Merge tag 'mfd-next-5.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29
30 #include <trace/events/kvm.h>
31
32 #include "sys_regs.h"
33
34 #include "trace.h"
35
36 /*
37  * All of this file is extremely similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46
47 static bool read_from_write_only(struct kvm_vcpu *vcpu,
48                                  struct sys_reg_params *params,
49                                  const struct sys_reg_desc *r)
50 {
51         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
52         print_sys_reg_instr(params);
53         kvm_inject_undefined(vcpu);
54         return false;
55 }
56
57 static bool write_to_read_only(struct kvm_vcpu *vcpu,
58                                struct sys_reg_params *params,
59                                const struct sys_reg_desc *r)
60 {
61         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
62         print_sys_reg_instr(params);
63         kvm_inject_undefined(vcpu);
64         return false;
65 }
66
67 static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
68 {
69         /*
70          * System registers listed in the switch are not saved on every
71          * exit from the guest but are only saved on vcpu_put.
72          *
73          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
74          * should never be listed below, because the guest cannot modify its
75          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
76          * thread when emulating cross-VCPU communication.
77          */
78         switch (reg) {
79         case CSSELR_EL1:        *val = read_sysreg_s(SYS_CSSELR_EL1);   break;
80         case SCTLR_EL1:         *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
81         case CPACR_EL1:         *val = read_sysreg_s(SYS_CPACR_EL12);   break;
82         case TTBR0_EL1:         *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
83         case TTBR1_EL1:         *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
84         case TCR_EL1:           *val = read_sysreg_s(SYS_TCR_EL12);     break;
85         case ESR_EL1:           *val = read_sysreg_s(SYS_ESR_EL12);     break;
86         case AFSR0_EL1:         *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
87         case AFSR1_EL1:         *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
88         case FAR_EL1:           *val = read_sysreg_s(SYS_FAR_EL12);     break;
89         case MAIR_EL1:          *val = read_sysreg_s(SYS_MAIR_EL12);    break;
90         case VBAR_EL1:          *val = read_sysreg_s(SYS_VBAR_EL12);    break;
91         case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
92         case TPIDR_EL0:         *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
93         case TPIDRRO_EL0:       *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
94         case TPIDR_EL1:         *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
95         case AMAIR_EL1:         *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
96         case CNTKCTL_EL1:       *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
97         case ELR_EL1:           *val = read_sysreg_s(SYS_ELR_EL12);     break;
98         case PAR_EL1:           *val = read_sysreg_s(SYS_PAR_EL1);      break;
99         case DACR32_EL2:        *val = read_sysreg_s(SYS_DACR32_EL2);   break;
100         case IFSR32_EL2:        *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
101         case DBGVCR32_EL2:      *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
102         default:                return false;
103         }
104
105         return true;
106 }
107
108 static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
109 {
110         /*
111          * System registers listed in the switch are not restored on every
112          * entry to the guest but are only restored on vcpu_load.
113          *
114          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
115          * should never be listed below, because the MPIDR should only be set
116          * once, before running the VCPU, and never changed later.
117          */
118         switch (reg) {
119         case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    break;
120         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    break;
121         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    break;
122         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    break;
123         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    break;
124         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      break;
125         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      break;
126         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    break;
127         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    break;
128         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      break;
129         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     break;
130         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     break;
131         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
132         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     break;
133         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
134         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     break;
135         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    break;
136         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
137         case ELR_EL1:           write_sysreg_s(val, SYS_ELR_EL12);      break;
138         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       break;
139         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    break;
140         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    break;
141         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
142         default:                return false;
143         }
144
145         return true;
146 }
147
148 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
149 {
150         u64 val = 0x8badf00d8badf00d;
151
152         if (vcpu->arch.sysregs_loaded_on_cpu &&
153             __vcpu_read_sys_reg_from_cpu(reg, &val))
154                 return val;
155
156         return __vcpu_sys_reg(vcpu, reg);
157 }
158
159 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
160 {
161         if (vcpu->arch.sysregs_loaded_on_cpu &&
162             __vcpu_write_sys_reg_to_cpu(val, reg))
163                 return;
164
165          __vcpu_sys_reg(vcpu, reg) = val;
166 }
167
168 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
169 static u32 cache_levels;
170
171 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
172 #define CSSELR_MAX 12
173
174 /* Which cache CCSIDR represents depends on CSSELR value. */
175 static u32 get_ccsidr(u32 csselr)
176 {
177         u32 ccsidr;
178
179         /* Make sure noone else changes CSSELR during this! */
180         local_irq_disable();
181         write_sysreg(csselr, csselr_el1);
182         isb();
183         ccsidr = read_sysreg(ccsidr_el1);
184         local_irq_enable();
185
186         return ccsidr;
187 }
188
189 /*
190  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
191  */
192 static bool access_dcsw(struct kvm_vcpu *vcpu,
193                         struct sys_reg_params *p,
194                         const struct sys_reg_desc *r)
195 {
196         if (!p->is_write)
197                 return read_from_write_only(vcpu, p, r);
198
199         /*
200          * Only track S/W ops if we don't have FWB. It still indicates
201          * that the guest is a bit broken (S/W operations should only
202          * be done by firmware, knowing that there is only a single
203          * CPU left in the system, and certainly not from non-secure
204          * software).
205          */
206         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
207                 kvm_set_way_flush(vcpu);
208
209         return true;
210 }
211
212 /*
213  * Generic accessor for VM registers. Only called as long as HCR_TVM
214  * is set. If the guest enables the MMU, we stop trapping the VM
215  * sys_regs and leave it in complete control of the caches.
216  */
217 static bool access_vm_reg(struct kvm_vcpu *vcpu,
218                           struct sys_reg_params *p,
219                           const struct sys_reg_desc *r)
220 {
221         bool was_enabled = vcpu_has_cache_enabled(vcpu);
222         u64 val;
223         int reg = r->reg;
224
225         BUG_ON(!p->is_write);
226
227         /* See the 32bit mapping in kvm_host.h */
228         if (p->is_aarch32)
229                 reg = r->reg / 2;
230
231         if (!p->is_aarch32 || !p->is_32bit) {
232                 val = p->regval;
233         } else {
234                 val = vcpu_read_sys_reg(vcpu, reg);
235                 if (r->reg % 2)
236                         val = (p->regval << 32) | (u64)lower_32_bits(val);
237                 else
238                         val = ((u64)upper_32_bits(val) << 32) |
239                                 lower_32_bits(p->regval);
240         }
241         vcpu_write_sys_reg(vcpu, val, reg);
242
243         kvm_toggle_cache(vcpu, was_enabled);
244         return true;
245 }
246
247 static bool access_actlr(struct kvm_vcpu *vcpu,
248                          struct sys_reg_params *p,
249                          const struct sys_reg_desc *r)
250 {
251         if (p->is_write)
252                 return ignore_write(vcpu, p);
253
254         p->regval = vcpu_read_sys_reg(vcpu, ACTLR_EL1);
255
256         if (p->is_aarch32) {
257                 if (r->Op2 & 2)
258                         p->regval = upper_32_bits(p->regval);
259                 else
260                         p->regval = lower_32_bits(p->regval);
261         }
262
263         return true;
264 }
265
266 /*
267  * Trap handler for the GICv3 SGI generation system register.
268  * Forward the request to the VGIC emulation.
269  * The cp15_64 code makes sure this automatically works
270  * for both AArch64 and AArch32 accesses.
271  */
272 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
273                            struct sys_reg_params *p,
274                            const struct sys_reg_desc *r)
275 {
276         bool g1;
277
278         if (!p->is_write)
279                 return read_from_write_only(vcpu, p, r);
280
281         /*
282          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
283          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
284          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
285          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
286          * group.
287          */
288         if (p->is_aarch32) {
289                 switch (p->Op1) {
290                 default:                /* Keep GCC quiet */
291                 case 0:                 /* ICC_SGI1R */
292                         g1 = true;
293                         break;
294                 case 1:                 /* ICC_ASGI1R */
295                 case 2:                 /* ICC_SGI0R */
296                         g1 = false;
297                         break;
298                 }
299         } else {
300                 switch (p->Op2) {
301                 default:                /* Keep GCC quiet */
302                 case 5:                 /* ICC_SGI1R_EL1 */
303                         g1 = true;
304                         break;
305                 case 6:                 /* ICC_ASGI1R_EL1 */
306                 case 7:                 /* ICC_SGI0R_EL1 */
307                         g1 = false;
308                         break;
309                 }
310         }
311
312         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
313
314         return true;
315 }
316
317 static bool access_gic_sre(struct kvm_vcpu *vcpu,
318                            struct sys_reg_params *p,
319                            const struct sys_reg_desc *r)
320 {
321         if (p->is_write)
322                 return ignore_write(vcpu, p);
323
324         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
325         return true;
326 }
327
328 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
329                         struct sys_reg_params *p,
330                         const struct sys_reg_desc *r)
331 {
332         if (p->is_write)
333                 return ignore_write(vcpu, p);
334         else
335                 return read_zero(vcpu, p);
336 }
337
338 /*
339  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
340  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
341  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
342  * treat it separately.
343  */
344 static bool trap_loregion(struct kvm_vcpu *vcpu,
345                           struct sys_reg_params *p,
346                           const struct sys_reg_desc *r)
347 {
348         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
349         u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
350                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
351
352         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
353                 kvm_inject_undefined(vcpu);
354                 return false;
355         }
356
357         if (p->is_write && sr == SYS_LORID_EL1)
358                 return write_to_read_only(vcpu, p, r);
359
360         return trap_raz_wi(vcpu, p, r);
361 }
362
363 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
364                            struct sys_reg_params *p,
365                            const struct sys_reg_desc *r)
366 {
367         if (p->is_write) {
368                 return ignore_write(vcpu, p);
369         } else {
370                 p->regval = (1 << 3);
371                 return true;
372         }
373 }
374
375 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
376                                    struct sys_reg_params *p,
377                                    const struct sys_reg_desc *r)
378 {
379         if (p->is_write) {
380                 return ignore_write(vcpu, p);
381         } else {
382                 p->regval = read_sysreg(dbgauthstatus_el1);
383                 return true;
384         }
385 }
386
387 /*
388  * We want to avoid world-switching all the DBG registers all the
389  * time:
390  * 
391  * - If we've touched any debug register, it is likely that we're
392  *   going to touch more of them. It then makes sense to disable the
393  *   traps and start doing the save/restore dance
394  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
395  *   then mandatory to save/restore the registers, as the guest
396  *   depends on them.
397  * 
398  * For this, we use a DIRTY bit, indicating the guest has modified the
399  * debug registers, used as follow:
400  *
401  * On guest entry:
402  * - If the dirty bit is set (because we're coming back from trapping),
403  *   disable the traps, save host registers, restore guest registers.
404  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
405  *   set the dirty bit, disable the traps, save host registers,
406  *   restore guest registers.
407  * - Otherwise, enable the traps
408  *
409  * On guest exit:
410  * - If the dirty bit is set, save guest registers, restore host
411  *   registers and clear the dirty bit. This ensure that the host can
412  *   now use the debug registers.
413  */
414 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
415                             struct sys_reg_params *p,
416                             const struct sys_reg_desc *r)
417 {
418         if (p->is_write) {
419                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
420                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
421         } else {
422                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
423         }
424
425         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
426
427         return true;
428 }
429
430 /*
431  * reg_to_dbg/dbg_to_reg
432  *
433  * A 32 bit write to a debug register leave top bits alone
434  * A 32 bit read from a debug register only returns the bottom bits
435  *
436  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
437  * hyp.S code switches between host and guest values in future.
438  */
439 static void reg_to_dbg(struct kvm_vcpu *vcpu,
440                        struct sys_reg_params *p,
441                        u64 *dbg_reg)
442 {
443         u64 val = p->regval;
444
445         if (p->is_32bit) {
446                 val &= 0xffffffffUL;
447                 val |= ((*dbg_reg >> 32) << 32);
448         }
449
450         *dbg_reg = val;
451         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
452 }
453
454 static void dbg_to_reg(struct kvm_vcpu *vcpu,
455                        struct sys_reg_params *p,
456                        u64 *dbg_reg)
457 {
458         p->regval = *dbg_reg;
459         if (p->is_32bit)
460                 p->regval &= 0xffffffffUL;
461 }
462
463 static bool trap_bvr(struct kvm_vcpu *vcpu,
464                      struct sys_reg_params *p,
465                      const struct sys_reg_desc *rd)
466 {
467         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
468
469         if (p->is_write)
470                 reg_to_dbg(vcpu, p, dbg_reg);
471         else
472                 dbg_to_reg(vcpu, p, dbg_reg);
473
474         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
475
476         return true;
477 }
478
479 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
480                 const struct kvm_one_reg *reg, void __user *uaddr)
481 {
482         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
483
484         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
485                 return -EFAULT;
486         return 0;
487 }
488
489 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
490         const struct kvm_one_reg *reg, void __user *uaddr)
491 {
492         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
493
494         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
495                 return -EFAULT;
496         return 0;
497 }
498
499 static void reset_bvr(struct kvm_vcpu *vcpu,
500                       const struct sys_reg_desc *rd)
501 {
502         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
503 }
504
505 static bool trap_bcr(struct kvm_vcpu *vcpu,
506                      struct sys_reg_params *p,
507                      const struct sys_reg_desc *rd)
508 {
509         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
510
511         if (p->is_write)
512                 reg_to_dbg(vcpu, p, dbg_reg);
513         else
514                 dbg_to_reg(vcpu, p, dbg_reg);
515
516         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
517
518         return true;
519 }
520
521 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
522                 const struct kvm_one_reg *reg, void __user *uaddr)
523 {
524         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
525
526         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
527                 return -EFAULT;
528
529         return 0;
530 }
531
532 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
533         const struct kvm_one_reg *reg, void __user *uaddr)
534 {
535         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
536
537         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
538                 return -EFAULT;
539         return 0;
540 }
541
542 static void reset_bcr(struct kvm_vcpu *vcpu,
543                       const struct sys_reg_desc *rd)
544 {
545         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
546 }
547
548 static bool trap_wvr(struct kvm_vcpu *vcpu,
549                      struct sys_reg_params *p,
550                      const struct sys_reg_desc *rd)
551 {
552         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
553
554         if (p->is_write)
555                 reg_to_dbg(vcpu, p, dbg_reg);
556         else
557                 dbg_to_reg(vcpu, p, dbg_reg);
558
559         trace_trap_reg(__func__, rd->reg, p->is_write,
560                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
561
562         return true;
563 }
564
565 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
566                 const struct kvm_one_reg *reg, void __user *uaddr)
567 {
568         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
569
570         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
571                 return -EFAULT;
572         return 0;
573 }
574
575 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
576         const struct kvm_one_reg *reg, void __user *uaddr)
577 {
578         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
579
580         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
581                 return -EFAULT;
582         return 0;
583 }
584
585 static void reset_wvr(struct kvm_vcpu *vcpu,
586                       const struct sys_reg_desc *rd)
587 {
588         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
589 }
590
591 static bool trap_wcr(struct kvm_vcpu *vcpu,
592                      struct sys_reg_params *p,
593                      const struct sys_reg_desc *rd)
594 {
595         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
596
597         if (p->is_write)
598                 reg_to_dbg(vcpu, p, dbg_reg);
599         else
600                 dbg_to_reg(vcpu, p, dbg_reg);
601
602         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
603
604         return true;
605 }
606
607 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
608                 const struct kvm_one_reg *reg, void __user *uaddr)
609 {
610         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
611
612         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
613                 return -EFAULT;
614         return 0;
615 }
616
617 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
618         const struct kvm_one_reg *reg, void __user *uaddr)
619 {
620         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
621
622         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
623                 return -EFAULT;
624         return 0;
625 }
626
627 static void reset_wcr(struct kvm_vcpu *vcpu,
628                       const struct sys_reg_desc *rd)
629 {
630         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
631 }
632
633 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
634 {
635         u64 amair = read_sysreg(amair_el1);
636         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
637 }
638
639 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
640 {
641         u64 actlr = read_sysreg(actlr_el1);
642         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
643 }
644
645 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
646 {
647         u64 mpidr;
648
649         /*
650          * Map the vcpu_id into the first three affinity level fields of
651          * the MPIDR. We limit the number of VCPUs in level 0 due to a
652          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
653          * of the GICv3 to be able to address each CPU directly when
654          * sending IPIs.
655          */
656         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
657         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
658         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
659         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
660 }
661
662 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
663 {
664         u64 pmcr, val;
665
666         pmcr = read_sysreg(pmcr_el0);
667         /*
668          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
669          * except PMCR.E resetting to zero.
670          */
671         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
672                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
673         if (!system_supports_32bit_el0())
674                 val |= ARMV8_PMU_PMCR_LC;
675         __vcpu_sys_reg(vcpu, r->reg) = val;
676 }
677
678 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
679 {
680         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
681         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
682
683         if (!enabled)
684                 kvm_inject_undefined(vcpu);
685
686         return !enabled;
687 }
688
689 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
690 {
691         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
692 }
693
694 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
695 {
696         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
697 }
698
699 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
700 {
701         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
702 }
703
704 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
705 {
706         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
707 }
708
709 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
710                         const struct sys_reg_desc *r)
711 {
712         u64 val;
713
714         if (!kvm_arm_pmu_v3_ready(vcpu))
715                 return trap_raz_wi(vcpu, p, r);
716
717         if (pmu_access_el0_disabled(vcpu))
718                 return false;
719
720         if (p->is_write) {
721                 /* Only update writeable bits of PMCR */
722                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
723                 val &= ~ARMV8_PMU_PMCR_MASK;
724                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
725                 if (!system_supports_32bit_el0())
726                         val |= ARMV8_PMU_PMCR_LC;
727                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
728                 kvm_pmu_handle_pmcr(vcpu, val);
729                 kvm_vcpu_pmu_restore_guest(vcpu);
730         } else {
731                 /* PMCR.P & PMCR.C are RAZ */
732                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
733                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
734                 p->regval = val;
735         }
736
737         return true;
738 }
739
740 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
741                           const struct sys_reg_desc *r)
742 {
743         if (!kvm_arm_pmu_v3_ready(vcpu))
744                 return trap_raz_wi(vcpu, p, r);
745
746         if (pmu_access_event_counter_el0_disabled(vcpu))
747                 return false;
748
749         if (p->is_write)
750                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
751         else
752                 /* return PMSELR.SEL field */
753                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
754                             & ARMV8_PMU_COUNTER_MASK;
755
756         return true;
757 }
758
759 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
760                           const struct sys_reg_desc *r)
761 {
762         u64 pmceid;
763
764         if (!kvm_arm_pmu_v3_ready(vcpu))
765                 return trap_raz_wi(vcpu, p, r);
766
767         BUG_ON(p->is_write);
768
769         if (pmu_access_el0_disabled(vcpu))
770                 return false;
771
772         if (!(p->Op2 & 1))
773                 pmceid = read_sysreg(pmceid0_el0);
774         else
775                 pmceid = read_sysreg(pmceid1_el0);
776
777         p->regval = pmceid;
778
779         return true;
780 }
781
782 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
783 {
784         u64 pmcr, val;
785
786         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
787         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
788         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
789                 kvm_inject_undefined(vcpu);
790                 return false;
791         }
792
793         return true;
794 }
795
796 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
797                               struct sys_reg_params *p,
798                               const struct sys_reg_desc *r)
799 {
800         u64 idx;
801
802         if (!kvm_arm_pmu_v3_ready(vcpu))
803                 return trap_raz_wi(vcpu, p, r);
804
805         if (r->CRn == 9 && r->CRm == 13) {
806                 if (r->Op2 == 2) {
807                         /* PMXEVCNTR_EL0 */
808                         if (pmu_access_event_counter_el0_disabled(vcpu))
809                                 return false;
810
811                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
812                               & ARMV8_PMU_COUNTER_MASK;
813                 } else if (r->Op2 == 0) {
814                         /* PMCCNTR_EL0 */
815                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
816                                 return false;
817
818                         idx = ARMV8_PMU_CYCLE_IDX;
819                 } else {
820                         return false;
821                 }
822         } else if (r->CRn == 0 && r->CRm == 9) {
823                 /* PMCCNTR */
824                 if (pmu_access_event_counter_el0_disabled(vcpu))
825                         return false;
826
827                 idx = ARMV8_PMU_CYCLE_IDX;
828         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
829                 /* PMEVCNTRn_EL0 */
830                 if (pmu_access_event_counter_el0_disabled(vcpu))
831                         return false;
832
833                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
834         } else {
835                 return false;
836         }
837
838         if (!pmu_counter_idx_valid(vcpu, idx))
839                 return false;
840
841         if (p->is_write) {
842                 if (pmu_access_el0_disabled(vcpu))
843                         return false;
844
845                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
846         } else {
847                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
848         }
849
850         return true;
851 }
852
853 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
854                                const struct sys_reg_desc *r)
855 {
856         u64 idx, reg;
857
858         if (!kvm_arm_pmu_v3_ready(vcpu))
859                 return trap_raz_wi(vcpu, p, r);
860
861         if (pmu_access_el0_disabled(vcpu))
862                 return false;
863
864         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
865                 /* PMXEVTYPER_EL0 */
866                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
867                 reg = PMEVTYPER0_EL0 + idx;
868         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
869                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
870                 if (idx == ARMV8_PMU_CYCLE_IDX)
871                         reg = PMCCFILTR_EL0;
872                 else
873                         /* PMEVTYPERn_EL0 */
874                         reg = PMEVTYPER0_EL0 + idx;
875         } else {
876                 BUG();
877         }
878
879         if (!pmu_counter_idx_valid(vcpu, idx))
880                 return false;
881
882         if (p->is_write) {
883                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
884                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
885                 kvm_vcpu_pmu_restore_guest(vcpu);
886         } else {
887                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
888         }
889
890         return true;
891 }
892
893 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
894                            const struct sys_reg_desc *r)
895 {
896         u64 val, mask;
897
898         if (!kvm_arm_pmu_v3_ready(vcpu))
899                 return trap_raz_wi(vcpu, p, r);
900
901         if (pmu_access_el0_disabled(vcpu))
902                 return false;
903
904         mask = kvm_pmu_valid_counter_mask(vcpu);
905         if (p->is_write) {
906                 val = p->regval & mask;
907                 if (r->Op2 & 0x1) {
908                         /* accessing PMCNTENSET_EL0 */
909                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
910                         kvm_pmu_enable_counter_mask(vcpu, val);
911                         kvm_vcpu_pmu_restore_guest(vcpu);
912                 } else {
913                         /* accessing PMCNTENCLR_EL0 */
914                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
915                         kvm_pmu_disable_counter_mask(vcpu, val);
916                 }
917         } else {
918                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
919         }
920
921         return true;
922 }
923
924 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
925                            const struct sys_reg_desc *r)
926 {
927         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
928
929         if (!kvm_arm_pmu_v3_ready(vcpu))
930                 return trap_raz_wi(vcpu, p, r);
931
932         if (!vcpu_mode_priv(vcpu)) {
933                 kvm_inject_undefined(vcpu);
934                 return false;
935         }
936
937         if (p->is_write) {
938                 u64 val = p->regval & mask;
939
940                 if (r->Op2 & 0x1)
941                         /* accessing PMINTENSET_EL1 */
942                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
943                 else
944                         /* accessing PMINTENCLR_EL1 */
945                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
946         } else {
947                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
948         }
949
950         return true;
951 }
952
953 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
954                          const struct sys_reg_desc *r)
955 {
956         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
957
958         if (!kvm_arm_pmu_v3_ready(vcpu))
959                 return trap_raz_wi(vcpu, p, r);
960
961         if (pmu_access_el0_disabled(vcpu))
962                 return false;
963
964         if (p->is_write) {
965                 if (r->CRm & 0x2)
966                         /* accessing PMOVSSET_EL0 */
967                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
968                 else
969                         /* accessing PMOVSCLR_EL0 */
970                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
971         } else {
972                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
973         }
974
975         return true;
976 }
977
978 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
979                            const struct sys_reg_desc *r)
980 {
981         u64 mask;
982
983         if (!kvm_arm_pmu_v3_ready(vcpu))
984                 return trap_raz_wi(vcpu, p, r);
985
986         if (!p->is_write)
987                 return read_from_write_only(vcpu, p, r);
988
989         if (pmu_write_swinc_el0_disabled(vcpu))
990                 return false;
991
992         mask = kvm_pmu_valid_counter_mask(vcpu);
993         kvm_pmu_software_increment(vcpu, p->regval & mask);
994         return true;
995 }
996
997 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
998                              const struct sys_reg_desc *r)
999 {
1000         if (!kvm_arm_pmu_v3_ready(vcpu))
1001                 return trap_raz_wi(vcpu, p, r);
1002
1003         if (p->is_write) {
1004                 if (!vcpu_mode_priv(vcpu)) {
1005                         kvm_inject_undefined(vcpu);
1006                         return false;
1007                 }
1008
1009                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1010                                p->regval & ARMV8_PMU_USERENR_MASK;
1011         } else {
1012                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1013                             & ARMV8_PMU_USERENR_MASK;
1014         }
1015
1016         return true;
1017 }
1018
1019 #define reg_to_encoding(x)                                              \
1020         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
1021                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
1022
1023 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1024 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
1025         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
1026           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
1027         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
1028           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
1029         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
1030           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
1031         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
1032           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1033
1034 /* Macro to expand the PMEVCNTRn_EL0 register */
1035 #define PMU_PMEVCNTR_EL0(n)                                             \
1036         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
1037           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1038
1039 /* Macro to expand the PMEVTYPERn_EL0 register */
1040 #define PMU_PMEVTYPER_EL0(n)                                            \
1041         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
1042           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1043
1044 static bool access_amu(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1045                              const struct sys_reg_desc *r)
1046 {
1047         kvm_inject_undefined(vcpu);
1048
1049         return false;
1050 }
1051
1052 /* Macro to expand the AMU counter and type registers*/
1053 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), access_amu }
1054 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), access_amu }
1055 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), access_amu }
1056 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), access_amu }
1057
1058 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1059                          struct sys_reg_params *p,
1060                          const struct sys_reg_desc *rd)
1061 {
1062         /*
1063          * If we land here, that is because we didn't fixup the access on exit
1064          * by allowing the PtrAuth sysregs. The only way this happens is when
1065          * the guest does not have PtrAuth support enabled.
1066          */
1067         kvm_inject_undefined(vcpu);
1068
1069         return false;
1070 }
1071
1072 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1073                         const struct sys_reg_desc *rd)
1074 {
1075         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1076 }
1077
1078 #define __PTRAUTH_KEY(k)                                                \
1079         { SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k,           \
1080         .visibility = ptrauth_visibility}
1081
1082 #define PTRAUTH_KEY(k)                                                  \
1083         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1084         __PTRAUTH_KEY(k ## KEYHI_EL1)
1085
1086 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1087                               struct sys_reg_params *p,
1088                               const struct sys_reg_desc *r)
1089 {
1090         enum kvm_arch_timers tmr;
1091         enum kvm_arch_timer_regs treg;
1092         u64 reg = reg_to_encoding(r);
1093
1094         switch (reg) {
1095         case SYS_CNTP_TVAL_EL0:
1096         case SYS_AARCH32_CNTP_TVAL:
1097                 tmr = TIMER_PTIMER;
1098                 treg = TIMER_REG_TVAL;
1099                 break;
1100         case SYS_CNTP_CTL_EL0:
1101         case SYS_AARCH32_CNTP_CTL:
1102                 tmr = TIMER_PTIMER;
1103                 treg = TIMER_REG_CTL;
1104                 break;
1105         case SYS_CNTP_CVAL_EL0:
1106         case SYS_AARCH32_CNTP_CVAL:
1107                 tmr = TIMER_PTIMER;
1108                 treg = TIMER_REG_CVAL;
1109                 break;
1110         default:
1111                 BUG();
1112         }
1113
1114         if (p->is_write)
1115                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1116         else
1117                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1118
1119         return true;
1120 }
1121
1122 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1123 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1124                 struct sys_reg_desc const *r, bool raz)
1125 {
1126         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1127                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1128         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1129
1130         if (id == SYS_ID_AA64PFR0_EL1) {
1131                 if (!vcpu_has_sve(vcpu))
1132                         val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1133                 val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1134         } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1135                 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1136                          (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1137                          (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1138                          (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1139         } else if (id == SYS_ID_AA64DFR0_EL1) {
1140                 /* Limit guests to PMUv3 for ARMv8.1 */
1141                 val = cpuid_feature_cap_perfmon_field(val,
1142                                                 ID_AA64DFR0_PMUVER_SHIFT,
1143                                                 ID_AA64DFR0_PMUVER_8_1);
1144         } else if (id == SYS_ID_DFR0_EL1) {
1145                 /* Limit guests to PMUv3 for ARMv8.1 */
1146                 val = cpuid_feature_cap_perfmon_field(val,
1147                                                 ID_DFR0_PERFMON_SHIFT,
1148                                                 ID_DFR0_PERFMON_8_1);
1149         }
1150
1151         return val;
1152 }
1153
1154 /* cpufeature ID register access trap handlers */
1155
1156 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1157                             struct sys_reg_params *p,
1158                             const struct sys_reg_desc *r,
1159                             bool raz)
1160 {
1161         if (p->is_write)
1162                 return write_to_read_only(vcpu, p, r);
1163
1164         p->regval = read_id_reg(vcpu, r, raz);
1165         return true;
1166 }
1167
1168 static bool access_id_reg(struct kvm_vcpu *vcpu,
1169                           struct sys_reg_params *p,
1170                           const struct sys_reg_desc *r)
1171 {
1172         return __access_id_reg(vcpu, p, r, false);
1173 }
1174
1175 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1176                               struct sys_reg_params *p,
1177                               const struct sys_reg_desc *r)
1178 {
1179         return __access_id_reg(vcpu, p, r, true);
1180 }
1181
1182 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1183 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1184 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1185
1186 /* Visibility overrides for SVE-specific control registers */
1187 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1188                                    const struct sys_reg_desc *rd)
1189 {
1190         if (vcpu_has_sve(vcpu))
1191                 return 0;
1192
1193         return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1194 }
1195
1196 /* Visibility overrides for SVE-specific ID registers */
1197 static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
1198                                       const struct sys_reg_desc *rd)
1199 {
1200         if (vcpu_has_sve(vcpu))
1201                 return 0;
1202
1203         return REG_HIDDEN_USER;
1204 }
1205
1206 /* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
1207 static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
1208 {
1209         if (!vcpu_has_sve(vcpu))
1210                 return 0;
1211
1212         return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
1213 }
1214
1215 static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1216                                    struct sys_reg_params *p,
1217                                    const struct sys_reg_desc *rd)
1218 {
1219         if (p->is_write)
1220                 return write_to_read_only(vcpu, p, rd);
1221
1222         p->regval = guest_id_aa64zfr0_el1(vcpu);
1223         return true;
1224 }
1225
1226 static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1227                 const struct sys_reg_desc *rd,
1228                 const struct kvm_one_reg *reg, void __user *uaddr)
1229 {
1230         u64 val;
1231
1232         if (WARN_ON(!vcpu_has_sve(vcpu)))
1233                 return -ENOENT;
1234
1235         val = guest_id_aa64zfr0_el1(vcpu);
1236         return reg_to_user(uaddr, &val, reg->id);
1237 }
1238
1239 static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1240                 const struct sys_reg_desc *rd,
1241                 const struct kvm_one_reg *reg, void __user *uaddr)
1242 {
1243         const u64 id = sys_reg_to_index(rd);
1244         int err;
1245         u64 val;
1246
1247         if (WARN_ON(!vcpu_has_sve(vcpu)))
1248                 return -ENOENT;
1249
1250         err = reg_from_user(&val, uaddr, id);
1251         if (err)
1252                 return err;
1253
1254         /* This is what we mean by invariant: you can't change it. */
1255         if (val != guest_id_aa64zfr0_el1(vcpu))
1256                 return -EINVAL;
1257
1258         return 0;
1259 }
1260
1261 /*
1262  * cpufeature ID register user accessors
1263  *
1264  * For now, these registers are immutable for userspace, so no values
1265  * are stored, and for set_id_reg() we don't allow the effective value
1266  * to be changed.
1267  */
1268 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1269                         const struct sys_reg_desc *rd, void __user *uaddr,
1270                         bool raz)
1271 {
1272         const u64 id = sys_reg_to_index(rd);
1273         const u64 val = read_id_reg(vcpu, rd, raz);
1274
1275         return reg_to_user(uaddr, &val, id);
1276 }
1277
1278 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1279                         const struct sys_reg_desc *rd, void __user *uaddr,
1280                         bool raz)
1281 {
1282         const u64 id = sys_reg_to_index(rd);
1283         int err;
1284         u64 val;
1285
1286         err = reg_from_user(&val, uaddr, id);
1287         if (err)
1288                 return err;
1289
1290         /* This is what we mean by invariant: you can't change it. */
1291         if (val != read_id_reg(vcpu, rd, raz))
1292                 return -EINVAL;
1293
1294         return 0;
1295 }
1296
1297 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1298                       const struct kvm_one_reg *reg, void __user *uaddr)
1299 {
1300         return __get_id_reg(vcpu, rd, uaddr, false);
1301 }
1302
1303 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1304                       const struct kvm_one_reg *reg, void __user *uaddr)
1305 {
1306         return __set_id_reg(vcpu, rd, uaddr, false);
1307 }
1308
1309 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1310                           const struct kvm_one_reg *reg, void __user *uaddr)
1311 {
1312         return __get_id_reg(vcpu, rd, uaddr, true);
1313 }
1314
1315 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1316                           const struct kvm_one_reg *reg, void __user *uaddr)
1317 {
1318         return __set_id_reg(vcpu, rd, uaddr, true);
1319 }
1320
1321 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1322                        const struct sys_reg_desc *r)
1323 {
1324         if (p->is_write)
1325                 return write_to_read_only(vcpu, p, r);
1326
1327         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1328         return true;
1329 }
1330
1331 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1332                          const struct sys_reg_desc *r)
1333 {
1334         if (p->is_write)
1335                 return write_to_read_only(vcpu, p, r);
1336
1337         p->regval = read_sysreg(clidr_el1);
1338         return true;
1339 }
1340
1341 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1342                           const struct sys_reg_desc *r)
1343 {
1344         int reg = r->reg;
1345
1346         /* See the 32bit mapping in kvm_host.h */
1347         if (p->is_aarch32)
1348                 reg = r->reg / 2;
1349
1350         if (p->is_write)
1351                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1352         else
1353                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1354         return true;
1355 }
1356
1357 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1358                           const struct sys_reg_desc *r)
1359 {
1360         u32 csselr;
1361
1362         if (p->is_write)
1363                 return write_to_read_only(vcpu, p, r);
1364
1365         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1366         p->regval = get_ccsidr(csselr);
1367
1368         /*
1369          * Guests should not be doing cache operations by set/way at all, and
1370          * for this reason, we trap them and attempt to infer the intent, so
1371          * that we can flush the entire guest's address space at the appropriate
1372          * time.
1373          * To prevent this trapping from causing performance problems, let's
1374          * expose the geometry of all data and unified caches (which are
1375          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1376          * [If guests should attempt to infer aliasing properties from the
1377          * geometry (which is not permitted by the architecture), they would
1378          * only do so for virtually indexed caches.]
1379          */
1380         if (!(csselr & 1)) // data or unified cache
1381                 p->regval &= ~GENMASK(27, 3);
1382         return true;
1383 }
1384
1385 /* sys_reg_desc initialiser for known cpufeature ID registers */
1386 #define ID_SANITISED(name) {                    \
1387         SYS_DESC(SYS_##name),                   \
1388         .access = access_id_reg,                \
1389         .get_user = get_id_reg,                 \
1390         .set_user = set_id_reg,                 \
1391 }
1392
1393 /*
1394  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1395  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1396  * (1 <= crm < 8, 0 <= Op2 < 8).
1397  */
1398 #define ID_UNALLOCATED(crm, op2) {                      \
1399         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1400         .access = access_raz_id_reg,                    \
1401         .get_user = get_raz_id_reg,                     \
1402         .set_user = set_raz_id_reg,                     \
1403 }
1404
1405 /*
1406  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1407  * For now, these are exposed just like unallocated ID regs: they appear
1408  * RAZ for the guest.
1409  */
1410 #define ID_HIDDEN(name) {                       \
1411         SYS_DESC(SYS_##name),                   \
1412         .access = access_raz_id_reg,            \
1413         .get_user = get_raz_id_reg,             \
1414         .set_user = set_raz_id_reg,             \
1415 }
1416
1417 /*
1418  * Architected system registers.
1419  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1420  *
1421  * Debug handling: We do trap most, if not all debug related system
1422  * registers. The implementation is good enough to ensure that a guest
1423  * can use these with minimal performance degradation. The drawback is
1424  * that we don't implement any of the external debug, none of the
1425  * OSlock protocol. This should be revisited if we ever encounter a
1426  * more demanding guest...
1427  */
1428 static const struct sys_reg_desc sys_reg_descs[] = {
1429         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1430         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1431         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1432
1433         DBG_BCR_BVR_WCR_WVR_EL1(0),
1434         DBG_BCR_BVR_WCR_WVR_EL1(1),
1435         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1436         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1437         DBG_BCR_BVR_WCR_WVR_EL1(2),
1438         DBG_BCR_BVR_WCR_WVR_EL1(3),
1439         DBG_BCR_BVR_WCR_WVR_EL1(4),
1440         DBG_BCR_BVR_WCR_WVR_EL1(5),
1441         DBG_BCR_BVR_WCR_WVR_EL1(6),
1442         DBG_BCR_BVR_WCR_WVR_EL1(7),
1443         DBG_BCR_BVR_WCR_WVR_EL1(8),
1444         DBG_BCR_BVR_WCR_WVR_EL1(9),
1445         DBG_BCR_BVR_WCR_WVR_EL1(10),
1446         DBG_BCR_BVR_WCR_WVR_EL1(11),
1447         DBG_BCR_BVR_WCR_WVR_EL1(12),
1448         DBG_BCR_BVR_WCR_WVR_EL1(13),
1449         DBG_BCR_BVR_WCR_WVR_EL1(14),
1450         DBG_BCR_BVR_WCR_WVR_EL1(15),
1451
1452         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1453         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1454         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1455         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1456         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1457         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1458         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1459         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1460
1461         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1462         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1463         // DBGDTR[TR]X_EL0 share the same encoding
1464         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1465
1466         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1467
1468         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1469
1470         /*
1471          * ID regs: all ID_SANITISED() entries here must have corresponding
1472          * entries in arm64_ftr_regs[].
1473          */
1474
1475         /* AArch64 mappings of the AArch32 ID registers */
1476         /* CRm=1 */
1477         ID_SANITISED(ID_PFR0_EL1),
1478         ID_SANITISED(ID_PFR1_EL1),
1479         ID_SANITISED(ID_DFR0_EL1),
1480         ID_HIDDEN(ID_AFR0_EL1),
1481         ID_SANITISED(ID_MMFR0_EL1),
1482         ID_SANITISED(ID_MMFR1_EL1),
1483         ID_SANITISED(ID_MMFR2_EL1),
1484         ID_SANITISED(ID_MMFR3_EL1),
1485
1486         /* CRm=2 */
1487         ID_SANITISED(ID_ISAR0_EL1),
1488         ID_SANITISED(ID_ISAR1_EL1),
1489         ID_SANITISED(ID_ISAR2_EL1),
1490         ID_SANITISED(ID_ISAR3_EL1),
1491         ID_SANITISED(ID_ISAR4_EL1),
1492         ID_SANITISED(ID_ISAR5_EL1),
1493         ID_SANITISED(ID_MMFR4_EL1),
1494         ID_SANITISED(ID_ISAR6_EL1),
1495
1496         /* CRm=3 */
1497         ID_SANITISED(MVFR0_EL1),
1498         ID_SANITISED(MVFR1_EL1),
1499         ID_SANITISED(MVFR2_EL1),
1500         ID_UNALLOCATED(3,3),
1501         ID_SANITISED(ID_PFR2_EL1),
1502         ID_HIDDEN(ID_DFR1_EL1),
1503         ID_SANITISED(ID_MMFR5_EL1),
1504         ID_UNALLOCATED(3,7),
1505
1506         /* AArch64 ID registers */
1507         /* CRm=4 */
1508         ID_SANITISED(ID_AA64PFR0_EL1),
1509         ID_SANITISED(ID_AA64PFR1_EL1),
1510         ID_UNALLOCATED(4,2),
1511         ID_UNALLOCATED(4,3),
1512         { SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
1513         ID_UNALLOCATED(4,5),
1514         ID_UNALLOCATED(4,6),
1515         ID_UNALLOCATED(4,7),
1516
1517         /* CRm=5 */
1518         ID_SANITISED(ID_AA64DFR0_EL1),
1519         ID_SANITISED(ID_AA64DFR1_EL1),
1520         ID_UNALLOCATED(5,2),
1521         ID_UNALLOCATED(5,3),
1522         ID_HIDDEN(ID_AA64AFR0_EL1),
1523         ID_HIDDEN(ID_AA64AFR1_EL1),
1524         ID_UNALLOCATED(5,6),
1525         ID_UNALLOCATED(5,7),
1526
1527         /* CRm=6 */
1528         ID_SANITISED(ID_AA64ISAR0_EL1),
1529         ID_SANITISED(ID_AA64ISAR1_EL1),
1530         ID_UNALLOCATED(6,2),
1531         ID_UNALLOCATED(6,3),
1532         ID_UNALLOCATED(6,4),
1533         ID_UNALLOCATED(6,5),
1534         ID_UNALLOCATED(6,6),
1535         ID_UNALLOCATED(6,7),
1536
1537         /* CRm=7 */
1538         ID_SANITISED(ID_AA64MMFR0_EL1),
1539         ID_SANITISED(ID_AA64MMFR1_EL1),
1540         ID_SANITISED(ID_AA64MMFR2_EL1),
1541         ID_UNALLOCATED(7,3),
1542         ID_UNALLOCATED(7,4),
1543         ID_UNALLOCATED(7,5),
1544         ID_UNALLOCATED(7,6),
1545         ID_UNALLOCATED(7,7),
1546
1547         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1548         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1549         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1550         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1551         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1552         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1553         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1554
1555         PTRAUTH_KEY(APIA),
1556         PTRAUTH_KEY(APIB),
1557         PTRAUTH_KEY(APDA),
1558         PTRAUTH_KEY(APDB),
1559         PTRAUTH_KEY(APGA),
1560
1561         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1562         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1563         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1564
1565         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1566         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1567         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1568         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1569         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1570         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1571         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1572         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1573
1574         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1575         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1576
1577         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1578         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1579
1580         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1581         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1582
1583         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1584         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1585         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1586         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1587         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1588
1589         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1590         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1591
1592         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1593         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1594         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1595         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1596         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1597         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1598         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1599         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1600         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1601         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1602         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1603         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1604
1605         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1606         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1607
1608         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1609
1610         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1611         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1612         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1613         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1614
1615         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1616         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1617         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1618         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1619         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1620         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1621         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1622         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1623         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1624         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1625         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1626         /*
1627          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1628          * in 32bit mode. Here we choose to reset it as zero for consistency.
1629          */
1630         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1631         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1632
1633         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1634         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1635
1636         { SYS_DESC(SYS_AMCR_EL0), access_amu },
1637         { SYS_DESC(SYS_AMCFGR_EL0), access_amu },
1638         { SYS_DESC(SYS_AMCGCR_EL0), access_amu },
1639         { SYS_DESC(SYS_AMUSERENR_EL0), access_amu },
1640         { SYS_DESC(SYS_AMCNTENCLR0_EL0), access_amu },
1641         { SYS_DESC(SYS_AMCNTENSET0_EL0), access_amu },
1642         { SYS_DESC(SYS_AMCNTENCLR1_EL0), access_amu },
1643         { SYS_DESC(SYS_AMCNTENSET1_EL0), access_amu },
1644         AMU_AMEVCNTR0_EL0(0),
1645         AMU_AMEVCNTR0_EL0(1),
1646         AMU_AMEVCNTR0_EL0(2),
1647         AMU_AMEVCNTR0_EL0(3),
1648         AMU_AMEVCNTR0_EL0(4),
1649         AMU_AMEVCNTR0_EL0(5),
1650         AMU_AMEVCNTR0_EL0(6),
1651         AMU_AMEVCNTR0_EL0(7),
1652         AMU_AMEVCNTR0_EL0(8),
1653         AMU_AMEVCNTR0_EL0(9),
1654         AMU_AMEVCNTR0_EL0(10),
1655         AMU_AMEVCNTR0_EL0(11),
1656         AMU_AMEVCNTR0_EL0(12),
1657         AMU_AMEVCNTR0_EL0(13),
1658         AMU_AMEVCNTR0_EL0(14),
1659         AMU_AMEVCNTR0_EL0(15),
1660         AMU_AMEVTYPER0_EL0(0),
1661         AMU_AMEVTYPER0_EL0(1),
1662         AMU_AMEVTYPER0_EL0(2),
1663         AMU_AMEVTYPER0_EL0(3),
1664         AMU_AMEVTYPER0_EL0(4),
1665         AMU_AMEVTYPER0_EL0(5),
1666         AMU_AMEVTYPER0_EL0(6),
1667         AMU_AMEVTYPER0_EL0(7),
1668         AMU_AMEVTYPER0_EL0(8),
1669         AMU_AMEVTYPER0_EL0(9),
1670         AMU_AMEVTYPER0_EL0(10),
1671         AMU_AMEVTYPER0_EL0(11),
1672         AMU_AMEVTYPER0_EL0(12),
1673         AMU_AMEVTYPER0_EL0(13),
1674         AMU_AMEVTYPER0_EL0(14),
1675         AMU_AMEVTYPER0_EL0(15),
1676         AMU_AMEVCNTR1_EL0(0),
1677         AMU_AMEVCNTR1_EL0(1),
1678         AMU_AMEVCNTR1_EL0(2),
1679         AMU_AMEVCNTR1_EL0(3),
1680         AMU_AMEVCNTR1_EL0(4),
1681         AMU_AMEVCNTR1_EL0(5),
1682         AMU_AMEVCNTR1_EL0(6),
1683         AMU_AMEVCNTR1_EL0(7),
1684         AMU_AMEVCNTR1_EL0(8),
1685         AMU_AMEVCNTR1_EL0(9),
1686         AMU_AMEVCNTR1_EL0(10),
1687         AMU_AMEVCNTR1_EL0(11),
1688         AMU_AMEVCNTR1_EL0(12),
1689         AMU_AMEVCNTR1_EL0(13),
1690         AMU_AMEVCNTR1_EL0(14),
1691         AMU_AMEVCNTR1_EL0(15),
1692         AMU_AMEVTYPER1_EL0(0),
1693         AMU_AMEVTYPER1_EL0(1),
1694         AMU_AMEVTYPER1_EL0(2),
1695         AMU_AMEVTYPER1_EL0(3),
1696         AMU_AMEVTYPER1_EL0(4),
1697         AMU_AMEVTYPER1_EL0(5),
1698         AMU_AMEVTYPER1_EL0(6),
1699         AMU_AMEVTYPER1_EL0(7),
1700         AMU_AMEVTYPER1_EL0(8),
1701         AMU_AMEVTYPER1_EL0(9),
1702         AMU_AMEVTYPER1_EL0(10),
1703         AMU_AMEVTYPER1_EL0(11),
1704         AMU_AMEVTYPER1_EL0(12),
1705         AMU_AMEVTYPER1_EL0(13),
1706         AMU_AMEVTYPER1_EL0(14),
1707         AMU_AMEVTYPER1_EL0(15),
1708
1709         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1710         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1711         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1712
1713         /* PMEVCNTRn_EL0 */
1714         PMU_PMEVCNTR_EL0(0),
1715         PMU_PMEVCNTR_EL0(1),
1716         PMU_PMEVCNTR_EL0(2),
1717         PMU_PMEVCNTR_EL0(3),
1718         PMU_PMEVCNTR_EL0(4),
1719         PMU_PMEVCNTR_EL0(5),
1720         PMU_PMEVCNTR_EL0(6),
1721         PMU_PMEVCNTR_EL0(7),
1722         PMU_PMEVCNTR_EL0(8),
1723         PMU_PMEVCNTR_EL0(9),
1724         PMU_PMEVCNTR_EL0(10),
1725         PMU_PMEVCNTR_EL0(11),
1726         PMU_PMEVCNTR_EL0(12),
1727         PMU_PMEVCNTR_EL0(13),
1728         PMU_PMEVCNTR_EL0(14),
1729         PMU_PMEVCNTR_EL0(15),
1730         PMU_PMEVCNTR_EL0(16),
1731         PMU_PMEVCNTR_EL0(17),
1732         PMU_PMEVCNTR_EL0(18),
1733         PMU_PMEVCNTR_EL0(19),
1734         PMU_PMEVCNTR_EL0(20),
1735         PMU_PMEVCNTR_EL0(21),
1736         PMU_PMEVCNTR_EL0(22),
1737         PMU_PMEVCNTR_EL0(23),
1738         PMU_PMEVCNTR_EL0(24),
1739         PMU_PMEVCNTR_EL0(25),
1740         PMU_PMEVCNTR_EL0(26),
1741         PMU_PMEVCNTR_EL0(27),
1742         PMU_PMEVCNTR_EL0(28),
1743         PMU_PMEVCNTR_EL0(29),
1744         PMU_PMEVCNTR_EL0(30),
1745         /* PMEVTYPERn_EL0 */
1746         PMU_PMEVTYPER_EL0(0),
1747         PMU_PMEVTYPER_EL0(1),
1748         PMU_PMEVTYPER_EL0(2),
1749         PMU_PMEVTYPER_EL0(3),
1750         PMU_PMEVTYPER_EL0(4),
1751         PMU_PMEVTYPER_EL0(5),
1752         PMU_PMEVTYPER_EL0(6),
1753         PMU_PMEVTYPER_EL0(7),
1754         PMU_PMEVTYPER_EL0(8),
1755         PMU_PMEVTYPER_EL0(9),
1756         PMU_PMEVTYPER_EL0(10),
1757         PMU_PMEVTYPER_EL0(11),
1758         PMU_PMEVTYPER_EL0(12),
1759         PMU_PMEVTYPER_EL0(13),
1760         PMU_PMEVTYPER_EL0(14),
1761         PMU_PMEVTYPER_EL0(15),
1762         PMU_PMEVTYPER_EL0(16),
1763         PMU_PMEVTYPER_EL0(17),
1764         PMU_PMEVTYPER_EL0(18),
1765         PMU_PMEVTYPER_EL0(19),
1766         PMU_PMEVTYPER_EL0(20),
1767         PMU_PMEVTYPER_EL0(21),
1768         PMU_PMEVTYPER_EL0(22),
1769         PMU_PMEVTYPER_EL0(23),
1770         PMU_PMEVTYPER_EL0(24),
1771         PMU_PMEVTYPER_EL0(25),
1772         PMU_PMEVTYPER_EL0(26),
1773         PMU_PMEVTYPER_EL0(27),
1774         PMU_PMEVTYPER_EL0(28),
1775         PMU_PMEVTYPER_EL0(29),
1776         PMU_PMEVTYPER_EL0(30),
1777         /*
1778          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1779          * in 32bit mode. Here we choose to reset it as zero for consistency.
1780          */
1781         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1782
1783         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1784         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1785         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1786 };
1787
1788 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1789                         struct sys_reg_params *p,
1790                         const struct sys_reg_desc *r)
1791 {
1792         if (p->is_write) {
1793                 return ignore_write(vcpu, p);
1794         } else {
1795                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1796                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1797                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1798
1799                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1800                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1801                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1802                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1803                 return true;
1804         }
1805 }
1806
1807 static bool trap_debug32(struct kvm_vcpu *vcpu,
1808                          struct sys_reg_params *p,
1809                          const struct sys_reg_desc *r)
1810 {
1811         if (p->is_write) {
1812                 vcpu_cp14(vcpu, r->reg) = p->regval;
1813                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1814         } else {
1815                 p->regval = vcpu_cp14(vcpu, r->reg);
1816         }
1817
1818         return true;
1819 }
1820
1821 /* AArch32 debug register mappings
1822  *
1823  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1824  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1825  *
1826  * All control registers and watchpoint value registers are mapped to
1827  * the lower 32 bits of their AArch64 equivalents. We share the trap
1828  * handlers with the above AArch64 code which checks what mode the
1829  * system is in.
1830  */
1831
1832 static bool trap_xvr(struct kvm_vcpu *vcpu,
1833                      struct sys_reg_params *p,
1834                      const struct sys_reg_desc *rd)
1835 {
1836         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1837
1838         if (p->is_write) {
1839                 u64 val = *dbg_reg;
1840
1841                 val &= 0xffffffffUL;
1842                 val |= p->regval << 32;
1843                 *dbg_reg = val;
1844
1845                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1846         } else {
1847                 p->regval = *dbg_reg >> 32;
1848         }
1849
1850         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1851
1852         return true;
1853 }
1854
1855 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1856         /* DBGBVRn */                                                   \
1857         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1858         /* DBGBCRn */                                                   \
1859         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1860         /* DBGWVRn */                                                   \
1861         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1862         /* DBGWCRn */                                                   \
1863         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1864
1865 #define DBGBXVR(n)                                                      \
1866         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1867
1868 /*
1869  * Trapped cp14 registers. We generally ignore most of the external
1870  * debug, on the principle that they don't really make sense to a
1871  * guest. Revisit this one day, would this principle change.
1872  */
1873 static const struct sys_reg_desc cp14_regs[] = {
1874         /* DBGIDR */
1875         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1876         /* DBGDTRRXext */
1877         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1878
1879         DBG_BCR_BVR_WCR_WVR(0),
1880         /* DBGDSCRint */
1881         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1882         DBG_BCR_BVR_WCR_WVR(1),
1883         /* DBGDCCINT */
1884         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1885         /* DBGDSCRext */
1886         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1887         DBG_BCR_BVR_WCR_WVR(2),
1888         /* DBGDTR[RT]Xint */
1889         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1890         /* DBGDTR[RT]Xext */
1891         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1892         DBG_BCR_BVR_WCR_WVR(3),
1893         DBG_BCR_BVR_WCR_WVR(4),
1894         DBG_BCR_BVR_WCR_WVR(5),
1895         /* DBGWFAR */
1896         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1897         /* DBGOSECCR */
1898         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1899         DBG_BCR_BVR_WCR_WVR(6),
1900         /* DBGVCR */
1901         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1902         DBG_BCR_BVR_WCR_WVR(7),
1903         DBG_BCR_BVR_WCR_WVR(8),
1904         DBG_BCR_BVR_WCR_WVR(9),
1905         DBG_BCR_BVR_WCR_WVR(10),
1906         DBG_BCR_BVR_WCR_WVR(11),
1907         DBG_BCR_BVR_WCR_WVR(12),
1908         DBG_BCR_BVR_WCR_WVR(13),
1909         DBG_BCR_BVR_WCR_WVR(14),
1910         DBG_BCR_BVR_WCR_WVR(15),
1911
1912         /* DBGDRAR (32bit) */
1913         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1914
1915         DBGBXVR(0),
1916         /* DBGOSLAR */
1917         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1918         DBGBXVR(1),
1919         /* DBGOSLSR */
1920         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1921         DBGBXVR(2),
1922         DBGBXVR(3),
1923         /* DBGOSDLR */
1924         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1925         DBGBXVR(4),
1926         /* DBGPRCR */
1927         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1928         DBGBXVR(5),
1929         DBGBXVR(6),
1930         DBGBXVR(7),
1931         DBGBXVR(8),
1932         DBGBXVR(9),
1933         DBGBXVR(10),
1934         DBGBXVR(11),
1935         DBGBXVR(12),
1936         DBGBXVR(13),
1937         DBGBXVR(14),
1938         DBGBXVR(15),
1939
1940         /* DBGDSAR (32bit) */
1941         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1942
1943         /* DBGDEVID2 */
1944         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1945         /* DBGDEVID1 */
1946         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1947         /* DBGDEVID */
1948         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1949         /* DBGCLAIMSET */
1950         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1951         /* DBGCLAIMCLR */
1952         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1953         /* DBGAUTHSTATUS */
1954         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1955 };
1956
1957 /* Trapped cp14 64bit registers */
1958 static const struct sys_reg_desc cp14_64_regs[] = {
1959         /* DBGDRAR (64bit) */
1960         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1961
1962         /* DBGDSAR (64bit) */
1963         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1964 };
1965
1966 /* Macro to expand the PMEVCNTRn register */
1967 #define PMU_PMEVCNTR(n)                                                 \
1968         /* PMEVCNTRn */                                                 \
1969         { Op1(0), CRn(0b1110),                                          \
1970           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1971           access_pmu_evcntr }
1972
1973 /* Macro to expand the PMEVTYPERn register */
1974 #define PMU_PMEVTYPER(n)                                                \
1975         /* PMEVTYPERn */                                                \
1976         { Op1(0), CRn(0b1110),                                          \
1977           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1978           access_pmu_evtyper }
1979
1980 /*
1981  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1982  * depending on the way they are accessed (as a 32bit or a 64bit
1983  * register).
1984  */
1985 static const struct sys_reg_desc cp15_regs[] = {
1986         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1987         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1988         { Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr },
1989         { Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr },
1990         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1991         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1992         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1993         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1994         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1995         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1996         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1997         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1998         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1999         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
2000
2001         /*
2002          * DC{C,I,CI}SW operations:
2003          */
2004         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2005         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2006         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2007
2008         /* PMU */
2009         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
2010         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
2011         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
2012         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
2013         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
2014         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
2015         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
2016         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
2017         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
2018         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
2019         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
2020         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
2021         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
2022         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
2023         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
2024
2025         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
2026         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
2027         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
2028         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
2029
2030         /* ICC_SRE */
2031         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2032
2033         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
2034
2035         /* Arch Tmers */
2036         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2037         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2038
2039         /* PMEVCNTRn */
2040         PMU_PMEVCNTR(0),
2041         PMU_PMEVCNTR(1),
2042         PMU_PMEVCNTR(2),
2043         PMU_PMEVCNTR(3),
2044         PMU_PMEVCNTR(4),
2045         PMU_PMEVCNTR(5),
2046         PMU_PMEVCNTR(6),
2047         PMU_PMEVCNTR(7),
2048         PMU_PMEVCNTR(8),
2049         PMU_PMEVCNTR(9),
2050         PMU_PMEVCNTR(10),
2051         PMU_PMEVCNTR(11),
2052         PMU_PMEVCNTR(12),
2053         PMU_PMEVCNTR(13),
2054         PMU_PMEVCNTR(14),
2055         PMU_PMEVCNTR(15),
2056         PMU_PMEVCNTR(16),
2057         PMU_PMEVCNTR(17),
2058         PMU_PMEVCNTR(18),
2059         PMU_PMEVCNTR(19),
2060         PMU_PMEVCNTR(20),
2061         PMU_PMEVCNTR(21),
2062         PMU_PMEVCNTR(22),
2063         PMU_PMEVCNTR(23),
2064         PMU_PMEVCNTR(24),
2065         PMU_PMEVCNTR(25),
2066         PMU_PMEVCNTR(26),
2067         PMU_PMEVCNTR(27),
2068         PMU_PMEVCNTR(28),
2069         PMU_PMEVCNTR(29),
2070         PMU_PMEVCNTR(30),
2071         /* PMEVTYPERn */
2072         PMU_PMEVTYPER(0),
2073         PMU_PMEVTYPER(1),
2074         PMU_PMEVTYPER(2),
2075         PMU_PMEVTYPER(3),
2076         PMU_PMEVTYPER(4),
2077         PMU_PMEVTYPER(5),
2078         PMU_PMEVTYPER(6),
2079         PMU_PMEVTYPER(7),
2080         PMU_PMEVTYPER(8),
2081         PMU_PMEVTYPER(9),
2082         PMU_PMEVTYPER(10),
2083         PMU_PMEVTYPER(11),
2084         PMU_PMEVTYPER(12),
2085         PMU_PMEVTYPER(13),
2086         PMU_PMEVTYPER(14),
2087         PMU_PMEVTYPER(15),
2088         PMU_PMEVTYPER(16),
2089         PMU_PMEVTYPER(17),
2090         PMU_PMEVTYPER(18),
2091         PMU_PMEVTYPER(19),
2092         PMU_PMEVTYPER(20),
2093         PMU_PMEVTYPER(21),
2094         PMU_PMEVTYPER(22),
2095         PMU_PMEVTYPER(23),
2096         PMU_PMEVTYPER(24),
2097         PMU_PMEVTYPER(25),
2098         PMU_PMEVTYPER(26),
2099         PMU_PMEVTYPER(27),
2100         PMU_PMEVTYPER(28),
2101         PMU_PMEVTYPER(29),
2102         PMU_PMEVTYPER(30),
2103         /* PMCCFILTR */
2104         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2105
2106         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2107         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2108         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
2109 };
2110
2111 static const struct sys_reg_desc cp15_64_regs[] = {
2112         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
2113         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2114         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2115         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
2116         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2117         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2118         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2119 };
2120
2121 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2122                               bool is_32)
2123 {
2124         unsigned int i;
2125
2126         for (i = 0; i < n; i++) {
2127                 if (!is_32 && table[i].reg && !table[i].reset) {
2128                         kvm_err("sys_reg table %p entry %d has lacks reset\n",
2129                                 table, i);
2130                         return 1;
2131                 }
2132
2133                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2134                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2135                         return 1;
2136                 }
2137         }
2138
2139         return 0;
2140 }
2141
2142 static int match_sys_reg(const void *key, const void *elt)
2143 {
2144         const unsigned long pval = (unsigned long)key;
2145         const struct sys_reg_desc *r = elt;
2146
2147         return pval - reg_to_encoding(r);
2148 }
2149
2150 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2151                                          const struct sys_reg_desc table[],
2152                                          unsigned int num)
2153 {
2154         unsigned long pval = reg_to_encoding(params);
2155
2156         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2157 }
2158
2159 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2160 {
2161         kvm_inject_undefined(vcpu);
2162         return 1;
2163 }
2164
2165 static void perform_access(struct kvm_vcpu *vcpu,
2166                            struct sys_reg_params *params,
2167                            const struct sys_reg_desc *r)
2168 {
2169         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2170
2171         /* Check for regs disabled by runtime config */
2172         if (sysreg_hidden_from_guest(vcpu, r)) {
2173                 kvm_inject_undefined(vcpu);
2174                 return;
2175         }
2176
2177         /*
2178          * Not having an accessor means that we have configured a trap
2179          * that we don't know how to handle. This certainly qualifies
2180          * as a gross bug that should be fixed right away.
2181          */
2182         BUG_ON(!r->access);
2183
2184         /* Skip instruction if instructed so */
2185         if (likely(r->access(vcpu, params, r)))
2186                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2187 }
2188
2189 /*
2190  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2191  *                call the corresponding trap handler.
2192  *
2193  * @params: pointer to the descriptor of the access
2194  * @table: array of trap descriptors
2195  * @num: size of the trap descriptor array
2196  *
2197  * Return 0 if the access has been handled, and -1 if not.
2198  */
2199 static int emulate_cp(struct kvm_vcpu *vcpu,
2200                       struct sys_reg_params *params,
2201                       const struct sys_reg_desc *table,
2202                       size_t num)
2203 {
2204         const struct sys_reg_desc *r;
2205
2206         if (!table)
2207                 return -1;      /* Not handled */
2208
2209         r = find_reg(params, table, num);
2210
2211         if (r) {
2212                 perform_access(vcpu, params, r);
2213                 return 0;
2214         }
2215
2216         /* Not handled */
2217         return -1;
2218 }
2219
2220 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2221                                 struct sys_reg_params *params)
2222 {
2223         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2224         int cp = -1;
2225
2226         switch (esr_ec) {
2227         case ESR_ELx_EC_CP15_32:
2228         case ESR_ELx_EC_CP15_64:
2229                 cp = 15;
2230                 break;
2231         case ESR_ELx_EC_CP14_MR:
2232         case ESR_ELx_EC_CP14_64:
2233                 cp = 14;
2234                 break;
2235         default:
2236                 WARN_ON(1);
2237         }
2238
2239         print_sys_reg_msg(params,
2240                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2241                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2242         kvm_inject_undefined(vcpu);
2243 }
2244
2245 /**
2246  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2247  * @vcpu: The VCPU pointer
2248  * @run:  The kvm_run struct
2249  */
2250 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2251                             const struct sys_reg_desc *global,
2252                             size_t nr_global)
2253 {
2254         struct sys_reg_params params;
2255         u32 esr = kvm_vcpu_get_esr(vcpu);
2256         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2257         int Rt2 = (esr >> 10) & 0x1f;
2258
2259         params.is_aarch32 = true;
2260         params.is_32bit = false;
2261         params.CRm = (esr >> 1) & 0xf;
2262         params.is_write = ((esr & 1) == 0);
2263
2264         params.Op0 = 0;
2265         params.Op1 = (esr >> 16) & 0xf;
2266         params.Op2 = 0;
2267         params.CRn = 0;
2268
2269         /*
2270          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2271          * backends between AArch32 and AArch64, we get away with it.
2272          */
2273         if (params.is_write) {
2274                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2275                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2276         }
2277
2278         /*
2279          * If the table contains a handler, handle the
2280          * potential register operation in the case of a read and return
2281          * with success.
2282          */
2283         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2284                 /* Split up the value between registers for the read side */
2285                 if (!params.is_write) {
2286                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2287                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2288                 }
2289
2290                 return 1;
2291         }
2292
2293         unhandled_cp_access(vcpu, &params);
2294         return 1;
2295 }
2296
2297 /**
2298  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2299  * @vcpu: The VCPU pointer
2300  * @run:  The kvm_run struct
2301  */
2302 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2303                             const struct sys_reg_desc *global,
2304                             size_t nr_global)
2305 {
2306         struct sys_reg_params params;
2307         u32 esr = kvm_vcpu_get_esr(vcpu);
2308         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2309
2310         params.is_aarch32 = true;
2311         params.is_32bit = true;
2312         params.CRm = (esr >> 1) & 0xf;
2313         params.regval = vcpu_get_reg(vcpu, Rt);
2314         params.is_write = ((esr & 1) == 0);
2315         params.CRn = (esr >> 10) & 0xf;
2316         params.Op0 = 0;
2317         params.Op1 = (esr >> 14) & 0x7;
2318         params.Op2 = (esr >> 17) & 0x7;
2319
2320         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2321                 if (!params.is_write)
2322                         vcpu_set_reg(vcpu, Rt, params.regval);
2323                 return 1;
2324         }
2325
2326         unhandled_cp_access(vcpu, &params);
2327         return 1;
2328 }
2329
2330 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2331 {
2332         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2333 }
2334
2335 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2336 {
2337         return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2338 }
2339
2340 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2341 {
2342         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2343 }
2344
2345 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2346 {
2347         return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2348 }
2349
2350 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2351 {
2352         // See ARM DDI 0487E.a, section D12.3.2
2353         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2354 }
2355
2356 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2357                            struct sys_reg_params *params)
2358 {
2359         const struct sys_reg_desc *r;
2360
2361         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2362
2363         if (likely(r)) {
2364                 perform_access(vcpu, params, r);
2365         } else if (is_imp_def_sys_reg(params)) {
2366                 kvm_inject_undefined(vcpu);
2367         } else {
2368                 print_sys_reg_msg(params,
2369                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2370                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2371                 kvm_inject_undefined(vcpu);
2372         }
2373         return 1;
2374 }
2375
2376 /**
2377  * kvm_reset_sys_regs - sets system registers to reset value
2378  * @vcpu: The VCPU pointer
2379  *
2380  * This function finds the right table above and sets the registers on the
2381  * virtual CPU struct to their architecturally defined reset values.
2382  */
2383 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2384 {
2385         unsigned long i;
2386
2387         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2388                 if (sys_reg_descs[i].reset)
2389                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2390 }
2391
2392 /**
2393  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2394  * @vcpu: The VCPU pointer
2395  */
2396 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2397 {
2398         struct sys_reg_params params;
2399         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2400         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2401         int ret;
2402
2403         trace_kvm_handle_sys_reg(esr);
2404
2405         params.is_aarch32 = false;
2406         params.is_32bit = false;
2407         params.Op0 = (esr >> 20) & 3;
2408         params.Op1 = (esr >> 14) & 0x7;
2409         params.CRn = (esr >> 10) & 0xf;
2410         params.CRm = (esr >> 1) & 0xf;
2411         params.Op2 = (esr >> 17) & 0x7;
2412         params.regval = vcpu_get_reg(vcpu, Rt);
2413         params.is_write = !(esr & 1);
2414
2415         ret = emulate_sys_reg(vcpu, &params);
2416
2417         if (!params.is_write)
2418                 vcpu_set_reg(vcpu, Rt, params.regval);
2419         return ret;
2420 }
2421
2422 /******************************************************************************
2423  * Userspace API
2424  *****************************************************************************/
2425
2426 static bool index_to_params(u64 id, struct sys_reg_params *params)
2427 {
2428         switch (id & KVM_REG_SIZE_MASK) {
2429         case KVM_REG_SIZE_U64:
2430                 /* Any unused index bits means it's not valid. */
2431                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2432                               | KVM_REG_ARM_COPROC_MASK
2433                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2434                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2435                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2436                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2437                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2438                         return false;
2439                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2440                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2441                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2442                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2443                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2444                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2445                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2446                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2447                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2448                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2449                 return true;
2450         default:
2451                 return false;
2452         }
2453 }
2454
2455 const struct sys_reg_desc *find_reg_by_id(u64 id,
2456                                           struct sys_reg_params *params,
2457                                           const struct sys_reg_desc table[],
2458                                           unsigned int num)
2459 {
2460         if (!index_to_params(id, params))
2461                 return NULL;
2462
2463         return find_reg(params, table, num);
2464 }
2465
2466 /* Decode an index value, and find the sys_reg_desc entry. */
2467 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2468                                                     u64 id)
2469 {
2470         const struct sys_reg_desc *r;
2471         struct sys_reg_params params;
2472
2473         /* We only do sys_reg for now. */
2474         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2475                 return NULL;
2476
2477         if (!index_to_params(id, &params))
2478                 return NULL;
2479
2480         r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2481
2482         /* Not saved in the sys_reg array and not otherwise accessible? */
2483         if (r && !(r->reg || r->get_user))
2484                 r = NULL;
2485
2486         return r;
2487 }
2488
2489 /*
2490  * These are the invariant sys_reg registers: we let the guest see the
2491  * host versions of these, so they're part of the guest state.
2492  *
2493  * A future CPU may provide a mechanism to present different values to
2494  * the guest, or a future kvm may trap them.
2495  */
2496
2497 #define FUNCTION_INVARIANT(reg)                                         \
2498         static void get_##reg(struct kvm_vcpu *v,                       \
2499                               const struct sys_reg_desc *r)             \
2500         {                                                               \
2501                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2502         }
2503
2504 FUNCTION_INVARIANT(midr_el1)
2505 FUNCTION_INVARIANT(revidr_el1)
2506 FUNCTION_INVARIANT(clidr_el1)
2507 FUNCTION_INVARIANT(aidr_el1)
2508
2509 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2510 {
2511         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2512 }
2513
2514 /* ->val is filled in by kvm_sys_reg_table_init() */
2515 static struct sys_reg_desc invariant_sys_regs[] = {
2516         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2517         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2518         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2519         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2520         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2521 };
2522
2523 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2524 {
2525         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2526                 return -EFAULT;
2527         return 0;
2528 }
2529
2530 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2531 {
2532         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2533                 return -EFAULT;
2534         return 0;
2535 }
2536
2537 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2538 {
2539         struct sys_reg_params params;
2540         const struct sys_reg_desc *r;
2541
2542         r = find_reg_by_id(id, &params, invariant_sys_regs,
2543                            ARRAY_SIZE(invariant_sys_regs));
2544         if (!r)
2545                 return -ENOENT;
2546
2547         return reg_to_user(uaddr, &r->val, id);
2548 }
2549
2550 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2551 {
2552         struct sys_reg_params params;
2553         const struct sys_reg_desc *r;
2554         int err;
2555         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2556
2557         r = find_reg_by_id(id, &params, invariant_sys_regs,
2558                            ARRAY_SIZE(invariant_sys_regs));
2559         if (!r)
2560                 return -ENOENT;
2561
2562         err = reg_from_user(&val, uaddr, id);
2563         if (err)
2564                 return err;
2565
2566         /* This is what we mean by invariant: you can't change it. */
2567         if (r->val != val)
2568                 return -EINVAL;
2569
2570         return 0;
2571 }
2572
2573 static bool is_valid_cache(u32 val)
2574 {
2575         u32 level, ctype;
2576
2577         if (val >= CSSELR_MAX)
2578                 return false;
2579
2580         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2581         level = (val >> 1);
2582         ctype = (cache_levels >> (level * 3)) & 7;
2583
2584         switch (ctype) {
2585         case 0: /* No cache */
2586                 return false;
2587         case 1: /* Instruction cache only */
2588                 return (val & 1);
2589         case 2: /* Data cache only */
2590         case 4: /* Unified cache */
2591                 return !(val & 1);
2592         case 3: /* Separate instruction and data caches */
2593                 return true;
2594         default: /* Reserved: we can't know instruction or data. */
2595                 return false;
2596         }
2597 }
2598
2599 static int demux_c15_get(u64 id, void __user *uaddr)
2600 {
2601         u32 val;
2602         u32 __user *uval = uaddr;
2603
2604         /* Fail if we have unknown bits set. */
2605         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2606                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2607                 return -ENOENT;
2608
2609         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2610         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2611                 if (KVM_REG_SIZE(id) != 4)
2612                         return -ENOENT;
2613                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2614                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2615                 if (!is_valid_cache(val))
2616                         return -ENOENT;
2617
2618                 return put_user(get_ccsidr(val), uval);
2619         default:
2620                 return -ENOENT;
2621         }
2622 }
2623
2624 static int demux_c15_set(u64 id, void __user *uaddr)
2625 {
2626         u32 val, newval;
2627         u32 __user *uval = uaddr;
2628
2629         /* Fail if we have unknown bits set. */
2630         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2631                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2632                 return -ENOENT;
2633
2634         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2635         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2636                 if (KVM_REG_SIZE(id) != 4)
2637                         return -ENOENT;
2638                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2639                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2640                 if (!is_valid_cache(val))
2641                         return -ENOENT;
2642
2643                 if (get_user(newval, uval))
2644                         return -EFAULT;
2645
2646                 /* This is also invariant: you can't change it. */
2647                 if (newval != get_ccsidr(val))
2648                         return -EINVAL;
2649                 return 0;
2650         default:
2651                 return -ENOENT;
2652         }
2653 }
2654
2655 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2656 {
2657         const struct sys_reg_desc *r;
2658         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2659
2660         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2661                 return demux_c15_get(reg->id, uaddr);
2662
2663         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2664                 return -ENOENT;
2665
2666         r = index_to_sys_reg_desc(vcpu, reg->id);
2667         if (!r)
2668                 return get_invariant_sys_reg(reg->id, uaddr);
2669
2670         /* Check for regs disabled by runtime config */
2671         if (sysreg_hidden_from_user(vcpu, r))
2672                 return -ENOENT;
2673
2674         if (r->get_user)
2675                 return (r->get_user)(vcpu, r, reg, uaddr);
2676
2677         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2678 }
2679
2680 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2681 {
2682         const struct sys_reg_desc *r;
2683         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2684
2685         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2686                 return demux_c15_set(reg->id, uaddr);
2687
2688         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2689                 return -ENOENT;
2690
2691         r = index_to_sys_reg_desc(vcpu, reg->id);
2692         if (!r)
2693                 return set_invariant_sys_reg(reg->id, uaddr);
2694
2695         /* Check for regs disabled by runtime config */
2696         if (sysreg_hidden_from_user(vcpu, r))
2697                 return -ENOENT;
2698
2699         if (r->set_user)
2700                 return (r->set_user)(vcpu, r, reg, uaddr);
2701
2702         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2703 }
2704
2705 static unsigned int num_demux_regs(void)
2706 {
2707         unsigned int i, count = 0;
2708
2709         for (i = 0; i < CSSELR_MAX; i++)
2710                 if (is_valid_cache(i))
2711                         count++;
2712
2713         return count;
2714 }
2715
2716 static int write_demux_regids(u64 __user *uindices)
2717 {
2718         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2719         unsigned int i;
2720
2721         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2722         for (i = 0; i < CSSELR_MAX; i++) {
2723                 if (!is_valid_cache(i))
2724                         continue;
2725                 if (put_user(val | i, uindices))
2726                         return -EFAULT;
2727                 uindices++;
2728         }
2729         return 0;
2730 }
2731
2732 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2733 {
2734         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2735                 KVM_REG_ARM64_SYSREG |
2736                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2737                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2738                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2739                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2740                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2741 }
2742
2743 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2744 {
2745         if (!*uind)
2746                 return true;
2747
2748         if (put_user(sys_reg_to_index(reg), *uind))
2749                 return false;
2750
2751         (*uind)++;
2752         return true;
2753 }
2754
2755 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2756                             const struct sys_reg_desc *rd,
2757                             u64 __user **uind,
2758                             unsigned int *total)
2759 {
2760         /*
2761          * Ignore registers we trap but don't save,
2762          * and for which no custom user accessor is provided.
2763          */
2764         if (!(rd->reg || rd->get_user))
2765                 return 0;
2766
2767         if (sysreg_hidden_from_user(vcpu, rd))
2768                 return 0;
2769
2770         if (!copy_reg_to_user(rd, uind))
2771                 return -EFAULT;
2772
2773         (*total)++;
2774         return 0;
2775 }
2776
2777 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2778 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2779 {
2780         const struct sys_reg_desc *i2, *end2;
2781         unsigned int total = 0;
2782         int err;
2783
2784         i2 = sys_reg_descs;
2785         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2786
2787         while (i2 != end2) {
2788                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2789                 if (err)
2790                         return err;
2791         }
2792         return total;
2793 }
2794
2795 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2796 {
2797         return ARRAY_SIZE(invariant_sys_regs)
2798                 + num_demux_regs()
2799                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2800 }
2801
2802 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2803 {
2804         unsigned int i;
2805         int err;
2806
2807         /* Then give them all the invariant registers' indices. */
2808         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2809                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2810                         return -EFAULT;
2811                 uindices++;
2812         }
2813
2814         err = walk_sys_regs(vcpu, uindices);
2815         if (err < 0)
2816                 return err;
2817         uindices += err;
2818
2819         return write_demux_regids(uindices);
2820 }
2821
2822 void kvm_sys_reg_table_init(void)
2823 {
2824         unsigned int i;
2825         struct sys_reg_desc clidr;
2826
2827         /* Make sure tables are unique and in order. */
2828         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2829         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2830         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2831         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2832         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2833         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2834
2835         /* We abuse the reset function to overwrite the table itself. */
2836         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2837                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2838
2839         /*
2840          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2841          *
2842          *   If software reads the Cache Type fields from Ctype1
2843          *   upwards, once it has seen a value of 0b000, no caches
2844          *   exist at further-out levels of the hierarchy. So, for
2845          *   example, if Ctype3 is the first Cache Type field with a
2846          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2847          *   ignored.
2848          */
2849         get_clidr_el1(NULL, &clidr); /* Ugly... */
2850         cache_levels = clidr.val;
2851         for (i = 0; i < 7; i++)
2852                 if (((cache_levels >> (i*3)) & 7) == 0)
2853                         break;
2854         /* Clear all higher bits. */
2855         cache_levels &= (1 << (i*3))-1;
2856 }