_params *p,
572                      const struct sys_reg_desc *rd)
573 {
574         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
575
576         if (p->is_write)
577                 reg_to_dbg(vcpu, p, dbg_reg);
578         else
579                 dbg_to_reg(vcpu, p, dbg_reg);
580
581         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
582
583         return true;
584 }
585
586 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
587                 const struct kvm_one_reg *reg, void __user *uaddr)
588 {
589         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
590
591         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
592                 return -EFAULT;
593         return 0;
594 }
595
596 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
597         const struct kvm_one_reg *reg, void __user *uaddr)
598 {
599         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
600
601         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
602                 return -EFAULT;
603         return 0;
604 }
605
606 static void reset_wcr(struct kvm_vcpu *vcpu,
607                       const struct sys_reg_desc *rd)
608 {
609         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
610 }
611
612 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
613 {
614         u64 amair = read_sysreg(amair_el1);
615         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
616 }
617
618 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
619 {
620         u64 mpidr;
621
622         /*
623          * Map the vcpu_id into the first three affinity level fields of
624          * the MPIDR. We limit the number of VCPUs in level 0 due to a
625          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
626          * of the GICv3 to be able to address each CPU directly when
627          * sending IPIs.
628          */
629         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
630         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
631         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
632         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
633 }
634
635 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
636 {
637         u64 pmcr, val;
638
639         pmcr = read_sysreg(pmcr_el0);
640         /*
641          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
642          * except PMCR.E resetting to zero.
643          */
644         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
645                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
646         if (!system_supports_32bit_el0())
647                 val |= ARMV8_PMU_PMCR_LC;
648         __vcpu_sys_reg(vcpu, r->reg) = val;
649 }
650
651 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
652 {
653         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
654         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
655
656         if (!enabled)
657                 kvm_inject_undefined(vcpu);
658
659         return !enabled;
660 }
661
662 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
663 {
664         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
665 }
666
667 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
668 {
669         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
670 }
671
672 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
673 {
674         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
675 }
676
677 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
678 {
679         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
680 }
681
682 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
683                         const struct sys_reg_desc *r)
684 {
685         u64 val;
686
687         if (!kvm_arm_pmu_v3_ready(vcpu))
688                 return trap_raz_wi(vcpu, p, r);
689
690         if (pmu_access_el0_disabled(vcpu))
691                 return false;
692
693         if (p->is_write) {
694                 /* Only update writeable bits of PMCR */
695                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
696                 val &= ~ARMV8_PMU_PMCR_MASK;
697                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
698                 if (!system_supports_32bit_el0())
699                         val |= ARMV8_PMU_PMCR_LC;
700                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
701                 kvm_pmu_handle_pmcr(vcpu, val);
702                 kvm_vcpu_pmu_restore_guest(vcpu);
703         } else {
704                 /* PMCR.P & PMCR.C are RAZ */
705                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
706                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
707                 p->regval = val;
708         }
709
710         return true;
711 }
712
713 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
714                           const struct sys_reg_desc *r)
715 {
716         if (!kvm_arm_pmu_v3_ready(vcpu))
717                 return trap_raz_wi(vcpu, p, r);
718
719         if (pmu_access_event_counter_el0_disabled(vcpu))
720                 return false;
721
722         if (p->is_write)
723                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
724         else
725                 /* return PMSELR.SEL field */
726                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
727                             & ARMV8_PMU_COUNTER_MASK;
728
729         return true;
730 }
731
732 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
733                           const struct sys_reg_desc *r)
734 {
735         u64 pmceid;
736
737         if (!kvm_arm_pmu_v3_ready(vcpu))
738                 return trap_raz_wi(vcpu, p, r);
739
740         BUG_ON(p->is_write);
741
742         if (pmu_access_el0_disabled(vcpu))
743                 return false;
744
745         if (!(p->Op2 & 1))
746                 pmceid = read_sysreg(pmceid0_el0);
747         else
748                 pmceid = read_sysreg(pmceid1_el0);
749
750         p->regval = pmceid;
751
752         return true;
753 }
754
755 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
756 {
757         u64 pmcr, val;
758
759         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
760         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
761         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
762                 kvm_inject_undefined(vcpu);
763                 return false;
764         }
765
766         return true;
767 }
768
769 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
770                               struct sys_reg_params *p,
771                               const struct sys_reg_desc *r)
772 {
773         u64 idx;
774
775         if (!kvm_arm_pmu_v3_ready(vcpu))
776                 return trap_raz_wi(vcpu, p, r);
777
778         if (r->CRn == 9 && r->CRm == 13) {
779                 if (r->Op2 == 2) {
780                         /* PMXEVCNTR_EL0 */
781                         if (pmu_access_event_counter_el0_disabled(vcpu))
782                                 return false;
783
784                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
785                               & ARMV8_PMU_COUNTER_MASK;
786                 } else if (r->Op2 == 0) {
787                         /* PMCCNTR_EL0 */
788                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
789                                 return false;
790
791                         idx = ARMV8_PMU_CYCLE_IDX;
792                 } else {
793                         return false;
794                 }
795         } else if (r->CRn == 0 && r->CRm == 9) {
796                 /* PMCCNTR */
797                 if (pmu_access_event_counter_el0_disabled(vcpu))
798                         return false;
799
800                 idx = ARMV8_PMU_CYCLE_IDX;
801         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
802                 /* PMEVCNTRn_EL0 */
803                 if (pmu_access_event_counter_el0_disabled(vcpu))
804                         return false;
805
806                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
807         } else {
808                 return false;
809         }
810
811         if (!pmu_counter_idx_valid(vcpu, idx))
812                 return false;
813
814         if (p->is_write) {
815                 if (pmu_access_el0_disabled(vcpu))
816                         return false;
817
818                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
819         } else {
820                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
821         }
822
823         return true;
824 }
825
826 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
827                                const struct sys_reg_desc *r)
828 {
829         u64 idx, reg;
830
831         if (!kvm_arm_pmu_v3_ready(vcpu))
832                 return trap_raz_wi(vcpu, p, r);
833
834         if (pmu_access_el0_disabled(vcpu))
835                 return false;
836
837         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
838                 /* PMXEVTYPER_EL0 */
839                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
840                 reg = PMEVTYPER0_EL0 + idx;
841         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
842                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
843                 if (idx == ARMV8_PMU_CYCLE_IDX)
844                         reg = PMCCFILTR_EL0;
845                 else
846                         /* PMEVTYPERn_EL0 */
847                         reg = PMEVTYPER0_EL0 + idx;
848         } else {
849                 BUG();
850         }
851
852         if (!pmu_counter_idx_valid(vcpu, idx))
853                 return false;
854
855         if (p->is_write) {
856                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
857                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
858                 kvm_vcpu_pmu_restore_guest(vcpu);
859         } else {
860                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
861         }
862
863         return true;
864 }
865
866 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
867                            const struct sys_reg_desc *r)
868 {
869         u64 val, mask;
870
871         if (!kvm_arm_pmu_v3_ready(vcpu))
872                 return trap_raz_wi(vcpu, p, r);
873
874         if (pmu_access_el0_disabled(vcpu))
875                 return false;
876
877         mask = kvm_pmu_valid_counter_mask(vcpu);
878         if (p->is_write) {
879                 val = p->regval & mask;
880                 if (r->Op2 & 0x1) {
881                         /* accessing PMCNTENSET_EL0 */
882                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
883                         kvm_pmu_enable_counter_mask(vcpu, val);
884                         kvm_vcpu_pmu_restore_guest(vcpu);
885                 } else {
886                         /* accessing PMCNTENCLR_EL0 */
887                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
888                         kvm_pmu_disable_counter_mask(vcpu, val);
889                 }
890         } else {
891                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
892         }
893
894         return true;
895 }
896
897 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
898                            const struct sys_reg_desc *r)
899 {
900         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
901
902         if (!kvm_arm_pmu_v3_ready(vcpu))
903                 return trap_raz_wi(vcpu, p, r);
904
905         if (!vcpu_mode_priv(vcpu)) {
906                 kvm_inject_undefined(vcpu);
907                 return false;
908         }
909
910         if (p->is_write) {
911                 u64 val = p->regval & mask;
912
913                 if (r->Op2 & 0x1)
914                         /* accessing PMINTENSET_EL1 */
915                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
916                 else
917                         /* accessing PMINTENCLR_EL1 */
918                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
919         } else {
920                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
921         }
922
923         return true;
924 }
925
926 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
927                          const struct sys_reg_desc *r)
928 {
929         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
930
931         if (!kvm_arm_pmu_v3_ready(vcpu))
932                 return trap_raz_wi(vcpu, p, r);
933
934         if (pmu_access_el0_disabled(vcpu))
935                 return false;
936
937         if (p->is_write) {
938                 if (r->CRm & 0x2)
939                         /* accessing PMOVSSET_EL0 */
940                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
941                 else
942                         /* accessing PMOVSCLR_EL0 */
943                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
944         } else {
945                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
946         }
947
948         return true;
949 }
950
951 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
952                            const struct sys_reg_desc *r)
953 {
954         u64 mask;
955
956         if (!kvm_arm_pmu_v3_ready(vcpu))
957                 return trap_raz_wi(vcpu, p, r);
958
959         if (!p->is_write)
960                 return read_from_write_only(vcpu, p, r);
961
962         if (pmu_write_swinc_el0_disabled(vcpu))
963                 return false;
964
965         mask = kvm_pmu_valid_counter_mask(vcpu);
966         kvm_pmu_software_increment(vcpu, p->regval & mask);
967         return true;
968 }
969
970 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
971                              const struct sys_reg_desc *r)
972 {
973         if (!kvm_arm_pmu_v3_ready(vcpu))
974                 return trap_raz_wi(vcpu, p, r);
975
976         if (p->is_write) {
977                 if (!vcpu_mode_priv(vcpu)) {
978                         kvm_inject_undefined(vcpu);
979                         return false;
980                 }
981
982                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
983                                p->regval & ARMV8_PMU_USERENR_MASK;
984         } else {
985                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
986                             & ARMV8_PMU_USERENR_MASK;
987         }
988
989         return true;
990 }
991
992 #define reg_to_encoding(x)                                              \
993         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
994                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
995
996 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
997 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
998         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
999           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
1000         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
1001           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
1002         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
1003           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
1004         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
1005           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1006
1007 /* Macro to expand the PMEVCNTRn_EL0 register */
1008 #define PMU_PMEVCNTR_EL0(n)                                             \
1009         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
1010           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1011
1012 /* Macro to expand the PMEVTYPERn_EL0 register */
1013 #define PMU_PMEVTYPER_EL0(n)                                            \
1014         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
1015           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1016
1017 static bool access_amu(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1018                              const struct sys_reg_desc *r)
1019 {
1020         kvm_inject_undefined(vcpu);
1021
1022         return false;
1023 }
1024
1025 /* Macro to expand the AMU counter and type registers*/
1026 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), access_amu }
1027 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), access_amu }
1028 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), access_amu }
1029 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), access_amu }
1030
1031 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1032                          struct sys_reg_params *p,
1033                          const struct sys_reg_desc *rd)
1034 {
1035         /*
1036          * If we land here, that is because we didn't fixup the access on exit
1037          * by allowing the PtrAuth sysregs. The only way this happens is when
1038          * the guest does not have PtrAuth support enabled.
1039          */
1040         kvm_inject_undefined(vcpu);
1041
1042         return false;
1043 }
1044
1045 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1046                         const struct sys_reg_desc *rd)
1047 {
1048         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1049 }
1050
1051 #define __PTRAUTH_KEY(k)                                                \
1052         { SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k,           \
1053         .visibility = ptrauth_visibility}
1054
1055 #define PTRAUTH_KEY(k)                                                  \
1056         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1057         __PTRAUTH_KEY(k ## KEYHI_EL1)
1058
1059 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1060                               struct sys_reg_params *p,
1061                               const struct sys_reg_desc *r)
1062 {
1063         enum kvm_arch_timers tmr;
1064         enum kvm_arch_timer_regs treg;
1065         u64 reg = reg_to_encoding(r);
1066
1067         switch (reg) {
1068         case SYS_CNTP_TVAL_EL0:
1069         case SYS_AARCH32_CNTP_TVAL:
1070                 tmr = TIMER_PTIMER;
1071                 treg = TIMER_REG_TVAL;
1072                 break;
1073         case SYS_CNTP_CTL_EL0:
1074         case SYS_AARCH32_CNTP_CTL:
1075                 tmr = TIMER_PTIMER;
1076                 treg = TIMER_REG_CTL;
1077                 break;
1078         case SYS_CNTP_CVAL_EL0:
1079         case SYS_AARCH32_CNTP_CVAL:
1080                 tmr = TIMER_PTIMER;
1081                 treg = TIMER_REG_CVAL;
1082                 break;
1083         default:
1084                 BUG();
1085         }
1086
1087         if (p->is_write)
1088                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1089         else
1090                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1091
1092         return true;
1093 }
1094
1095 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1096 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1097                 struct sys_reg_desc const *r, bool raz)
1098 {
1099         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1100                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1101         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1102
1103         if (id == SYS_ID_AA64PFR0_EL1) {
1104                 if (!vcpu_has_sve(vcpu))
1105                         val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1106                 val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1107         } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1108                 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1109                          (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1110                          (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1111                          (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1112         } else if (id == SYS_ID_AA64DFR0_EL1) {
1113                 /* Limit guests to PMUv3 for ARMv8.1 */
1114                 val = cpuid_feature_cap_perfmon_field(val,
1115                                                 ID_AA64DFR0_PMUVER_SHIFT,
1116                                                 ID_AA64DFR0_PMUVER_8_1);
1117         } else if (id == SYS_ID_DFR0_EL1) {
1118                 /* Limit guests to PMUv3 for ARMv8.1 */
1119                 val = cpuid_feature_cap_perfmon_field(val,
1120                                                 ID_DFR0_PERFMON_SHIFT,
1121                                                 ID_DFR0_PERFMON_8_1);
1122         }
1123
1124         return val;
1125 }
1126
1127 /* cpufeature ID register access trap handlers */
1128
1129 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1130                             struct sys_reg_params *p,
1131                             const struct sys_reg_desc *r,
1132                             bool raz)
1133 {
1134         if (p->is_write)
1135                 return write_to_read_only(vcpu, p, r);
1136
1137         p->regval = read_id_reg(vcpu, r, raz);
1138         return true;
1139 }
1140
1141 static bool access_id_reg(struct kvm_vcpu *vcpu,
1142                           struct sys_reg_params *p,
1143                           const struct sys_reg_desc *r)
1144 {
1145         return __access_id_reg(vcpu, p, r, false);
1146 }
1147
1148 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1149                               struct sys_reg_params *p,
1150                               const struct sys_reg_desc *r)
1151 {
1152         return __access_id_reg(vcpu, p, r, true);
1153 }
1154
1155 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1156 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1157 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1158
1159 /* Visibility overrides for SVE-specific control registers */
1160 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1161                                    const struct sys_reg_desc *rd)
1162 {
1163         if (vcpu_has_sve(vcpu))
1164                 return 0;
1165
1166         return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1167 }
1168
1169 /* Visibility overrides for SVE-specific ID registers */
1170 static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
1171                                       const struct sys_reg_desc *rd)
1172 {
1173         if (vcpu_has_sve(vcpu))
1174                 return 0;
1175
1176         return REG_HIDDEN_USER;
1177 }
1178
1179 /* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
1180 static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
1181 {
1182         if (!vcpu_has_sve(vcpu))
1183                 return 0;
1184
1185         return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
1186 }
1187
1188 static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1189                                    struct sys_reg_params *p,
1190                                    const struct sys_reg_desc *rd)
1191 {
1192         if (p->is_write)
1193                 return write_to_read_only(vcpu, p, rd);
1194
1195         p->regval = guest_id_aa64zfr0_el1(vcpu);
1196         return true;
1197 }
1198
1199 static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1200                 const struct sys_reg_desc *rd,
1201                 const struct kvm_one_reg *reg, void __user *uaddr)
1202 {
1203         u64 val;
1204
1205         if (WARN_ON(!vcpu_has_sve(vcpu)))
1206                 return -ENOENT;
1207
1208         val = guest_id_aa64zfr0_el1(vcpu);
1209         return reg_to_user(uaddr, &val, reg->id);
1210 }
1211
1212 static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1213                 const struct sys_reg_desc *rd,
1214                 const struct kvm_one_reg *reg, void __user *uaddr)
1215 {
1216         const u64 id = sys_reg_to_index(rd);
1217         int err;
1218         u64 val;
1219
1220         if (WARN_ON(!vcpu_has_sve(vcpu)))
1221                 return -ENOENT;
1222
1223         err = reg_from_user(&val, uaddr, id);
1224         if (err)
1225                 return err;
1226
1227         /* This is what we mean by invariant: you can't change it. */
1228         if (val != guest_id_aa64zfr0_el1(vcpu))
1229                 return -EINVAL;
1230
1231         return 0;
1232 }
1233
1234 /*
1235  * cpufeature ID register user accessors
1236  *
1237  * For now, these registers are immutable for userspace, so no values
1238  * are stored, and for set_id_reg() we don't allow the effective value
1239  * to be changed.
1240  */
1241 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1242                         const struct sys_reg_desc *rd, void __user *uaddr,
1243                         bool raz)
1244 {
1245         const u64 id = sys_reg_to_index(rd);
1246         const u64 val = read_id_reg(vcpu, rd, raz);
1247
1248         return reg_to_user(uaddr, &val, id);
1249 }
1250
1251 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1252                         const struct sys_reg_desc *rd, void __user *uaddr,
1253                         bool raz)
1254 {
1255         const u64 id = sys_reg_to_index(rd);
1256         int err;
1257         u64 val;
1258
1259         err = reg_from_user(&val, uaddr, id);
1260         if (err)
1261                 return err;
1262
1263         /* This is what we mean by invariant: you can't change it. */
1264         if (val != read_id_reg(vcpu, rd, raz))
1265                 return -EINVAL;
1266
1267         return 0;
1268 }
1269
1270 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1271                       const struct kvm_one_reg *reg, void __user *uaddr)
1272 {
1273         return __get_id_reg(vcpu, rd, uaddr, false);
1274 }
1275
1276 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1277                       const struct kvm_one_reg *reg, void __user *uaddr)
1278 {
1279         return __set_id_reg(vcpu, rd, uaddr, false);
1280 }
1281
1282 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1283                           const struct kvm_one_reg *reg, void __user *uaddr)
1284 {
1285         return __get_id_reg(vcpu, rd, uaddr, true);
1286 }
1287
1288 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1289                           const struct kvm_one_reg *reg, void __user *uaddr)
1290 {
1291         return __set_id_reg(vcpu, rd, uaddr, true);
1292 }
1293
1294 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1295                        const struct sys_reg_desc *r)
1296 {
1297         if (p->is_write)
1298                 return write_to_read_only(vcpu, p, r);
1299
1300         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1301         return true;
1302 }
1303
1304 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1305                          const struct sys_reg_desc *r)
1306 {
1307         if (p->is_write)
1308                 return write_to_read_only(vcpu, p, r);
1309
1310         p->regval = read_sysreg(clidr_el1);
1311         return true;
1312 }
1313
1314 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1315                           const struct sys_reg_desc *r)
1316 {
1317         int reg = r->reg;
1318
1319         /* See the 32bit mapping in kvm_host.h */
1320         if (p->is_aarch32)
1321                 reg = r->reg / 2;
1322
1323         if (p->is_write)
1324                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1325         else
1326                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1327         return true;
1328 }
1329
1330 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1331                           const struct sys_reg_desc *r)
1332 {
1333         u32 csselr;
1334
1335         if (p->is_write)
1336                 return write_to_read_only(vcpu, p, r);
1337
1338         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1339         p->regval = get_ccsidr(csselr);
1340
1341         /*
1342          * Guests should not be doing cache operations by set/way at all, and
1343          * for this reason, we trap them and attempt to infer the intent, so
1344          * that we can flush the entire guest's address space at the appropriate
1345          * time.
1346          * To prevent this trapping from causing performance problems, let's
1347          * expose the geometry of all data and unified caches (which are
1348          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1349          * [If guests should attempt to infer aliasing properties from the
1350          * geometry (which is not permitted by the architecture), they would
1351          * only do so for virtually indexed caches.]
1352          */
1353         if (!(csselr & 1)) // data or unified cache
1354                 p->regval &= ~GENMASK(27, 3);
1355         return true;
1356 }
1357
1358 /* sys_reg_desc initialiser for known cpufeature ID registers */
1359 #define ID_SANITISED(name) {                    \
1360         SYS_DESC(SYS_##name),                   \
1361         .access = access_id_reg,                \
1362         .get_user = get_id_reg,                 \
1363         .set_user = set_id_reg,                 \
1364 }
1365
1366 /*
1367  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1368  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1369  * (1 <= crm < 8, 0 <= Op2 < 8).
1370  */
1371 #define ID_UNALLOCATED(crm, op2) {                      \
1372         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1373         .access = access_raz_id_reg,                    \
1374         .get_user = get_raz_id_reg,                     \
1375         .set_user = set_raz_id_reg,                     \
1376 }
1377
1378 /*
1379  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1380  * For now, these are exposed just like unallocated ID regs: they appear
1381  * RAZ for the guest.
1382  */
1383 #define ID_HIDDEN(name) {                       \
1384         SYS_DESC(SYS_##name),                   \
1385         .access = access_raz_id_reg,            \
1386         .get_user = get_raz_id_reg,             \
1387         .set_user = set_raz_id_reg,             \
1388 }
1389
1390 /*
1391  * Architected system registers.
1392  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1393  *
1394  * Debug handling: We do trap most, if not all debug related system
1395  * registers. The implementation is good enough to ensure that a guest
1396  * can use these with minimal performance degradation. The drawback is
1397  * that we don't implement any of the external debug, none of the
1398  * OSlock protocol. This should be revisited if we ever encounter a
1399  * more demanding guest...
1400  */
1401 static const struct sys_reg_desc sys_reg_descs[] = {
1402         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1403         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1404         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1405
1406         DBG_BCR_BVR_WCR_WVR_EL1(0),
1407         DBG_BCR_BVR_WCR_WVR_EL1(1),
1408         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1409         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1410         DBG_BCR_BVR_WCR_WVR_EL1(2),
1411         DBG_BCR_BVR_WCR_WVR_EL1(3),
1412         DBG_BCR_BVR_WCR_WVR_EL1(4),
1413         DBG_BCR_BVR_WCR_WVR_EL1(5),
1414         DBG_BCR_BVR_WCR_WVR_EL1(6),
1415         DBG_BCR_BVR_WCR_WVR_EL1(7),
1416         DBG_BCR_BVR_WCR_WVR_EL1(8),
1417         DBG_BCR_BVR_WCR_WVR_EL1(9),
1418         DBG_BCR_BVR_WCR_WVR_EL1(10),
1419         DBG_BCR_BVR_WCR_WVR_EL1(11),
1420         DBG_BCR_BVR_WCR_WVR_EL1(12),
1421         DBG_BCR_BVR_WCR_WVR_EL1(13),
1422         DBG_BCR_BVR_WCR_WVR_EL1(14),
1423         DBG_BCR_BVR_WCR_WVR_EL1(15),
1424
1425         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1426         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1427         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1428         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1429         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1430         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1431         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1432         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1433
1434         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1435         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1436         // DBGDTR[TR]X_EL0 share the same encoding
1437         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1438
1439         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1440
1441         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1442
1443         /*
1444          * ID regs: all ID_SANITISED() entries here must have corresponding
1445          * entries in arm64_ftr_regs[].
1446          */
1447
1448         /* AArch64 mappings of the AArch32 ID registers */
1449         /* CRm=1 */
1450         ID_SANITISED(ID_PFR0_EL1),
1451         ID_SANITISED(ID_PFR1_EL1),
1452         ID_SANITISED(ID_DFR0_EL1),
1453         ID_HIDDEN(ID_AFR0_EL1),
1454         ID_SANITISED(ID_MMFR0_EL1),
1455         ID_SANITISED(ID_MMFR1_EL1),
1456         ID_SANITISED(ID_MMFR2_EL1),
1457         ID_SANITISED(ID_MMFR3_EL1),
1458
1459         /* CRm=2 */
1460         ID_SANITISED(ID_ISAR0_EL1),
1461         ID_SANITISED(ID_ISAR1_EL1),
1462         ID_SANITISED(ID_ISAR2_EL1),
1463         ID_SANITISED(ID_ISAR3_EL1),
1464         ID_SANITISED(ID_ISAR4_EL1),
1465         ID_SANITISED(ID_ISAR5_EL1),
1466         ID_SANITISED(ID_MMFR4_EL1),
1467         ID_SANITISED(ID_ISAR6_EL1),
1468
1469         /* CRm=3 */
1470         ID_SANITISED(MVFR0_EL1),
1471         ID_SANITISED(MVFR1_EL1),
1472         ID_SANITISED(MVFR2_EL1),
1473         ID_UNALLOCATED(3,3),
1474         ID_SANITISED(ID_PFR2_EL1),
1475         ID_HIDDEN(ID_DFR1_EL1),
1476         ID_SANITISED(ID_MMFR5_EL1),
1477         ID_UNALLOCATED(3,7),
1478
1479         /* AArch64 ID registers */
1480         /* CRm=4 */
1481         ID_SANITISED(ID_AA64PFR0_EL1),
1482         ID_SANITISED(ID_AA64PFR1_EL1),
1483         ID_UNALLOCATED(4,2),
1484         ID_UNALLOCATED(4,3),
1485         { SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
1486         ID_UNALLOCATED(4,5),
1487         ID_UNALLOCATED(4,6),
1488         ID_UNALLOCATED(4,7),
1489
1490         /* CRm=5 */
1491         ID_SANITISED(ID_AA64DFR0_EL1),
1492         ID_SANITISED(ID_AA64DFR1_EL1),
1493         ID_UNALLOCATED(5,2),
1494         ID_UNALLOCATED(5,3),
1495         ID_HIDDEN(ID_AA64AFR0_EL1),
1496         ID_HIDDEN(ID_AA64AFR1_EL1),
1497         ID_UNALLOCATED(5,6),
1498         ID_UNALLOCATED(5,7),
1499
1500         /* CRm=6 */
1501         ID_SANITISED(ID_AA64ISAR0_EL1),
1502         ID_SANITISED(ID_AA64ISAR1_EL1),
1503         ID_UNALLOCATED(6,2),
1504         ID_UNALLOCATED(6,3),
1505         ID_UNALLOCATED(6,4),
1506         ID_UNALLOCATED(6,5),
1507         ID_UNALLOCATED(6,6),
1508         ID_UNALLOCATED(6,7),
1509
1510         /* CRm=7 */
1511         ID_SANITISED(ID_AA64MMFR0_EL1),
1512         ID_SANITISED(ID_AA64MMFR1_EL1),
1513         ID_SANITISED(ID_AA64MMFR2_EL1),
1514         ID_UNALLOCATED(7,3),
1515         ID_UNALLOCATED(7,4),
1516         ID_UNALLOCATED(7,5),
1517         ID_UNALLOCATED(7,6),
1518         ID_UNALLOCATED(7,7),
1519
1520         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1521         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1522         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1523         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1524         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1525         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1526
1527         PTRAUTH_KEY(APIA),
1528         PTRAUTH_KEY(APIB),
1529         PTRAUTH_KEY(APDA),
1530         PTRAUTH_KEY(APDB),
1531         PTRAUTH_KEY(APGA),
1532
1533         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1534         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1535         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1536
1537         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1538         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1539         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1540         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1541         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1542         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1543         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1544         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1545
1546         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1547         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1548
1549         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1550         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1551
1552         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1553         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1554
1555         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1556         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1557         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1558         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1559         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1560
1561         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1562         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1563
1564         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1565         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1566         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1567         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1568         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1569         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1570         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1571         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1572         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1573         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1574         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1575         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1576
1577         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1578         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1579
1580         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1581
1582         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1583         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1584         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1585         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1586
1587         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1588         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1589         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1590         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1591         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1592         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1593         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1594         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1595         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1596         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1597         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1598         /*
1599          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1600          * in 32bit mode. Here we choose to reset it as zero for consistency.
1601          */
1602         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1603         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1604
1605         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1606         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1607
1608         { SYS_DESC(SYS_AMCR_EL0), access_amu },
1609         { SYS_DESC(SYS_AMCFGR_EL0), access_amu },
1610         { SYS_DESC(SYS_AMCGCR_EL0), access_amu },
1611         { SYS_DESC(SYS_AMUSERENR_EL0), access_amu },
1612         { SYS_DESC(SYS_AMCNTENCLR0_EL0), access_amu },
1613         { SYS_DESC(SYS_AMCNTENSET0_EL0), access_amu },
1614         { SYS_DESC(SYS_AMCNTENCLR1_EL0), access_amu },
1615         { SYS_DESC(SYS_AMCNTENSET1_EL0), access_amu },
1616         AMU_AMEVCNTR0_EL0(0),
1617         AMU_AMEVCNTR0_EL0(1),
1618         AMU_AMEVCNTR0_EL0(2),
1619         AMU_AMEVCNTR0_EL0(3),
1620         AMU_AMEVCNTR0_EL0(4),
1621         AMU_AMEVCNTR0_EL0(5),
1622         AMU_AMEVCNTR0_EL0(6),
1623         AMU_AMEVCNTR0_EL0(7),
1624         AMU_AMEVCNTR0_EL0(8),
1625         AMU_AMEVCNTR0_EL0(9),
1626         AMU_AMEVCNTR0_EL0(10),
1627         AMU_AMEVCNTR0_EL0(11),
1628         AMU_AMEVCNTR0_EL0(12),
1629         AMU_AMEVCNTR0_EL0(13),
1630         AMU_AMEVCNTR0_EL0(14),
1631         AMU_AMEVCNTR0_EL0(15),
1632         AMU_AMEVTYPER0_EL0(0),
1633         AMU_AMEVTYPER0_EL0(1),
1634         AMU_AMEVTYPER0_EL0(2),
1635         AMU_AMEVTYPER0_EL0(3),
1636         AMU_AMEVTYPER0_EL0(4),
1637         AMU_AMEVTYPER0_EL0(5),
1638         AMU_AMEVTYPER0_EL0(6),
1639         AMU_AMEVTYPER0_EL0(7),
1640         AMU_AMEVTYPER0_EL0(8),
1641         AMU_AMEVTYPER0_EL0(9),
1642         AMU_AMEVTYPER0_EL0(10),
1643         AMU_AMEVTYPER0_EL0(11),
1644         AMU_AMEVTYPER0_EL0(12),
1645         AMU_AMEVTYPER0_EL0(13),
1646         AMU_AMEVTYPER0_EL0(14),
1647         AMU_AMEVTYPER0_EL0(15),
1648         AMU_AMEVCNTR1_EL0(0),
1649         AMU_AMEVCNTR1_EL0(1),
1650         AMU_AMEVCNTR1_EL0(2),
1651         AMU_AMEVCNTR1_EL0(3),
1652         AMU_AMEVCNTR1_EL0(4),
1653         AMU_AMEVCNTR1_EL0(5),
1654         AMU_AMEVCNTR1_EL0(6),
1655         AMU_AMEVCNTR1_EL0(7),
1656         AMU_AMEVCNTR1_EL0(8),
1657         AMU_AMEVCNTR1_EL0(9),
1658         AMU_AMEVCNTR1_EL0(10),
1659         AMU_AMEVCNTR1_EL0(11),
1660         AMU_AMEVCNTR1_EL0(12),
1661         AMU_AMEVCNTR1_EL0(13),
1662         AMU_AMEVCNTR1_EL0(14),
1663         AMU_AMEVCNTR1_EL0(15),
1664         AMU_AMEVTYPER1_EL0(0),
1665         AMU_AMEVTYPER1_EL0(1),
1666         AMU_AMEVTYPER1_EL0(2),
1667         AMU_AMEVTYPER1_EL0(3),
1668         AMU_AMEVTYPER1_EL0(4),
1669         AMU_AMEVTYPER1_EL0(5),
1670         AMU_AMEVTYPER1_EL0(6),
1671         AMU_AMEVTYPER1_EL0(7),
1672         AMU_AMEVTYPER1_EL0(8),
1673         AMU_AMEVTYPER1_EL0(9),
1674         AMU_AMEVTYPER1_EL0(10),
1675         AMU_AMEVTYPER1_EL0(11),
1676         AMU_AMEVTYPER1_EL0(12),
1677         AMU_AMEVTYPER1_EL0(13),
1678         AMU_AMEVTYPER1_EL0(14),
1679         AMU_AMEVTYPER1_EL0(15),
1680
1681         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1682         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1683         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1684
1685         /* PMEVCNTRn_EL0 */
1686         PMU_PMEVCNTR_EL0(0),
1687         PMU_PMEVCNTR_EL0(1),
1688         PMU_PMEVCNTR_EL0(2),
1689         PMU_PMEVCNTR_EL0(3),
1690         PMU_PMEVCNTR_EL0(4),
1691         PMU_PMEVCNTR_EL0(5),
1692         PMU_PMEVCNTR_EL0(6),
1693         PMU_PMEVCNTR_EL0(7),
1694         PMU_PMEVCNTR_EL0(8),
1695         PMU_PMEVCNTR_EL0(9),
1696         PMU_PMEVCNTR_EL0(10),
1697         PMU_PMEVCNTR_EL0(11),
1698         PMU_PMEVCNTR_EL0(12),
1699         PMU_PMEVCNTR_EL0(13),
1700         PMU_PMEVCNTR_EL0(14),
1701         PMU_PMEVCNTR_EL0(15),
1702         PMU_PMEVCNTR_EL0(16),
1703         PMU_PMEVCNTR_EL0(17),
1704         PMU_PMEVCNTR_EL0(18),
1705         PMU_PMEVCNTR_EL0(19),
1706         PMU_PMEVCNTR_EL0(20),
1707         PMU_PMEVCNTR_EL0(21),
1708         PMU_PMEVCNTR_EL0(22),
1709         PMU_PMEVCNTR_EL0(23),
1710         PMU_PMEVCNTR_EL0(24),
1711         PMU_PMEVCNTR_EL0(25),
1712         PMU_PMEVCNTR_EL0(26),
1713         PMU_PMEVCNTR_EL0(27),
1714         PMU_PMEVCNTR_EL0(28),
1715         PMU_PMEVCNTR_EL0(29),
1716         PMU_PMEVCNTR_EL0(30),
1717         /* PMEVTYPERn_EL0 */
1718         PMU_PMEVTYPER_EL0(0),
1719         PMU_PMEVTYPER_EL0(1),
1720         PMU_PMEVTYPER_EL0(2),
1721         PMU_PMEVTYPER_EL0(3),
1722         PMU_PMEVTYPER_EL0(4),
1723         PMU_PMEVTYPER_EL0(5),
1724         PMU_PMEVTYPER_EL0(6),
1725         PMU_PMEVTYPER_EL0(7),
1726         PMU_PMEVTYPER_EL0(8),
1727         PMU_PMEVTYPER_EL0(9),
1728         PMU_PMEVTYPER_EL0(10),
1729         PMU_PMEVTYPER_EL0(11),
1730         PMU_PMEVTYPER_EL0(12),
1731         PMU_PMEVTYPER_EL0(13),
1732         PMU_PMEVTYPER_EL0(14),
1733         PMU_PMEVTYPER_EL0(15),
1734         PMU_PMEVTYPER_EL0(16),
1735         PMU_PMEVTYPER_EL0(17),
1736         PMU_PMEVTYPER_EL0(18),
1737         PMU_PMEVTYPER_EL0(19),
1738         PMU_PMEVTYPER_EL0(20),
1739         PMU_PMEVTYPER_EL0(21),
1740         PMU_PMEVTYPER_EL0(22),
1741         PMU_PMEVTYPER_EL0(23),
1742         PMU_PMEVTYPER_EL0(24),
1743         PMU_PMEVTYPER_EL0(25),
1744         PMU_PMEVTYPER_EL0(26),
1745         PMU_PMEVTYPER_EL0(27),
1746         PMU_PMEVTYPER_EL0(28),
1747         PMU_PMEVTYPER_EL0(29),
1748         PMU_PMEVTYPER_EL0(30),
1749         /*
1750          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1751          * in 32bit mode. Here we choose to reset it as zero for consistency.
1752          */
1753         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1754
1755         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1756         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1757         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1758 };
1759
1760 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1761                         struct sys_reg_params *p,
1762                         const struct sys_reg_desc *r)
1763 {
1764         if (p->is_write) {
1765                 return ignore_write(vcpu, p);
1766         } else {
1767                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1768                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1769                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1770
1771                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1772                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1773                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1774                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1775                 return true;
1776         }
1777 }
1778
1779 static bool trap_debug32(struct kvm_vcpu *vcpu,
1780                          struct sys_reg_params *p,
1781                          const struct sys_reg_desc *r)
1782 {
1783         if (p->is_write) {
1784                 vcpu_cp14(vcpu, r->reg) = p->regval;
1785                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1786         } else {
1787                 p->regval = vcpu_cp14(vcpu, r->reg);
1788         }
1789
1790         return true;
1791 }
1792
1793 /* AArch32 debug register mappings
1794  *
1795  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1796  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1797  *
1798  * All control registers and watchpoint value registers are mapped to
1799  * the lower 32 bits of their AArch64 equivalents. We share the trap
1800  * handlers with the above AArch64 code which checks what mode the
1801  * system is in.
1802  */
1803
1804 static bool trap_xvr(struct kvm_vcpu *vcpu,
1805                      struct sys_reg_params *p,
1806                      const struct sys_reg_desc *rd)
1807 {
1808         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1809
1810         if (p->is_write) {
1811                 u64 val = *dbg_reg;
1812
1813                 val &= 0xffffffffUL;
1814                 val |= p->regval << 32;
1815                 *dbg_reg = val;
1816
1817                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1818         } else {
1819                 p->regval = *dbg_reg >> 32;
1820         }
1821
1822         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1823
1824         return true;
1825 }
1826
1827 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1828         /* DBGBVRn */                                                   \
1829         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1830         /* DBGBCRn */                                                   \
1831         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1832         /* DBGWVRn */                                                   \
1833         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1834         /* DBGWCRn */                                                   \
1835         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1836
1837 #define DBGBXVR(n)                                                      \
1838         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1839
1840 /*
1841  * Trapped cp14 registers. We generally ignore most of the external
1842  * debug, on the principle that they don't really make sense to a
1843  * guest. Revisit this one day, would this principle change.
1844  */
1845 static const struct sys_reg_desc cp14_regs[] = {
1846         /* DBGIDR */
1847         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1848         /* DBGDTRRXext */
1849         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1850
1851         DBG_BCR_BVR_WCR_WVR(0),
1852         /* DBGDSCRint */
1853         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1854         DBG_BCR_BVR_WCR_WVR(1),
1855         /* DBGDCCINT */
1856         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1857         /* DBGDSCRext */
1858         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1859         DBG_BCR_BVR_WCR_WVR(2),
1860         /* DBGDTR[RT]Xint */
1861         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1862         /* DBGDTR[RT]Xext */
1863         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1864         DBG_BCR_BVR_WCR_WVR(3),
1865         DBG_BCR_BVR_WCR_WVR(4),
1866         DBG_BCR_BVR_WCR_WVR(5),
1867         /* DBGWFAR */
1868         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1869         /* DBGOSECCR */
1870         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1871         DBG_BCR_BVR_WCR_WVR(6),
1872         /* DBGVCR */
1873         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1874         DBG_BCR_BVR_WCR_WVR(7),
1875         DBG_BCR_BVR_WCR_WVR(8),
1876         DBG_BCR_BVR_WCR_WVR(9),
1877         DBG_BCR_BVR_WCR_WVR(10),
1878         DBG_BCR_BVR_WCR_WVR(11),
1879         DBG_BCR_BVR_WCR_WVR(12),
1880         DBG_BCR_BVR_WCR_WVR(13),
1881         DBG_BCR_BVR_WCR_WVR(14),
1882         DBG_BCR_BVR_WCR_WVR(15),
1883
1884         /* DBGDRAR (32bit) */
1885         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1886
1887         DBGBXVR(0),
1888         /* DBGOSLAR */
1889         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1890         DBGBXVR(1),
1891         /* DBGOSLSR */
1892         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1893         DBGBXVR(2),
1894         DBGBXVR(3),
1895         /* DBGOSDLR */
1896         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1897         DBGBXVR(4),
1898         /* DBGPRCR */
1899         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1900         DBGBXVR(5),
1901         DBGBXVR(6),
1902         DBGBXVR(7),
1903         DBGBXVR(8),
1904         DBGBXVR(9),
1905         DBGBXVR(10),
1906         DBGBXVR(11),
1907         DBGBXVR(12),
1908         DBGBXVR(13),
1909         DBGBXVR(14),
1910         DBGBXVR(15),
1911
1912         /* DBGDSAR (32bit) */
1913         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1914
1915         /* DBGDEVID2 */
1916         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1917         /* DBGDEVID1 */
1918         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1919         /* DBGDEVID */
1920         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1921         /* DBGCLAIMSET */
1922         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1923         /* DBGCLAIMCLR */
1924         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1925         /* DBGAUTHSTATUS */
1926         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1927 };
1928
1929 /* Trapped cp14 64bit registers */
1930 static const struct sys_reg_desc cp14_64_regs[] = {
1931         /* DBGDRAR (64bit) */
1932         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1933
1934         /* DBGDSAR (64bit) */
1935         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1936 };
1937
1938 /* Macro to expand the PMEVCNTRn register */
1939 #define PMU_PMEVCNTR(n)                                                 \
1940         /* PMEVCNTRn */                                                 \
1941         { Op1(0), CRn(0b1110),                                          \
1942           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1943           access_pmu_evcntr }
1944
1945 /* Macro to expand the PMEVTYPERn register */
1946 #define PMU_PMEVTYPER(n)                                                \
1947         /* PMEVTYPERn */                                                \
1948         { Op1(0), CRn(0b1110),                                          \
1949           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1950           access_pmu_evtyper }
1951
1952 /*
1953  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1954  * depending on the way they are accessed (as a 32bit or a 64bit
1955  * register).
1956  */
1957 static const struct sys_reg_desc cp15_regs[] = {
1958         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1959         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1960         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1961         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1962         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1963         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1964         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1965         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1966         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1967         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1968         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1969         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1970
1971         /*
1972          * DC{C,I,CI}SW operations:
1973          */
1974         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1975         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1976         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1977
1978         /* PMU */
1979         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1980         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1981         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1982         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1983         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1984         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1985         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1986         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1987         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1988         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1989         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1990         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1991         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1992         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1993         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1994
1995         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1996         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1997         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1998         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1999
2000         /* ICC_SRE */
2001         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2002
2003         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
2004
2005         /* Arch Tmers */
2006         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2007         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2008
2009         /* PMEVCNTRn */
2010         PMU_PMEVCNTR(0),
2011         PMU_PMEVCNTR(1),
2012         PMU_PMEVCNTR(2),
2013         PMU_PMEVCNTR(3),
2014         PMU_PMEVCNTR(4),
2015         PMU_PMEVCNTR(5),
2016         PMU_PMEVCNTR(6),
2017         PMU_PMEVCNTR(7),
2018         PMU_PMEVCNTR(8),
2019         PMU_PMEVCNTR(9),
2020         PMU_PMEVCNTR(10),
2021         PMU_PMEVCNTR(11),
2022         PMU_PMEVCNTR(12),
2023         PMU_PMEVCNTR(13),
2024         PMU_PMEVCNTR(14),
2025         PMU_PMEVCNTR(15),
2026         PMU_PMEVCNTR(16),
2027         PMU_PMEVCNTR(17),
2028         PMU_PMEVCNTR(18),
2029         PMU_PMEVCNTR(19),
2030         PMU_PMEVCNTR(20),
2031         PMU_PMEVCNTR(21),
2032         PMU_PMEVCNTR(22),
2033         PMU_PMEVCNTR(23),
2034         PMU_PMEVCNTR(24),
2035         PMU_PMEVCNTR(25),
2036         PMU_PMEVCNTR(26),
2037         PMU_PMEVCNTR(27),
2038         PMU_PMEVCNTR(28),
2039         PMU_PMEVCNTR(29),
2040         PMU_PMEVCNTR(30),
2041         /* PMEVTYPERn */
2042         PMU_PMEVTYPER(0),
2043         PMU_PMEVTYPER(1),
2044         PMU_PMEVTYPER(2),
2045         PMU_PMEVTYPER(3),
2046         PMU_PMEVTYPER(4),
2047         PMU_PMEVTYPER(5),
2048         PMU_PMEVTYPER(6),
2049         PMU_PMEVTYPER(7),
2050         PMU_PMEVTYPER(8),
2051         PMU_PMEVTYPER(9),
2052         PMU_PMEVTYPER(10),
2053         PMU_PMEVTYPER(11),
2054         PMU_PMEVTYPER(12),
2055         PMU_PMEVTYPER(13),
2056         PMU_PMEVTYPER(14),
2057         PMU_PMEVTYPER(15),
2058         PMU_PMEVTYPER(16),
2059         PMU_PMEVTYPER(17),
2060         PMU_PMEVTYPER(18),
2061         PMU_PMEVTYPER(19),
2062         PMU_PMEVTYPER(20),
2063         PMU_PMEVTYPER(21),
2064         PMU_PMEVTYPER(22),
2065         PMU_PMEVTYPER(23),
2066         PMU_PMEVTYPER(24),
2067         PMU_PMEVTYPER(25),
2068         PMU_PMEVTYPER(26),
2069         PMU_PMEVTYPER(27),
2070         PMU_PMEVTYPER(28),
2071         PMU_PMEVTYPER(29),
2072         PMU_PMEVTYPER(30),
2073         /* PMCCFILTR */
2074         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2075
2076         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2077         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2078         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
2079 };
2080
2081 static const struct sys_reg_desc cp15_64_regs[] = {
2082         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
2083         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2084         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2085         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
2086         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2087         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2088         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2089 };
2090
2091 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2092                               bool is_32)
2093 {
2094         unsigned int i;
2095
2096         for (i = 0; i < n; i++) {
2097                 if (!is_32 && table[i].reg && !table[i].reset) {
2098                         kvm_err("sys_reg table %p entry %d has lacks reset\n",
2099                                 table, i);
2100                         return 1;
2101                 }
2102
2103                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2104                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2105                         return 1;
2106                 }
2107         }
2108
2109         return 0;
2110 }
2111
2112 /* Target specific emulation tables */
2113 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
2114
2115 void kvm_register_target_sys_reg_table(unsigned int target,
2116                                        struct kvm_sys_reg_target_table *table)
2117 {
2118         if (check_sysreg_table(table->table64.table, table->table64.num, false) ||
2119             check_sysreg_table(table->table32.table, table->table32.num, true))
2120                 return;
2121
2122         target_tables[target] = table;
2123 }
2124
2125 /* Get specific register table for this target. */
2126 static const struct sys_reg_desc *get_target_table(unsigned target,
2127                                                    bool mode_is_64,
2128                                                    size_t *num)
2129 {
2130         struct kvm_sys_reg_target_table *table;
2131
2132         table = target_tables[target];
2133         if (mode_is_64) {
2134                 *num = table->table64.num;
2135                 return table->table64.table;
2136         } else {
2137                 *num = table->table32.num;
2138                 return table->table32.table;
2139         }
2140 }
2141
2142 static int match_sys_reg(const void *key, const void *elt)
2143 {
2144         const unsigned long pval = (unsigned long)key;
2145         const struct sys_reg_desc *r = elt;
2146
2147         return pval - reg_to_encoding(r);
2148 }
2149
2150 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2151                                          const struct sys_reg_desc table[],
2152                                          unsigned int num)
2153 {
2154         unsigned long pval = reg_to_encoding(params);
2155
2156         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2157 }
2158
2159 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
2160 {
2161         kvm_inject_undefined(vcpu);
2162         return 1;
2163 }
2164
2165 static void perform_access(struct kvm_vcpu *vcpu,
2166                            struct sys_reg_params *params,
2167                            const struct sys_reg_desc *r)
2168 {
2169         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2170
2171         /* Check for regs disabled by runtime config */
2172         if (sysreg_hidden_from_guest(vcpu, r)) {
2173                 kvm_inject_undefined(vcpu);
2174                 return;
2175         }
2176
2177         /*
2178          * Not having an accessor means that we have configured a trap
2179          * that we don't know how to handle. This certainly qualifies
2180          * as a gross bug that should be fixed right away.
2181          */
2182         BUG_ON(!r->access);
2183
2184         /* Skip instruction if instructed so */
2185         if (likely(r->access(vcpu, params, r)))
2186                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2187 }
2188
2189 /*
2190  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2191  *                call the corresponding trap handler.
2192  *
2193  * @params: pointer to the descriptor of the access
2194  * @table: array of trap descriptors
2195  * @num: size of the trap descriptor array
2196  *
2197  * Return 0 if the access has been handled, and -1 if not.
2198  */
2199 static int emulate_cp(struct kvm_vcpu *vcpu,
2200                       struct sys_reg_params *params,
2201                       const struct sys_reg_desc *table,
2202                       size_t num)
2203 {
2204         const struct sys_reg_desc *r;
2205
2206         if (!table)
2207                 return -1;      /* Not handled */
2208
2209         r = find_reg(params, table, num);
2210
2211         if (r) {
2212                 perform_access(vcpu, params, r);
2213                 return 0;
2214         }
2215
2216         /* Not handled */
2217         return -1;
2218 }
2219
2220 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2221                                 struct sys_reg_params *params)
2222 {
2223         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
2224         int cp = -1;
2225
2226         switch(hsr_ec) {
2227         case ESR_ELx_EC_CP15_32:
2228         case ESR_ELx_EC_CP15_64:
2229                 cp = 15;
2230                 break;
2231         case ESR_ELx_EC_CP14_MR:
2232         case ESR_ELx_EC_CP14_64:
2233                 cp = 14;
2234                 break;
2235         default:
2236                 WARN_ON(1);
2237         }
2238
2239         print_sys_reg_msg(params,
2240                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2241                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2242         kvm_inject_undefined(vcpu);
2243 }
2244
2245 /**
2246  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2247  * @vcpu: The VCPU pointer
2248  * @run:  The kvm_run struct
2249  */
2250 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2251                             const struct sys_reg_desc *global,
2252                             size_t nr_global,
2253                             const struct sys_reg_desc *target_specific,
2254                             size_t nr_specific)
2255 {
2256         struct sys_reg_params params;
2257         u32 hsr = kvm_vcpu_get_hsr(vcpu);
2258         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2259         int Rt2 = (hsr >> 10) & 0x1f;
2260
2261         params.is_aarch32 = true;
2262         params.is_32bit = false;
2263         params.CRm = (hsr >> 1) & 0xf;
2264         params.is_write = ((hsr & 1) == 0);
2265
2266         params.Op0 = 0;
2267         params.Op1 = (hsr >> 16) & 0xf;
2268         params.Op2 = 0;
2269         params.CRn = 0;
2270
2271         /*
2272          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2273          * backends between AArch32 and AArch64, we get away with it.
2274          */
2275         if (params.is_write) {
2276                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2277                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2278         }
2279
2280         /*
2281          * Try to emulate the coprocessor access using the target
2282          * specific table first, and using the global table afterwards.
2283          * If either of the tables contains a handler, handle the
2284          * potential register operation in the case of a read and return
2285          * with success.
2286          */
2287         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2288             !emulate_cp(vcpu, &params, global, nr_global)) {
2289                 /* Split up the value between registers for the read side */
2290                 if (!params.is_write) {
2291                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2292                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2293                 }
2294
2295                 return 1;
2296         }
2297
2298         unhandled_cp_access(vcpu, &params);
2299         return 1;
2300 }
2301
2302 /**
2303  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2304  * @vcpu: The VCPU pointer
2305  * @run:  The kvm_run struct
2306  */
2307 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2308                             const struct sys_reg_desc *global,
2309                             size_t nr_global,
2310                             const struct sys_reg_desc *target_specific,
2311                             size_t nr_specific)
2312 {
2313         struct sys_reg_params params;
2314         u32 hsr = kvm_vcpu_get_hsr(vcpu);
2315         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2316
2317         params.is_aarch32 = true;
2318         params.is_32bit = true;
2319         params.CRm = (hsr >> 1) & 0xf;
2320         params.regval = vcpu_get_reg(vcpu, Rt);
2321         params.is_write = ((hsr & 1) == 0);
2322         params.CRn = (hsr >> 10) & 0xf;
2323         params.Op0 = 0;
2324         params.Op1 = (hsr >> 14) & 0x7;
2325         params.Op2 = (hsr >> 17) & 0x7;
2326
2327         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2328             !emulate_cp(vcpu, &params, global, nr_global)) {
2329                 if (!params.is_write)
2330                         vcpu_set_reg(vcpu, Rt, params.regval);
2331                 return 1;
2332         }
2333
2334         unhandled_cp_access(vcpu, &params);
2335         return 1;
2336 }
2337
2338 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2339 {
2340         const struct sys_reg_desc *target_specific;
2341         size_t num;
2342
2343         target_specific = get_target_table(vcpu->arch.target, false, &num);
2344         return kvm_handle_cp_64(vcpu,
2345                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2346                                 target_specific, num);
2347 }
2348
2349 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2350 {
2351         const struct sys_reg_desc *target_specific;
2352         size_t num;
2353
2354         target_specific = get_target_table(vcpu->arch.target, false, &num);
2355         return kvm_handle_cp_32(vcpu,
2356                                 cp15_regs, ARRAY_SIZE(cp15_regs),
2357                                 target_specific, num);
2358 }
2359
2360 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2361 {
2362         return kvm_handle_cp_64(vcpu,
2363                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2364                                 NULL, 0);
2365 }
2366
2367 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2368 {
2369         return kvm_handle_cp_32(vcpu,
2370                                 cp14_regs, ARRAY_SIZE(cp14_regs),
2371                                 NULL, 0);
2372 }
2373
2374 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2375 {
2376         // See ARM DDI 0487E.a, section D12.3.2
2377         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2378 }
2379
2380 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2381                            struct sys_reg_params *params)
2382 {
2383         size_t num;
2384         const struct sys_reg_desc *table, *r;
2385
2386         table = get_target_table(vcpu->arch.target, true, &num);
2387
2388         /* Search target-specific then generic table. */
2389         r = find_reg(params, table, num);
2390         if (!r)
2391                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2392
2393         if (likely(r)) {
2394                 perform_access(vcpu, params, r);
2395         } else if (is_imp_def_sys_reg(params)) {
2396                 kvm_inject_undefined(vcpu);
2397         } else {
2398                 print_sys_reg_msg(params,
2399                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2400                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2401                 kvm_inject_undefined(vcpu);
2402         }
2403         return 1;
2404 }
2405
2406 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2407                                 const struct sys_reg_desc *table, size_t num)
2408 {
2409         unsigned long i;
2410
2411         for (i = 0; i < num; i++)
2412                 if (table[i].reset)
2413                         table[i].reset(vcpu, &table[i]);
2414 }
2415
2416 /**
2417  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2418  * @vcpu: The VCPU pointer
2419  * @run:  The kvm_run struct
2420  */
2421 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2422 {
2423         struct sys_reg_params params;
2424         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2425         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2426         int ret;
2427
2428         trace_kvm_handle_sys_reg(esr);
2429
2430         params.is_aarch32 = false;
2431         params.is_32bit = false;
2432         params.Op0 = (esr >> 20) & 3;
2433         params.Op1 = (esr >> 14) & 0x7;
2434         params.CRn = (esr >> 10) & 0xf;
2435         params.CRm = (esr >> 1) & 0xf;
2436         params.Op2 = (esr >> 17) & 0x7;
2437         params.regval = vcpu_get_reg(vcpu, Rt);
2438         params.is_write = !(esr & 1);
2439
2440         ret = emulate_sys_reg(vcpu, &params);
2441
2442         if (!params.is_write)
2443                 vcpu_set_reg(vcpu, Rt, params.regval);
2444         return ret;
2445 }
2446
2447 /******************************************************************************
2448  * Userspace API
2449  *****************************************************************************/
2450
2451 static bool index_to_params(u64 id, struct sys_reg_params *params)
2452 {
2453         switch (id & KVM_REG_SIZE_MASK) {
2454         case KVM_REG_SIZE_U64:
2455                 /* Any unused index bits means it's not valid. */
2456                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2457                               | KVM_REG_ARM_COPROC_MASK
2458                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2459                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2460                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2461                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2462                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2463                         return false;
2464                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2465                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2466                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2467                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2468                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2469                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2470                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2471                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2472                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2473                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2474                 return true;
2475         default:
2476                 return false;
2477         }
2478 }
2479
2480 const struct sys_reg_desc *find_reg_by_id(u64 id,
2481                                           struct sys_reg_params *params,
2482                                           const struct sys_reg_desc table[],
2483                                           unsigned int num)
2484 {
2485         if (!index_to_params(id, params))
2486                 return NULL;
2487
2488         return find_reg(params, table, num);
2489 }
2490
2491 /* Decode an index value, and find the sys_reg_desc entry. */
2492 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2493                                                     u64 id)
2494 {
2495         size_t num;
2496         const struct sys_reg_desc *table, *r;
2497         struct sys_reg_params params;
2498
2499         /* We only do sys_reg for now. */
2500         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2501                 return NULL;
2502
2503         if (!index_to_params(id, &params))
2504                 return NULL;
2505
2506         table = get_target_table(vcpu->arch.target, true, &num);
2507         r = find_reg(&params, table, num);
2508         if (!r)
2509                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2510
2511         /* Not saved in the sys_reg array and not otherwise accessible? */
2512         if (r && !(r->reg || r->get_user))
2513                 r = NULL;
2514
2515         return r;
2516 }
2517
2518 /*
2519  * These are the invariant sys_reg registers: we let the guest see the
2520  * host versions of these, so they're part of the guest state.
2521  *
2522  * A future CPU may provide a mechanism to present different values to
2523  * the guest, or a future kvm may trap them.
2524  */
2525
2526 #define FUNCTION_INVARIANT(reg)                                         \
2527         static void get_##reg(struct kvm_vcpu *v,                       \
2528                               const struct sys_reg_desc *r)             \
2529         {                                                               \
2530                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2531         }
2532
2533 FUNCTION_INVARIANT(midr_el1)
2534 FUNCTION_INVARIANT(revidr_el1)
2535 FUNCTION_INVARIANT(clidr_el1)
2536 FUNCTION_INVARIANT(aidr_el1)
2537
2538 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2539 {
2540         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2541 }
2542
2543 /* ->val is filled in by kvm_sys_reg_table_init() */
2544 static struct sys_reg_desc invariant_sys_regs[] = {
2545         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2546         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2547         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2548         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2549         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2550 };
2551
2552 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2553 {
2554         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2555                 return -EFAULT;
2556         return 0;
2557 }
2558
2559 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2560 {
2561         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2562                 return -EFAULT;
2563         return 0;
2564 }
2565
2566 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2567 {
2568         struct sys_reg_params params;
2569         const struct sys_reg_desc *r;
2570
2571         r = find_reg_by_id(id, &params, invariant_sys_regs,
2572                            ARRAY_SIZE(invariant_sys_regs));
2573         if (!r)
2574                 return -ENOENT;
2575
2576         return reg_to_user(uaddr, &r->val, id);
2577 }
2578
2579 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2580 {
2581         struct sys_reg_params params;
2582         const struct sys_reg_desc *r;
2583         int err;
2584         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2585
2586         r = find_reg_by_id(id, &params, invariant_sys_regs,
2587                            ARRAY_SIZE(invariant_sys_regs));
2588         if (!r)
2589                 return -ENOENT;
2590
2591         err = reg_from_user(&val, uaddr, id);
2592         if (err)
2593                 return err;
2594
2595         /* This is what we mean by invariant: you can't change it. */
2596         if (r->val != val)
2597                 return -EINVAL;
2598
2599         return 0;
2600 }
2601
2602 static bool is_valid_cache(u32 val)
2603 {
2604         u32 level, ctype;
2605
2606         if (val >= CSSELR_MAX)
2607                 return false;
2608
2609         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2610         level = (val >> 1);
2611         ctype = (cache_levels >> (level * 3)) & 7;
2612
2613         switch (ctype) {
2614         case 0: /* No cache */
2615                 return false;
2616         case 1: /* Instruction cache only */
2617                 return (val & 1);
2618         case 2: /* Data cache only */
2619         case 4: /* Unified cache */
2620                 return !(val & 1);
2621         case 3: /* Separate instruction and data caches */
2622                 return true;
2623         default: /* Reserved: we can't know instruction or data. */
2624                 return false;
2625         }
2626 }
2627
2628 static int demux_c15_get(u64 id, void __user *uaddr)
2629 {
2630         u32 val;
2631         u32 __user *uval = uaddr;
2632
2633         /* Fail if we have unknown bits set. */
2634         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2635                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2636                 return -ENOENT;
2637
2638         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2639         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2640                 if (KVM_REG_SIZE(id) != 4)
2641                         return -ENOENT;
2642                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2643                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2644                 if (!is_valid_cache(val))
2645                         return -ENOENT;
2646
2647                 return put_user(get_ccsidr(val), uval);
2648         default:
2649                 return -ENOENT;
2650         }
2651 }
2652
2653 static int demux_c15_set(u64 id, void __user *uaddr)
2654 {
2655         u32 val, newval;
2656         u32 __user *uval = uaddr;
2657
2658         /* Fail if we have unknown bits set. */
2659         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2660                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2661                 return -ENOENT;
2662
2663         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2664         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2665                 if (KVM_REG_SIZE(id) != 4)
2666                         return -ENOENT;
2667                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2668                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2669                 if (!is_valid_cache(val))
2670                         return -ENOENT;
2671
2672                 if (get_user(newval, uval))
2673                         return -EFAULT;
2674
2675                 /* This is also invariant: you can't change it. */
2676                 if (newval != get_ccsidr(val))
2677                         return -EINVAL;
2678                 return 0;
2679         default:
2680                 return -ENOENT;
2681         }
2682 }
2683
2684 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2685 {
2686         const struct sys_reg_desc *r;
2687         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2688
2689         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2690                 return demux_c15_get(reg->id, uaddr);
2691
2692         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2693                 return -ENOENT;
2694
2695         r = index_to_sys_reg_desc(vcpu, reg->id);
2696         if (!r)
2697                 return get_invariant_sys_reg(reg->id, uaddr);
2698
2699         /* Check for regs disabled by runtime config */
2700         if (sysreg_hidden_from_user(vcpu, r))
2701                 return -ENOENT;
2702
2703         if (r->get_user)
2704                 return (r->get_user)(vcpu, r, reg, uaddr);
2705
2706         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2707 }
2708
2709 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2710 {
2711         const struct sys_reg_desc *r;
2712         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2713
2714         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2715                 return demux_c15_set(reg->id, uaddr);
2716
2717         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2718                 return -ENOENT;
2719
2720         r = index_to_sys_reg_desc(vcpu, reg->id);
2721         if (!r)
2722                 return set_invariant_sys_reg(reg->id, uaddr);
2723
2724         /* Check for regs disabled by runtime config */
2725         if (sysreg_hidden_from_user(vcpu, r))
2726                 return -ENOENT;
2727
2728         if (r->set_user)
2729                 return (r->set_user)(vcpu, r, reg, uaddr);
2730
2731         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2732 }
2733
2734 static unsigned int num_demux_regs(void)
2735 {
2736         unsigned int i, count = 0;
2737
2738         for (i = 0; i < CSSELR_MAX; i++)
2739                 if (is_valid_cache(i))
2740                         count++;
2741
2742         return count;
2743 }
2744
2745 static int write_demux_regids(u64 __user *uindices)
2746 {
2747         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2748         unsigned int i;
2749
2750         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2751         for (i = 0; i < CSSELR_MAX; i++) {
2752                 if (!is_valid_cache(i))
2753                         continue;
2754                 if (put_user(val | i, uindices))
2755                         return -EFAULT;
2756                 uindices++;
2757         }
2758         return 0;
2759 }
2760
2761 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2762 {
2763         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2764                 KVM_REG_ARM64_SYSREG |
2765                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2766                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2767                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2768                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2769                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2770 }
2771
2772 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2773 {
2774         if (!*uind)
2775                 return true;
2776
2777         if (put_user(sys_reg_to_index(reg), *uind))
2778                 return false;
2779
2780         (*uind)++;
2781         return true;
2782 }
2783
2784 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2785                             const struct sys_reg_desc *rd,
2786                             u64 __user **uind,
2787                             unsigned int *total)
2788 {
2789         /*
2790          * Ignore registers we trap but don't save,
2791          * and for which no custom user accessor is provided.
2792          */
2793         if (!(rd->reg || rd->get_user))
2794                 return 0;
2795
2796         if (sysreg_hidden_from_user(vcpu, rd))
2797                 return 0;
2798
2799         if (!copy_reg_to_user(rd, uind))
2800                 return -EFAULT;
2801
2802         (*total)++;
2803         return 0;
2804 }
2805
2806 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2807 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2808 {
2809         const struct sys_reg_desc *i1, *i2, *end1, *end2;
2810         unsigned int total = 0;
2811         size_t num;
2812         int err;
2813
2814         /* We check for duplicates here, to allow arch-specific overrides. */
2815         i1 = get_target_table(vcpu->arch.target, true, &num);
2816         end1 = i1 + num;
2817         i2 = sys_reg_descs;
2818         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2819
2820         BUG_ON(i1 == end1 || i2 == end2);
2821
2822         /* Walk carefully, as both tables may refer to the same register. */
2823         while (i1 || i2) {
2824                 int cmp = cmp_sys_reg(i1, i2);
2825                 /* target-specific overrides generic entry. */
2826                 if (cmp <= 0)
2827                         err = walk_one_sys_reg(vcpu, i1, &uind, &total);
2828                 else
2829                         err = walk_one_sys_reg(vcpu, i2, &uind, &total);
2830
2831                 if (err)
2832                         return err;
2833
2834                 if (cmp <= 0 && ++i1 == end1)
2835                         i1 = NULL;
2836                 if (cmp >= 0 && ++i2 == end2)
2837                         i2 = NULL;
2838         }
2839         return total;
2840 }
2841
2842 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2843 {
2844         return ARRAY_SIZE(invariant_sys_regs)
2845                 + num_demux_regs()
2846                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2847 }
2848
2849 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2850 {
2851         unsigned int i;
2852         int err;
2853
2854         /* Then give them all the invariant registers' indices. */
2855         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2856                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2857                         return -EFAULT;
2858                 uindices++;
2859         }
2860
2861         err = walk_sys_regs(vcpu, uindices);
2862         if (err < 0)
2863                 return err;
2864         uindices += err;
2865
2866         return write_demux_regids(uindices);
2867 }
2868
2869 void kvm_sys_reg_table_init(void)
2870 {
2871         unsigned int i;
2872         struct sys_reg_desc clidr;
2873
2874         /* Make sure tables are unique and in order. */
2875         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2876         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2877         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2878         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2879         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2880         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2881
2882         /* We abuse the reset function to overwrite the table itself. */
2883         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2884                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2885
2886         /*
2887          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2888          *
2889          *   If software reads the Cache Type fields from Ctype1
2890          *   upwards, once it has seen a value of 0b000, no caches
2891          *   exist at further-out levels of the hierarchy. So, for
2892          *   example, if Ctype3 is the first Cache Type field with a
2893          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2894          *   ignored.
2895          */
2896         get_clidr_el1(NULL, &clidr); /* Ugly... */
2897         cache_levels = clidr.val;
2898         for (i = 0; i < 7; i++)
2899                 if (((cache_levels >> (i*3)) & 7) == 0)
2900                         break;
2901         /* Clear all higher bits. */
2902         cache_levels &= (1 << (i*3))-1;
2903 }
2904
2905 /**
2906  * kvm_reset_sys_regs - sets system registers to reset value
2907  * @vcpu: The VCPU pointer
2908  *
2909  * This function finds the right table above and sets the registers on the
2910  * virtual CPU struct to their architecturally defined reset values.
2911  */
2912 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2913 {
2914         size_t num;
2915         const struct sys_reg_desc *table;
2916
2917         /* Generic chip reset first (so target could override). */
2918         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2919
2920         table = get_target_table(vcpu->arch.target, true, &num);
2921         reset_sys_reg_descs(vcpu, table, num);
2922 }