Merge tag 'f2fs-for-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeu...
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29
30 #include <trace/events/kvm.h>
31
32 #include "sys_regs.h"
33
34 #include "trace.h"
35
36 /*
37  * All of this file is extremely similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46
47 static bool read_from_write_only(struct kvm_vcpu *vcpu,
48                                  struct sys_reg_params *params,
49                                  const struct sys_reg_desc *r)
50 {
51         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
52         print_sys_reg_instr(params);
53         kvm_inject_undefined(vcpu);
54         return false;
55 }
56
57 static bool write_to_read_only(struct kvm_vcpu *vcpu,
58                                struct sys_reg_params *params,
59                                const struct sys_reg_desc *r)
60 {
61         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
62         print_sys_reg_instr(params);
63         kvm_inject_undefined(vcpu);
64         return false;
65 }
66
67 static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
68 {
69         /*
70          * System registers listed in the switch are not saved on every
71          * exit from the guest but are only saved on vcpu_put.
72          *
73          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
74          * should never be listed below, because the guest cannot modify its
75          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
76          * thread when emulating cross-VCPU communication.
77          */
78         switch (reg) {
79         case CSSELR_EL1:        *val = read_sysreg_s(SYS_CSSELR_EL1);   break;
80         case SCTLR_EL1:         *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
81         case CPACR_EL1:         *val = read_sysreg_s(SYS_CPACR_EL12);   break;
82         case TTBR0_EL1:         *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
83         case TTBR1_EL1:         *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
84         case TCR_EL1:           *val = read_sysreg_s(SYS_TCR_EL12);     break;
85         case ESR_EL1:           *val = read_sysreg_s(SYS_ESR_EL12);     break;
86         case AFSR0_EL1:         *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
87         case AFSR1_EL1:         *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
88         case FAR_EL1:           *val = read_sysreg_s(SYS_FAR_EL12);     break;
89         case MAIR_EL1:          *val = read_sysreg_s(SYS_MAIR_EL12);    break;
90         case VBAR_EL1:          *val = read_sysreg_s(SYS_VBAR_EL12);    break;
91         case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
92         case TPIDR_EL0:         *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
93         case TPIDRRO_EL0:       *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
94         case TPIDR_EL1:         *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
95         case AMAIR_EL1:         *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
96         case CNTKCTL_EL1:       *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
97         case ELR_EL1:           *val = read_sysreg_s(SYS_ELR_EL12);     break;
98         case PAR_EL1:           *val = read_sysreg_s(SYS_PAR_EL1);      break;
99         case DACR32_EL2:        *val = read_sysreg_s(SYS_DACR32_EL2);   break;
100         case IFSR32_EL2:        *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
101         case DBGVCR32_EL2:      *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
102         default:                return false;
103         }
104
105         return true;
106 }
107
108 static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
109 {
110         /*
111          * System registers listed in the switch are not restored on every
112          * entry to the guest but are only restored on vcpu_load.
113          *
114          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
115          * should never be listed below, because the MPIDR should only be set
116          * once, before running the VCPU, and never changed later.
117          */
118         switch (reg) {
119         case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    break;
120         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    break;
121         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    break;
122         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    break;
123         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    break;
124         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      break;
125         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      break;
126         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    break;
127         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    break;
128         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      break;
129         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     break;
130         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     break;
131         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
132         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     break;
133         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
134         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     break;
135         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    break;
136         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
137         case ELR_EL1:           write_sysreg_s(val, SYS_ELR_EL12);      break;
138         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       break;
139         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    break;
140         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    break;
141         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
142         default:                return false;
143         }
144
145         return true;
146 }
147
148 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
149 {
150         u64 val = 0x8badf00d8badf00d;
151
152         if (vcpu->arch.sysregs_loaded_on_cpu &&
153             __vcpu_read_sys_reg_from_cpu(reg, &val))
154                 return val;
155
156         return __vcpu_sys_reg(vcpu, reg);
157 }
158
159 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
160 {
161         if (vcpu->arch.sysregs_loaded_on_cpu &&
162             __vcpu_write_sys_reg_to_cpu(val, reg))
163                 return;
164
165          __vcpu_sys_reg(vcpu, reg) = val;
166 }
167
168 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
169 static u32 cache_levels;
170
171 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
172 #define CSSELR_MAX 12
173
174 /* Which cache CCSIDR represents depends on CSSELR value. */
175 static u32 get_ccsidr(u32 csselr)
176 {
177         u32 ccsidr;
178
179         /* Make sure noone else changes CSSELR during this! */
180         local_irq_disable();
181         write_sysreg(csselr, csselr_el1);
182         isb();
183         ccsidr = read_sysreg(ccsidr_el1);
184         local_irq_enable();
185
186         return ccsidr;
187 }
188
189 /*
190  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
191  */
192 static bool access_dcsw(struct kvm_vcpu *vcpu,
193                         struct sys_reg_params *p,
194                         const struct sys_reg_desc *r)
195 {
196         if (!p->is_write)
197                 return read_from_write_only(vcpu, p, r);
198
199         /*
200          * Only track S/W ops if we don't have FWB. It still indicates
201          * that the guest is a bit broken (S/W operations should only
202          * be done by firmware, knowing that there is only a single
203          * CPU left in the system, and certainly not from non-secure
204          * software).
205          */
206         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
207                 kvm_set_way_flush(vcpu);
208
209         return true;
210 }
211
212 /*
213  * Generic accessor for VM registers. Only called as long as HCR_TVM
214  * is set. If the guest enables the MMU, we stop trapping the VM
215  * sys_regs and leave it in complete control of the caches.
216  */
217 static bool access_vm_reg(struct kvm_vcpu *vcpu,
218                           struct sys_reg_params *p,
219                           const struct sys_reg_desc *r)
220 {
221         bool was_enabled = vcpu_has_cache_enabled(vcpu);
222         u64 val;
223         int reg = r->reg;
224
225         BUG_ON(!p->is_write);
226
227         /* See the 32bit mapping in kvm_host.h */
228         if (p->is_aarch32)
229                 reg = r->reg / 2;
230
231         if (!p->is_aarch32 || !p->is_32bit) {
232                 val = p->regval;
233         } else {
234                 val = vcpu_read_sys_reg(vcpu, reg);
235                 if (r->reg % 2)
236                         val = (p->regval << 32) | (u64)lower_32_bits(val);
237                 else
238                         val = ((u64)upper_32_bits(val) << 32) |
239                                 lower_32_bits(p->regval);
240         }
241         vcpu_write_sys_reg(vcpu, val, reg);
242
243         kvm_toggle_cache(vcpu, was_enabled);
244         return true;
245 }
246
247 static bool access_actlr(struct kvm_vcpu *vcpu,
248                          struct sys_reg_params *p,
249                          const struct sys_reg_desc *r)
250 {
251         if (p->is_write)
252                 return ignore_write(vcpu, p);
253
254         p->regval = vcpu_read_sys_reg(vcpu, ACTLR_EL1);
255
256         if (p->is_aarch32) {
257                 if (r->Op2 & 2)
258                         p->regval = upper_32_bits(p->regval);
259                 else
260                         p->regval = lower_32_bits(p->regval);
261         }
262
263         return true;
264 }
265
266 /*
267  * Trap handler for the GICv3 SGI generation system register.
268  * Forward the request to the VGIC emulation.
269  * The cp15_64 code makes sure this automatically works
270  * for both AArch64 and AArch32 accesses.
271  */
272 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
273                            struct sys_reg_params *p,
274                            const struct sys_reg_desc *r)
275 {
276         bool g1;
277
278         if (!p->is_write)
279                 return read_from_write_only(vcpu, p, r);
280
281         /*
282          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
283          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
284          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
285          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
286          * group.
287          */
288         if (p->is_aarch32) {
289                 switch (p->Op1) {
290                 default:                /* Keep GCC quiet */
291                 case 0:                 /* ICC_SGI1R */
292                         g1 = true;
293                         break;
294                 case 1:                 /* ICC_ASGI1R */
295                 case 2:                 /* ICC_SGI0R */
296                         g1 = false;
297                         break;
298                 }
299         } else {
300                 switch (p->Op2) {
301                 default:                /* Keep GCC quiet */
302                 case 5:                 /* ICC_SGI1R_EL1 */
303                         g1 = true;
304                         break;
305                 case 6:                 /* ICC_ASGI1R_EL1 */
306                 case 7:                 /* ICC_SGI0R_EL1 */
307                         g1 = false;
308                         break;
309                 }
310         }
311
312         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
313
314         return true;
315 }
316
317 static bool access_gic_sre(struct kvm_vcpu *vcpu,
318                            struct sys_reg_params *p,
319                            const struct sys_reg_desc *r)
320 {
321         if (p->is_write)
322                 return ignore_write(vcpu, p);
323
324         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
325         return true;
326 }
327
328 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
329                         struct sys_reg_params *p,
330                         const struct sys_reg_desc *r)
331 {
332         if (p->is_write)
333                 return ignore_write(vcpu, p);
334         else
335                 return read_zero(vcpu, p);
336 }
337
338 /*
339  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
340  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
341  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
342  * treat it separately.
343  */
344 static bool trap_loregion(struct kvm_vcpu *vcpu,
345                           struct sys_reg_params *p,
346                           const struct sys_reg_desc *r)
347 {
348         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
349         u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
350                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
351
352         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
353                 kvm_inject_undefined(vcpu);
354                 return false;
355         }
356
357         if (p->is_write && sr == SYS_LORID_EL1)
358                 return write_to_read_only(vcpu, p, r);
359
360         return trap_raz_wi(vcpu, p, r);
361 }
362
363 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
364                            struct sys_reg_params *p,
365                            const struct sys_reg_desc *r)
366 {
367         if (p->is_write) {
368                 return ignore_write(vcpu, p);
369         } else {
370                 p->regval = (1 << 3);
371                 return true;
372         }
373 }
374
375 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
376                                    struct sys_reg_params *p,
377                                    const struct sys_reg_desc *r)
378 {
379         if (p->is_write) {
380                 return ignore_write(vcpu, p);
381         } else {
382                 p->regval = read_sysreg(dbgauthstatus_el1);
383                 return true;
384         }
385 }
386
387 /*
388  * We want to avoid world-switching all the DBG registers all the
389  * time:
390  * 
391  * - If we've touched any debug register, it is likely that we're
392  *   going to touch more of them. It then makes sense to disable the
393  *   traps and start doing the save/restore dance
394  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
395  *   then mandatory to save/restore the registers, as the guest
396  *   depends on them.
397  * 
398  * For this, we use a DIRTY bit, indicating the guest has modified the
399  * debug registers, used as follow:
400  *
401  * On guest entry:
402  * - If the dirty bit is set (because we're coming back from trapping),
403  *   disable the traps, save host registers, restore guest registers.
404  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
405  *   set the dirty bit, disable the traps, save host registers,
406  *   restore guest registers.
407  * - Otherwise, enable the traps
408  *
409  * On guest exit:
410  * - If the dirty bit is set, save guest registers, restore host
411  *   registers and clear the dirty bit. This ensure that the host can
412  *   now use the debug registers.
413  */
414 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
415                             struct sys_reg_params *p,
416                             const struct sys_reg_desc *r)
417 {
418         if (p->is_write) {
419                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
420                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
421         } else {
422                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
423         }
424
425         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
426
427         return true;
428 }
429
430 /*
431  * reg_to_dbg/dbg_to_reg
432  *
433  * A 32 bit write to a debug register leave top bits alone
434  * A 32 bit read from a debug register only returns the bottom bits
435  *
436  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
437  * hyp.S code switches between host and guest values in future.
438  */
439 static void reg_to_dbg(struct kvm_vcpu *vcpu,
440                        struct sys_reg_params *p,
441                        u64 *dbg_reg)
442 {
443         u64 val = p->regval;
444
445         if (p->is_32bit) {
446                 val &= 0xffffffffUL;
447                 val |= ((*dbg_reg >> 32) << 32);
448         }
449
450         *dbg_reg = val;
451         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
452 }
453
454 static void dbg_to_reg(struct kvm_vcpu *vcpu,
455                        struct sys_reg_params *p,
456                        u64 *dbg_reg)
457 {
458         p->regval = *dbg_reg;
459         if (p->is_32bit)
460                 p->regval &= 0xffffffffUL;
461 }
462
463 static bool trap_bvr(struct kvm_vcpu *vcpu,
464                      struct sys_reg_params *p,
465                      const struct sys_reg_desc *rd)
466 {
467         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
468
469         if (p->is_write)
470                 reg_to_dbg(vcpu, p, dbg_reg);
471         else
472                 dbg_to_reg(vcpu, p, dbg_reg);
473
474         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
475
476         return true;
477 }
478
479 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
480                 const struct kvm_one_reg *reg, void __user *uaddr)
481 {
482         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
483
484         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
485                 return -EFAULT;
486         return 0;
487 }
488
489 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
490         const struct kvm_one_reg *reg, void __user *uaddr)
491 {
492         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
493
494         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
495                 return -EFAULT;
496         return 0;
497 }
498
499 static void reset_bvr(struct kvm_vcpu *vcpu,
500                       const struct sys_reg_desc *rd)
501 {
502         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
503 }
504
505 static bool trap_bcr(struct kvm_vcpu *vcpu,
506                      struct sys_reg_params *p,
507                      const struct sys_reg_desc *rd)
508 {
509         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
510
511         if (p->is_write)
512                 reg_to_dbg(vcpu, p, dbg_reg);
513         else
514                 dbg_to_reg(vcpu, p, dbg_reg);
515
516         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
517
518         return true;
519 }
520
521 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
522                 const struct kvm_one_reg *reg, void __user *uaddr)
523 {
524         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
525
526         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
527                 return -EFAULT;
528
529         return 0;
530 }
531
532 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
533         const struct kvm_one_reg *reg, void __user *uaddr)
534 {
535         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
536
537         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
538                 return -EFAULT;
539         return 0;
540 }
541
542 static void reset_bcr(struct kvm_vcpu *vcpu,
543                       const struct sys_reg_desc *rd)
544 {
545         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
546 }
547
548 static bool trap_wvr(struct kvm_vcpu *vcpu,
549                      struct sys_reg_params *p,
550                      const struct sys_reg_desc *rd)
551 {
552         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
553
554         if (p->is_write)
555                 reg_to_dbg(vcpu, p, dbg_reg);
556         else
557                 dbg_to_reg(vcpu, p, dbg_reg);
558
559         trace_trap_reg(__func__, rd->reg, p->is_write,
560                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
561
562         return true;
563 }
564
565 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
566                 const struct kvm_one_reg *reg, void __user *uaddr)
567 {
568         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
569
570         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
571                 return -EFAULT;
572         return 0;
573 }
574
575 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
576         const struct kvm_one_reg *reg, void __user *uaddr)
577 {
578         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
579
580         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
581                 return -EFAULT;
582         return 0;
583 }
584
585 static void reset_wvr(struct kvm_vcpu *vcpu,
586                       const struct sys_reg_desc *rd)
587 {
588         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
589 }
590
591 static bool trap_wcr(struct kvm_vcpu *vcpu,
592                      struct sys_reg_params *p,
593                      const struct sys_reg_desc *rd)
594 {
595         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
596
597         if (p->is_write)
598                 reg_to_dbg(vcpu, p, dbg_reg);
599         else
600                 dbg_to_reg(vcpu, p, dbg_reg);
601
602         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
603
604         return true;
605 }
606
607 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
608                 const struct kvm_one_reg *reg, void __user *uaddr)
609 {
610         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
611
612         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
613                 return -EFAULT;
614         return 0;
615 }
616
617 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
618         const struct kvm_one_reg *reg, void __user *uaddr)
619 {
620         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
621
622         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
623                 return -EFAULT;
624         return 0;
625 }
626
627 static void reset_wcr(struct kvm_vcpu *vcpu,
628                       const struct sys_reg_desc *rd)
629 {
630         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
631 }
632
633 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
634 {
635         u64 amair = read_sysreg(amair_el1);
636         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
637 }
638
639 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
640 {
641         u64 actlr = read_sysreg(actlr_el1);
642         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
643 }
644
645 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
646 {
647         u64 mpidr;
648
649         /*
650          * Map the vcpu_id into the first three affinity level fields of
651          * the MPIDR. We limit the number of VCPUs in level 0 due to a
652          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
653          * of the GICv3 to be able to address each CPU directly when
654          * sending IPIs.
655          */
656         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
657         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
658         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
659         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
660 }
661
662 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
663 {
664         u64 pmcr, val;
665
666         pmcr = read_sysreg(pmcr_el0);
667         /*
668          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
669          * except PMCR.E resetting to zero.
670          */
671         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
672                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
673         if (!system_supports_32bit_el0())
674                 val |= ARMV8_PMU_PMCR_LC;
675         __vcpu_sys_reg(vcpu, r->reg) = val;
676 }
677
678 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
679 {
680         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
681         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
682
683         if (!enabled)
684                 kvm_inject_undefined(vcpu);
685
686         return !enabled;
687 }
688
689 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
690 {
691         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
692 }
693
694 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
695 {
696         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
697 }
698
699 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
700 {
701         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
702 }
703
704 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
705 {
706         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
707 }
708
709 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
710                         const struct sys_reg_desc *r)
711 {
712         u64 val;
713
714         if (!kvm_arm_pmu_v3_ready(vcpu))
715                 return trap_raz_wi(vcpu, p, r);
716
717         if (pmu_access_el0_disabled(vcpu))
718                 return false;
719
720         if (p->is_write) {
721                 /* Only update writeable bits of PMCR */
722                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
723                 val &= ~ARMV8_PMU_PMCR_MASK;
724                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
725                 if (!system_supports_32bit_el0())
726                         val |= ARMV8_PMU_PMCR_LC;
727                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
728                 kvm_pmu_handle_pmcr(vcpu, val);
729                 kvm_vcpu_pmu_restore_guest(vcpu);
730         } else {
731                 /* PMCR.P & PMCR.C are RAZ */
732                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
733                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
734                 p->regval = val;
735         }
736
737         return true;
738 }
739
740 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
741                           const struct sys_reg_desc *r)
742 {
743         if (!kvm_arm_pmu_v3_ready(vcpu))
744                 return trap_raz_wi(vcpu, p, r);
745
746         if (pmu_access_event_counter_el0_disabled(vcpu))
747                 return false;
748
749         if (p->is_write)
750                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
751         else
752                 /* return PMSELR.SEL field */
753                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
754                             & ARMV8_PMU_COUNTER_MASK;
755
756         return true;
757 }
758
759 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
760                           const struct sys_reg_desc *r)
761 {
762         u64 pmceid;
763
764         if (!kvm_arm_pmu_v3_ready(vcpu))
765                 return trap_raz_wi(vcpu, p, r);
766
767         BUG_ON(p->is_write);
768
769         if (pmu_access_el0_disabled(vcpu))
770                 return false;
771
772         if (!(p->Op2 & 1))
773                 pmceid = read_sysreg(pmceid0_el0);
774         else
775                 pmceid = read_sysreg(pmceid1_el0);
776
777         p->regval = pmceid;
778
779         return true;
780 }
781
782 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
783 {
784         u64 pmcr, val;
785
786         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
787         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
788         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
789                 kvm_inject_undefined(vcpu);
790                 return false;
791         }
792
793         return true;
794 }
795
796 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
797                               struct sys_reg_params *p,
798                               const struct sys_reg_desc *r)
799 {
800         u64 idx;
801
802         if (!kvm_arm_pmu_v3_ready(vcpu))
803                 return trap_raz_wi(vcpu, p, r);
804
805         if (r->CRn == 9 && r->CRm == 13) {
806                 if (r->Op2 == 2) {
807                         /* PMXEVCNTR_EL0 */
808                         if (pmu_access_event_counter_el0_disabled(vcpu))
809                                 return false;
810
811                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
812                               & ARMV8_PMU_COUNTER_MASK;
813                 } else if (r->Op2 == 0) {
814                         /* PMCCNTR_EL0 */
815                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
816                                 return false;
817
818                         idx = ARMV8_PMU_CYCLE_IDX;
819                 } else {
820                         return false;
821                 }
822         } else if (r->CRn == 0 && r->CRm == 9) {
823                 /* PMCCNTR */
824                 if (pmu_access_event_counter_el0_disabled(vcpu))
825                         return false;
826
827                 idx = ARMV8_PMU_CYCLE_IDX;
828         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
829                 /* PMEVCNTRn_EL0 */
830                 if (pmu_access_event_counter_el0_disabled(vcpu))
831                         return false;
832
833                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
834         } else {
835                 return false;
836         }
837
838         if (!pmu_counter_idx_valid(vcpu, idx))
839                 return false;
840
841         if (p->is_write) {
842                 if (pmu_access_el0_disabled(vcpu))
843                         return false;
844
845                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
846         } else {
847                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
848         }
849
850         return true;
851 }
852
853 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
854                                const struct sys_reg_desc *r)
855 {
856         u64 idx, reg;
857
858         if (!kvm_arm_pmu_v3_ready(vcpu))
859                 return trap_raz_wi(vcpu, p, r);
860
861         if (pmu_access_el0_disabled(vcpu))
862                 return false;
863
864         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
865                 /* PMXEVTYPER_EL0 */
866                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
867                 reg = PMEVTYPER0_EL0 + idx;
868         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
869                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
870                 if (idx == ARMV8_PMU_CYCLE_IDX)
871                         reg = PMCCFILTR_EL0;
872                 else
873                         /* PMEVTYPERn_EL0 */
874                         reg = PMEVTYPER0_EL0 + idx;
875         } else {
876                 BUG();
877         }
878
879         if (!pmu_counter_idx_valid(vcpu, idx))
880                 return false;
881
882         if (p->is_write) {
883                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
884                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
885                 kvm_vcpu_pmu_restore_guest(vcpu);
886         } else {
887                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
888         }
889
890         return true;
891 }
892
893 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
894                            const struct sys_reg_desc *r)
895 {
896         u64 val, mask;
897
898         if (!kvm_arm_pmu_v3_ready(vcpu))
899                 return trap_raz_wi(vcpu, p, r);
900
901         if (pmu_access_el0_disabled(vcpu))
902                 return false;
903
904         mask = kvm_pmu_valid_counter_mask(vcpu);
905         if (p->is_write) {
906                 val = p->regval & mask;
907                 if (r->Op2 & 0x1) {
908                         /* accessing PMCNTENSET_EL0 */
909                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
910                         kvm_pmu_enable_counter_mask(vcpu, val);
911                         kvm_vcpu_pmu_restore_guest(vcpu);
912                 } else {
913                         /* accessing PMCNTENCLR_EL0 */
914                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
915                         kvm_pmu_disable_counter_mask(vcpu, val);
916                 }
917         } else {
918                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
919         }
920
921         return true;
922 }
923
924 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
925                            const struct sys_reg_desc *r)
926 {
927         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
928
929         if (!kvm_arm_pmu_v3_ready(vcpu))
930                 return trap_raz_wi(vcpu, p, r);
931
932         if (!vcpu_mode_priv(vcpu)) {
933                 kvm_inject_undefined(vcpu);
934                 return false;
935         }
936
937         if (p->is_write) {
938                 u64 val = p->regval & mask;
939
940                 if (r->Op2 & 0x1)
941                         /* accessing PMINTENSET_EL1 */
942                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
943                 else
944                         /* accessing PMINTENCLR_EL1 */
945                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
946         } else {
947                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
948         }
949
950         return true;
951 }
952
953 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
954                          const struct sys_reg_desc *r)
955 {
956         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
957
958         if (!kvm_arm_pmu_v3_ready(vcpu))
959                 return trap_raz_wi(vcpu, p, r);
960
961         if (pmu_access_el0_disabled(vcpu))
962                 return false;
963
964         if (p->is_write) {
965                 if (r->CRm & 0x2)
966                         /* accessing PMOVSSET_EL0 */
967                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
968                 else
969                         /* accessing PMOVSCLR_EL0 */
970                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
971         } else {
972                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
973         }
974
975         return true;
976 }
977
978 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
979                            const struct sys_reg_desc *r)
980 {
981         u64 mask;
982
983         if (!kvm_arm_pmu_v3_ready(vcpu))
984                 return trap_raz_wi(vcpu, p, r);
985
986         if (!p->is_write)
987                 return read_from_write_only(vcpu, p, r);
988
989         if (pmu_write_swinc_el0_disabled(vcpu))
990                 return false;
991
992         mask = kvm_pmu_valid_counter_mask(vcpu);
993         kvm_pmu_software_increment(vcpu, p->regval & mask);
994         return true;
995 }
996
997 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
998                              const struct sys_reg_desc *r)
999 {
1000         if (!kvm_arm_pmu_v3_ready(vcpu))
1001                 return trap_raz_wi(vcpu, p, r);
1002
1003         if (p->is_write) {
1004                 if (!vcpu_mode_priv(vcpu)) {
1005                         kvm_inject_undefined(vcpu);
1006                         return false;
1007                 }
1008
1009                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1010                                p->regval & ARMV8_PMU_USERENR_MASK;
1011         } else {
1012                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1013                             & ARMV8_PMU_USERENR_MASK;
1014         }
1015
1016         return true;
1017 }
1018
1019 #define reg_to_encoding(x)                                              \
1020         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
1021                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
1022
1023 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1024 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
1025         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
1026           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
1027         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
1028           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
1029         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
1030           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
1031         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
1032           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1033
1034 /* Macro to expand the PMEVCNTRn_EL0 register */
1035 #define PMU_PMEVCNTR_EL0(n)                                             \
1036         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
1037           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1038
1039 /* Macro to expand the PMEVTYPERn_EL0 register */
1040 #define PMU_PMEVTYPER_EL0(n)                                            \
1041         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
1042           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1043
1044 static bool access_amu(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1045                              const struct sys_reg_desc *r)
1046 {
1047         kvm_inject_undefined(vcpu);
1048
1049         return false;
1050 }
1051
1052 /* Macro to expand the AMU counter and type registers*/
1053 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), access_amu }
1054 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), access_amu }
1055 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), access_amu }
1056 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), access_amu }
1057
1058 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1059                          struct sys_reg_params *p,
1060                          const struct sys_reg_desc *rd)
1061 {
1062         /*
1063          * If we land here, that is because we didn't fixup the access on exit
1064          * by allowing the PtrAuth sysregs. The only way this happens is when
1065          * the guest does not have PtrAuth support enabled.
1066          */
1067         kvm_inject_undefined(vcpu);
1068
1069         return false;
1070 }
1071
1072 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1073                         const struct sys_reg_desc *rd)
1074 {
1075         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1076 }
1077
1078 #define __PTRAUTH_KEY(k)                                                \
1079         { SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k,           \
1080         .visibility = ptrauth_visibility}
1081
1082 #define PTRAUTH_KEY(k)                                                  \
1083         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1084         __PTRAUTH_KEY(k ## KEYHI_EL1)
1085
1086 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1087                               struct sys_reg_params *p,
1088                               const struct sys_reg_desc *r)
1089 {
1090         enum kvm_arch_timers tmr;
1091         enum kvm_arch_timer_regs treg;
1092         u64 reg = reg_to_encoding(r);
1093
1094         switch (reg) {
1095         case SYS_CNTP_TVAL_EL0:
1096         case SYS_AARCH32_CNTP_TVAL:
1097                 tmr = TIMER_PTIMER;
1098                 treg = TIMER_REG_TVAL;
1099                 break;
1100         case SYS_CNTP_CTL_EL0:
1101         case SYS_AARCH32_CNTP_CTL:
1102                 tmr = TIMER_PTIMER;
1103                 treg = TIMER_REG_CTL;
1104                 break;
1105         case SYS_CNTP_CVAL_EL0:
1106         case SYS_AARCH32_CNTP_CVAL:
1107                 tmr = TIMER_PTIMER;
1108                 treg = TIMER_REG_CVAL;
1109                 break;
1110         default:
1111                 BUG();
1112         }
1113
1114         if (p->is_write)
1115                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1116         else
1117                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1118
1119         return true;
1120 }
1121
1122 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1123 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1124                 struct sys_reg_desc const *r, bool raz)
1125 {
1126         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1127                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1128         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1129
1130         if (id == SYS_ID_AA64PFR0_EL1) {
1131                 if (!vcpu_has_sve(vcpu))
1132                         val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1133                 val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1134                 if (!(val & (0xfUL << ID_AA64PFR0_CSV2_SHIFT)) &&
1135                     arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
1136                         val |= (1UL << ID_AA64PFR0_CSV2_SHIFT);
1137         } else if (id == SYS_ID_AA64PFR1_EL1) {
1138                 val &= ~(0xfUL << ID_AA64PFR1_MTE_SHIFT);
1139         } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1140                 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1141                          (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1142                          (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1143                          (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1144         } else if (id == SYS_ID_AA64DFR0_EL1) {
1145                 /* Limit guests to PMUv3 for ARMv8.1 */
1146                 val = cpuid_feature_cap_perfmon_field(val,
1147                                                 ID_AA64DFR0_PMUVER_SHIFT,
1148                                                 ID_AA64DFR0_PMUVER_8_1);
1149         } else if (id == SYS_ID_DFR0_EL1) {
1150                 /* Limit guests to PMUv3 for ARMv8.1 */
1151                 val = cpuid_feature_cap_perfmon_field(val,
1152                                                 ID_DFR0_PERFMON_SHIFT,
1153                                                 ID_DFR0_PERFMON_8_1);
1154         }
1155
1156         return val;
1157 }
1158
1159 /* cpufeature ID register access trap handlers */
1160
1161 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1162                             struct sys_reg_params *p,
1163                             const struct sys_reg_desc *r,
1164                             bool raz)
1165 {
1166         if (p->is_write)
1167                 return write_to_read_only(vcpu, p, r);
1168
1169         p->regval = read_id_reg(vcpu, r, raz);
1170         return true;
1171 }
1172
1173 static bool access_id_reg(struct kvm_vcpu *vcpu,
1174                           struct sys_reg_params *p,
1175                           const struct sys_reg_desc *r)
1176 {
1177         return __access_id_reg(vcpu, p, r, false);
1178 }
1179
1180 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1181                               struct sys_reg_params *p,
1182                               const struct sys_reg_desc *r)
1183 {
1184         return __access_id_reg(vcpu, p, r, true);
1185 }
1186
1187 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1188 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1189 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1190
1191 /* Visibility overrides for SVE-specific control registers */
1192 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1193                                    const struct sys_reg_desc *rd)
1194 {
1195         if (vcpu_has_sve(vcpu))
1196                 return 0;
1197
1198         return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1199 }
1200
1201 /* Visibility overrides for SVE-specific ID registers */
1202 static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
1203                                       const struct sys_reg_desc *rd)
1204 {
1205         if (vcpu_has_sve(vcpu))
1206                 return 0;
1207
1208         return REG_HIDDEN_USER;
1209 }
1210
1211 /* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
1212 static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
1213 {
1214         if (!vcpu_has_sve(vcpu))
1215                 return 0;
1216
1217         return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
1218 }
1219
1220 static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1221                                    struct sys_reg_params *p,
1222                                    const struct sys_reg_desc *rd)
1223 {
1224         if (p->is_write)
1225                 return write_to_read_only(vcpu, p, rd);
1226
1227         p->regval = guest_id_aa64zfr0_el1(vcpu);
1228         return true;
1229 }
1230
1231 static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1232                 const struct sys_reg_desc *rd,
1233                 const struct kvm_one_reg *reg, void __user *uaddr)
1234 {
1235         u64 val;
1236
1237         if (WARN_ON(!vcpu_has_sve(vcpu)))
1238                 return -ENOENT;
1239
1240         val = guest_id_aa64zfr0_el1(vcpu);
1241         return reg_to_user(uaddr, &val, reg->id);
1242 }
1243
1244 static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1245                 const struct sys_reg_desc *rd,
1246                 const struct kvm_one_reg *reg, void __user *uaddr)
1247 {
1248         const u64 id = sys_reg_to_index(rd);
1249         int err;
1250         u64 val;
1251
1252         if (WARN_ON(!vcpu_has_sve(vcpu)))
1253                 return -ENOENT;
1254
1255         err = reg_from_user(&val, uaddr, id);
1256         if (err)
1257                 return err;
1258
1259         /* This is what we mean by invariant: you can't change it. */
1260         if (val != guest_id_aa64zfr0_el1(vcpu))
1261                 return -EINVAL;
1262
1263         return 0;
1264 }
1265
1266 /*
1267  * cpufeature ID register user accessors
1268  *
1269  * For now, these registers are immutable for userspace, so no values
1270  * are stored, and for set_id_reg() we don't allow the effective value
1271  * to be changed.
1272  */
1273 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1274                         const struct sys_reg_desc *rd, void __user *uaddr,
1275                         bool raz)
1276 {
1277         const u64 id = sys_reg_to_index(rd);
1278         const u64 val = read_id_reg(vcpu, rd, raz);
1279
1280         return reg_to_user(uaddr, &val, id);
1281 }
1282
1283 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1284                         const struct sys_reg_desc *rd, void __user *uaddr,
1285                         bool raz)
1286 {
1287         const u64 id = sys_reg_to_index(rd);
1288         int err;
1289         u64 val;
1290
1291         err = reg_from_user(&val, uaddr, id);
1292         if (err)
1293                 return err;
1294
1295         /* This is what we mean by invariant: you can't change it. */
1296         if (val != read_id_reg(vcpu, rd, raz))
1297                 return -EINVAL;
1298
1299         return 0;
1300 }
1301
1302 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1303                       const struct kvm_one_reg *reg, void __user *uaddr)
1304 {
1305         return __get_id_reg(vcpu, rd, uaddr, false);
1306 }
1307
1308 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1309                       const struct kvm_one_reg *reg, void __user *uaddr)
1310 {
1311         return __set_id_reg(vcpu, rd, uaddr, false);
1312 }
1313
1314 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1315                           const struct kvm_one_reg *reg, void __user *uaddr)
1316 {
1317         return __get_id_reg(vcpu, rd, uaddr, true);
1318 }
1319
1320 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1321                           const struct kvm_one_reg *reg, void __user *uaddr)
1322 {
1323         return __set_id_reg(vcpu, rd, uaddr, true);
1324 }
1325
1326 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1327                        const struct sys_reg_desc *r)
1328 {
1329         if (p->is_write)
1330                 return write_to_read_only(vcpu, p, r);
1331
1332         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1333         return true;
1334 }
1335
1336 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1337                          const struct sys_reg_desc *r)
1338 {
1339         if (p->is_write)
1340                 return write_to_read_only(vcpu, p, r);
1341
1342         p->regval = read_sysreg(clidr_el1);
1343         return true;
1344 }
1345
1346 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1347                           const struct sys_reg_desc *r)
1348 {
1349         int reg = r->reg;
1350
1351         /* See the 32bit mapping in kvm_host.h */
1352         if (p->is_aarch32)
1353                 reg = r->reg / 2;
1354
1355         if (p->is_write)
1356                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1357         else
1358                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1359         return true;
1360 }
1361
1362 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1363                           const struct sys_reg_desc *r)
1364 {
1365         u32 csselr;
1366
1367         if (p->is_write)
1368                 return write_to_read_only(vcpu, p, r);
1369
1370         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1371         p->regval = get_ccsidr(csselr);
1372
1373         /*
1374          * Guests should not be doing cache operations by set/way at all, and
1375          * for this reason, we trap them and attempt to infer the intent, so
1376          * that we can flush the entire guest's address space at the appropriate
1377          * time.
1378          * To prevent this trapping from causing performance problems, let's
1379          * expose the geometry of all data and unified caches (which are
1380          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1381          * [If guests should attempt to infer aliasing properties from the
1382          * geometry (which is not permitted by the architecture), they would
1383          * only do so for virtually indexed caches.]
1384          */
1385         if (!(csselr & 1)) // data or unified cache
1386                 p->regval &= ~GENMASK(27, 3);
1387         return true;
1388 }
1389
1390 static bool access_mte_regs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1391                             const struct sys_reg_desc *r)
1392 {
1393         kvm_inject_undefined(vcpu);
1394         return false;
1395 }
1396
1397 /* sys_reg_desc initialiser for known cpufeature ID registers */
1398 #define ID_SANITISED(name) {                    \
1399         SYS_DESC(SYS_##name),                   \
1400         .access = access_id_reg,                \
1401         .get_user = get_id_reg,                 \
1402         .set_user = set_id_reg,                 \
1403 }
1404
1405 /*
1406  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1407  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1408  * (1 <= crm < 8, 0 <= Op2 < 8).
1409  */
1410 #define ID_UNALLOCATED(crm, op2) {                      \
1411         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1412         .access = access_raz_id_reg,                    \
1413         .get_user = get_raz_id_reg,                     \
1414         .set_user = set_raz_id_reg,                     \
1415 }
1416
1417 /*
1418  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1419  * For now, these are exposed just like unallocated ID regs: they appear
1420  * RAZ for the guest.
1421  */
1422 #define ID_HIDDEN(name) {                       \
1423         SYS_DESC(SYS_##name),                   \
1424         .access = access_raz_id_reg,            \
1425         .get_user = get_raz_id_reg,             \
1426         .set_user = set_raz_id_reg,             \
1427 }
1428
1429 /*
1430  * Architected system registers.
1431  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1432  *
1433  * Debug handling: We do trap most, if not all debug related system
1434  * registers. The implementation is good enough to ensure that a guest
1435  * can use these with minimal performance degradation. The drawback is
1436  * that we don't implement any of the external debug, none of the
1437  * OSlock protocol. This should be revisited if we ever encounter a
1438  * more demanding guest...
1439  */
1440 static const struct sys_reg_desc sys_reg_descs[] = {
1441         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1442         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1443         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1444
1445         DBG_BCR_BVR_WCR_WVR_EL1(0),
1446         DBG_BCR_BVR_WCR_WVR_EL1(1),
1447         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1448         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1449         DBG_BCR_BVR_WCR_WVR_EL1(2),
1450         DBG_BCR_BVR_WCR_WVR_EL1(3),
1451         DBG_BCR_BVR_WCR_WVR_EL1(4),
1452         DBG_BCR_BVR_WCR_WVR_EL1(5),
1453         DBG_BCR_BVR_WCR_WVR_EL1(6),
1454         DBG_BCR_BVR_WCR_WVR_EL1(7),
1455         DBG_BCR_BVR_WCR_WVR_EL1(8),
1456         DBG_BCR_BVR_WCR_WVR_EL1(9),
1457         DBG_BCR_BVR_WCR_WVR_EL1(10),
1458         DBG_BCR_BVR_WCR_WVR_EL1(11),
1459         DBG_BCR_BVR_WCR_WVR_EL1(12),
1460         DBG_BCR_BVR_WCR_WVR_EL1(13),
1461         DBG_BCR_BVR_WCR_WVR_EL1(14),
1462         DBG_BCR_BVR_WCR_WVR_EL1(15),
1463
1464         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1465         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1466         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1467         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1468         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1469         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1470         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1471         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1472
1473         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1474         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1475         // DBGDTR[TR]X_EL0 share the same encoding
1476         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1477
1478         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1479
1480         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1481
1482         /*
1483          * ID regs: all ID_SANITISED() entries here must have corresponding
1484          * entries in arm64_ftr_regs[].
1485          */
1486
1487         /* AArch64 mappings of the AArch32 ID registers */
1488         /* CRm=1 */
1489         ID_SANITISED(ID_PFR0_EL1),
1490         ID_SANITISED(ID_PFR1_EL1),
1491         ID_SANITISED(ID_DFR0_EL1),
1492         ID_HIDDEN(ID_AFR0_EL1),
1493         ID_SANITISED(ID_MMFR0_EL1),
1494         ID_SANITISED(ID_MMFR1_EL1),
1495         ID_SANITISED(ID_MMFR2_EL1),
1496         ID_SANITISED(ID_MMFR3_EL1),
1497
1498         /* CRm=2 */
1499         ID_SANITISED(ID_ISAR0_EL1),
1500         ID_SANITISED(ID_ISAR1_EL1),
1501         ID_SANITISED(ID_ISAR2_EL1),
1502         ID_SANITISED(ID_ISAR3_EL1),
1503         ID_SANITISED(ID_ISAR4_EL1),
1504         ID_SANITISED(ID_ISAR5_EL1),
1505         ID_SANITISED(ID_MMFR4_EL1),
1506         ID_SANITISED(ID_ISAR6_EL1),
1507
1508         /* CRm=3 */
1509         ID_SANITISED(MVFR0_EL1),
1510         ID_SANITISED(MVFR1_EL1),
1511         ID_SANITISED(MVFR2_EL1),
1512         ID_UNALLOCATED(3,3),
1513         ID_SANITISED(ID_PFR2_EL1),
1514         ID_HIDDEN(ID_DFR1_EL1),
1515         ID_SANITISED(ID_MMFR5_EL1),
1516         ID_UNALLOCATED(3,7),
1517
1518         /* AArch64 ID registers */
1519         /* CRm=4 */
1520         ID_SANITISED(ID_AA64PFR0_EL1),
1521         ID_SANITISED(ID_AA64PFR1_EL1),
1522         ID_UNALLOCATED(4,2),
1523         ID_UNALLOCATED(4,3),
1524         { SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
1525         ID_UNALLOCATED(4,5),
1526         ID_UNALLOCATED(4,6),
1527         ID_UNALLOCATED(4,7),
1528
1529         /* CRm=5 */
1530         ID_SANITISED(ID_AA64DFR0_EL1),
1531         ID_SANITISED(ID_AA64DFR1_EL1),
1532         ID_UNALLOCATED(5,2),
1533         ID_UNALLOCATED(5,3),
1534         ID_HIDDEN(ID_AA64AFR0_EL1),
1535         ID_HIDDEN(ID_AA64AFR1_EL1),
1536         ID_UNALLOCATED(5,6),
1537         ID_UNALLOCATED(5,7),
1538
1539         /* CRm=6 */
1540         ID_SANITISED(ID_AA64ISAR0_EL1),
1541         ID_SANITISED(ID_AA64ISAR1_EL1),
1542         ID_UNALLOCATED(6,2),
1543         ID_UNALLOCATED(6,3),
1544         ID_UNALLOCATED(6,4),
1545         ID_UNALLOCATED(6,5),
1546         ID_UNALLOCATED(6,6),
1547         ID_UNALLOCATED(6,7),
1548
1549         /* CRm=7 */
1550         ID_SANITISED(ID_AA64MMFR0_EL1),
1551         ID_SANITISED(ID_AA64MMFR1_EL1),
1552         ID_SANITISED(ID_AA64MMFR2_EL1),
1553         ID_UNALLOCATED(7,3),
1554         ID_UNALLOCATED(7,4),
1555         ID_UNALLOCATED(7,5),
1556         ID_UNALLOCATED(7,6),
1557         ID_UNALLOCATED(7,7),
1558
1559         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1560         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1561         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1562
1563         { SYS_DESC(SYS_RGSR_EL1), access_mte_regs },
1564         { SYS_DESC(SYS_GCR_EL1), access_mte_regs },
1565
1566         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1567         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1568         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1569         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1570
1571         PTRAUTH_KEY(APIA),
1572         PTRAUTH_KEY(APIB),
1573         PTRAUTH_KEY(APDA),
1574         PTRAUTH_KEY(APDB),
1575         PTRAUTH_KEY(APGA),
1576
1577         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1578         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1579         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1580
1581         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1582         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1583         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1584         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1585         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1586         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1587         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1588         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1589
1590         { SYS_DESC(SYS_TFSR_EL1), access_mte_regs },
1591         { SYS_DESC(SYS_TFSRE0_EL1), access_mte_regs },
1592
1593         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1594         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1595
1596         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1597         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1598
1599         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1600         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1601
1602         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1603         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1604         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1605         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1606         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1607
1608         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1609         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1610
1611         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1612         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1613         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1614         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1615         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1616         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1617         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1618         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1619         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1620         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1621         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1622         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1623
1624         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1625         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1626
1627         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1628
1629         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1630         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1631         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1632         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1633
1634         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1635         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1636         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1637         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1638         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1639         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1640         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1641         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1642         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1643         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1644         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1645         /*
1646          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1647          * in 32bit mode. Here we choose to reset it as zero for consistency.
1648          */
1649         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1650         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1651
1652         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1653         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1654
1655         { SYS_DESC(SYS_AMCR_EL0), access_amu },
1656         { SYS_DESC(SYS_AMCFGR_EL0), access_amu },
1657         { SYS_DESC(SYS_AMCGCR_EL0), access_amu },
1658         { SYS_DESC(SYS_AMUSERENR_EL0), access_amu },
1659         { SYS_DESC(SYS_AMCNTENCLR0_EL0), access_amu },
1660         { SYS_DESC(SYS_AMCNTENSET0_EL0), access_amu },
1661         { SYS_DESC(SYS_AMCNTENCLR1_EL0), access_amu },
1662         { SYS_DESC(SYS_AMCNTENSET1_EL0), access_amu },
1663         AMU_AMEVCNTR0_EL0(0),
1664         AMU_AMEVCNTR0_EL0(1),
1665         AMU_AMEVCNTR0_EL0(2),
1666         AMU_AMEVCNTR0_EL0(3),
1667         AMU_AMEVCNTR0_EL0(4),
1668         AMU_AMEVCNTR0_EL0(5),
1669         AMU_AMEVCNTR0_EL0(6),
1670         AMU_AMEVCNTR0_EL0(7),
1671         AMU_AMEVCNTR0_EL0(8),
1672         AMU_AMEVCNTR0_EL0(9),
1673         AMU_AMEVCNTR0_EL0(10),
1674         AMU_AMEVCNTR0_EL0(11),
1675         AMU_AMEVCNTR0_EL0(12),
1676         AMU_AMEVCNTR0_EL0(13),
1677         AMU_AMEVCNTR0_EL0(14),
1678         AMU_AMEVCNTR0_EL0(15),
1679         AMU_AMEVTYPER0_EL0(0),
1680         AMU_AMEVTYPER0_EL0(1),
1681         AMU_AMEVTYPER0_EL0(2),
1682         AMU_AMEVTYPER0_EL0(3),
1683         AMU_AMEVTYPER0_EL0(4),
1684         AMU_AMEVTYPER0_EL0(5),
1685         AMU_AMEVTYPER0_EL0(6),
1686         AMU_AMEVTYPER0_EL0(7),
1687         AMU_AMEVTYPER0_EL0(8),
1688         AMU_AMEVTYPER0_EL0(9),
1689         AMU_AMEVTYPER0_EL0(10),
1690         AMU_AMEVTYPER0_EL0(11),
1691         AMU_AMEVTYPER0_EL0(12),
1692         AMU_AMEVTYPER0_EL0(13),
1693         AMU_AMEVTYPER0_EL0(14),
1694         AMU_AMEVTYPER0_EL0(15),
1695         AMU_AMEVCNTR1_EL0(0),
1696         AMU_AMEVCNTR1_EL0(1),
1697         AMU_AMEVCNTR1_EL0(2),
1698         AMU_AMEVCNTR1_EL0(3),
1699         AMU_AMEVCNTR1_EL0(4),
1700         AMU_AMEVCNTR1_EL0(5),
1701         AMU_AMEVCNTR1_EL0(6),
1702         AMU_AMEVCNTR1_EL0(7),
1703         AMU_AMEVCNTR1_EL0(8),
1704         AMU_AMEVCNTR1_EL0(9),
1705         AMU_AMEVCNTR1_EL0(10),
1706         AMU_AMEVCNTR1_EL0(11),
1707         AMU_AMEVCNTR1_EL0(12),
1708         AMU_AMEVCNTR1_EL0(13),
1709         AMU_AMEVCNTR1_EL0(14),
1710         AMU_AMEVCNTR1_EL0(15),
1711         AMU_AMEVTYPER1_EL0(0),
1712         AMU_AMEVTYPER1_EL0(1),
1713         AMU_AMEVTYPER1_EL0(2),
1714         AMU_AMEVTYPER1_EL0(3),
1715         AMU_AMEVTYPER1_EL0(4),
1716         AMU_AMEVTYPER1_EL0(5),
1717         AMU_AMEVTYPER1_EL0(6),
1718         AMU_AMEVTYPER1_EL0(7),
1719         AMU_AMEVTYPER1_EL0(8),
1720         AMU_AMEVTYPER1_EL0(9),
1721         AMU_AMEVTYPER1_EL0(10),
1722         AMU_AMEVTYPER1_EL0(11),
1723         AMU_AMEVTYPER1_EL0(12),
1724         AMU_AMEVTYPER1_EL0(13),
1725         AMU_AMEVTYPER1_EL0(14),
1726         AMU_AMEVTYPER1_EL0(15),
1727
1728         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1729         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1730         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1731
1732         /* PMEVCNTRn_EL0 */
1733         PMU_PMEVCNTR_EL0(0),
1734         PMU_PMEVCNTR_EL0(1),
1735         PMU_PMEVCNTR_EL0(2),
1736         PMU_PMEVCNTR_EL0(3),
1737         PMU_PMEVCNTR_EL0(4),
1738         PMU_PMEVCNTR_EL0(5),
1739         PMU_PMEVCNTR_EL0(6),
1740         PMU_PMEVCNTR_EL0(7),
1741         PMU_PMEVCNTR_EL0(8),
1742         PMU_PMEVCNTR_EL0(9),
1743         PMU_PMEVCNTR_EL0(10),
1744         PMU_PMEVCNTR_EL0(11),
1745         PMU_PMEVCNTR_EL0(12),
1746         PMU_PMEVCNTR_EL0(13),
1747         PMU_PMEVCNTR_EL0(14),
1748         PMU_PMEVCNTR_EL0(15),
1749         PMU_PMEVCNTR_EL0(16),
1750         PMU_PMEVCNTR_EL0(17),
1751         PMU_PMEVCNTR_EL0(18),
1752         PMU_PMEVCNTR_EL0(19),
1753         PMU_PMEVCNTR_EL0(20),
1754         PMU_PMEVCNTR_EL0(21),
1755         PMU_PMEVCNTR_EL0(22),
1756         PMU_PMEVCNTR_EL0(23),
1757         PMU_PMEVCNTR_EL0(24),
1758         PMU_PMEVCNTR_EL0(25),
1759         PMU_PMEVCNTR_EL0(26),
1760         PMU_PMEVCNTR_EL0(27),
1761         PMU_PMEVCNTR_EL0(28),
1762         PMU_PMEVCNTR_EL0(29),
1763         PMU_PMEVCNTR_EL0(30),
1764         /* PMEVTYPERn_EL0 */
1765         PMU_PMEVTYPER_EL0(0),
1766         PMU_PMEVTYPER_EL0(1),
1767         PMU_PMEVTYPER_EL0(2),
1768         PMU_PMEVTYPER_EL0(3),
1769         PMU_PMEVTYPER_EL0(4),
1770         PMU_PMEVTYPER_EL0(5),
1771         PMU_PMEVTYPER_EL0(6),
1772         PMU_PMEVTYPER_EL0(7),
1773         PMU_PMEVTYPER_EL0(8),
1774         PMU_PMEVTYPER_EL0(9),
1775         PMU_PMEVTYPER_EL0(10),
1776         PMU_PMEVTYPER_EL0(11),
1777         PMU_PMEVTYPER_EL0(12),
1778         PMU_PMEVTYPER_EL0(13),
1779         PMU_PMEVTYPER_EL0(14),
1780         PMU_PMEVTYPER_EL0(15),
1781         PMU_PMEVTYPER_EL0(16),
1782         PMU_PMEVTYPER_EL0(17),
1783         PMU_PMEVTYPER_EL0(18),
1784         PMU_PMEVTYPER_EL0(19),
1785         PMU_PMEVTYPER_EL0(20),
1786         PMU_PMEVTYPER_EL0(21),
1787         PMU_PMEVTYPER_EL0(22),
1788         PMU_PMEVTYPER_EL0(23),
1789         PMU_PMEVTYPER_EL0(24),
1790         PMU_PMEVTYPER_EL0(25),
1791         PMU_PMEVTYPER_EL0(26),
1792         PMU_PMEVTYPER_EL0(27),
1793         PMU_PMEVTYPER_EL0(28),
1794         PMU_PMEVTYPER_EL0(29),
1795         PMU_PMEVTYPER_EL0(30),
1796         /*
1797          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1798          * in 32bit mode. Here we choose to reset it as zero for consistency.
1799          */
1800         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1801
1802         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1803         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1804         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1805 };
1806
1807 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1808                         struct sys_reg_params *p,
1809                         const struct sys_reg_desc *r)
1810 {
1811         if (p->is_write) {
1812                 return ignore_write(vcpu, p);
1813         } else {
1814                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1815                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1816                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1817
1818                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1819                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1820                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1821                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1822                 return true;
1823         }
1824 }
1825
1826 static bool trap_debug32(struct kvm_vcpu *vcpu,
1827                          struct sys_reg_params *p,
1828                          const struct sys_reg_desc *r)
1829 {
1830         if (p->is_write) {
1831                 vcpu_cp14(vcpu, r->reg) = p->regval;
1832                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1833         } else {
1834                 p->regval = vcpu_cp14(vcpu, r->reg);
1835         }
1836
1837         return true;
1838 }
1839
1840 /* AArch32 debug register mappings
1841  *
1842  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1843  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1844  *
1845  * All control registers and watchpoint value registers are mapped to
1846  * the lower 32 bits of their AArch64 equivalents. We share the trap
1847  * handlers with the above AArch64 code which checks what mode the
1848  * system is in.
1849  */
1850
1851 static bool trap_xvr(struct kvm_vcpu *vcpu,
1852                      struct sys_reg_params *p,
1853                      const struct sys_reg_desc *rd)
1854 {
1855         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1856
1857         if (p->is_write) {
1858                 u64 val = *dbg_reg;
1859
1860                 val &= 0xffffffffUL;
1861                 val |= p->regval << 32;
1862                 *dbg_reg = val;
1863
1864                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1865         } else {
1866                 p->regval = *dbg_reg >> 32;
1867         }
1868
1869         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1870
1871         return true;
1872 }
1873
1874 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1875         /* DBGBVRn */                                                   \
1876         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1877         /* DBGBCRn */                                                   \
1878         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1879         /* DBGWVRn */                                                   \
1880         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1881         /* DBGWCRn */                                                   \
1882         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1883
1884 #define DBGBXVR(n)                                                      \
1885         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1886
1887 /*
1888  * Trapped cp14 registers. We generally ignore most of the external
1889  * debug, on the principle that they don't really make sense to a
1890  * guest. Revisit this one day, would this principle change.
1891  */
1892 static const struct sys_reg_desc cp14_regs[] = {
1893         /* DBGIDR */
1894         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1895         /* DBGDTRRXext */
1896         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1897
1898         DBG_BCR_BVR_WCR_WVR(0),
1899         /* DBGDSCRint */
1900         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1901         DBG_BCR_BVR_WCR_WVR(1),
1902         /* DBGDCCINT */
1903         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1904         /* DBGDSCRext */
1905         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1906         DBG_BCR_BVR_WCR_WVR(2),
1907         /* DBGDTR[RT]Xint */
1908         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1909         /* DBGDTR[RT]Xext */
1910         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1911         DBG_BCR_BVR_WCR_WVR(3),
1912         DBG_BCR_BVR_WCR_WVR(4),
1913         DBG_BCR_BVR_WCR_WVR(5),
1914         /* DBGWFAR */
1915         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1916         /* DBGOSECCR */
1917         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1918         DBG_BCR_BVR_WCR_WVR(6),
1919         /* DBGVCR */
1920         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1921         DBG_BCR_BVR_WCR_WVR(7),
1922         DBG_BCR_BVR_WCR_WVR(8),
1923         DBG_BCR_BVR_WCR_WVR(9),
1924         DBG_BCR_BVR_WCR_WVR(10),
1925         DBG_BCR_BVR_WCR_WVR(11),
1926         DBG_BCR_BVR_WCR_WVR(12),
1927         DBG_BCR_BVR_WCR_WVR(13),
1928         DBG_BCR_BVR_WCR_WVR(14),
1929         DBG_BCR_BVR_WCR_WVR(15),
1930
1931         /* DBGDRAR (32bit) */
1932         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1933
1934         DBGBXVR(0),
1935         /* DBGOSLAR */
1936         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1937         DBGBXVR(1),
1938         /* DBGOSLSR */
1939         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1940         DBGBXVR(2),
1941         DBGBXVR(3),
1942         /* DBGOSDLR */
1943         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1944         DBGBXVR(4),
1945         /* DBGPRCR */
1946         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1947         DBGBXVR(5),
1948         DBGBXVR(6),
1949         DBGBXVR(7),
1950         DBGBXVR(8),
1951         DBGBXVR(9),
1952         DBGBXVR(10),
1953         DBGBXVR(11),
1954         DBGBXVR(12),
1955         DBGBXVR(13),
1956         DBGBXVR(14),
1957         DBGBXVR(15),
1958
1959         /* DBGDSAR (32bit) */
1960         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1961
1962         /* DBGDEVID2 */
1963         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1964         /* DBGDEVID1 */
1965         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1966         /* DBGDEVID */
1967         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1968         /* DBGCLAIMSET */
1969         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1970         /* DBGCLAIMCLR */
1971         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1972         /* DBGAUTHSTATUS */
1973         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1974 };
1975
1976 /* Trapped cp14 64bit registers */
1977 static const struct sys_reg_desc cp14_64_regs[] = {
1978         /* DBGDRAR (64bit) */
1979         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1980
1981         /* DBGDSAR (64bit) */
1982         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1983 };
1984
1985 /* Macro to expand the PMEVCNTRn register */
1986 #define PMU_PMEVCNTR(n)                                                 \
1987         /* PMEVCNTRn */                                                 \
1988         { Op1(0), CRn(0b1110),                                          \
1989           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1990           access_pmu_evcntr }
1991
1992 /* Macro to expand the PMEVTYPERn register */
1993 #define PMU_PMEVTYPER(n)                                                \
1994         /* PMEVTYPERn */                                                \
1995         { Op1(0), CRn(0b1110),                                          \
1996           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1997           access_pmu_evtyper }
1998
1999 /*
2000  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2001  * depending on the way they are accessed (as a 32bit or a 64bit
2002  * register).
2003  */
2004 static const struct sys_reg_desc cp15_regs[] = {
2005         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2006         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
2007         { Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr },
2008         { Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr },
2009         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
2010         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
2011         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
2012         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
2013         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
2014         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
2015         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
2016         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
2017         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
2018         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
2019
2020         /*
2021          * DC{C,I,CI}SW operations:
2022          */
2023         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2024         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2025         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2026
2027         /* PMU */
2028         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
2029         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
2030         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
2031         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
2032         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
2033         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
2034         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
2035         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
2036         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
2037         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
2038         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
2039         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
2040         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
2041         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
2042         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
2043
2044         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
2045         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
2046         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
2047         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
2048
2049         /* ICC_SRE */
2050         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2051
2052         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
2053
2054         /* Arch Tmers */
2055         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2056         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2057
2058         /* PMEVCNTRn */
2059         PMU_PMEVCNTR(0),
2060         PMU_PMEVCNTR(1),
2061         PMU_PMEVCNTR(2),
2062         PMU_PMEVCNTR(3),
2063         PMU_PMEVCNTR(4),
2064         PMU_PMEVCNTR(5),
2065         PMU_PMEVCNTR(6),
2066         PMU_PMEVCNTR(7),
2067         PMU_PMEVCNTR(8),
2068         PMU_PMEVCNTR(9),
2069         PMU_PMEVCNTR(10),
2070         PMU_PMEVCNTR(11),
2071         PMU_PMEVCNTR(12),
2072         PMU_PMEVCNTR(13),
2073         PMU_PMEVCNTR(14),
2074         PMU_PMEVCNTR(15),
2075         PMU_PMEVCNTR(16),
2076         PMU_PMEVCNTR(17),
2077         PMU_PMEVCNTR(18),
2078         PMU_PMEVCNTR(19),
2079         PMU_PMEVCNTR(20),
2080         PMU_PMEVCNTR(21),
2081         PMU_PMEVCNTR(22),
2082         PMU_PMEVCNTR(23),
2083         PMU_PMEVCNTR(24),
2084         PMU_PMEVCNTR(25),
2085         PMU_PMEVCNTR(26),
2086         PMU_PMEVCNTR(27),
2087         PMU_PMEVCNTR(28),
2088         PMU_PMEVCNTR(29),
2089         PMU_PMEVCNTR(30),
2090         /* PMEVTYPERn */
2091         PMU_PMEVTYPER(0),
2092         PMU_PMEVTYPER(1),
2093         PMU_PMEVTYPER(2),
2094         PMU_PMEVTYPER(3),
2095         PMU_PMEVTYPER(4),
2096         PMU_PMEVTYPER(5),
2097         PMU_PMEVTYPER(6),
2098         PMU_PMEVTYPER(7),
2099         PMU_PMEVTYPER(8),
2100         PMU_PMEVTYPER(9),
2101         PMU_PMEVTYPER(10),
2102         PMU_PMEVTYPER(11),
2103         PMU_PMEVTYPER(12),
2104         PMU_PMEVTYPER(13),
2105         PMU_PMEVTYPER(14),
2106         PMU_PMEVTYPER(15),
2107         PMU_PMEVTYPER(16),
2108         PMU_PMEVTYPER(17),
2109         PMU_PMEVTYPER(18),
2110         PMU_PMEVTYPER(19),
2111         PMU_PMEVTYPER(20),
2112         PMU_PMEVTYPER(21),
2113         PMU_PMEVTYPER(22),
2114         PMU_PMEVTYPER(23),
2115         PMU_PMEVTYPER(24),
2116         PMU_PMEVTYPER(25),
2117         PMU_PMEVTYPER(26),
2118         PMU_PMEVTYPER(27),
2119         PMU_PMEVTYPER(28),
2120         PMU_PMEVTYPER(29),
2121         PMU_PMEVTYPER(30),
2122         /* PMCCFILTR */
2123         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2124
2125         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2126         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2127         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
2128 };
2129
2130 static const struct sys_reg_desc cp15_64_regs[] = {
2131         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
2132         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2133         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2134         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
2135         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2136         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2137         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2138 };
2139
2140 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2141                               bool is_32)
2142 {
2143         unsigned int i;
2144
2145         for (i = 0; i < n; i++) {
2146                 if (!is_32 && table[i].reg && !table[i].reset) {
2147                         kvm_err("sys_reg table %p entry %d has lacks reset\n",
2148                                 table, i);
2149                         return 1;
2150                 }
2151
2152                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2153                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2154                         return 1;
2155                 }
2156         }
2157
2158         return 0;
2159 }
2160
2161 static int match_sys_reg(const void *key, const void *elt)
2162 {
2163         const unsigned long pval = (unsigned long)key;
2164         const struct sys_reg_desc *r = elt;
2165
2166         return pval - reg_to_encoding(r);
2167 }
2168
2169 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2170                                          const struct sys_reg_desc table[],
2171                                          unsigned int num)
2172 {
2173         unsigned long pval = reg_to_encoding(params);
2174
2175         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2176 }
2177
2178 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2179 {
2180         kvm_inject_undefined(vcpu);
2181         return 1;
2182 }
2183
2184 static void perform_access(struct kvm_vcpu *vcpu,
2185                            struct sys_reg_params *params,
2186                            const struct sys_reg_desc *r)
2187 {
2188         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2189
2190         /* Check for regs disabled by runtime config */
2191         if (sysreg_hidden_from_guest(vcpu, r)) {
2192                 kvm_inject_undefined(vcpu);
2193                 return;
2194         }
2195
2196         /*
2197          * Not having an accessor means that we have configured a trap
2198          * that we don't know how to handle. This certainly qualifies
2199          * as a gross bug that should be fixed right away.
2200          */
2201         BUG_ON(!r->access);
2202
2203         /* Skip instruction if instructed so */
2204         if (likely(r->access(vcpu, params, r)))
2205                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2206 }
2207
2208 /*
2209  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2210  *                call the corresponding trap handler.
2211  *
2212  * @params: pointer to the descriptor of the access
2213  * @table: array of trap descriptors
2214  * @num: size of the trap descriptor array
2215  *
2216  * Return 0 if the access has been handled, and -1 if not.
2217  */
2218 static int emulate_cp(struct kvm_vcpu *vcpu,
2219                       struct sys_reg_params *params,
2220                       const struct sys_reg_desc *table,
2221                       size_t num)
2222 {
2223         const struct sys_reg_desc *r;
2224
2225         if (!table)
2226                 return -1;      /* Not handled */
2227
2228         r = find_reg(params, table, num);
2229
2230         if (r) {
2231                 perform_access(vcpu, params, r);
2232                 return 0;
2233         }
2234
2235         /* Not handled */
2236         return -1;
2237 }
2238
2239 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2240                                 struct sys_reg_params *params)
2241 {
2242         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2243         int cp = -1;
2244
2245         switch (esr_ec) {
2246         case ESR_ELx_EC_CP15_32:
2247         case ESR_ELx_EC_CP15_64:
2248                 cp = 15;
2249                 break;
2250         case ESR_ELx_EC_CP14_MR:
2251         case ESR_ELx_EC_CP14_64:
2252                 cp = 14;
2253                 break;
2254         default:
2255                 WARN_ON(1);
2256         }
2257
2258         print_sys_reg_msg(params,
2259                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2260                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2261         kvm_inject_undefined(vcpu);
2262 }
2263
2264 /**
2265  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2266  * @vcpu: The VCPU pointer
2267  * @run:  The kvm_run struct
2268  */
2269 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2270                             const struct sys_reg_desc *global,
2271                             size_t nr_global)
2272 {
2273         struct sys_reg_params params;
2274         u32 esr = kvm_vcpu_get_esr(vcpu);
2275         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2276         int Rt2 = (esr >> 10) & 0x1f;
2277
2278         params.is_aarch32 = true;
2279         params.is_32bit = false;
2280         params.CRm = (esr >> 1) & 0xf;
2281         params.is_write = ((esr & 1) == 0);
2282
2283         params.Op0 = 0;
2284         params.Op1 = (esr >> 16) & 0xf;
2285         params.Op2 = 0;
2286         params.CRn = 0;
2287
2288         /*
2289          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2290          * backends between AArch32 and AArch64, we get away with it.
2291          */
2292         if (params.is_write) {
2293                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2294                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2295         }
2296
2297         /*
2298          * If the table contains a handler, handle the
2299          * potential register operation in the case of a read and return
2300          * with success.
2301          */
2302         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2303                 /* Split up the value between registers for the read side */
2304                 if (!params.is_write) {
2305                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2306                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2307                 }
2308
2309                 return 1;
2310         }
2311
2312         unhandled_cp_access(vcpu, &params);
2313         return 1;
2314 }
2315
2316 /**
2317  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2318  * @vcpu: The VCPU pointer
2319  * @run:  The kvm_run struct
2320  */
2321 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2322                             const struct sys_reg_desc *global,
2323                             size_t nr_global)
2324 {
2325         struct sys_reg_params params;
2326         u32 esr = kvm_vcpu_get_esr(vcpu);
2327         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2328
2329         params.is_aarch32 = true;
2330         params.is_32bit = true;
2331         params.CRm = (esr >> 1) & 0xf;
2332         params.regval = vcpu_get_reg(vcpu, Rt);
2333         params.is_write = ((esr & 1) == 0);
2334         params.CRn = (esr >> 10) & 0xf;
2335         params.Op0 = 0;
2336         params.Op1 = (esr >> 14) & 0x7;
2337         params.Op2 = (esr >> 17) & 0x7;
2338
2339         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2340                 if (!params.is_write)
2341                         vcpu_set_reg(vcpu, Rt, params.regval);
2342                 return 1;
2343         }
2344
2345         unhandled_cp_access(vcpu, &params);
2346         return 1;
2347 }
2348
2349 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2350 {
2351         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2352 }
2353
2354 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2355 {
2356         return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2357 }
2358
2359 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2360 {
2361         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2362 }
2363
2364 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2365 {
2366         return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2367 }
2368
2369 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2370 {
2371         // See ARM DDI 0487E.a, section D12.3.2
2372         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2373 }
2374
2375 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2376                            struct sys_reg_params *params)
2377 {
2378         const struct sys_reg_desc *r;
2379
2380         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2381
2382         if (likely(r)) {
2383                 perform_access(vcpu, params, r);
2384         } else if (is_imp_def_sys_reg(params)) {
2385                 kvm_inject_undefined(vcpu);
2386         } else {
2387                 print_sys_reg_msg(params,
2388                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2389                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2390                 kvm_inject_undefined(vcpu);
2391         }
2392         return 1;
2393 }
2394
2395 /**
2396  * kvm_reset_sys_regs - sets system registers to reset value
2397  * @vcpu: The VCPU pointer
2398  *
2399  * This function finds the right table above and sets the registers on the
2400  * virtual CPU struct to their architecturally defined reset values.
2401  */
2402 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2403 {
2404         unsigned long i;
2405
2406         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2407                 if (sys_reg_descs[i].reset)
2408                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2409 }
2410
2411 /**
2412  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2413  * @vcpu: The VCPU pointer
2414  */
2415 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2416 {
2417         struct sys_reg_params params;
2418         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2419         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2420         int ret;
2421
2422         trace_kvm_handle_sys_reg(esr);
2423
2424         params.is_aarch32 = false;
2425         params.is_32bit = false;
2426         params.Op0 = (esr >> 20) & 3;
2427         params.Op1 = (esr >> 14) & 0x7;
2428         params.CRn = (esr >> 10) & 0xf;
2429         params.CRm = (esr >> 1) & 0xf;
2430         params.Op2 = (esr >> 17) & 0x7;
2431         params.regval = vcpu_get_reg(vcpu, Rt);
2432         params.is_write = !(esr & 1);
2433
2434         ret = emulate_sys_reg(vcpu, &params);
2435
2436         if (!params.is_write)
2437                 vcpu_set_reg(vcpu, Rt, params.regval);
2438         return ret;
2439 }
2440
2441 /******************************************************************************
2442  * Userspace API
2443  *****************************************************************************/
2444
2445 static bool index_to_params(u64 id, struct sys_reg_params *params)
2446 {
2447         switch (id & KVM_REG_SIZE_MASK) {
2448         case KVM_REG_SIZE_U64:
2449                 /* Any unused index bits means it's not valid. */
2450                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2451                               | KVM_REG_ARM_COPROC_MASK
2452                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2453                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2454                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2455                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2456                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2457                         return false;
2458                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2459                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2460                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2461                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2462                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2463                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2464                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2465                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2466                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2467                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2468                 return true;
2469         default:
2470                 return false;
2471         }
2472 }
2473
2474 const struct sys_reg_desc *find_reg_by_id(u64 id,
2475                                           struct sys_reg_params *params,
2476                                           const struct sys_reg_desc table[],
2477                                           unsigned int num)
2478 {
2479         if (!index_to_params(id, params))
2480                 return NULL;
2481
2482         return find_reg(params, table, num);
2483 }
2484
2485 /* Decode an index value, and find the sys_reg_desc entry. */
2486 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2487                                                     u64 id)
2488 {
2489         const struct sys_reg_desc *r;
2490         struct sys_reg_params params;
2491
2492         /* We only do sys_reg for now. */
2493         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2494                 return NULL;
2495
2496         if (!index_to_params(id, &params))
2497                 return NULL;
2498
2499         r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2500
2501         /* Not saved in the sys_reg array and not otherwise accessible? */
2502         if (r && !(r->reg || r->get_user))
2503                 r = NULL;
2504
2505         return r;
2506 }
2507
2508 /*
2509  * These are the invariant sys_reg registers: we let the guest see the
2510  * host versions of these, so they're part of the guest state.
2511  *
2512  * A future CPU may provide a mechanism to present different values to
2513  * the guest, or a future kvm may trap them.
2514  */
2515
2516 #define FUNCTION_INVARIANT(reg)                                         \
2517         static void get_##reg(struct kvm_vcpu *v,                       \
2518                               const struct sys_reg_desc *r)             \
2519         {                                                               \
2520                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2521         }
2522
2523 FUNCTION_INVARIANT(midr_el1)
2524 FUNCTION_INVARIANT(revidr_el1)
2525 FUNCTION_INVARIANT(clidr_el1)
2526 FUNCTION_INVARIANT(aidr_el1)
2527
2528 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2529 {
2530         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2531 }
2532
2533 /* ->val is filled in by kvm_sys_reg_table_init() */
2534 static struct sys_reg_desc invariant_sys_regs[] = {
2535         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2536         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2537         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2538         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2539         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2540 };
2541
2542 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2543 {
2544         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2545                 return -EFAULT;
2546         return 0;
2547 }
2548
2549 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2550 {
2551         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2552                 return -EFAULT;
2553         return 0;
2554 }
2555
2556 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2557 {
2558         struct sys_reg_params params;
2559         const struct sys_reg_desc *r;
2560
2561         r = find_reg_by_id(id, &params, invariant_sys_regs,
2562                            ARRAY_SIZE(invariant_sys_regs));
2563         if (!r)
2564                 return -ENOENT;
2565
2566         return reg_to_user(uaddr, &r->val, id);
2567 }
2568
2569 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2570 {
2571         struct sys_reg_params params;
2572         const struct sys_reg_desc *r;
2573         int err;
2574         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2575
2576         r = find_reg_by_id(id, &params, invariant_sys_regs,
2577                            ARRAY_SIZE(invariant_sys_regs));
2578         if (!r)
2579                 return -ENOENT;
2580
2581         err = reg_from_user(&val, uaddr, id);
2582         if (err)
2583                 return err;
2584
2585         /* This is what we mean by invariant: you can't change it. */
2586         if (r->val != val)
2587                 return -EINVAL;
2588
2589         return 0;
2590 }
2591
2592 static bool is_valid_cache(u32 val)
2593 {
2594         u32 level, ctype;
2595
2596         if (val >= CSSELR_MAX)
2597                 return false;
2598
2599         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2600         level = (val >> 1);
2601         ctype = (cache_levels >> (level * 3)) & 7;
2602
2603         switch (ctype) {
2604         case 0: /* No cache */
2605                 return false;
2606         case 1: /* Instruction cache only */
2607                 return (val & 1);
2608         case 2: /* Data cache only */
2609         case 4: /* Unified cache */
2610                 return !(val & 1);
2611         case 3: /* Separate instruction and data caches */
2612                 return true;
2613         default: /* Reserved: we can't know instruction or data. */
2614                 return false;
2615         }
2616 }
2617
2618 static int demux_c15_get(u64 id, void __user *uaddr)
2619 {
2620         u32 val;
2621         u32 __user *uval = uaddr;
2622
2623         /* Fail if we have unknown bits set. */
2624         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2625                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2626                 return -ENOENT;
2627
2628         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2629         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2630                 if (KVM_REG_SIZE(id) != 4)
2631                         return -ENOENT;
2632                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2633                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2634                 if (!is_valid_cache(val))
2635                         return -ENOENT;
2636
2637                 return put_user(get_ccsidr(val), uval);
2638         default:
2639                 return -ENOENT;
2640         }
2641 }
2642
2643 static int demux_c15_set(u64 id, void __user *uaddr)
2644 {
2645         u32 val, newval;
2646         u32 __user *uval = uaddr;
2647
2648         /* Fail if we have unknown bits set. */
2649         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2650                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2651                 return -ENOENT;
2652
2653         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2654         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2655                 if (KVM_REG_SIZE(id) != 4)
2656                         return -ENOENT;
2657                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2658                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2659                 if (!is_valid_cache(val))
2660                         return -ENOENT;
2661
2662                 if (get_user(newval, uval))
2663                         return -EFAULT;
2664
2665                 /* This is also invariant: you can't change it. */
2666                 if (newval != get_ccsidr(val))
2667                         return -EINVAL;
2668                 return 0;
2669         default:
2670                 return -ENOENT;
2671         }
2672 }
2673
2674 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2675 {
2676         const struct sys_reg_desc *r;
2677         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2678
2679         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2680                 return demux_c15_get(reg->id, uaddr);
2681
2682         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2683                 return -ENOENT;
2684
2685         r = index_to_sys_reg_desc(vcpu, reg->id);
2686         if (!r)
2687                 return get_invariant_sys_reg(reg->id, uaddr);
2688
2689         /* Check for regs disabled by runtime config */
2690         if (sysreg_hidden_from_user(vcpu, r))
2691                 return -ENOENT;
2692
2693         if (r->get_user)
2694                 return (r->get_user)(vcpu, r, reg, uaddr);
2695
2696         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2697 }
2698
2699 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2700 {
2701         const struct sys_reg_desc *r;
2702         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2703
2704         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2705                 return demux_c15_set(reg->id, uaddr);
2706
2707         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2708                 return -ENOENT;
2709
2710         r = index_to_sys_reg_desc(vcpu, reg->id);
2711         if (!r)
2712                 return set_invariant_sys_reg(reg->id, uaddr);
2713
2714         /* Check for regs disabled by runtime config */
2715         if (sysreg_hidden_from_user(vcpu, r))
2716                 return -ENOENT;
2717
2718         if (r->set_user)
2719                 return (r->set_user)(vcpu, r, reg, uaddr);
2720
2721         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2722 }
2723
2724 static unsigned int num_demux_regs(void)
2725 {
2726         unsigned int i, count = 0;
2727
2728         for (i = 0; i < CSSELR_MAX; i++)
2729                 if (is_valid_cache(i))
2730                         count++;
2731
2732         return count;
2733 }
2734
2735 static int write_demux_regids(u64 __user *uindices)
2736 {
2737         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2738         unsigned int i;
2739
2740         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2741         for (i = 0; i < CSSELR_MAX; i++) {
2742                 if (!is_valid_cache(i))
2743                         continue;
2744                 if (put_user(val | i, uindices))
2745                         return -EFAULT;
2746                 uindices++;
2747         }
2748         return 0;
2749 }
2750
2751 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2752 {
2753         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2754                 KVM_REG_ARM64_SYSREG |
2755                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2756                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2757                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2758                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2759                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2760 }
2761
2762 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2763 {
2764         if (!*uind)
2765                 return true;
2766
2767         if (put_user(sys_reg_to_index(reg), *uind))
2768                 return false;
2769
2770         (*uind)++;
2771         return true;
2772 }
2773
2774 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2775                             const struct sys_reg_desc *rd,
2776                             u64 __user **uind,
2777                             unsigned int *total)
2778 {
2779         /*
2780          * Ignore registers we trap but don't save,
2781          * and for which no custom user accessor is provided.
2782          */
2783         if (!(rd->reg || rd->get_user))
2784                 return 0;
2785
2786         if (sysreg_hidden_from_user(vcpu, rd))
2787                 return 0;
2788
2789         if (!copy_reg_to_user(rd, uind))
2790                 return -EFAULT;
2791
2792         (*total)++;
2793         return 0;
2794 }
2795
2796 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2797 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2798 {
2799         const struct sys_reg_desc *i2, *end2;
2800         unsigned int total = 0;
2801         int err;
2802
2803         i2 = sys_reg_descs;
2804         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2805
2806         while (i2 != end2) {
2807                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2808                 if (err)
2809                         return err;
2810         }
2811         return total;
2812 }
2813
2814 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2815 {
2816         return ARRAY_SIZE(invariant_sys_regs)
2817                 + num_demux_regs()
2818                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2819 }
2820
2821 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2822 {
2823         unsigned int i;
2824         int err;
2825
2826         /* Then give them all the invariant registers' indices. */
2827         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2828                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2829                         return -EFAULT;
2830                 uindices++;
2831         }
2832
2833         err = walk_sys_regs(vcpu, uindices);
2834         if (err < 0)
2835                 return err;
2836         uindices += err;
2837
2838         return write_demux_regids(uindices);
2839 }
2840
2841 void kvm_sys_reg_table_init(void)
2842 {
2843         unsigned int i;
2844         struct sys_reg_desc clidr;
2845
2846         /* Make sure tables are unique and in order. */
2847         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2848         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2849         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2850         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2851         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2852         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2853
2854         /* We abuse the reset function to overwrite the table itself. */
2855         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2856                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2857
2858         /*
2859          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2860          *
2861          *   If software reads the Cache Type fields from Ctype1
2862          *   upwards, once it has seen a value of 0b000, no caches
2863          *   exist at further-out levels of the hierarchy. So, for
2864          *   example, if Ctype3 is the first Cache Type field with a
2865          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2866          *   ignored.
2867          */
2868         get_clidr_el1(NULL, &clidr); /* Ugly... */
2869         cache_levels = clidr.val;
2870         for (i = 0; i < 7; i++)
2871                 if (((cache_levels >> (i*3)) & 7) == 0)
2872                         break;
2873         /* Clear all higher bits. */
2874         cache_levels &= (1 << (i*3))-1;
2875 }