Merge tag 'pm-5.10-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29
30 #include <trace/events/kvm.h>
31
32 #include "sys_regs.h"
33
34 #include "trace.h"
35
36 /*
37  * All of this file is extremely similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46
47 static bool read_from_write_only(struct kvm_vcpu *vcpu,
48                                  struct sys_reg_params *params,
49                                  const struct sys_reg_desc *r)
50 {
51         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
52         print_sys_reg_instr(params);
53         kvm_inject_undefined(vcpu);
54         return false;
55 }
56
57 static bool write_to_read_only(struct kvm_vcpu *vcpu,
58                                struct sys_reg_params *params,
59                                const struct sys_reg_desc *r)
60 {
61         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
62         print_sys_reg_instr(params);
63         kvm_inject_undefined(vcpu);
64         return false;
65 }
66
67 static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
68 {
69         /*
70          * System registers listed in the switch are not saved on every
71          * exit from the guest but are only saved on vcpu_put.
72          *
73          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
74          * should never be listed below, because the guest cannot modify its
75          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
76          * thread when emulating cross-VCPU communication.
77          */
78         switch (reg) {
79         case CSSELR_EL1:        *val = read_sysreg_s(SYS_CSSELR_EL1);   break;
80         case SCTLR_EL1:         *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
81         case CPACR_EL1:         *val = read_sysreg_s(SYS_CPACR_EL12);   break;
82         case TTBR0_EL1:         *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
83         case TTBR1_EL1:         *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
84         case TCR_EL1:           *val = read_sysreg_s(SYS_TCR_EL12);     break;
85         case ESR_EL1:           *val = read_sysreg_s(SYS_ESR_EL12);     break;
86         case AFSR0_EL1:         *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
87         case AFSR1_EL1:         *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
88         case FAR_EL1:           *val = read_sysreg_s(SYS_FAR_EL12);     break;
89         case MAIR_EL1:          *val = read_sysreg_s(SYS_MAIR_EL12);    break;
90         case VBAR_EL1:          *val = read_sysreg_s(SYS_VBAR_EL12);    break;
91         case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
92         case TPIDR_EL0:         *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
93         case TPIDRRO_EL0:       *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
94         case TPIDR_EL1:         *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
95         case AMAIR_EL1:         *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
96         case CNTKCTL_EL1:       *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
97         case ELR_EL1:           *val = read_sysreg_s(SYS_ELR_EL12);     break;
98         case PAR_EL1:           *val = read_sysreg_s(SYS_PAR_EL1);      break;
99         case DACR32_EL2:        *val = read_sysreg_s(SYS_DACR32_EL2);   break;
100         case IFSR32_EL2:        *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
101         case DBGVCR32_EL2:      *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
102         default:                return false;
103         }
104
105         return true;
106 }
107
108 static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
109 {
110         /*
111          * System registers listed in the switch are not restored on every
112          * entry to the guest but are only restored on vcpu_load.
113          *
114          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
115          * should never be listed below, because the MPIDR should only be set
116          * once, before running the VCPU, and never changed later.
117          */
118         switch (reg) {
119         case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    break;
120         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    break;
121         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    break;
122         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    break;
123         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    break;
124         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      break;
125         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      break;
126         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    break;
127         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    break;
128         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      break;
129         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     break;
130         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     break;
131         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
132         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     break;
133         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
134         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     break;
135         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    break;
136         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
137         case ELR_EL1:           write_sysreg_s(val, SYS_ELR_EL12);      break;
138         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       break;
139         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    break;
140         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    break;
141         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
142         default:                return false;
143         }
144
145         return true;
146 }
147
148 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
149 {
150         u64 val = 0x8badf00d8badf00d;
151
152         if (vcpu->arch.sysregs_loaded_on_cpu &&
153             __vcpu_read_sys_reg_from_cpu(reg, &val))
154                 return val;
155
156         return __vcpu_sys_reg(vcpu, reg);
157 }
158
159 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
160 {
161         if (vcpu->arch.sysregs_loaded_on_cpu &&
162             __vcpu_write_sys_reg_to_cpu(val, reg))
163                 return;
164
165          __vcpu_sys_reg(vcpu, reg) = val;
166 }
167
168 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
169 static u32 cache_levels;
170
171 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
172 #define CSSELR_MAX 12
173
174 /* Which cache CCSIDR represents depends on CSSELR value. */
175 static u32 get_ccsidr(u32 csselr)
176 {
177         u32 ccsidr;
178
179         /* Make sure noone else changes CSSELR during this! */
180         local_irq_disable();
181         write_sysreg(csselr, csselr_el1);
182         isb();
183         ccsidr = read_sysreg(ccsidr_el1);
184         local_irq_enable();
185
186         return ccsidr;
187 }
188
189 /*
190  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
191  */
192 static bool access_dcsw(struct kvm_vcpu *vcpu,
193                         struct sys_reg_params *p,
194                         const struct sys_reg_desc *r)
195 {
196         if (!p->is_write)
197                 return read_from_write_only(vcpu, p, r);
198
199         /*
200          * Only track S/W ops if we don't have FWB. It still indicates
201          * that the guest is a bit broken (S/W operations should only
202          * be done by firmware, knowing that there is only a single
203          * CPU left in the system, and certainly not from non-secure
204          * software).
205          */
206         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
207                 kvm_set_way_flush(vcpu);
208
209         return true;
210 }
211
212 /*
213  * Generic accessor for VM registers. Only called as long as HCR_TVM
214  * is set. If the guest enables the MMU, we stop trapping the VM
215  * sys_regs and leave it in complete control of the caches.
216  */
217 static bool access_vm_reg(struct kvm_vcpu *vcpu,
218                           struct sys_reg_params *p,
219                           const struct sys_reg_desc *r)
220 {
221         bool was_enabled = vcpu_has_cache_enabled(vcpu);
222         u64 val;
223         int reg = r->reg;
224
225         BUG_ON(!p->is_write);
226
227         /* See the 32bit mapping in kvm_host.h */
228         if (p->is_aarch32)
229                 reg = r->reg / 2;
230
231         if (!p->is_aarch32 || !p->is_32bit) {
232                 val = p->regval;
233         } else {
234                 val = vcpu_read_sys_reg(vcpu, reg);
235                 if (r->reg % 2)
236                         val = (p->regval << 32) | (u64)lower_32_bits(val);
237                 else
238                         val = ((u64)upper_32_bits(val) << 32) |
239                                 lower_32_bits(p->regval);
240         }
241         vcpu_write_sys_reg(vcpu, val, reg);
242
243         kvm_toggle_cache(vcpu, was_enabled);
244         return true;
245 }
246
247 static bool access_actlr(struct kvm_vcpu *vcpu,
248                          struct sys_reg_params *p,
249                          const struct sys_reg_desc *r)
250 {
251         if (p->is_write)
252                 return ignore_write(vcpu, p);
253
254         p->regval = vcpu_read_sys_reg(vcpu, ACTLR_EL1);
255
256         if (p->is_aarch32) {
257                 if (r->Op2 & 2)
258                         p->regval = upper_32_bits(p->regval);
259                 else
260                         p->regval = lower_32_bits(p->regval);
261         }
262
263         return true;
264 }
265
266 /*
267  * Trap handler for the GICv3 SGI generation system register.
268  * Forward the request to the VGIC emulation.
269  * The cp15_64 code makes sure this automatically works
270  * for both AArch64 and AArch32 accesses.
271  */
272 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
273                            struct sys_reg_params *p,
274                            const struct sys_reg_desc *r)
275 {
276         bool g1;
277
278         if (!p->is_write)
279                 return read_from_write_only(vcpu, p, r);
280
281         /*
282          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
283          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
284          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
285          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
286          * group.
287          */
288         if (p->is_aarch32) {
289                 switch (p->Op1) {
290                 default:                /* Keep GCC quiet */
291                 case 0:                 /* ICC_SGI1R */
292                         g1 = true;
293                         break;
294                 case 1:                 /* ICC_ASGI1R */
295                 case 2:                 /* ICC_SGI0R */
296                         g1 = false;
297                         break;
298                 }
299         } else {
300                 switch (p->Op2) {
301                 default:                /* Keep GCC quiet */
302                 case 5:                 /* ICC_SGI1R_EL1 */
303                         g1 = true;
304                         break;
305                 case 6:                 /* ICC_ASGI1R_EL1 */
306                 case 7:                 /* ICC_SGI0R_EL1 */
307                         g1 = false;
308                         break;
309                 }
310         }
311
312         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
313
314         return true;
315 }
316
317 static bool access_gic_sre(struct kvm_vcpu *vcpu,
318                            struct sys_reg_params *p,
319                            const struct sys_reg_desc *r)
320 {
321         if (p->is_write)
322                 return ignore_write(vcpu, p);
323
324         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
325         return true;
326 }
327
328 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
329                         struct sys_reg_params *p,
330                         const struct sys_reg_desc *r)
331 {
332         if (p->is_write)
333                 return ignore_write(vcpu, p);
334         else
335                 return read_zero(vcpu, p);
336 }
337
338 /*
339  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
340  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
341  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
342  * treat it separately.
343  */
344 static bool trap_loregion(struct kvm_vcpu *vcpu,
345                           struct sys_reg_params *p,
346                           const struct sys_reg_desc *r)
347 {
348         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
349         u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
350                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
351
352         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
353                 kvm_inject_undefined(vcpu);
354                 return false;
355         }
356
357         if (p->is_write && sr == SYS_LORID_EL1)
358                 return write_to_read_only(vcpu, p, r);
359
360         return trap_raz_wi(vcpu, p, r);
361 }
362
363 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
364                            struct sys_reg_params *p,
365                            const struct sys_reg_desc *r)
366 {
367         if (p->is_write) {
368                 return ignore_write(vcpu, p);
369         } else {
370                 p->regval = (1 << 3);
371                 return true;
372         }
373 }
374
375 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
376                                    struct sys_reg_params *p,
377                                    const struct sys_reg_desc *r)
378 {
379         if (p->is_write) {
380                 return ignore_write(vcpu, p);
381         } else {
382                 p->regval = read_sysreg(dbgauthstatus_el1);
383                 return true;
384         }
385 }
386
387 /*
388  * We want to avoid world-switching all the DBG registers all the
389  * time:
390  * 
391  * - If we've touched any debug register, it is likely that we're
392  *   going to touch more of them. It then makes sense to disable the
393  *   traps and start doing the save/restore dance
394  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
395  *   then mandatory to save/restore the registers, as the guest
396  *   depends on them.
397  * 
398  * For this, we use a DIRTY bit, indicating the guest has modified the
399  * debug registers, used as follow:
400  *
401  * On guest entry:
402  * - If the dirty bit is set (because we're coming back from trapping),
403  *   disable the traps, save host registers, restore guest registers.
404  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
405  *   set the dirty bit, disable the traps, save host registers,
406  *   restore guest registers.
407  * - Otherwise, enable the traps
408  *
409  * On guest exit:
410  * - If the dirty bit is set, save guest registers, restore host
411  *   registers and clear the dirty bit. This ensure that the host can
412  *   now use the debug registers.
413  */
414 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
415                             struct sys_reg_params *p,
416                             const struct sys_reg_desc *r)
417 {
418         if (p->is_write) {
419                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
420                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
421         } else {
422                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
423         }
424
425         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
426
427         return true;
428 }
429
430 /*
431  * reg_to_dbg/dbg_to_reg
432  *
433  * A 32 bit write to a debug register leave top bits alone
434  * A 32 bit read from a debug register only returns the bottom bits
435  *
436  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
437  * hyp.S code switches between host and guest values in future.
438  */
439 static void reg_to_dbg(struct kvm_vcpu *vcpu,
440                        struct sys_reg_params *p,
441                        u64 *dbg_reg)
442 {
443         u64 val = p->regval;
444
445         if (p->is_32bit) {
446                 val &= 0xffffffffUL;
447                 val |= ((*dbg_reg >> 32) << 32);
448         }
449
450         *dbg_reg = val;
451         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
452 }
453
454 static void dbg_to_reg(struct kvm_vcpu *vcpu,
455                        struct sys_reg_params *p,
456                        u64 *dbg_reg)
457 {
458         p->regval = *dbg_reg;
459         if (p->is_32bit)
460                 p->regval &= 0xffffffffUL;
461 }
462
463 static bool trap_bvr(struct kvm_vcpu *vcpu,
464                      struct sys_reg_params *p,
465                      const struct sys_reg_desc *rd)
466 {
467         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
468
469         if (p->is_write)
470                 reg_to_dbg(vcpu, p, dbg_reg);
471         else
472                 dbg_to_reg(vcpu, p, dbg_reg);
473
474         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
475
476         return true;
477 }
478
479 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
480                 const struct kvm_one_reg *reg, void __user *uaddr)
481 {
482         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
483
484         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
485                 return -EFAULT;
486         return 0;
487 }
488
489 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
490         const struct kvm_one_reg *reg, void __user *uaddr)
491 {
492         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
493
494         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
495                 return -EFAULT;
496         return 0;
497 }
498
499 static void reset_bvr(struct kvm_vcpu *vcpu,
500                       const struct sys_reg_desc *rd)
501 {
502         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
503 }
504
505 static bool trap_bcr(struct kvm_vcpu *vcpu,
506                      struct sys_reg_params *p,
507                      const struct sys_reg_desc *rd)
508 {
509         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
510
511         if (p->is_write)
512                 reg_to_dbg(vcpu, p, dbg_reg);
513         else
514                 dbg_to_reg(vcpu, p, dbg_reg);
515
516         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
517
518         return true;
519 }
520
521 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
522                 const struct kvm_one_reg *reg, void __user *uaddr)
523 {
524         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
525
526         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
527                 return -EFAULT;
528
529         return 0;
530 }
531
532 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
533         const struct kvm_one_reg *reg, void __user *uaddr)
534 {
535         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
536
537         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
538                 return -EFAULT;
539         return 0;
540 }
541
542 static void reset_bcr(struct kvm_vcpu *vcpu,
543                       const struct sys_reg_desc *rd)
544 {
545         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
546 }
547
548 static bool trap_wvr(struct kvm_vcpu *vcpu,
549                      struct sys_reg_params *p,
550                      const struct sys_reg_desc *rd)
551 {
552         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
553
554         if (p->is_write)
555                 reg_to_dbg(vcpu, p, dbg_reg);
556         else
557                 dbg_to_reg(vcpu, p, dbg_reg);
558
559         trace_trap_reg(__func__, rd->reg, p->is_write,
560                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
561
562         return true;
563 }
564
565 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
566                 const struct kvm_one_reg *reg, void __user *uaddr)
567 {
568         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
569
570         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
571                 return -EFAULT;
572         return 0;
573 }
574
575 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
576         const struct kvm_one_reg *reg, void __user *uaddr)
577 {
578         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
579
580         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
581                 return -EFAULT;
582         return 0;
583 }
584
585 static void reset_wvr(struct kvm_vcpu *vcpu,
586                       const struct sys_reg_desc *rd)
587 {
588         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
589 }
590
591 static bool trap_wcr(struct kvm_vcpu *vcpu,
592                      struct sys_reg_params *p,
593                      const struct sys_reg_desc *rd)
594 {
595         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
596
597         if (p->is_write)
598                 reg_to_dbg(vcpu, p, dbg_reg);
599         else
600                 dbg_to_reg(vcpu, p, dbg_reg);
601
602         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
603
604         return true;
605 }
606
607 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
608                 const struct kvm_one_reg *reg, void __user *uaddr)
609 {
610         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
611
612         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
613                 return -EFAULT;
614         return 0;
615 }
616
617 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
618         const struct kvm_one_reg *reg, void __user *uaddr)
619 {
620         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
621
622         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
623                 return -EFAULT;
624         return 0;
625 }
626
627 static void reset_wcr(struct kvm_vcpu *vcpu,
628                       const struct sys_reg_desc *rd)
629 {
630         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
631 }
632
633 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
634 {
635         u64 amair = read_sysreg(amair_el1);
636         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
637 }
638
639 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
640 {
641         u64 actlr = read_sysreg(actlr_el1);
642         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
643 }
644
645 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
646 {
647         u64 mpidr;
648
649         /*
650          * Map the vcpu_id into the first three affinity level fields of
651          * the MPIDR. We limit the number of VCPUs in level 0 due to a
652          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
653          * of the GICv3 to be able to address each CPU directly when
654          * sending IPIs.
655          */
656         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
657         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
658         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
659         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
660 }
661
662 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
663 {
664         u64 pmcr, val;
665
666         pmcr = read_sysreg(pmcr_el0);
667         /*
668          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
669          * except PMCR.E resetting to zero.
670          */
671         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
672                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
673         if (!system_supports_32bit_el0())
674                 val |= ARMV8_PMU_PMCR_LC;
675         __vcpu_sys_reg(vcpu, r->reg) = val;
676 }
677
678 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
679 {
680         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
681         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
682
683         if (!enabled)
684                 kvm_inject_undefined(vcpu);
685
686         return !enabled;
687 }
688
689 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
690 {
691         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
692 }
693
694 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
695 {
696         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
697 }
698
699 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
700 {
701         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
702 }
703
704 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
705 {
706         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
707 }
708
709 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
710                         const struct sys_reg_desc *r)
711 {
712         u64 val;
713
714         if (!kvm_arm_pmu_v3_ready(vcpu))
715                 return trap_raz_wi(vcpu, p, r);
716
717         if (pmu_access_el0_disabled(vcpu))
718                 return false;
719
720         if (p->is_write) {
721                 /* Only update writeable bits of PMCR */
722                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
723                 val &= ~ARMV8_PMU_PMCR_MASK;
724                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
725                 if (!system_supports_32bit_el0())
726                         val |= ARMV8_PMU_PMCR_LC;
727                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
728                 kvm_pmu_handle_pmcr(vcpu, val);
729                 kvm_vcpu_pmu_restore_guest(vcpu);
730         } else {
731                 /* PMCR.P & PMCR.C are RAZ */
732                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
733                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
734                 p->regval = val;
735         }
736
737         return true;
738 }
739
740 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
741                           const struct sys_reg_desc *r)
742 {
743         if (!kvm_arm_pmu_v3_ready(vcpu))
744                 return trap_raz_wi(vcpu, p, r);
745
746         if (pmu_access_event_counter_el0_disabled(vcpu))
747                 return false;
748
749         if (p->is_write)
750                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
751         else
752                 /* return PMSELR.SEL field */
753                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
754                             & ARMV8_PMU_COUNTER_MASK;
755
756         return true;
757 }
758
759 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
760                           const struct sys_reg_desc *r)
761 {
762         u64 pmceid;
763
764         if (!kvm_arm_pmu_v3_ready(vcpu))
765                 return trap_raz_wi(vcpu, p, r);
766
767         BUG_ON(p->is_write);
768
769         if (pmu_access_el0_disabled(vcpu))
770                 return false;
771
772         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
773
774         p->regval = pmceid;
775
776         return true;
777 }
778
779 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
780 {
781         u64 pmcr, val;
782
783         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
784         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
785         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
786                 kvm_inject_undefined(vcpu);
787                 return false;
788         }
789
790         return true;
791 }
792
793 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
794                               struct sys_reg_params *p,
795                               const struct sys_reg_desc *r)
796 {
797         u64 idx;
798
799         if (!kvm_arm_pmu_v3_ready(vcpu))
800                 return trap_raz_wi(vcpu, p, r);
801
802         if (r->CRn == 9 && r->CRm == 13) {
803                 if (r->Op2 == 2) {
804                         /* PMXEVCNTR_EL0 */
805                         if (pmu_access_event_counter_el0_disabled(vcpu))
806                                 return false;
807
808                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
809                               & ARMV8_PMU_COUNTER_MASK;
810                 } else if (r->Op2 == 0) {
811                         /* PMCCNTR_EL0 */
812                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
813                                 return false;
814
815                         idx = ARMV8_PMU_CYCLE_IDX;
816                 } else {
817                         return false;
818                 }
819         } else if (r->CRn == 0 && r->CRm == 9) {
820                 /* PMCCNTR */
821                 if (pmu_access_event_counter_el0_disabled(vcpu))
822                         return false;
823
824                 idx = ARMV8_PMU_CYCLE_IDX;
825         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
826                 /* PMEVCNTRn_EL0 */
827                 if (pmu_access_event_counter_el0_disabled(vcpu))
828                         return false;
829
830                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
831         } else {
832                 return false;
833         }
834
835         if (!pmu_counter_idx_valid(vcpu, idx))
836                 return false;
837
838         if (p->is_write) {
839                 if (pmu_access_el0_disabled(vcpu))
840                         return false;
841
842                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
843         } else {
844                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
845         }
846
847         return true;
848 }
849
850 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
851                                const struct sys_reg_desc *r)
852 {
853         u64 idx, reg;
854
855         if (!kvm_arm_pmu_v3_ready(vcpu))
856                 return trap_raz_wi(vcpu, p, r);
857
858         if (pmu_access_el0_disabled(vcpu))
859                 return false;
860
861         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
862                 /* PMXEVTYPER_EL0 */
863                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
864                 reg = PMEVTYPER0_EL0 + idx;
865         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
866                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
867                 if (idx == ARMV8_PMU_CYCLE_IDX)
868                         reg = PMCCFILTR_EL0;
869                 else
870                         /* PMEVTYPERn_EL0 */
871                         reg = PMEVTYPER0_EL0 + idx;
872         } else {
873                 BUG();
874         }
875
876         if (!pmu_counter_idx_valid(vcpu, idx))
877                 return false;
878
879         if (p->is_write) {
880                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
881                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
882                 kvm_vcpu_pmu_restore_guest(vcpu);
883         } else {
884                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
885         }
886
887         return true;
888 }
889
890 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
891                            const struct sys_reg_desc *r)
892 {
893         u64 val, mask;
894
895         if (!kvm_arm_pmu_v3_ready(vcpu))
896                 return trap_raz_wi(vcpu, p, r);
897
898         if (pmu_access_el0_disabled(vcpu))
899                 return false;
900
901         mask = kvm_pmu_valid_counter_mask(vcpu);
902         if (p->is_write) {
903                 val = p->regval & mask;
904                 if (r->Op2 & 0x1) {
905                         /* accessing PMCNTENSET_EL0 */
906                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
907                         kvm_pmu_enable_counter_mask(vcpu, val);
908                         kvm_vcpu_pmu_restore_guest(vcpu);
909                 } else {
910                         /* accessing PMCNTENCLR_EL0 */
911                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
912                         kvm_pmu_disable_counter_mask(vcpu, val);
913                 }
914         } else {
915                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
916         }
917
918         return true;
919 }
920
921 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
922                            const struct sys_reg_desc *r)
923 {
924         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
925
926         if (!kvm_arm_pmu_v3_ready(vcpu))
927                 return trap_raz_wi(vcpu, p, r);
928
929         if (!vcpu_mode_priv(vcpu)) {
930                 kvm_inject_undefined(vcpu);
931                 return false;
932         }
933
934         if (p->is_write) {
935                 u64 val = p->regval & mask;
936
937                 if (r->Op2 & 0x1)
938                         /* accessing PMINTENSET_EL1 */
939                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
940                 else
941                         /* accessing PMINTENCLR_EL1 */
942                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
943         } else {
944                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
945         }
946
947         return true;
948 }
949
950 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
951                          const struct sys_reg_desc *r)
952 {
953         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
954
955         if (!kvm_arm_pmu_v3_ready(vcpu))
956                 return trap_raz_wi(vcpu, p, r);
957
958         if (pmu_access_el0_disabled(vcpu))
959                 return false;
960
961         if (p->is_write) {
962                 if (r->CRm & 0x2)
963                         /* accessing PMOVSSET_EL0 */
964                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
965                 else
966                         /* accessing PMOVSCLR_EL0 */
967                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
968         } else {
969                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
970         }
971
972         return true;
973 }
974
975 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
976                            const struct sys_reg_desc *r)
977 {
978         u64 mask;
979
980         if (!kvm_arm_pmu_v3_ready(vcpu))
981                 return trap_raz_wi(vcpu, p, r);
982
983         if (!p->is_write)
984                 return read_from_write_only(vcpu, p, r);
985
986         if (pmu_write_swinc_el0_disabled(vcpu))
987                 return false;
988
989         mask = kvm_pmu_valid_counter_mask(vcpu);
990         kvm_pmu_software_increment(vcpu, p->regval & mask);
991         return true;
992 }
993
994 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
995                              const struct sys_reg_desc *r)
996 {
997         if (!kvm_arm_pmu_v3_ready(vcpu))
998                 return trap_raz_wi(vcpu, p, r);
999
1000         if (p->is_write) {
1001                 if (!vcpu_mode_priv(vcpu)) {
1002                         kvm_inject_undefined(vcpu);
1003                         return false;
1004                 }
1005
1006                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1007                                p->regval & ARMV8_PMU_USERENR_MASK;
1008         } else {
1009                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1010                             & ARMV8_PMU_USERENR_MASK;
1011         }
1012
1013         return true;
1014 }
1015
1016 #define reg_to_encoding(x)                                              \
1017         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
1018                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
1019
1020 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1021 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
1022         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
1023           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
1024         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
1025           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
1026         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
1027           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
1028         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
1029           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1030
1031 /* Macro to expand the PMEVCNTRn_EL0 register */
1032 #define PMU_PMEVCNTR_EL0(n)                                             \
1033         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
1034           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1035
1036 /* Macro to expand the PMEVTYPERn_EL0 register */
1037 #define PMU_PMEVTYPER_EL0(n)                                            \
1038         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
1039           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1040
1041 static bool access_amu(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1042                              const struct sys_reg_desc *r)
1043 {
1044         kvm_inject_undefined(vcpu);
1045
1046         return false;
1047 }
1048
1049 /* Macro to expand the AMU counter and type registers*/
1050 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), access_amu }
1051 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), access_amu }
1052 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), access_amu }
1053 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), access_amu }
1054
1055 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1056                          struct sys_reg_params *p,
1057                          const struct sys_reg_desc *rd)
1058 {
1059         /*
1060          * If we land here, that is because we didn't fixup the access on exit
1061          * by allowing the PtrAuth sysregs. The only way this happens is when
1062          * the guest does not have PtrAuth support enabled.
1063          */
1064         kvm_inject_undefined(vcpu);
1065
1066         return false;
1067 }
1068
1069 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1070                         const struct sys_reg_desc *rd)
1071 {
1072         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1073 }
1074
1075 #define __PTRAUTH_KEY(k)                                                \
1076         { SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k,           \
1077         .visibility = ptrauth_visibility}
1078
1079 #define PTRAUTH_KEY(k)                                                  \
1080         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1081         __PTRAUTH_KEY(k ## KEYHI_EL1)
1082
1083 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1084                               struct sys_reg_params *p,
1085                               const struct sys_reg_desc *r)
1086 {
1087         enum kvm_arch_timers tmr;
1088         enum kvm_arch_timer_regs treg;
1089         u64 reg = reg_to_encoding(r);
1090
1091         switch (reg) {
1092         case SYS_CNTP_TVAL_EL0:
1093         case SYS_AARCH32_CNTP_TVAL:
1094                 tmr = TIMER_PTIMER;
1095                 treg = TIMER_REG_TVAL;
1096                 break;
1097         case SYS_CNTP_CTL_EL0:
1098         case SYS_AARCH32_CNTP_CTL:
1099                 tmr = TIMER_PTIMER;
1100                 treg = TIMER_REG_CTL;
1101                 break;
1102         case SYS_CNTP_CVAL_EL0:
1103         case SYS_AARCH32_CNTP_CVAL:
1104                 tmr = TIMER_PTIMER;
1105                 treg = TIMER_REG_CVAL;
1106                 break;
1107         default:
1108                 BUG();
1109         }
1110
1111         if (p->is_write)
1112                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1113         else
1114                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1115
1116         return true;
1117 }
1118
1119 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1120 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1121                 struct sys_reg_desc const *r, bool raz)
1122 {
1123         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1124                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1125         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1126
1127         if (id == SYS_ID_AA64PFR0_EL1) {
1128                 if (!vcpu_has_sve(vcpu))
1129                         val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1130                 val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1131                 if (!(val & (0xfUL << ID_AA64PFR0_CSV2_SHIFT)) &&
1132                     arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
1133                         val |= (1UL << ID_AA64PFR0_CSV2_SHIFT);
1134         } else if (id == SYS_ID_AA64PFR1_EL1) {
1135                 val &= ~(0xfUL << ID_AA64PFR1_MTE_SHIFT);
1136         } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1137                 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1138                          (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1139                          (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1140                          (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1141         } else if (id == SYS_ID_AA64DFR0_EL1) {
1142                 /* Limit guests to PMUv3 for ARMv8.1 */
1143                 val = cpuid_feature_cap_perfmon_field(val,
1144                                                 ID_AA64DFR0_PMUVER_SHIFT,
1145                                                 ID_AA64DFR0_PMUVER_8_1);
1146         } else if (id == SYS_ID_DFR0_EL1) {
1147                 /* Limit guests to PMUv3 for ARMv8.1 */
1148                 val = cpuid_feature_cap_perfmon_field(val,
1149                                                 ID_DFR0_PERFMON_SHIFT,
1150                                                 ID_DFR0_PERFMON_8_1);
1151         }
1152
1153         return val;
1154 }
1155
1156 /* cpufeature ID register access trap handlers */
1157
1158 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1159                             struct sys_reg_params *p,
1160                             const struct sys_reg_desc *r,
1161                             bool raz)
1162 {
1163         if (p->is_write)
1164                 return write_to_read_only(vcpu, p, r);
1165
1166         p->regval = read_id_reg(vcpu, r, raz);
1167         return true;
1168 }
1169
1170 static bool access_id_reg(struct kvm_vcpu *vcpu,
1171                           struct sys_reg_params *p,
1172                           const struct sys_reg_desc *r)
1173 {
1174         return __access_id_reg(vcpu, p, r, false);
1175 }
1176
1177 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1178                               struct sys_reg_params *p,
1179                               const struct sys_reg_desc *r)
1180 {
1181         return __access_id_reg(vcpu, p, r, true);
1182 }
1183
1184 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1185 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1186 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1187
1188 /* Visibility overrides for SVE-specific control registers */
1189 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1190                                    const struct sys_reg_desc *rd)
1191 {
1192         if (vcpu_has_sve(vcpu))
1193                 return 0;
1194
1195         return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1196 }
1197
1198 /* Visibility overrides for SVE-specific ID registers */
1199 static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
1200                                       const struct sys_reg_desc *rd)
1201 {
1202         if (vcpu_has_sve(vcpu))
1203                 return 0;
1204
1205         return REG_HIDDEN_USER;
1206 }
1207
1208 /* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
1209 static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
1210 {
1211         if (!vcpu_has_sve(vcpu))
1212                 return 0;
1213
1214         return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
1215 }
1216
1217 static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1218                                    struct sys_reg_params *p,
1219                                    const struct sys_reg_desc *rd)
1220 {
1221         if (p->is_write)
1222                 return write_to_read_only(vcpu, p, rd);
1223
1224         p->regval = guest_id_aa64zfr0_el1(vcpu);
1225         return true;
1226 }
1227
1228 static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1229                 const struct sys_reg_desc *rd,
1230                 const struct kvm_one_reg *reg, void __user *uaddr)
1231 {
1232         u64 val;
1233
1234         if (WARN_ON(!vcpu_has_sve(vcpu)))
1235                 return -ENOENT;
1236
1237         val = guest_id_aa64zfr0_el1(vcpu);
1238         return reg_to_user(uaddr, &val, reg->id);
1239 }
1240
1241 static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1242                 const struct sys_reg_desc *rd,
1243                 const struct kvm_one_reg *reg, void __user *uaddr)
1244 {
1245         const u64 id = sys_reg_to_index(rd);
1246         int err;
1247         u64 val;
1248
1249         if (WARN_ON(!vcpu_has_sve(vcpu)))
1250                 return -ENOENT;
1251
1252         err = reg_from_user(&val, uaddr, id);
1253         if (err)
1254                 return err;
1255
1256         /* This is what we mean by invariant: you can't change it. */
1257         if (val != guest_id_aa64zfr0_el1(vcpu))
1258                 return -EINVAL;
1259
1260         return 0;
1261 }
1262
1263 /*
1264  * cpufeature ID register user accessors
1265  *
1266  * For now, these registers are immutable for userspace, so no values
1267  * are stored, and for set_id_reg() we don't allow the effective value
1268  * to be changed.
1269  */
1270 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1271                         const struct sys_reg_desc *rd, void __user *uaddr,
1272                         bool raz)
1273 {
1274         const u64 id = sys_reg_to_index(rd);
1275         const u64 val = read_id_reg(vcpu, rd, raz);
1276
1277         return reg_to_user(uaddr, &val, id);
1278 }
1279
1280 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1281                         const struct sys_reg_desc *rd, void __user *uaddr,
1282                         bool raz)
1283 {
1284         const u64 id = sys_reg_to_index(rd);
1285         int err;
1286         u64 val;
1287
1288         err = reg_from_user(&val, uaddr, id);
1289         if (err)
1290                 return err;
1291
1292         /* This is what we mean by invariant: you can't change it. */
1293         if (val != read_id_reg(vcpu, rd, raz))
1294                 return -EINVAL;
1295
1296         return 0;
1297 }
1298
1299 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1300                       const struct kvm_one_reg *reg, void __user *uaddr)
1301 {
1302         return __get_id_reg(vcpu, rd, uaddr, false);
1303 }
1304
1305 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1306                       const struct kvm_one_reg *reg, void __user *uaddr)
1307 {
1308         return __set_id_reg(vcpu, rd, uaddr, false);
1309 }
1310
1311 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1312                           const struct kvm_one_reg *reg, void __user *uaddr)
1313 {
1314         return __get_id_reg(vcpu, rd, uaddr, true);
1315 }
1316
1317 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1318                           const struct kvm_one_reg *reg, void __user *uaddr)
1319 {
1320         return __set_id_reg(vcpu, rd, uaddr, true);
1321 }
1322
1323 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1324                        const struct sys_reg_desc *r)
1325 {
1326         if (p->is_write)
1327                 return write_to_read_only(vcpu, p, r);
1328
1329         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1330         return true;
1331 }
1332
1333 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1334                          const struct sys_reg_desc *r)
1335 {
1336         if (p->is_write)
1337                 return write_to_read_only(vcpu, p, r);
1338
1339         p->regval = read_sysreg(clidr_el1);
1340         return true;
1341 }
1342
1343 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1344                           const struct sys_reg_desc *r)
1345 {
1346         int reg = r->reg;
1347
1348         /* See the 32bit mapping in kvm_host.h */
1349         if (p->is_aarch32)
1350                 reg = r->reg / 2;
1351
1352         if (p->is_write)
1353                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1354         else
1355                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1356         return true;
1357 }
1358
1359 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1360                           const struct sys_reg_desc *r)
1361 {
1362         u32 csselr;
1363
1364         if (p->is_write)
1365                 return write_to_read_only(vcpu, p, r);
1366
1367         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1368         p->regval = get_ccsidr(csselr);
1369
1370         /*
1371          * Guests should not be doing cache operations by set/way at all, and
1372          * for this reason, we trap them and attempt to infer the intent, so
1373          * that we can flush the entire guest's address space at the appropriate
1374          * time.
1375          * To prevent this trapping from causing performance problems, let's
1376          * expose the geometry of all data and unified caches (which are
1377          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1378          * [If guests should attempt to infer aliasing properties from the
1379          * geometry (which is not permitted by the architecture), they would
1380          * only do so for virtually indexed caches.]
1381          */
1382         if (!(csselr & 1)) // data or unified cache
1383                 p->regval &= ~GENMASK(27, 3);
1384         return true;
1385 }
1386
1387 static bool access_mte_regs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1388                             const struct sys_reg_desc *r)
1389 {
1390         kvm_inject_undefined(vcpu);
1391         return false;
1392 }
1393
1394 /* sys_reg_desc initialiser for known cpufeature ID registers */
1395 #define ID_SANITISED(name) {                    \
1396         SYS_DESC(SYS_##name),                   \
1397         .access = access_id_reg,                \
1398         .get_user = get_id_reg,                 \
1399         .set_user = set_id_reg,                 \
1400 }
1401
1402 /*
1403  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1404  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1405  * (1 <= crm < 8, 0 <= Op2 < 8).
1406  */
1407 #define ID_UNALLOCATED(crm, op2) {                      \
1408         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1409         .access = access_raz_id_reg,                    \
1410         .get_user = get_raz_id_reg,                     \
1411         .set_user = set_raz_id_reg,                     \
1412 }
1413
1414 /*
1415  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1416  * For now, these are exposed just like unallocated ID regs: they appear
1417  * RAZ for the guest.
1418  */
1419 #define ID_HIDDEN(name) {                       \
1420         SYS_DESC(SYS_##name),                   \
1421         .access = access_raz_id_reg,            \
1422         .get_user = get_raz_id_reg,             \
1423         .set_user = set_raz_id_reg,             \
1424 }
1425
1426 /*
1427  * Architected system registers.
1428  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1429  *
1430  * Debug handling: We do trap most, if not all debug related system
1431  * registers. The implementation is good enough to ensure that a guest
1432  * can use these with minimal performance degradation. The drawback is
1433  * that we don't implement any of the external debug, none of the
1434  * OSlock protocol. This should be revisited if we ever encounter a
1435  * more demanding guest...
1436  */
1437 static const struct sys_reg_desc sys_reg_descs[] = {
1438         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1439         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1440         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1441
1442         DBG_BCR_BVR_WCR_WVR_EL1(0),
1443         DBG_BCR_BVR_WCR_WVR_EL1(1),
1444         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1445         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1446         DBG_BCR_BVR_WCR_WVR_EL1(2),
1447         DBG_BCR_BVR_WCR_WVR_EL1(3),
1448         DBG_BCR_BVR_WCR_WVR_EL1(4),
1449         DBG_BCR_BVR_WCR_WVR_EL1(5),
1450         DBG_BCR_BVR_WCR_WVR_EL1(6),
1451         DBG_BCR_BVR_WCR_WVR_EL1(7),
1452         DBG_BCR_BVR_WCR_WVR_EL1(8),
1453         DBG_BCR_BVR_WCR_WVR_EL1(9),
1454         DBG_BCR_BVR_WCR_WVR_EL1(10),
1455         DBG_BCR_BVR_WCR_WVR_EL1(11),
1456         DBG_BCR_BVR_WCR_WVR_EL1(12),
1457         DBG_BCR_BVR_WCR_WVR_EL1(13),
1458         DBG_BCR_BVR_WCR_WVR_EL1(14),
1459         DBG_BCR_BVR_WCR_WVR_EL1(15),
1460
1461         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1462         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1463         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1464         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1465         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1466         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1467         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1468         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1469
1470         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1471         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1472         // DBGDTR[TR]X_EL0 share the same encoding
1473         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1474
1475         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1476
1477         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1478
1479         /*
1480          * ID regs: all ID_SANITISED() entries here must have corresponding
1481          * entries in arm64_ftr_regs[].
1482          */
1483
1484         /* AArch64 mappings of the AArch32 ID registers */
1485         /* CRm=1 */
1486         ID_SANITISED(ID_PFR0_EL1),
1487         ID_SANITISED(ID_PFR1_EL1),
1488         ID_SANITISED(ID_DFR0_EL1),
1489         ID_HIDDEN(ID_AFR0_EL1),
1490         ID_SANITISED(ID_MMFR0_EL1),
1491         ID_SANITISED(ID_MMFR1_EL1),
1492         ID_SANITISED(ID_MMFR2_EL1),
1493         ID_SANITISED(ID_MMFR3_EL1),
1494
1495         /* CRm=2 */
1496         ID_SANITISED(ID_ISAR0_EL1),
1497         ID_SANITISED(ID_ISAR1_EL1),
1498         ID_SANITISED(ID_ISAR2_EL1),
1499         ID_SANITISED(ID_ISAR3_EL1),
1500         ID_SANITISED(ID_ISAR4_EL1),
1501         ID_SANITISED(ID_ISAR5_EL1),
1502         ID_SANITISED(ID_MMFR4_EL1),
1503         ID_SANITISED(ID_ISAR6_EL1),
1504
1505         /* CRm=3 */
1506         ID_SANITISED(MVFR0_EL1),
1507         ID_SANITISED(MVFR1_EL1),
1508         ID_SANITISED(MVFR2_EL1),
1509         ID_UNALLOCATED(3,3),
1510         ID_SANITISED(ID_PFR2_EL1),
1511         ID_HIDDEN(ID_DFR1_EL1),
1512         ID_SANITISED(ID_MMFR5_EL1),
1513         ID_UNALLOCATED(3,7),
1514
1515         /* AArch64 ID registers */
1516         /* CRm=4 */
1517         ID_SANITISED(ID_AA64PFR0_EL1),
1518         ID_SANITISED(ID_AA64PFR1_EL1),
1519         ID_UNALLOCATED(4,2),
1520         ID_UNALLOCATED(4,3),
1521         { SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
1522         ID_UNALLOCATED(4,5),
1523         ID_UNALLOCATED(4,6),
1524         ID_UNALLOCATED(4,7),
1525
1526         /* CRm=5 */
1527         ID_SANITISED(ID_AA64DFR0_EL1),
1528         ID_SANITISED(ID_AA64DFR1_EL1),
1529         ID_UNALLOCATED(5,2),
1530         ID_UNALLOCATED(5,3),
1531         ID_HIDDEN(ID_AA64AFR0_EL1),
1532         ID_HIDDEN(ID_AA64AFR1_EL1),
1533         ID_UNALLOCATED(5,6),
1534         ID_UNALLOCATED(5,7),
1535
1536         /* CRm=6 */
1537         ID_SANITISED(ID_AA64ISAR0_EL1),
1538         ID_SANITISED(ID_AA64ISAR1_EL1),
1539         ID_UNALLOCATED(6,2),
1540         ID_UNALLOCATED(6,3),
1541         ID_UNALLOCATED(6,4),
1542         ID_UNALLOCATED(6,5),
1543         ID_UNALLOCATED(6,6),
1544         ID_UNALLOCATED(6,7),
1545
1546         /* CRm=7 */
1547         ID_SANITISED(ID_AA64MMFR0_EL1),
1548         ID_SANITISED(ID_AA64MMFR1_EL1),
1549         ID_SANITISED(ID_AA64MMFR2_EL1),
1550         ID_UNALLOCATED(7,3),
1551         ID_UNALLOCATED(7,4),
1552         ID_UNALLOCATED(7,5),
1553         ID_UNALLOCATED(7,6),
1554         ID_UNALLOCATED(7,7),
1555
1556         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1557         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1558         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1559
1560         { SYS_DESC(SYS_RGSR_EL1), access_mte_regs },
1561         { SYS_DESC(SYS_GCR_EL1), access_mte_regs },
1562
1563         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1564         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1565         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1566         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1567
1568         PTRAUTH_KEY(APIA),
1569         PTRAUTH_KEY(APIB),
1570         PTRAUTH_KEY(APDA),
1571         PTRAUTH_KEY(APDB),
1572         PTRAUTH_KEY(APGA),
1573
1574         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1575         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1576         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1577
1578         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1579         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1580         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1581         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1582         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1583         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1584         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1585         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1586
1587         { SYS_DESC(SYS_TFSR_EL1), access_mte_regs },
1588         { SYS_DESC(SYS_TFSRE0_EL1), access_mte_regs },
1589
1590         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1591         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1592
1593         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1594         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1595
1596         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1597         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1598
1599         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1600         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1601         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1602         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1603         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1604
1605         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1606         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1607
1608         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1609         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1610         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1611         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1612         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1613         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1614         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1615         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1616         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1617         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1618         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1619         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1620
1621         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1622         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1623
1624         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1625
1626         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1627         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1628         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1629         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1630
1631         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1632         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1633         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1634         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1635         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1636         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1637         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1638         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1639         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1640         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1641         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1642         /*
1643          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1644          * in 32bit mode. Here we choose to reset it as zero for consistency.
1645          */
1646         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1647         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1648
1649         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1650         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1651
1652         { SYS_DESC(SYS_AMCR_EL0), access_amu },
1653         { SYS_DESC(SYS_AMCFGR_EL0), access_amu },
1654         { SYS_DESC(SYS_AMCGCR_EL0), access_amu },
1655         { SYS_DESC(SYS_AMUSERENR_EL0), access_amu },
1656         { SYS_DESC(SYS_AMCNTENCLR0_EL0), access_amu },
1657         { SYS_DESC(SYS_AMCNTENSET0_EL0), access_amu },
1658         { SYS_DESC(SYS_AMCNTENCLR1_EL0), access_amu },
1659         { SYS_DESC(SYS_AMCNTENSET1_EL0), access_amu },
1660         AMU_AMEVCNTR0_EL0(0),
1661         AMU_AMEVCNTR0_EL0(1),
1662         AMU_AMEVCNTR0_EL0(2),
1663         AMU_AMEVCNTR0_EL0(3),
1664         AMU_AMEVCNTR0_EL0(4),
1665         AMU_AMEVCNTR0_EL0(5),
1666         AMU_AMEVCNTR0_EL0(6),
1667         AMU_AMEVCNTR0_EL0(7),
1668         AMU_AMEVCNTR0_EL0(8),
1669         AMU_AMEVCNTR0_EL0(9),
1670         AMU_AMEVCNTR0_EL0(10),
1671         AMU_AMEVCNTR0_EL0(11),
1672         AMU_AMEVCNTR0_EL0(12),
1673         AMU_AMEVCNTR0_EL0(13),
1674         AMU_AMEVCNTR0_EL0(14),
1675         AMU_AMEVCNTR0_EL0(15),
1676         AMU_AMEVTYPER0_EL0(0),
1677         AMU_AMEVTYPER0_EL0(1),
1678         AMU_AMEVTYPER0_EL0(2),
1679         AMU_AMEVTYPER0_EL0(3),
1680         AMU_AMEVTYPER0_EL0(4),
1681         AMU_AMEVTYPER0_EL0(5),
1682         AMU_AMEVTYPER0_EL0(6),
1683         AMU_AMEVTYPER0_EL0(7),
1684         AMU_AMEVTYPER0_EL0(8),
1685         AMU_AMEVTYPER0_EL0(9),
1686         AMU_AMEVTYPER0_EL0(10),
1687         AMU_AMEVTYPER0_EL0(11),
1688         AMU_AMEVTYPER0_EL0(12),
1689         AMU_AMEVTYPER0_EL0(13),
1690         AMU_AMEVTYPER0_EL0(14),
1691         AMU_AMEVTYPER0_EL0(15),
1692         AMU_AMEVCNTR1_EL0(0),
1693         AMU_AMEVCNTR1_EL0(1),
1694         AMU_AMEVCNTR1_EL0(2),
1695         AMU_AMEVCNTR1_EL0(3),
1696         AMU_AMEVCNTR1_EL0(4),
1697         AMU_AMEVCNTR1_EL0(5),
1698         AMU_AMEVCNTR1_EL0(6),
1699         AMU_AMEVCNTR1_EL0(7),
1700         AMU_AMEVCNTR1_EL0(8),
1701         AMU_AMEVCNTR1_EL0(9),
1702         AMU_AMEVCNTR1_EL0(10),
1703         AMU_AMEVCNTR1_EL0(11),
1704         AMU_AMEVCNTR1_EL0(12),
1705         AMU_AMEVCNTR1_EL0(13),
1706         AMU_AMEVCNTR1_EL0(14),
1707         AMU_AMEVCNTR1_EL0(15),
1708         AMU_AMEVTYPER1_EL0(0),
1709         AMU_AMEVTYPER1_EL0(1),
1710         AMU_AMEVTYPER1_EL0(2),
1711         AMU_AMEVTYPER1_EL0(3),
1712         AMU_AMEVTYPER1_EL0(4),
1713         AMU_AMEVTYPER1_EL0(5),
1714         AMU_AMEVTYPER1_EL0(6),
1715         AMU_AMEVTYPER1_EL0(7),
1716         AMU_AMEVTYPER1_EL0(8),
1717         AMU_AMEVTYPER1_EL0(9),
1718         AMU_AMEVTYPER1_EL0(10),
1719         AMU_AMEVTYPER1_EL0(11),
1720         AMU_AMEVTYPER1_EL0(12),
1721         AMU_AMEVTYPER1_EL0(13),
1722         AMU_AMEVTYPER1_EL0(14),
1723         AMU_AMEVTYPER1_EL0(15),
1724
1725         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1726         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1727         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1728
1729         /* PMEVCNTRn_EL0 */
1730         PMU_PMEVCNTR_EL0(0),
1731         PMU_PMEVCNTR_EL0(1),
1732         PMU_PMEVCNTR_EL0(2),
1733         PMU_PMEVCNTR_EL0(3),
1734         PMU_PMEVCNTR_EL0(4),
1735         PMU_PMEVCNTR_EL0(5),
1736         PMU_PMEVCNTR_EL0(6),
1737         PMU_PMEVCNTR_EL0(7),
1738         PMU_PMEVCNTR_EL0(8),
1739         PMU_PMEVCNTR_EL0(9),
1740         PMU_PMEVCNTR_EL0(10),
1741         PMU_PMEVCNTR_EL0(11),
1742         PMU_PMEVCNTR_EL0(12),
1743         PMU_PMEVCNTR_EL0(13),
1744         PMU_PMEVCNTR_EL0(14),
1745         PMU_PMEVCNTR_EL0(15),
1746         PMU_PMEVCNTR_EL0(16),
1747         PMU_PMEVCNTR_EL0(17),
1748         PMU_PMEVCNTR_EL0(18),
1749         PMU_PMEVCNTR_EL0(19),
1750         PMU_PMEVCNTR_EL0(20),
1751         PMU_PMEVCNTR_EL0(21),
1752         PMU_PMEVCNTR_EL0(22),
1753         PMU_PMEVCNTR_EL0(23),
1754         PMU_PMEVCNTR_EL0(24),
1755         PMU_PMEVCNTR_EL0(25),
1756         PMU_PMEVCNTR_EL0(26),
1757         PMU_PMEVCNTR_EL0(27),
1758         PMU_PMEVCNTR_EL0(28),
1759         PMU_PMEVCNTR_EL0(29),
1760         PMU_PMEVCNTR_EL0(30),
1761         /* PMEVTYPERn_EL0 */
1762         PMU_PMEVTYPER_EL0(0),
1763         PMU_PMEVTYPER_EL0(1),
1764         PMU_PMEVTYPER_EL0(2),
1765         PMU_PMEVTYPER_EL0(3),
1766         PMU_PMEVTYPER_EL0(4),
1767         PMU_PMEVTYPER_EL0(5),
1768         PMU_PMEVTYPER_EL0(6),
1769         PMU_PMEVTYPER_EL0(7),
1770         PMU_PMEVTYPER_EL0(8),
1771         PMU_PMEVTYPER_EL0(9),
1772         PMU_PMEVTYPER_EL0(10),
1773         PMU_PMEVTYPER_EL0(11),
1774         PMU_PMEVTYPER_EL0(12),
1775         PMU_PMEVTYPER_EL0(13),
1776         PMU_PMEVTYPER_EL0(14),
1777         PMU_PMEVTYPER_EL0(15),
1778         PMU_PMEVTYPER_EL0(16),
1779         PMU_PMEVTYPER_EL0(17),
1780         PMU_PMEVTYPER_EL0(18),
1781         PMU_PMEVTYPER_EL0(19),
1782         PMU_PMEVTYPER_EL0(20),
1783         PMU_PMEVTYPER_EL0(21),
1784         PMU_PMEVTYPER_EL0(22),
1785         PMU_PMEVTYPER_EL0(23),
1786         PMU_PMEVTYPER_EL0(24),
1787         PMU_PMEVTYPER_EL0(25),
1788         PMU_PMEVTYPER_EL0(26),
1789         PMU_PMEVTYPER_EL0(27),
1790         PMU_PMEVTYPER_EL0(28),
1791         PMU_PMEVTYPER_EL0(29),
1792         PMU_PMEVTYPER_EL0(30),
1793         /*
1794          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1795          * in 32bit mode. Here we choose to reset it as zero for consistency.
1796          */
1797         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1798
1799         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1800         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1801         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1802 };
1803
1804 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1805                         struct sys_reg_params *p,
1806                         const struct sys_reg_desc *r)
1807 {
1808         if (p->is_write) {
1809                 return ignore_write(vcpu, p);
1810         } else {
1811                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1812                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1813                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1814
1815                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1816                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1817                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1818                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1819                 return true;
1820         }
1821 }
1822
1823 static bool trap_debug32(struct kvm_vcpu *vcpu,
1824                          struct sys_reg_params *p,
1825                          const struct sys_reg_desc *r)
1826 {
1827         if (p->is_write) {
1828                 vcpu_cp14(vcpu, r->reg) = p->regval;
1829                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1830         } else {
1831                 p->regval = vcpu_cp14(vcpu, r->reg);
1832         }
1833
1834         return true;
1835 }
1836
1837 /* AArch32 debug register mappings
1838  *
1839  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1840  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1841  *
1842  * All control registers and watchpoint value registers are mapped to
1843  * the lower 32 bits of their AArch64 equivalents. We share the trap
1844  * handlers with the above AArch64 code which checks what mode the
1845  * system is in.
1846  */
1847
1848 static bool trap_xvr(struct kvm_vcpu *vcpu,
1849                      struct sys_reg_params *p,
1850                      const struct sys_reg_desc *rd)
1851 {
1852         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1853
1854         if (p->is_write) {
1855                 u64 val = *dbg_reg;
1856
1857                 val &= 0xffffffffUL;
1858                 val |= p->regval << 32;
1859                 *dbg_reg = val;
1860
1861                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1862         } else {
1863                 p->regval = *dbg_reg >> 32;
1864         }
1865
1866         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1867
1868         return true;
1869 }
1870
1871 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1872         /* DBGBVRn */                                                   \
1873         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1874         /* DBGBCRn */                                                   \
1875         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1876         /* DBGWVRn */                                                   \
1877         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1878         /* DBGWCRn */                                                   \
1879         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1880
1881 #define DBGBXVR(n)                                                      \
1882         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1883
1884 /*
1885  * Trapped cp14 registers. We generally ignore most of the external
1886  * debug, on the principle that they don't really make sense to a
1887  * guest. Revisit this one day, would this principle change.
1888  */
1889 static const struct sys_reg_desc cp14_regs[] = {
1890         /* DBGIDR */
1891         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1892         /* DBGDTRRXext */
1893         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1894
1895         DBG_BCR_BVR_WCR_WVR(0),
1896         /* DBGDSCRint */
1897         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1898         DBG_BCR_BVR_WCR_WVR(1),
1899         /* DBGDCCINT */
1900         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1901         /* DBGDSCRext */
1902         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1903         DBG_BCR_BVR_WCR_WVR(2),
1904         /* DBGDTR[RT]Xint */
1905         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1906         /* DBGDTR[RT]Xext */
1907         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1908         DBG_BCR_BVR_WCR_WVR(3),
1909         DBG_BCR_BVR_WCR_WVR(4),
1910         DBG_BCR_BVR_WCR_WVR(5),
1911         /* DBGWFAR */
1912         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1913         /* DBGOSECCR */
1914         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1915         DBG_BCR_BVR_WCR_WVR(6),
1916         /* DBGVCR */
1917         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1918         DBG_BCR_BVR_WCR_WVR(7),
1919         DBG_BCR_BVR_WCR_WVR(8),
1920         DBG_BCR_BVR_WCR_WVR(9),
1921         DBG_BCR_BVR_WCR_WVR(10),
1922         DBG_BCR_BVR_WCR_WVR(11),
1923         DBG_BCR_BVR_WCR_WVR(12),
1924         DBG_BCR_BVR_WCR_WVR(13),
1925         DBG_BCR_BVR_WCR_WVR(14),
1926         DBG_BCR_BVR_WCR_WVR(15),
1927
1928         /* DBGDRAR (32bit) */
1929         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1930
1931         DBGBXVR(0),
1932         /* DBGOSLAR */
1933         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1934         DBGBXVR(1),
1935         /* DBGOSLSR */
1936         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1937         DBGBXVR(2),
1938         DBGBXVR(3),
1939         /* DBGOSDLR */
1940         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1941         DBGBXVR(4),
1942         /* DBGPRCR */
1943         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1944         DBGBXVR(5),
1945         DBGBXVR(6),
1946         DBGBXVR(7),
1947         DBGBXVR(8),
1948         DBGBXVR(9),
1949         DBGBXVR(10),
1950         DBGBXVR(11),
1951         DBGBXVR(12),
1952         DBGBXVR(13),
1953         DBGBXVR(14),
1954         DBGBXVR(15),
1955
1956         /* DBGDSAR (32bit) */
1957         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1958
1959         /* DBGDEVID2 */
1960         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1961         /* DBGDEVID1 */
1962         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1963         /* DBGDEVID */
1964         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1965         /* DBGCLAIMSET */
1966         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1967         /* DBGCLAIMCLR */
1968         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1969         /* DBGAUTHSTATUS */
1970         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1971 };
1972
1973 /* Trapped cp14 64bit registers */
1974 static const struct sys_reg_desc cp14_64_regs[] = {
1975         /* DBGDRAR (64bit) */
1976         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1977
1978         /* DBGDSAR (64bit) */
1979         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1980 };
1981
1982 /* Macro to expand the PMEVCNTRn register */
1983 #define PMU_PMEVCNTR(n)                                                 \
1984         /* PMEVCNTRn */                                                 \
1985         { Op1(0), CRn(0b1110),                                          \
1986           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1987           access_pmu_evcntr }
1988
1989 /* Macro to expand the PMEVTYPERn register */
1990 #define PMU_PMEVTYPER(n)                                                \
1991         /* PMEVTYPERn */                                                \
1992         { Op1(0), CRn(0b1110),                                          \
1993           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1994           access_pmu_evtyper }
1995
1996 /*
1997  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1998  * depending on the way they are accessed (as a 32bit or a 64bit
1999  * register).
2000  */
2001 static const struct sys_reg_desc cp15_regs[] = {
2002         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2003         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
2004         { Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr },
2005         { Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr },
2006         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
2007         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
2008         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
2009         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
2010         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
2011         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
2012         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
2013         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
2014         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
2015         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
2016
2017         /*
2018          * DC{C,I,CI}SW operations:
2019          */
2020         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2021         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2022         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2023
2024         /* PMU */
2025         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
2026         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
2027         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
2028         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
2029         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
2030         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
2031         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
2032         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
2033         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
2034         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
2035         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
2036         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
2037         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
2038         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
2039         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
2040
2041         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
2042         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
2043         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
2044         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
2045
2046         /* ICC_SRE */
2047         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2048
2049         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
2050
2051         /* Arch Tmers */
2052         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2053         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2054
2055         /* PMEVCNTRn */
2056         PMU_PMEVCNTR(0),
2057         PMU_PMEVCNTR(1),
2058         PMU_PMEVCNTR(2),
2059         PMU_PMEVCNTR(3),
2060         PMU_PMEVCNTR(4),
2061         PMU_PMEVCNTR(5),
2062         PMU_PMEVCNTR(6),
2063         PMU_PMEVCNTR(7),
2064         PMU_PMEVCNTR(8),
2065         PMU_PMEVCNTR(9),
2066         PMU_PMEVCNTR(10),
2067         PMU_PMEVCNTR(11),
2068         PMU_PMEVCNTR(12),
2069         PMU_PMEVCNTR(13),
2070         PMU_PMEVCNTR(14),
2071         PMU_PMEVCNTR(15),
2072         PMU_PMEVCNTR(16),
2073         PMU_PMEVCNTR(17),
2074         PMU_PMEVCNTR(18),
2075         PMU_PMEVCNTR(19),
2076         PMU_PMEVCNTR(20),
2077         PMU_PMEVCNTR(21),
2078         PMU_PMEVCNTR(22),
2079         PMU_PMEVCNTR(23),
2080         PMU_PMEVCNTR(24),
2081         PMU_PMEVCNTR(25),
2082         PMU_PMEVCNTR(26),
2083         PMU_PMEVCNTR(27),
2084         PMU_PMEVCNTR(28),
2085         PMU_PMEVCNTR(29),
2086         PMU_PMEVCNTR(30),
2087         /* PMEVTYPERn */
2088         PMU_PMEVTYPER(0),
2089         PMU_PMEVTYPER(1),
2090         PMU_PMEVTYPER(2),
2091         PMU_PMEVTYPER(3),
2092         PMU_PMEVTYPER(4),
2093         PMU_PMEVTYPER(5),
2094         PMU_PMEVTYPER(6),
2095         PMU_PMEVTYPER(7),
2096         PMU_PMEVTYPER(8),
2097         PMU_PMEVTYPER(9),
2098         PMU_PMEVTYPER(10),
2099         PMU_PMEVTYPER(11),
2100         PMU_PMEVTYPER(12),
2101         PMU_PMEVTYPER(13),
2102         PMU_PMEVTYPER(14),
2103         PMU_PMEVTYPER(15),
2104         PMU_PMEVTYPER(16),
2105         PMU_PMEVTYPER(17),
2106         PMU_PMEVTYPER(18),
2107         PMU_PMEVTYPER(19),
2108         PMU_PMEVTYPER(20),
2109         PMU_PMEVTYPER(21),
2110         PMU_PMEVTYPER(22),
2111         PMU_PMEVTYPER(23),
2112         PMU_PMEVTYPER(24),
2113         PMU_PMEVTYPER(25),
2114         PMU_PMEVTYPER(26),
2115         PMU_PMEVTYPER(27),
2116         PMU_PMEVTYPER(28),
2117         PMU_PMEVTYPER(29),
2118         PMU_PMEVTYPER(30),
2119         /* PMCCFILTR */
2120         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2121
2122         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2123         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2124         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
2125 };
2126
2127 static const struct sys_reg_desc cp15_64_regs[] = {
2128         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
2129         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2130         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2131         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
2132         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2133         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2134         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2135 };
2136
2137 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2138                               bool is_32)
2139 {
2140         unsigned int i;
2141
2142         for (i = 0; i < n; i++) {
2143                 if (!is_32 && table[i].reg && !table[i].reset) {
2144                         kvm_err("sys_reg table %p entry %d has lacks reset\n",
2145                                 table, i);
2146                         return 1;
2147                 }
2148
2149                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2150                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2151                         return 1;
2152                 }
2153         }
2154
2155         return 0;
2156 }
2157
2158 static int match_sys_reg(const void *key, const void *elt)
2159 {
2160         const unsigned long pval = (unsigned long)key;
2161         const struct sys_reg_desc *r = elt;
2162
2163         return pval - reg_to_encoding(r);
2164 }
2165
2166 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2167                                          const struct sys_reg_desc table[],
2168                                          unsigned int num)
2169 {
2170         unsigned long pval = reg_to_encoding(params);
2171
2172         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2173 }
2174
2175 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2176 {
2177         kvm_inject_undefined(vcpu);
2178         return 1;
2179 }
2180
2181 static void perform_access(struct kvm_vcpu *vcpu,
2182                            struct sys_reg_params *params,
2183                            const struct sys_reg_desc *r)
2184 {
2185         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2186
2187         /* Check for regs disabled by runtime config */
2188         if (sysreg_hidden_from_guest(vcpu, r)) {
2189                 kvm_inject_undefined(vcpu);
2190                 return;
2191         }
2192
2193         /*
2194          * Not having an accessor means that we have configured a trap
2195          * that we don't know how to handle. This certainly qualifies
2196          * as a gross bug that should be fixed right away.
2197          */
2198         BUG_ON(!r->access);
2199
2200         /* Skip instruction if instructed so */
2201         if (likely(r->access(vcpu, params, r)))
2202                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2203 }
2204
2205 /*
2206  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2207  *                call the corresponding trap handler.
2208  *
2209  * @params: pointer to the descriptor of the access
2210  * @table: array of trap descriptors
2211  * @num: size of the trap descriptor array
2212  *
2213  * Return 0 if the access has been handled, and -1 if not.
2214  */
2215 static int emulate_cp(struct kvm_vcpu *vcpu,
2216                       struct sys_reg_params *params,
2217                       const struct sys_reg_desc *table,
2218                       size_t num)
2219 {
2220         const struct sys_reg_desc *r;
2221
2222         if (!table)
2223                 return -1;      /* Not handled */
2224
2225         r = find_reg(params, table, num);
2226
2227         if (r) {
2228                 perform_access(vcpu, params, r);
2229                 return 0;
2230         }
2231
2232         /* Not handled */
2233         return -1;
2234 }
2235
2236 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2237                                 struct sys_reg_params *params)
2238 {
2239         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2240         int cp = -1;
2241
2242         switch (esr_ec) {
2243         case ESR_ELx_EC_CP15_32:
2244         case ESR_ELx_EC_CP15_64:
2245                 cp = 15;
2246                 break;
2247         case ESR_ELx_EC_CP14_MR:
2248         case ESR_ELx_EC_CP14_64:
2249                 cp = 14;
2250                 break;
2251         default:
2252                 WARN_ON(1);
2253         }
2254
2255         print_sys_reg_msg(params,
2256                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2257                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2258         kvm_inject_undefined(vcpu);
2259 }
2260
2261 /**
2262  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2263  * @vcpu: The VCPU pointer
2264  * @run:  The kvm_run struct
2265  */
2266 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2267                             const struct sys_reg_desc *global,
2268                             size_t nr_global)
2269 {
2270         struct sys_reg_params params;
2271         u32 esr = kvm_vcpu_get_esr(vcpu);
2272         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2273         int Rt2 = (esr >> 10) & 0x1f;
2274
2275         params.is_aarch32 = true;
2276         params.is_32bit = false;
2277         params.CRm = (esr >> 1) & 0xf;
2278         params.is_write = ((esr & 1) == 0);
2279
2280         params.Op0 = 0;
2281         params.Op1 = (esr >> 16) & 0xf;
2282         params.Op2 = 0;
2283         params.CRn = 0;
2284
2285         /*
2286          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2287          * backends between AArch32 and AArch64, we get away with it.
2288          */
2289         if (params.is_write) {
2290                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2291                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2292         }
2293
2294         /*
2295          * If the table contains a handler, handle the
2296          * potential register operation in the case of a read and return
2297          * with success.
2298          */
2299         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2300                 /* Split up the value between registers for the read side */
2301                 if (!params.is_write) {
2302                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2303                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2304                 }
2305
2306                 return 1;
2307         }
2308
2309         unhandled_cp_access(vcpu, &params);
2310         return 1;
2311 }
2312
2313 /**
2314  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2315  * @vcpu: The VCPU pointer
2316  * @run:  The kvm_run struct
2317  */
2318 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2319                             const struct sys_reg_desc *global,
2320                             size_t nr_global)
2321 {
2322         struct sys_reg_params params;
2323         u32 esr = kvm_vcpu_get_esr(vcpu);
2324         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2325
2326         params.is_aarch32 = true;
2327         params.is_32bit = true;
2328         params.CRm = (esr >> 1) & 0xf;
2329         params.regval = vcpu_get_reg(vcpu, Rt);
2330         params.is_write = ((esr & 1) == 0);
2331         params.CRn = (esr >> 10) & 0xf;
2332         params.Op0 = 0;
2333         params.Op1 = (esr >> 14) & 0x7;
2334         params.Op2 = (esr >> 17) & 0x7;
2335
2336         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2337                 if (!params.is_write)
2338                         vcpu_set_reg(vcpu, Rt, params.regval);
2339                 return 1;
2340         }
2341
2342         unhandled_cp_access(vcpu, &params);
2343         return 1;
2344 }
2345
2346 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2347 {
2348         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2349 }
2350
2351 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2352 {
2353         return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2354 }
2355
2356 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2357 {
2358         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2359 }
2360
2361 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2362 {
2363         return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2364 }
2365
2366 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2367 {
2368         // See ARM DDI 0487E.a, section D12.3.2
2369         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2370 }
2371
2372 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2373                            struct sys_reg_params *params)
2374 {
2375         const struct sys_reg_desc *r;
2376
2377         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2378
2379         if (likely(r)) {
2380                 perform_access(vcpu, params, r);
2381         } else if (is_imp_def_sys_reg(params)) {
2382                 kvm_inject_undefined(vcpu);
2383         } else {
2384                 print_sys_reg_msg(params,
2385                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2386                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2387                 kvm_inject_undefined(vcpu);
2388         }
2389         return 1;
2390 }
2391
2392 /**
2393  * kvm_reset_sys_regs - sets system registers to reset value
2394  * @vcpu: The VCPU pointer
2395  *
2396  * This function finds the right table above and sets the registers on the
2397  * virtual CPU struct to their architecturally defined reset values.
2398  */
2399 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2400 {
2401         unsigned long i;
2402
2403         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2404                 if (sys_reg_descs[i].reset)
2405                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2406 }
2407
2408 /**
2409  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2410  * @vcpu: The VCPU pointer
2411  */
2412 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2413 {
2414         struct sys_reg_params params;
2415         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2416         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2417         int ret;
2418
2419         trace_kvm_handle_sys_reg(esr);
2420
2421         params.is_aarch32 = false;
2422         params.is_32bit = false;
2423         params.Op0 = (esr >> 20) & 3;
2424         params.Op1 = (esr >> 14) & 0x7;
2425         params.CRn = (esr >> 10) & 0xf;
2426         params.CRm = (esr >> 1) & 0xf;
2427         params.Op2 = (esr >> 17) & 0x7;
2428         params.regval = vcpu_get_reg(vcpu, Rt);
2429         params.is_write = !(esr & 1);
2430
2431         ret = emulate_sys_reg(vcpu, &params);
2432
2433         if (!params.is_write)
2434                 vcpu_set_reg(vcpu, Rt, params.regval);
2435         return ret;
2436 }
2437
2438 /******************************************************************************
2439  * Userspace API
2440  *****************************************************************************/
2441
2442 static bool index_to_params(u64 id, struct sys_reg_params *params)
2443 {
2444         switch (id & KVM_REG_SIZE_MASK) {
2445         case KVM_REG_SIZE_U64:
2446                 /* Any unused index bits means it's not valid. */
2447                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2448                               | KVM_REG_ARM_COPROC_MASK
2449                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2450                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2451                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2452                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2453                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2454                         return false;
2455                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2456                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2457                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2458                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2459                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2460                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2461                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2462                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2463                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2464                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2465                 return true;
2466         default:
2467                 return false;
2468         }
2469 }
2470
2471 const struct sys_reg_desc *find_reg_by_id(u64 id,
2472                                           struct sys_reg_params *params,
2473                                           const struct sys_reg_desc table[],
2474                                           unsigned int num)
2475 {
2476         if (!index_to_params(id, params))
2477                 return NULL;
2478
2479         return find_reg(params, table, num);
2480 }
2481
2482 /* Decode an index value, and find the sys_reg_desc entry. */
2483 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2484                                                     u64 id)
2485 {
2486         const struct sys_reg_desc *r;
2487         struct sys_reg_params params;
2488
2489         /* We only do sys_reg for now. */
2490         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2491                 return NULL;
2492
2493         if (!index_to_params(id, &params))
2494                 return NULL;
2495
2496         r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2497
2498         /* Not saved in the sys_reg array and not otherwise accessible? */
2499         if (r && !(r->reg || r->get_user))
2500                 r = NULL;
2501
2502         return r;
2503 }
2504
2505 /*
2506  * These are the invariant sys_reg registers: we let the guest see the
2507  * host versions of these, so they're part of the guest state.
2508  *
2509  * A future CPU may provide a mechanism to present different values to
2510  * the guest, or a future kvm may trap them.
2511  */
2512
2513 #define FUNCTION_INVARIANT(reg)                                         \
2514         static void get_##reg(struct kvm_vcpu *v,                       \
2515                               const struct sys_reg_desc *r)             \
2516         {                                                               \
2517                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2518         }
2519
2520 FUNCTION_INVARIANT(midr_el1)
2521 FUNCTION_INVARIANT(revidr_el1)
2522 FUNCTION_INVARIANT(clidr_el1)
2523 FUNCTION_INVARIANT(aidr_el1)
2524
2525 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2526 {
2527         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2528 }
2529
2530 /* ->val is filled in by kvm_sys_reg_table_init() */
2531 static struct sys_reg_desc invariant_sys_regs[] = {
2532         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2533         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2534         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2535         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2536         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2537 };
2538
2539 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2540 {
2541         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2542                 return -EFAULT;
2543         return 0;
2544 }
2545
2546 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2547 {
2548         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2549                 return -EFAULT;
2550         return 0;
2551 }
2552
2553 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2554 {
2555         struct sys_reg_params params;
2556         const struct sys_reg_desc *r;
2557
2558         r = find_reg_by_id(id, &params, invariant_sys_regs,
2559                            ARRAY_SIZE(invariant_sys_regs));
2560         if (!r)
2561                 return -ENOENT;
2562
2563         return reg_to_user(uaddr, &r->val, id);
2564 }
2565
2566 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2567 {
2568         struct sys_reg_params params;
2569         const struct sys_reg_desc *r;
2570         int err;
2571         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2572
2573         r = find_reg_by_id(id, &params, invariant_sys_regs,
2574                            ARRAY_SIZE(invariant_sys_regs));
2575         if (!r)
2576                 return -ENOENT;
2577
2578         err = reg_from_user(&val, uaddr, id);
2579         if (err)
2580                 return err;
2581
2582         /* This is what we mean by invariant: you can't change it. */
2583         if (r->val != val)
2584                 return -EINVAL;
2585
2586         return 0;
2587 }
2588
2589 static bool is_valid_cache(u32 val)
2590 {
2591         u32 level, ctype;
2592
2593         if (val >= CSSELR_MAX)
2594                 return false;
2595
2596         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2597         level = (val >> 1);
2598         ctype = (cache_levels >> (level * 3)) & 7;
2599
2600         switch (ctype) {
2601         case 0: /* No cache */
2602                 return false;
2603         case 1: /* Instruction cache only */
2604                 return (val & 1);
2605         case 2: /* Data cache only */
2606         case 4: /* Unified cache */
2607                 return !(val & 1);
2608         case 3: /* Separate instruction and data caches */
2609                 return true;
2610         default: /* Reserved: we can't know instruction or data. */
2611                 return false;
2612         }
2613 }
2614
2615 static int demux_c15_get(u64 id, void __user *uaddr)
2616 {
2617         u32 val;
2618         u32 __user *uval = uaddr;
2619
2620         /* Fail if we have unknown bits set. */
2621         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2622                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2623                 return -ENOENT;
2624
2625         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2626         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2627                 if (KVM_REG_SIZE(id) != 4)
2628                         return -ENOENT;
2629                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2630                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2631                 if (!is_valid_cache(val))
2632                         return -ENOENT;
2633
2634                 return put_user(get_ccsidr(val), uval);
2635         default:
2636                 return -ENOENT;
2637         }
2638 }
2639
2640 static int demux_c15_set(u64 id, void __user *uaddr)
2641 {
2642         u32 val, newval;
2643         u32 __user *uval = uaddr;
2644
2645         /* Fail if we have unknown bits set. */
2646         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2647                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2648                 return -ENOENT;
2649
2650         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2651         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2652                 if (KVM_REG_SIZE(id) != 4)
2653                         return -ENOENT;
2654                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2655                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2656                 if (!is_valid_cache(val))
2657                         return -ENOENT;
2658
2659                 if (get_user(newval, uval))
2660                         return -EFAULT;
2661
2662                 /* This is also invariant: you can't change it. */
2663                 if (newval != get_ccsidr(val))
2664                         return -EINVAL;
2665                 return 0;
2666         default:
2667                 return -ENOENT;
2668         }
2669 }
2670
2671 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2672 {
2673         const struct sys_reg_desc *r;
2674         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2675
2676         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2677                 return demux_c15_get(reg->id, uaddr);
2678
2679         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2680                 return -ENOENT;
2681
2682         r = index_to_sys_reg_desc(vcpu, reg->id);
2683         if (!r)
2684                 return get_invariant_sys_reg(reg->id, uaddr);
2685
2686         /* Check for regs disabled by runtime config */
2687         if (sysreg_hidden_from_user(vcpu, r))
2688                 return -ENOENT;
2689
2690         if (r->get_user)
2691                 return (r->get_user)(vcpu, r, reg, uaddr);
2692
2693         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2694 }
2695
2696 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2697 {
2698         const struct sys_reg_desc *r;
2699         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2700
2701         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2702                 return demux_c15_set(reg->id, uaddr);
2703
2704         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2705                 return -ENOENT;
2706
2707         r = index_to_sys_reg_desc(vcpu, reg->id);
2708         if (!r)
2709                 return set_invariant_sys_reg(reg->id, uaddr);
2710
2711         /* Check for regs disabled by runtime config */
2712         if (sysreg_hidden_from_user(vcpu, r))
2713                 return -ENOENT;
2714
2715         if (r->set_user)
2716                 return (r->set_user)(vcpu, r, reg, uaddr);
2717
2718         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2719 }
2720
2721 static unsigned int num_demux_regs(void)
2722 {
2723         unsigned int i, count = 0;
2724
2725         for (i = 0; i < CSSELR_MAX; i++)
2726                 if (is_valid_cache(i))
2727                         count++;
2728
2729         return count;
2730 }
2731
2732 static int write_demux_regids(u64 __user *uindices)
2733 {
2734         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2735         unsigned int i;
2736
2737         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2738         for (i = 0; i < CSSELR_MAX; i++) {
2739                 if (!is_valid_cache(i))
2740                         continue;
2741                 if (put_user(val | i, uindices))
2742                         return -EFAULT;
2743                 uindices++;
2744         }
2745         return 0;
2746 }
2747
2748 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2749 {
2750         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2751                 KVM_REG_ARM64_SYSREG |
2752                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2753                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2754                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2755                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2756                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2757 }
2758
2759 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2760 {
2761         if (!*uind)
2762                 return true;
2763
2764         if (put_user(sys_reg_to_index(reg), *uind))
2765                 return false;
2766
2767         (*uind)++;
2768         return true;
2769 }
2770
2771 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2772                             const struct sys_reg_desc *rd,
2773                             u64 __user **uind,
2774                             unsigned int *total)
2775 {
2776         /*
2777          * Ignore registers we trap but don't save,
2778          * and for which no custom user accessor is provided.
2779          */
2780         if (!(rd->reg || rd->get_user))
2781                 return 0;
2782
2783         if (sysreg_hidden_from_user(vcpu, rd))
2784                 return 0;
2785
2786         if (!copy_reg_to_user(rd, uind))
2787                 return -EFAULT;
2788
2789         (*total)++;
2790         return 0;
2791 }
2792
2793 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2794 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2795 {
2796         const struct sys_reg_desc *i2, *end2;
2797         unsigned int total = 0;
2798         int err;
2799
2800         i2 = sys_reg_descs;
2801         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2802
2803         while (i2 != end2) {
2804                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2805                 if (err)
2806                         return err;
2807         }
2808         return total;
2809 }
2810
2811 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2812 {
2813         return ARRAY_SIZE(invariant_sys_regs)
2814                 + num_demux_regs()
2815                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2816 }
2817
2818 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2819 {
2820         unsigned int i;
2821         int err;
2822
2823         /* Then give them all the invariant registers' indices. */
2824         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2825                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2826                         return -EFAULT;
2827                 uindices++;
2828         }
2829
2830         err = walk_sys_regs(vcpu, uindices);
2831         if (err < 0)
2832                 return err;
2833         uindices += err;
2834
2835         return write_demux_regids(uindices);
2836 }
2837
2838 void kvm_sys_reg_table_init(void)
2839 {
2840         unsigned int i;
2841         struct sys_reg_desc clidr;
2842
2843         /* Make sure tables are unique and in order. */
2844         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2845         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2846         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2847         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2848         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2849         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2850
2851         /* We abuse the reset function to overwrite the table itself. */
2852         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2853                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2854
2855         /*
2856          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2857          *
2858          *   If software reads the Cache Type fields from Ctype1
2859          *   upwards, once it has seen a value of 0b000, no caches
2860          *   exist at further-out levels of the hierarchy. So, for
2861          *   example, if Ctype3 is the first Cache Type field with a
2862          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2863          *   ignored.
2864          */
2865         get_clidr_el1(NULL, &clidr); /* Ugly... */
2866         cache_levels = clidr.val;
2867         for (i = 0; i < 7; i++)
2868                 if (((cache_levels >> (i*3)) & 7) == 0)
2869                         break;
2870         /* Clear all higher bits. */
2871         cache_levels &= (1 << (i*3))-1;
2872 }