Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29
30 #include <trace/events/kvm.h>
31
32 #include "sys_regs.h"
33
34 #include "trace.h"
35
36 /*
37  * All of this file is extremely similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46
47 static bool read_from_write_only(struct kvm_vcpu *vcpu,
48                                  struct sys_reg_params *params,
49                                  const struct sys_reg_desc *r)
50 {
51         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
52         print_sys_reg_instr(params);
53         kvm_inject_undefined(vcpu);
54         return false;
55 }
56
57 static bool write_to_read_only(struct kvm_vcpu *vcpu,
58                                struct sys_reg_params *params,
59                                const struct sys_reg_desc *r)
60 {
61         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
62         print_sys_reg_instr(params);
63         kvm_inject_undefined(vcpu);
64         return false;
65 }
66
67 static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
68 {
69         /*
70          * System registers listed in the switch are not saved on every
71          * exit from the guest but are only saved on vcpu_put.
72          *
73          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
74          * should never be listed below, because the guest cannot modify its
75          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
76          * thread when emulating cross-VCPU communication.
77          */
78         switch (reg) {
79         case CSSELR_EL1:        *val = read_sysreg_s(SYS_CSSELR_EL1);   break;
80         case SCTLR_EL1:         *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
81         case CPACR_EL1:         *val = read_sysreg_s(SYS_CPACR_EL12);   break;
82         case TTBR0_EL1:         *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
83         case TTBR1_EL1:         *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
84         case TCR_EL1:           *val = read_sysreg_s(SYS_TCR_EL12);     break;
85         case ESR_EL1:           *val = read_sysreg_s(SYS_ESR_EL12);     break;
86         case AFSR0_EL1:         *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
87         case AFSR1_EL1:         *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
88         case FAR_EL1:           *val = read_sysreg_s(SYS_FAR_EL12);     break;
89         case MAIR_EL1:          *val = read_sysreg_s(SYS_MAIR_EL12);    break;
90         case VBAR_EL1:          *val = read_sysreg_s(SYS_VBAR_EL12);    break;
91         case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
92         case TPIDR_EL0:         *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
93         case TPIDRRO_EL0:       *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
94         case TPIDR_EL1:         *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
95         case AMAIR_EL1:         *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
96         case CNTKCTL_EL1:       *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
97         case ELR_EL1:           *val = read_sysreg_s(SYS_ELR_EL12);     break;
98         case PAR_EL1:           *val = read_sysreg_par();               break;
99         case DACR32_EL2:        *val = read_sysreg_s(SYS_DACR32_EL2);   break;
100         case IFSR32_EL2:        *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
101         case DBGVCR32_EL2:      *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
102         default:                return false;
103         }
104
105         return true;
106 }
107
108 static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
109 {
110         /*
111          * System registers listed in the switch are not restored on every
112          * entry to the guest but are only restored on vcpu_load.
113          *
114          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
115          * should never be listed below, because the MPIDR should only be set
116          * once, before running the VCPU, and never changed later.
117          */
118         switch (reg) {
119         case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    break;
120         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    break;
121         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    break;
122         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    break;
123         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    break;
124         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      break;
125         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      break;
126         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    break;
127         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    break;
128         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      break;
129         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     break;
130         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     break;
131         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
132         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     break;
133         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
134         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     break;
135         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    break;
136         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
137         case ELR_EL1:           write_sysreg_s(val, SYS_ELR_EL12);      break;
138         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       break;
139         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    break;
140         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    break;
141         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
142         default:                return false;
143         }
144
145         return true;
146 }
147
148 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
149 {
150         u64 val = 0x8badf00d8badf00d;
151
152         if (vcpu->arch.sysregs_loaded_on_cpu &&
153             __vcpu_read_sys_reg_from_cpu(reg, &val))
154                 return val;
155
156         return __vcpu_sys_reg(vcpu, reg);
157 }
158
159 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
160 {
161         if (vcpu->arch.sysregs_loaded_on_cpu &&
162             __vcpu_write_sys_reg_to_cpu(val, reg))
163                 return;
164
165          __vcpu_sys_reg(vcpu, reg) = val;
166 }
167
168 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
169 static u32 cache_levels;
170
171 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
172 #define CSSELR_MAX 12
173
174 /* Which cache CCSIDR represents depends on CSSELR value. */
175 static u32 get_ccsidr(u32 csselr)
176 {
177         u32 ccsidr;
178
179         /* Make sure noone else changes CSSELR during this! */
180         local_irq_disable();
181         write_sysreg(csselr, csselr_el1);
182         isb();
183         ccsidr = read_sysreg(ccsidr_el1);
184         local_irq_enable();
185
186         return ccsidr;
187 }
188
189 /*
190  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
191  */
192 static bool access_dcsw(struct kvm_vcpu *vcpu,
193                         struct sys_reg_params *p,
194                         const struct sys_reg_desc *r)
195 {
196         if (!p->is_write)
197                 return read_from_write_only(vcpu, p, r);
198
199         /*
200          * Only track S/W ops if we don't have FWB. It still indicates
201          * that the guest is a bit broken (S/W operations should only
202          * be done by firmware, knowing that there is only a single
203          * CPU left in the system, and certainly not from non-secure
204          * software).
205          */
206         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
207                 kvm_set_way_flush(vcpu);
208
209         return true;
210 }
211
212 /*
213  * Generic accessor for VM registers. Only called as long as HCR_TVM
214  * is set. If the guest enables the MMU, we stop trapping the VM
215  * sys_regs and leave it in complete control of the caches.
216  */
217 static bool access_vm_reg(struct kvm_vcpu *vcpu,
218                           struct sys_reg_params *p,
219                           const struct sys_reg_desc *r)
220 {
221         bool was_enabled = vcpu_has_cache_enabled(vcpu);
222         u64 val;
223         int reg = r->reg;
224
225         BUG_ON(!p->is_write);
226
227         /* See the 32bit mapping in kvm_host.h */
228         if (p->is_aarch32)
229                 reg = r->reg / 2;
230
231         if (!p->is_aarch32 || !p->is_32bit) {
232                 val = p->regval;
233         } else {
234                 val = vcpu_read_sys_reg(vcpu, reg);
235                 if (r->reg % 2)
236                         val = (p->regval << 32) | (u64)lower_32_bits(val);
237                 else
238                         val = ((u64)upper_32_bits(val) << 32) |
239                                 lower_32_bits(p->regval);
240         }
241         vcpu_write_sys_reg(vcpu, val, reg);
242
243         kvm_toggle_cache(vcpu, was_enabled);
244         return true;
245 }
246
247 static bool access_actlr(struct kvm_vcpu *vcpu,
248                          struct sys_reg_params *p,
249                          const struct sys_reg_desc *r)
250 {
251         if (p->is_write)
252                 return ignore_write(vcpu, p);
253
254         p->regval = vcpu_read_sys_reg(vcpu, ACTLR_EL1);
255
256         if (p->is_aarch32) {
257                 if (r->Op2 & 2)
258                         p->regval = upper_32_bits(p->regval);
259                 else
260                         p->regval = lower_32_bits(p->regval);
261         }
262
263         return true;
264 }
265
266 /*
267  * Trap handler for the GICv3 SGI generation system register.
268  * Forward the request to the VGIC emulation.
269  * The cp15_64 code makes sure this automatically works
270  * for both AArch64 and AArch32 accesses.
271  */
272 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
273                            struct sys_reg_params *p,
274                            const struct sys_reg_desc *r)
275 {
276         bool g1;
277
278         if (!p->is_write)
279                 return read_from_write_only(vcpu, p, r);
280
281         /*
282          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
283          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
284          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
285          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
286          * group.
287          */
288         if (p->is_aarch32) {
289                 switch (p->Op1) {
290                 default:                /* Keep GCC quiet */
291                 case 0:                 /* ICC_SGI1R */
292                         g1 = true;
293                         break;
294                 case 1:                 /* ICC_ASGI1R */
295                 case 2:                 /* ICC_SGI0R */
296                         g1 = false;
297                         break;
298                 }
299         } else {
300                 switch (p->Op2) {
301                 default:                /* Keep GCC quiet */
302                 case 5:                 /* ICC_SGI1R_EL1 */
303                         g1 = true;
304                         break;
305                 case 6:                 /* ICC_ASGI1R_EL1 */
306                 case 7:                 /* ICC_SGI0R_EL1 */
307                         g1 = false;
308                         break;
309                 }
310         }
311
312         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
313
314         return true;
315 }
316
317 static bool access_gic_sre(struct kvm_vcpu *vcpu,
318                            struct sys_reg_params *p,
319                            const struct sys_reg_desc *r)
320 {
321         if (p->is_write)
322                 return ignore_write(vcpu, p);
323
324         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
325         return true;
326 }
327
328 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
329                         struct sys_reg_params *p,
330                         const struct sys_reg_desc *r)
331 {
332         if (p->is_write)
333                 return ignore_write(vcpu, p);
334         else
335                 return read_zero(vcpu, p);
336 }
337
338 /*
339  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
340  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
341  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
342  * treat it separately.
343  */
344 static bool trap_loregion(struct kvm_vcpu *vcpu,
345                           struct sys_reg_params *p,
346                           const struct sys_reg_desc *r)
347 {
348         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
349         u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
350                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
351
352         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
353                 kvm_inject_undefined(vcpu);
354                 return false;
355         }
356
357         if (p->is_write && sr == SYS_LORID_EL1)
358                 return write_to_read_only(vcpu, p, r);
359
360         return trap_raz_wi(vcpu, p, r);
361 }
362
363 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
364                            struct sys_reg_params *p,
365                            const struct sys_reg_desc *r)
366 {
367         if (p->is_write) {
368                 return ignore_write(vcpu, p);
369         } else {
370                 p->regval = (1 << 3);
371                 return true;
372         }
373 }
374
375 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
376                                    struct sys_reg_params *p,
377                                    const struct sys_reg_desc *r)
378 {
379         if (p->is_write) {
380                 return ignore_write(vcpu, p);
381         } else {
382                 p->regval = read_sysreg(dbgauthstatus_el1);
383                 return true;
384         }
385 }
386
387 /*
388  * We want to avoid world-switching all the DBG registers all the
389  * time:
390  * 
391  * - If we've touched any debug register, it is likely that we're
392  *   going to touch more of them. It then makes sense to disable the
393  *   traps and start doing the save/restore dance
394  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
395  *   then mandatory to save/restore the registers, as the guest
396  *   depends on them.
397  * 
398  * For this, we use a DIRTY bit, indicating the guest has modified the
399  * debug registers, used as follow:
400  *
401  * On guest entry:
402  * - If the dirty bit is set (because we're coming back from trapping),
403  *   disable the traps, save host registers, restore guest registers.
404  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
405  *   set the dirty bit, disable the traps, save host registers,
406  *   restore guest registers.
407  * - Otherwise, enable the traps
408  *
409  * On guest exit:
410  * - If the dirty bit is set, save guest registers, restore host
411  *   registers and clear the dirty bit. This ensure that the host can
412  *   now use the debug registers.
413  */
414 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
415                             struct sys_reg_params *p,
416                             const struct sys_reg_desc *r)
417 {
418         if (p->is_write) {
419                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
420                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
421         } else {
422                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
423         }
424
425         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
426
427         return true;
428 }
429
430 /*
431  * reg_to_dbg/dbg_to_reg
432  *
433  * A 32 bit write to a debug register leave top bits alone
434  * A 32 bit read from a debug register only returns the bottom bits
435  *
436  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
437  * hyp.S code switches between host and guest values in future.
438  */
439 static void reg_to_dbg(struct kvm_vcpu *vcpu,
440                        struct sys_reg_params *p,
441                        u64 *dbg_reg)
442 {
443         u64 val = p->regval;
444
445         if (p->is_32bit) {
446                 val &= 0xffffffffUL;
447                 val |= ((*dbg_reg >> 32) << 32);
448         }
449
450         *dbg_reg = val;
451         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
452 }
453
454 static void dbg_to_reg(struct kvm_vcpu *vcpu,
455                        struct sys_reg_params *p,
456                        u64 *dbg_reg)
457 {
458         p->regval = *dbg_reg;
459         if (p->is_32bit)
460                 p->regval &= 0xffffffffUL;
461 }
462
463 static bool trap_bvr(struct kvm_vcpu *vcpu,
464                      struct sys_reg_params *p,
465                      const struct sys_reg_desc *rd)
466 {
467         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
468
469         if (p->is_write)
470                 reg_to_dbg(vcpu, p, dbg_reg);
471         else
472                 dbg_to_reg(vcpu, p, dbg_reg);
473
474         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
475
476         return true;
477 }
478
479 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
480                 const struct kvm_one_reg *reg, void __user *uaddr)
481 {
482         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
483
484         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
485                 return -EFAULT;
486         return 0;
487 }
488
489 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
490         const struct kvm_one_reg *reg, void __user *uaddr)
491 {
492         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
493
494         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
495                 return -EFAULT;
496         return 0;
497 }
498
499 static void reset_bvr(struct kvm_vcpu *vcpu,
500                       const struct sys_reg_desc *rd)
501 {
502         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
503 }
504
505 static bool trap_bcr(struct kvm_vcpu *vcpu,
506                      struct sys_reg_params *p,
507                      const struct sys_reg_desc *rd)
508 {
509         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
510
511         if (p->is_write)
512                 reg_to_dbg(vcpu, p, dbg_reg);
513         else
514                 dbg_to_reg(vcpu, p, dbg_reg);
515
516         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
517
518         return true;
519 }
520
521 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
522                 const struct kvm_one_reg *reg, void __user *uaddr)
523 {
524         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
525
526         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
527                 return -EFAULT;
528
529         return 0;
530 }
531
532 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
533         const struct kvm_one_reg *reg, void __user *uaddr)
534 {
535         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
536
537         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
538                 return -EFAULT;
539         return 0;
540 }
541
542 static void reset_bcr(struct kvm_vcpu *vcpu,
543                       const struct sys_reg_desc *rd)
544 {
545         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
546 }
547
548 static bool trap_wvr(struct kvm_vcpu *vcpu,
549                      struct sys_reg_params *p,
550                      const struct sys_reg_desc *rd)
551 {
552         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
553
554         if (p->is_write)
555                 reg_to_dbg(vcpu, p, dbg_reg);
556         else
557                 dbg_to_reg(vcpu, p, dbg_reg);
558
559         trace_trap_reg(__func__, rd->reg, p->is_write,
560                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
561
562         return true;
563 }
564
565 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
566                 const struct kvm_one_reg *reg, void __user *uaddr)
567 {
568         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
569
570         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
571                 return -EFAULT;
572         return 0;
573 }
574
575 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
576         const struct kvm_one_reg *reg, void __user *uaddr)
577 {
578         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
579
580         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
581                 return -EFAULT;
582         return 0;
583 }
584
585 static void reset_wvr(struct kvm_vcpu *vcpu,
586                       const struct sys_reg_desc *rd)
587 {
588         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
589 }
590
591 static bool trap_wcr(struct kvm_vcpu *vcpu,
592                      struct sys_reg_params *p,
593                      const struct sys_reg_desc *rd)
594 {
595         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
596
597         if (p->is_write)
598                 reg_to_dbg(vcpu, p, dbg_reg);
599         else
600                 dbg_to_reg(vcpu, p, dbg_reg);
601
602         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
603
604         return true;
605 }
606
607 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
608                 const struct kvm_one_reg *reg, void __user *uaddr)
609 {
610         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
611
612         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
613                 return -EFAULT;
614         return 0;
615 }
616
617 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
618         const struct kvm_one_reg *reg, void __user *uaddr)
619 {
620         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
621
622         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
623                 return -EFAULT;
624         return 0;
625 }
626
627 static void reset_wcr(struct kvm_vcpu *vcpu,
628                       const struct sys_reg_desc *rd)
629 {
630         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
631 }
632
633 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
634 {
635         u64 amair = read_sysreg(amair_el1);
636         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
637 }
638
639 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
640 {
641         u64 actlr = read_sysreg(actlr_el1);
642         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
643 }
644
645 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
646 {
647         u64 mpidr;
648
649         /*
650          * Map the vcpu_id into the first three affinity level fields of
651          * the MPIDR. We limit the number of VCPUs in level 0 due to a
652          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
653          * of the GICv3 to be able to address each CPU directly when
654          * sending IPIs.
655          */
656         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
657         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
658         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
659         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
660 }
661
662 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
663 {
664         u64 pmcr, val;
665
666         pmcr = read_sysreg(pmcr_el0);
667         /*
668          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
669          * except PMCR.E resetting to zero.
670          */
671         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
672                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
673         if (!system_supports_32bit_el0())
674                 val |= ARMV8_PMU_PMCR_LC;
675         __vcpu_sys_reg(vcpu, r->reg) = val;
676 }
677
678 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
679 {
680         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
681         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
682
683         if (!enabled)
684                 kvm_inject_undefined(vcpu);
685
686         return !enabled;
687 }
688
689 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
690 {
691         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
692 }
693
694 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
695 {
696         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
697 }
698
699 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
700 {
701         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
702 }
703
704 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
705 {
706         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
707 }
708
709 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
710                         const struct sys_reg_desc *r)
711 {
712         u64 val;
713
714         if (!kvm_arm_pmu_v3_ready(vcpu))
715                 return trap_raz_wi(vcpu, p, r);
716
717         if (pmu_access_el0_disabled(vcpu))
718                 return false;
719
720         if (p->is_write) {
721                 /* Only update writeable bits of PMCR */
722                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
723                 val &= ~ARMV8_PMU_PMCR_MASK;
724                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
725                 if (!system_supports_32bit_el0())
726                         val |= ARMV8_PMU_PMCR_LC;
727                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
728                 kvm_pmu_handle_pmcr(vcpu, val);
729                 kvm_vcpu_pmu_restore_guest(vcpu);
730         } else {
731                 /* PMCR.P & PMCR.C are RAZ */
732                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
733                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
734                 p->regval = val;
735         }
736
737         return true;
738 }
739
740 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
741                           const struct sys_reg_desc *r)
742 {
743         if (!kvm_arm_pmu_v3_ready(vcpu))
744                 return trap_raz_wi(vcpu, p, r);
745
746         if (pmu_access_event_counter_el0_disabled(vcpu))
747                 return false;
748
749         if (p->is_write)
750                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
751         else
752                 /* return PMSELR.SEL field */
753                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
754                             & ARMV8_PMU_COUNTER_MASK;
755
756         return true;
757 }
758
759 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
760                           const struct sys_reg_desc *r)
761 {
762         u64 pmceid;
763
764         if (!kvm_arm_pmu_v3_ready(vcpu))
765                 return trap_raz_wi(vcpu, p, r);
766
767         BUG_ON(p->is_write);
768
769         if (pmu_access_el0_disabled(vcpu))
770                 return false;
771
772         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
773
774         p->regval = pmceid;
775
776         return true;
777 }
778
779 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
780 {
781         u64 pmcr, val;
782
783         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
784         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
785         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
786                 kvm_inject_undefined(vcpu);
787                 return false;
788         }
789
790         return true;
791 }
792
793 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
794                               struct sys_reg_params *p,
795                               const struct sys_reg_desc *r)
796 {
797         u64 idx;
798
799         if (!kvm_arm_pmu_v3_ready(vcpu))
800                 return trap_raz_wi(vcpu, p, r);
801
802         if (r->CRn == 9 && r->CRm == 13) {
803                 if (r->Op2 == 2) {
804                         /* PMXEVCNTR_EL0 */
805                         if (pmu_access_event_counter_el0_disabled(vcpu))
806                                 return false;
807
808                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
809                               & ARMV8_PMU_COUNTER_MASK;
810                 } else if (r->Op2 == 0) {
811                         /* PMCCNTR_EL0 */
812                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
813                                 return false;
814
815                         idx = ARMV8_PMU_CYCLE_IDX;
816                 } else {
817                         return false;
818                 }
819         } else if (r->CRn == 0 && r->CRm == 9) {
820                 /* PMCCNTR */
821                 if (pmu_access_event_counter_el0_disabled(vcpu))
822                         return false;
823
824                 idx = ARMV8_PMU_CYCLE_IDX;
825         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
826                 /* PMEVCNTRn_EL0 */
827                 if (pmu_access_event_counter_el0_disabled(vcpu))
828                         return false;
829
830                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
831         } else {
832                 return false;
833         }
834
835         if (!pmu_counter_idx_valid(vcpu, idx))
836                 return false;
837
838         if (p->is_write) {
839                 if (pmu_access_el0_disabled(vcpu))
840                         return false;
841
842                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
843         } else {
844                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
845         }
846
847         return true;
848 }
849
850 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
851                                const struct sys_reg_desc *r)
852 {
853         u64 idx, reg;
854
855         if (!kvm_arm_pmu_v3_ready(vcpu))
856                 return trap_raz_wi(vcpu, p, r);
857
858         if (pmu_access_el0_disabled(vcpu))
859                 return false;
860
861         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
862                 /* PMXEVTYPER_EL0 */
863                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
864                 reg = PMEVTYPER0_EL0 + idx;
865         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
866                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
867                 if (idx == ARMV8_PMU_CYCLE_IDX)
868                         reg = PMCCFILTR_EL0;
869                 else
870                         /* PMEVTYPERn_EL0 */
871                         reg = PMEVTYPER0_EL0 + idx;
872         } else {
873                 BUG();
874         }
875
876         if (!pmu_counter_idx_valid(vcpu, idx))
877                 return false;
878
879         if (p->is_write) {
880                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
881                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
882                 kvm_vcpu_pmu_restore_guest(vcpu);
883         } else {
884                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
885         }
886
887         return true;
888 }
889
890 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
891                            const struct sys_reg_desc *r)
892 {
893         u64 val, mask;
894
895         if (!kvm_arm_pmu_v3_ready(vcpu))
896                 return trap_raz_wi(vcpu, p, r);
897
898         if (pmu_access_el0_disabled(vcpu))
899                 return false;
900
901         mask = kvm_pmu_valid_counter_mask(vcpu);
902         if (p->is_write) {
903                 val = p->regval & mask;
904                 if (r->Op2 & 0x1) {
905                         /* accessing PMCNTENSET_EL0 */
906                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
907                         kvm_pmu_enable_counter_mask(vcpu, val);
908                         kvm_vcpu_pmu_restore_guest(vcpu);
909                 } else {
910                         /* accessing PMCNTENCLR_EL0 */
911                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
912                         kvm_pmu_disable_counter_mask(vcpu, val);
913                 }
914         } else {
915                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
916         }
917
918         return true;
919 }
920
921 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
922                            const struct sys_reg_desc *r)
923 {
924         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
925
926         if (!kvm_arm_pmu_v3_ready(vcpu))
927                 return trap_raz_wi(vcpu, p, r);
928
929         if (!vcpu_mode_priv(vcpu)) {
930                 kvm_inject_undefined(vcpu);
931                 return false;
932         }
933
934         if (p->is_write) {
935                 u64 val = p->regval & mask;
936
937                 if (r->Op2 & 0x1)
938                         /* accessing PMINTENSET_EL1 */
939                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
940                 else
941                         /* accessing PMINTENCLR_EL1 */
942                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
943         } else {
944                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
945         }
946
947         return true;
948 }
949
950 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
951                          const struct sys_reg_desc *r)
952 {
953         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
954
955         if (!kvm_arm_pmu_v3_ready(vcpu))
956                 return trap_raz_wi(vcpu, p, r);
957
958         if (pmu_access_el0_disabled(vcpu))
959                 return false;
960
961         if (p->is_write) {
962                 if (r->CRm & 0x2)
963                         /* accessing PMOVSSET_EL0 */
964                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
965                 else
966                         /* accessing PMOVSCLR_EL0 */
967                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
968         } else {
969                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
970         }
971
972         return true;
973 }
974
975 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
976                            const struct sys_reg_desc *r)
977 {
978         u64 mask;
979
980         if (!kvm_arm_pmu_v3_ready(vcpu))
981                 return trap_raz_wi(vcpu, p, r);
982
983         if (!p->is_write)
984                 return read_from_write_only(vcpu, p, r);
985
986         if (pmu_write_swinc_el0_disabled(vcpu))
987                 return false;
988
989         mask = kvm_pmu_valid_counter_mask(vcpu);
990         kvm_pmu_software_increment(vcpu, p->regval & mask);
991         return true;
992 }
993
994 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
995                              const struct sys_reg_desc *r)
996 {
997         if (!kvm_arm_pmu_v3_ready(vcpu))
998                 return trap_raz_wi(vcpu, p, r);
999
1000         if (p->is_write) {
1001                 if (!vcpu_mode_priv(vcpu)) {
1002                         kvm_inject_undefined(vcpu);
1003                         return false;
1004                 }
1005
1006                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1007                                p->regval & ARMV8_PMU_USERENR_MASK;
1008         } else {
1009                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1010                             & ARMV8_PMU_USERENR_MASK;
1011         }
1012
1013         return true;
1014 }
1015
1016 #define reg_to_encoding(x)                                              \
1017         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
1018                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
1019
1020 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1021 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
1022         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
1023           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
1024         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
1025           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
1026         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
1027           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
1028         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
1029           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1030
1031 /* Macro to expand the PMEVCNTRn_EL0 register */
1032 #define PMU_PMEVCNTR_EL0(n)                                             \
1033         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
1034           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1035
1036 /* Macro to expand the PMEVTYPERn_EL0 register */
1037 #define PMU_PMEVTYPER_EL0(n)                                            \
1038         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
1039           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1040
1041 static bool access_amu(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1042                              const struct sys_reg_desc *r)
1043 {
1044         kvm_inject_undefined(vcpu);
1045
1046         return false;
1047 }
1048
1049 /* Macro to expand the AMU counter and type registers*/
1050 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), access_amu }
1051 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), access_amu }
1052 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), access_amu }
1053 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), access_amu }
1054
1055 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1056                          struct sys_reg_params *p,
1057                          const struct sys_reg_desc *rd)
1058 {
1059         /*
1060          * If we land here, that is because we didn't fixup the access on exit
1061          * by allowing the PtrAuth sysregs. The only way this happens is when
1062          * the guest does not have PtrAuth support enabled.
1063          */
1064         kvm_inject_undefined(vcpu);
1065
1066         return false;
1067 }
1068
1069 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1070                         const struct sys_reg_desc *rd)
1071 {
1072         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1073 }
1074
1075 #define __PTRAUTH_KEY(k)                                                \
1076         { SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k,           \
1077         .visibility = ptrauth_visibility}
1078
1079 #define PTRAUTH_KEY(k)                                                  \
1080         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1081         __PTRAUTH_KEY(k ## KEYHI_EL1)
1082
1083 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1084                               struct sys_reg_params *p,
1085                               const struct sys_reg_desc *r)
1086 {
1087         enum kvm_arch_timers tmr;
1088         enum kvm_arch_timer_regs treg;
1089         u64 reg = reg_to_encoding(r);
1090
1091         switch (reg) {
1092         case SYS_CNTP_TVAL_EL0:
1093         case SYS_AARCH32_CNTP_TVAL:
1094                 tmr = TIMER_PTIMER;
1095                 treg = TIMER_REG_TVAL;
1096                 break;
1097         case SYS_CNTP_CTL_EL0:
1098         case SYS_AARCH32_CNTP_CTL:
1099                 tmr = TIMER_PTIMER;
1100                 treg = TIMER_REG_CTL;
1101                 break;
1102         case SYS_CNTP_CVAL_EL0:
1103         case SYS_AARCH32_CNTP_CVAL:
1104                 tmr = TIMER_PTIMER;
1105                 treg = TIMER_REG_CVAL;
1106                 break;
1107         default:
1108                 BUG();
1109         }
1110
1111         if (p->is_write)
1112                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1113         else
1114                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1115
1116         return true;
1117 }
1118
1119 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1120 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1121                 struct sys_reg_desc const *r, bool raz)
1122 {
1123         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1124                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1125         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1126
1127         if (id == SYS_ID_AA64PFR0_EL1) {
1128                 if (!vcpu_has_sve(vcpu))
1129                         val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1130                 val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1131                 if (!(val & (0xfUL << ID_AA64PFR0_CSV2_SHIFT)) &&
1132                     arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
1133                         val |= (1UL << ID_AA64PFR0_CSV2_SHIFT);
1134         } else if (id == SYS_ID_AA64PFR1_EL1) {
1135                 val &= ~(0xfUL << ID_AA64PFR1_MTE_SHIFT);
1136         } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1137                 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1138                          (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1139                          (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1140                          (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1141         } else if (id == SYS_ID_AA64DFR0_EL1) {
1142                 /* Limit guests to PMUv3 for ARMv8.1 */
1143                 val = cpuid_feature_cap_perfmon_field(val,
1144                                                 ID_AA64DFR0_PMUVER_SHIFT,
1145                                                 ID_AA64DFR0_PMUVER_8_1);
1146         } else if (id == SYS_ID_DFR0_EL1) {
1147                 /* Limit guests to PMUv3 for ARMv8.1 */
1148                 val = cpuid_feature_cap_perfmon_field(val,
1149                                                 ID_DFR0_PERFMON_SHIFT,
1150                                                 ID_DFR0_PERFMON_8_1);
1151         }
1152
1153         return val;
1154 }
1155
1156 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1157                                   const struct sys_reg_desc *r)
1158 {
1159         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1160                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1161
1162         switch (id) {
1163         case SYS_ID_AA64ZFR0_EL1:
1164                 if (!vcpu_has_sve(vcpu))
1165                         return REG_RAZ;
1166                 break;
1167         }
1168
1169         return 0;
1170 }
1171
1172 /* cpufeature ID register access trap handlers */
1173
1174 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1175                             struct sys_reg_params *p,
1176                             const struct sys_reg_desc *r,
1177                             bool raz)
1178 {
1179         if (p->is_write)
1180                 return write_to_read_only(vcpu, p, r);
1181
1182         p->regval = read_id_reg(vcpu, r, raz);
1183         return true;
1184 }
1185
1186 static bool access_id_reg(struct kvm_vcpu *vcpu,
1187                           struct sys_reg_params *p,
1188                           const struct sys_reg_desc *r)
1189 {
1190         bool raz = sysreg_visible_as_raz(vcpu, r);
1191
1192         return __access_id_reg(vcpu, p, r, raz);
1193 }
1194
1195 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1196                               struct sys_reg_params *p,
1197                               const struct sys_reg_desc *r)
1198 {
1199         return __access_id_reg(vcpu, p, r, true);
1200 }
1201
1202 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1203 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1204 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1205
1206 /* Visibility overrides for SVE-specific control registers */
1207 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1208                                    const struct sys_reg_desc *rd)
1209 {
1210         if (vcpu_has_sve(vcpu))
1211                 return 0;
1212
1213         return REG_HIDDEN;
1214 }
1215
1216 /*
1217  * cpufeature ID register user accessors
1218  *
1219  * For now, these registers are immutable for userspace, so no values
1220  * are stored, and for set_id_reg() we don't allow the effective value
1221  * to be changed.
1222  */
1223 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1224                         const struct sys_reg_desc *rd, void __user *uaddr,
1225                         bool raz)
1226 {
1227         const u64 id = sys_reg_to_index(rd);
1228         const u64 val = read_id_reg(vcpu, rd, raz);
1229
1230         return reg_to_user(uaddr, &val, id);
1231 }
1232
1233 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1234                         const struct sys_reg_desc *rd, void __user *uaddr,
1235                         bool raz)
1236 {
1237         const u64 id = sys_reg_to_index(rd);
1238         int err;
1239         u64 val;
1240
1241         err = reg_from_user(&val, uaddr, id);
1242         if (err)
1243                 return err;
1244
1245         /* This is what we mean by invariant: you can't change it. */
1246         if (val != read_id_reg(vcpu, rd, raz))
1247                 return -EINVAL;
1248
1249         return 0;
1250 }
1251
1252 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1253                       const struct kvm_one_reg *reg, void __user *uaddr)
1254 {
1255         bool raz = sysreg_visible_as_raz(vcpu, rd);
1256
1257         return __get_id_reg(vcpu, rd, uaddr, raz);
1258 }
1259
1260 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1261                       const struct kvm_one_reg *reg, void __user *uaddr)
1262 {
1263         bool raz = sysreg_visible_as_raz(vcpu, rd);
1264
1265         return __set_id_reg(vcpu, rd, uaddr, raz);
1266 }
1267
1268 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1269                           const struct kvm_one_reg *reg, void __user *uaddr)
1270 {
1271         return __get_id_reg(vcpu, rd, uaddr, true);
1272 }
1273
1274 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1275                           const struct kvm_one_reg *reg, void __user *uaddr)
1276 {
1277         return __set_id_reg(vcpu, rd, uaddr, true);
1278 }
1279
1280 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1281                        const struct sys_reg_desc *r)
1282 {
1283         if (p->is_write)
1284                 return write_to_read_only(vcpu, p, r);
1285
1286         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1287         return true;
1288 }
1289
1290 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1291                          const struct sys_reg_desc *r)
1292 {
1293         if (p->is_write)
1294                 return write_to_read_only(vcpu, p, r);
1295
1296         p->regval = read_sysreg(clidr_el1);
1297         return true;
1298 }
1299
1300 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1301                           const struct sys_reg_desc *r)
1302 {
1303         int reg = r->reg;
1304
1305         /* See the 32bit mapping in kvm_host.h */
1306         if (p->is_aarch32)
1307                 reg = r->reg / 2;
1308
1309         if (p->is_write)
1310                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1311         else
1312                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1313         return true;
1314 }
1315
1316 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1317                           const struct sys_reg_desc *r)
1318 {
1319         u32 csselr;
1320
1321         if (p->is_write)
1322                 return write_to_read_only(vcpu, p, r);
1323
1324         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1325         p->regval = get_ccsidr(csselr);
1326
1327         /*
1328          * Guests should not be doing cache operations by set/way at all, and
1329          * for this reason, we trap them and attempt to infer the intent, so
1330          * that we can flush the entire guest's address space at the appropriate
1331          * time.
1332          * To prevent this trapping from causing performance problems, let's
1333          * expose the geometry of all data and unified caches (which are
1334          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1335          * [If guests should attempt to infer aliasing properties from the
1336          * geometry (which is not permitted by the architecture), they would
1337          * only do so for virtually indexed caches.]
1338          */
1339         if (!(csselr & 1)) // data or unified cache
1340                 p->regval &= ~GENMASK(27, 3);
1341         return true;
1342 }
1343
1344 static bool access_mte_regs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1345                             const struct sys_reg_desc *r)
1346 {
1347         kvm_inject_undefined(vcpu);
1348         return false;
1349 }
1350
1351 /* sys_reg_desc initialiser for known cpufeature ID registers */
1352 #define ID_SANITISED(name) {                    \
1353         SYS_DESC(SYS_##name),                   \
1354         .access = access_id_reg,                \
1355         .get_user = get_id_reg,                 \
1356         .set_user = set_id_reg,                 \
1357         .visibility = id_visibility,            \
1358 }
1359
1360 /*
1361  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1362  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1363  * (1 <= crm < 8, 0 <= Op2 < 8).
1364  */
1365 #define ID_UNALLOCATED(crm, op2) {                      \
1366         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1367         .access = access_raz_id_reg,                    \
1368         .get_user = get_raz_id_reg,                     \
1369         .set_user = set_raz_id_reg,                     \
1370 }
1371
1372 /*
1373  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1374  * For now, these are exposed just like unallocated ID regs: they appear
1375  * RAZ for the guest.
1376  */
1377 #define ID_HIDDEN(name) {                       \
1378         SYS_DESC(SYS_##name),                   \
1379         .access = access_raz_id_reg,            \
1380         .get_user = get_raz_id_reg,             \
1381         .set_user = set_raz_id_reg,             \
1382 }
1383
1384 /*
1385  * Architected system registers.
1386  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1387  *
1388  * Debug handling: We do trap most, if not all debug related system
1389  * registers. The implementation is good enough to ensure that a guest
1390  * can use these with minimal performance degradation. The drawback is
1391  * that we don't implement any of the external debug, none of the
1392  * OSlock protocol. This should be revisited if we ever encounter a
1393  * more demanding guest...
1394  */
1395 static const struct sys_reg_desc sys_reg_descs[] = {
1396         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1397         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1398         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1399
1400         DBG_BCR_BVR_WCR_WVR_EL1(0),
1401         DBG_BCR_BVR_WCR_WVR_EL1(1),
1402         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1403         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1404         DBG_BCR_BVR_WCR_WVR_EL1(2),
1405         DBG_BCR_BVR_WCR_WVR_EL1(3),
1406         DBG_BCR_BVR_WCR_WVR_EL1(4),
1407         DBG_BCR_BVR_WCR_WVR_EL1(5),
1408         DBG_BCR_BVR_WCR_WVR_EL1(6),
1409         DBG_BCR_BVR_WCR_WVR_EL1(7),
1410         DBG_BCR_BVR_WCR_WVR_EL1(8),
1411         DBG_BCR_BVR_WCR_WVR_EL1(9),
1412         DBG_BCR_BVR_WCR_WVR_EL1(10),
1413         DBG_BCR_BVR_WCR_WVR_EL1(11),
1414         DBG_BCR_BVR_WCR_WVR_EL1(12),
1415         DBG_BCR_BVR_WCR_WVR_EL1(13),
1416         DBG_BCR_BVR_WCR_WVR_EL1(14),
1417         DBG_BCR_BVR_WCR_WVR_EL1(15),
1418
1419         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1420         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1421         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1422         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1423         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1424         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1425         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1426         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1427
1428         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1429         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1430         // DBGDTR[TR]X_EL0 share the same encoding
1431         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1432
1433         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1434
1435         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1436
1437         /*
1438          * ID regs: all ID_SANITISED() entries here must have corresponding
1439          * entries in arm64_ftr_regs[].
1440          */
1441
1442         /* AArch64 mappings of the AArch32 ID registers */
1443         /* CRm=1 */
1444         ID_SANITISED(ID_PFR0_EL1),
1445         ID_SANITISED(ID_PFR1_EL1),
1446         ID_SANITISED(ID_DFR0_EL1),
1447         ID_HIDDEN(ID_AFR0_EL1),
1448         ID_SANITISED(ID_MMFR0_EL1),
1449         ID_SANITISED(ID_MMFR1_EL1),
1450         ID_SANITISED(ID_MMFR2_EL1),
1451         ID_SANITISED(ID_MMFR3_EL1),
1452
1453         /* CRm=2 */
1454         ID_SANITISED(ID_ISAR0_EL1),
1455         ID_SANITISED(ID_ISAR1_EL1),
1456         ID_SANITISED(ID_ISAR2_EL1),
1457         ID_SANITISED(ID_ISAR3_EL1),
1458         ID_SANITISED(ID_ISAR4_EL1),
1459         ID_SANITISED(ID_ISAR5_EL1),
1460         ID_SANITISED(ID_MMFR4_EL1),
1461         ID_SANITISED(ID_ISAR6_EL1),
1462
1463         /* CRm=3 */
1464         ID_SANITISED(MVFR0_EL1),
1465         ID_SANITISED(MVFR1_EL1),
1466         ID_SANITISED(MVFR2_EL1),
1467         ID_UNALLOCATED(3,3),
1468         ID_SANITISED(ID_PFR2_EL1),
1469         ID_HIDDEN(ID_DFR1_EL1),
1470         ID_SANITISED(ID_MMFR5_EL1),
1471         ID_UNALLOCATED(3,7),
1472
1473         /* AArch64 ID registers */
1474         /* CRm=4 */
1475         ID_SANITISED(ID_AA64PFR0_EL1),
1476         ID_SANITISED(ID_AA64PFR1_EL1),
1477         ID_UNALLOCATED(4,2),
1478         ID_UNALLOCATED(4,3),
1479         ID_SANITISED(ID_AA64ZFR0_EL1),
1480         ID_UNALLOCATED(4,5),
1481         ID_UNALLOCATED(4,6),
1482         ID_UNALLOCATED(4,7),
1483
1484         /* CRm=5 */
1485         ID_SANITISED(ID_AA64DFR0_EL1),
1486         ID_SANITISED(ID_AA64DFR1_EL1),
1487         ID_UNALLOCATED(5,2),
1488         ID_UNALLOCATED(5,3),
1489         ID_HIDDEN(ID_AA64AFR0_EL1),
1490         ID_HIDDEN(ID_AA64AFR1_EL1),
1491         ID_UNALLOCATED(5,6),
1492         ID_UNALLOCATED(5,7),
1493
1494         /* CRm=6 */
1495         ID_SANITISED(ID_AA64ISAR0_EL1),
1496         ID_SANITISED(ID_AA64ISAR1_EL1),
1497         ID_UNALLOCATED(6,2),
1498         ID_UNALLOCATED(6,3),
1499         ID_UNALLOCATED(6,4),
1500         ID_UNALLOCATED(6,5),
1501         ID_UNALLOCATED(6,6),
1502         ID_UNALLOCATED(6,7),
1503
1504         /* CRm=7 */
1505         ID_SANITISED(ID_AA64MMFR0_EL1),
1506         ID_SANITISED(ID_AA64MMFR1_EL1),
1507         ID_SANITISED(ID_AA64MMFR2_EL1),
1508         ID_UNALLOCATED(7,3),
1509         ID_UNALLOCATED(7,4),
1510         ID_UNALLOCATED(7,5),
1511         ID_UNALLOCATED(7,6),
1512         ID_UNALLOCATED(7,7),
1513
1514         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1515         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1516         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1517
1518         { SYS_DESC(SYS_RGSR_EL1), access_mte_regs },
1519         { SYS_DESC(SYS_GCR_EL1), access_mte_regs },
1520
1521         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1522         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1523         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1524         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1525
1526         PTRAUTH_KEY(APIA),
1527         PTRAUTH_KEY(APIB),
1528         PTRAUTH_KEY(APDA),
1529         PTRAUTH_KEY(APDB),
1530         PTRAUTH_KEY(APGA),
1531
1532         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1533         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1534         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1535
1536         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1537         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1538         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1539         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1540         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1541         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1542         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1543         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1544
1545         { SYS_DESC(SYS_TFSR_EL1), access_mte_regs },
1546         { SYS_DESC(SYS_TFSRE0_EL1), access_mte_regs },
1547
1548         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1549         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1550
1551         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1552         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1553
1554         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1555         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1556
1557         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1558         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1559         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1560         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1561         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1562
1563         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1564         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1565
1566         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1567         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1568         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1569         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1570         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1571         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1572         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1573         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1574         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1575         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1576         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1577         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1578
1579         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1580         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1581
1582         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1583
1584         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1585         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1586         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1587         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1588
1589         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1590         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1591         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1592         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1593         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1594         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1595         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1596         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1597         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1598         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1599         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1600         /*
1601          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1602          * in 32bit mode. Here we choose to reset it as zero for consistency.
1603          */
1604         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1605         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1606
1607         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1608         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1609
1610         { SYS_DESC(SYS_AMCR_EL0), access_amu },
1611         { SYS_DESC(SYS_AMCFGR_EL0), access_amu },
1612         { SYS_DESC(SYS_AMCGCR_EL0), access_amu },
1613         { SYS_DESC(SYS_AMUSERENR_EL0), access_amu },
1614         { SYS_DESC(SYS_AMCNTENCLR0_EL0), access_amu },
1615         { SYS_DESC(SYS_AMCNTENSET0_EL0), access_amu },
1616         { SYS_DESC(SYS_AMCNTENCLR1_EL0), access_amu },
1617         { SYS_DESC(SYS_AMCNTENSET1_EL0), access_amu },
1618         AMU_AMEVCNTR0_EL0(0),
1619         AMU_AMEVCNTR0_EL0(1),
1620         AMU_AMEVCNTR0_EL0(2),
1621         AMU_AMEVCNTR0_EL0(3),
1622         AMU_AMEVCNTR0_EL0(4),
1623         AMU_AMEVCNTR0_EL0(5),
1624         AMU_AMEVCNTR0_EL0(6),
1625         AMU_AMEVCNTR0_EL0(7),
1626         AMU_AMEVCNTR0_EL0(8),
1627         AMU_AMEVCNTR0_EL0(9),
1628         AMU_AMEVCNTR0_EL0(10),
1629         AMU_AMEVCNTR0_EL0(11),
1630         AMU_AMEVCNTR0_EL0(12),
1631         AMU_AMEVCNTR0_EL0(13),
1632         AMU_AMEVCNTR0_EL0(14),
1633         AMU_AMEVCNTR0_EL0(15),
1634         AMU_AMEVTYPER0_EL0(0),
1635         AMU_AMEVTYPER0_EL0(1),
1636         AMU_AMEVTYPER0_EL0(2),
1637         AMU_AMEVTYPER0_EL0(3),
1638         AMU_AMEVTYPER0_EL0(4),
1639         AMU_AMEVTYPER0_EL0(5),
1640         AMU_AMEVTYPER0_EL0(6),
1641         AMU_AMEVTYPER0_EL0(7),
1642         AMU_AMEVTYPER0_EL0(8),
1643         AMU_AMEVTYPER0_EL0(9),
1644         AMU_AMEVTYPER0_EL0(10),
1645         AMU_AMEVTYPER0_EL0(11),
1646         AMU_AMEVTYPER0_EL0(12),
1647         AMU_AMEVTYPER0_EL0(13),
1648         AMU_AMEVTYPER0_EL0(14),
1649         AMU_AMEVTYPER0_EL0(15),
1650         AMU_AMEVCNTR1_EL0(0),
1651         AMU_AMEVCNTR1_EL0(1),
1652         AMU_AMEVCNTR1_EL0(2),
1653         AMU_AMEVCNTR1_EL0(3),
1654         AMU_AMEVCNTR1_EL0(4),
1655         AMU_AMEVCNTR1_EL0(5),
1656         AMU_AMEVCNTR1_EL0(6),
1657         AMU_AMEVCNTR1_EL0(7),
1658         AMU_AMEVCNTR1_EL0(8),
1659         AMU_AMEVCNTR1_EL0(9),
1660         AMU_AMEVCNTR1_EL0(10),
1661         AMU_AMEVCNTR1_EL0(11),
1662         AMU_AMEVCNTR1_EL0(12),
1663         AMU_AMEVCNTR1_EL0(13),
1664         AMU_AMEVCNTR1_EL0(14),
1665         AMU_AMEVCNTR1_EL0(15),
1666         AMU_AMEVTYPER1_EL0(0),
1667         AMU_AMEVTYPER1_EL0(1),
1668         AMU_AMEVTYPER1_EL0(2),
1669         AMU_AMEVTYPER1_EL0(3),
1670         AMU_AMEVTYPER1_EL0(4),
1671         AMU_AMEVTYPER1_EL0(5),
1672         AMU_AMEVTYPER1_EL0(6),
1673         AMU_AMEVTYPER1_EL0(7),
1674         AMU_AMEVTYPER1_EL0(8),
1675         AMU_AMEVTYPER1_EL0(9),
1676         AMU_AMEVTYPER1_EL0(10),
1677         AMU_AMEVTYPER1_EL0(11),
1678         AMU_AMEVTYPER1_EL0(12),
1679         AMU_AMEVTYPER1_EL0(13),
1680         AMU_AMEVTYPER1_EL0(14),
1681         AMU_AMEVTYPER1_EL0(15),
1682
1683         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1684         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1685         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1686
1687         /* PMEVCNTRn_EL0 */
1688         PMU_PMEVCNTR_EL0(0),
1689         PMU_PMEVCNTR_EL0(1),
1690         PMU_PMEVCNTR_EL0(2),
1691         PMU_PMEVCNTR_EL0(3),
1692         PMU_PMEVCNTR_EL0(4),
1693         PMU_PMEVCNTR_EL0(5),
1694         PMU_PMEVCNTR_EL0(6),
1695         PMU_PMEVCNTR_EL0(7),
1696         PMU_PMEVCNTR_EL0(8),
1697         PMU_PMEVCNTR_EL0(9),
1698         PMU_PMEVCNTR_EL0(10),
1699         PMU_PMEVCNTR_EL0(11),
1700         PMU_PMEVCNTR_EL0(12),
1701         PMU_PMEVCNTR_EL0(13),
1702         PMU_PMEVCNTR_EL0(14),
1703         PMU_PMEVCNTR_EL0(15),
1704         PMU_PMEVCNTR_EL0(16),
1705         PMU_PMEVCNTR_EL0(17),
1706         PMU_PMEVCNTR_EL0(18),
1707         PMU_PMEVCNTR_EL0(19),
1708         PMU_PMEVCNTR_EL0(20),
1709         PMU_PMEVCNTR_EL0(21),
1710         PMU_PMEVCNTR_EL0(22),
1711         PMU_PMEVCNTR_EL0(23),
1712         PMU_PMEVCNTR_EL0(24),
1713         PMU_PMEVCNTR_EL0(25),
1714         PMU_PMEVCNTR_EL0(26),
1715         PMU_PMEVCNTR_EL0(27),
1716         PMU_PMEVCNTR_EL0(28),
1717         PMU_PMEVCNTR_EL0(29),
1718         PMU_PMEVCNTR_EL0(30),
1719         /* PMEVTYPERn_EL0 */
1720         PMU_PMEVTYPER_EL0(0),
1721         PMU_PMEVTYPER_EL0(1),
1722         PMU_PMEVTYPER_EL0(2),
1723         PMU_PMEVTYPER_EL0(3),
1724         PMU_PMEVTYPER_EL0(4),
1725         PMU_PMEVTYPER_EL0(5),
1726         PMU_PMEVTYPER_EL0(6),
1727         PMU_PMEVTYPER_EL0(7),
1728         PMU_PMEVTYPER_EL0(8),
1729         PMU_PMEVTYPER_EL0(9),
1730         PMU_PMEVTYPER_EL0(10),
1731         PMU_PMEVTYPER_EL0(11),
1732         PMU_PMEVTYPER_EL0(12),
1733         PMU_PMEVTYPER_EL0(13),
1734         PMU_PMEVTYPER_EL0(14),
1735         PMU_PMEVTYPER_EL0(15),
1736         PMU_PMEVTYPER_EL0(16),
1737         PMU_PMEVTYPER_EL0(17),
1738         PMU_PMEVTYPER_EL0(18),
1739         PMU_PMEVTYPER_EL0(19),
1740         PMU_PMEVTYPER_EL0(20),
1741         PMU_PMEVTYPER_EL0(21),
1742         PMU_PMEVTYPER_EL0(22),
1743         PMU_PMEVTYPER_EL0(23),
1744         PMU_PMEVTYPER_EL0(24),
1745         PMU_PMEVTYPER_EL0(25),
1746         PMU_PMEVTYPER_EL0(26),
1747         PMU_PMEVTYPER_EL0(27),
1748         PMU_PMEVTYPER_EL0(28),
1749         PMU_PMEVTYPER_EL0(29),
1750         PMU_PMEVTYPER_EL0(30),
1751         /*
1752          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1753          * in 32bit mode. Here we choose to reset it as zero for consistency.
1754          */
1755         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1756
1757         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1758         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1759         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1760 };
1761
1762 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1763                         struct sys_reg_params *p,
1764                         const struct sys_reg_desc *r)
1765 {
1766         if (p->is_write) {
1767                 return ignore_write(vcpu, p);
1768         } else {
1769                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1770                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1771                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1772
1773                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1774                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1775                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1776                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1777                 return true;
1778         }
1779 }
1780
1781 static bool trap_debug32(struct kvm_vcpu *vcpu,
1782                          struct sys_reg_params *p,
1783                          const struct sys_reg_desc *r)
1784 {
1785         if (p->is_write) {
1786                 vcpu_cp14(vcpu, r->reg) = p->regval;
1787                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1788         } else {
1789                 p->regval = vcpu_cp14(vcpu, r->reg);
1790         }
1791
1792         return true;
1793 }
1794
1795 /* AArch32 debug register mappings
1796  *
1797  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1798  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1799  *
1800  * All control registers and watchpoint value registers are mapped to
1801  * the lower 32 bits of their AArch64 equivalents. We share the trap
1802  * handlers with the above AArch64 code which checks what mode the
1803  * system is in.
1804  */
1805
1806 static bool trap_xvr(struct kvm_vcpu *vcpu,
1807                      struct sys_reg_params *p,
1808                      const struct sys_reg_desc *rd)
1809 {
1810         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1811
1812         if (p->is_write) {
1813                 u64 val = *dbg_reg;
1814
1815                 val &= 0xffffffffUL;
1816                 val |= p->regval << 32;
1817                 *dbg_reg = val;
1818
1819                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1820         } else {
1821                 p->regval = *dbg_reg >> 32;
1822         }
1823
1824         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1825
1826         return true;
1827 }
1828
1829 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1830         /* DBGBVRn */                                                   \
1831         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1832         /* DBGBCRn */                                                   \
1833         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1834         /* DBGWVRn */                                                   \
1835         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1836         /* DBGWCRn */                                                   \
1837         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1838
1839 #define DBGBXVR(n)                                                      \
1840         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1841
1842 /*
1843  * Trapped cp14 registers. We generally ignore most of the external
1844  * debug, on the principle that they don't really make sense to a
1845  * guest. Revisit this one day, would this principle change.
1846  */
1847 static const struct sys_reg_desc cp14_regs[] = {
1848         /* DBGIDR */
1849         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1850         /* DBGDTRRXext */
1851         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1852
1853         DBG_BCR_BVR_WCR_WVR(0),
1854         /* DBGDSCRint */
1855         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1856         DBG_BCR_BVR_WCR_WVR(1),
1857         /* DBGDCCINT */
1858         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32, NULL, cp14_DBGDCCINT },
1859         /* DBGDSCRext */
1860         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32, NULL, cp14_DBGDSCRext },
1861         DBG_BCR_BVR_WCR_WVR(2),
1862         /* DBGDTR[RT]Xint */
1863         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1864         /* DBGDTR[RT]Xext */
1865         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1866         DBG_BCR_BVR_WCR_WVR(3),
1867         DBG_BCR_BVR_WCR_WVR(4),
1868         DBG_BCR_BVR_WCR_WVR(5),
1869         /* DBGWFAR */
1870         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1871         /* DBGOSECCR */
1872         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1873         DBG_BCR_BVR_WCR_WVR(6),
1874         /* DBGVCR */
1875         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32, NULL, cp14_DBGVCR },
1876         DBG_BCR_BVR_WCR_WVR(7),
1877         DBG_BCR_BVR_WCR_WVR(8),
1878         DBG_BCR_BVR_WCR_WVR(9),
1879         DBG_BCR_BVR_WCR_WVR(10),
1880         DBG_BCR_BVR_WCR_WVR(11),
1881         DBG_BCR_BVR_WCR_WVR(12),
1882         DBG_BCR_BVR_WCR_WVR(13),
1883         DBG_BCR_BVR_WCR_WVR(14),
1884         DBG_BCR_BVR_WCR_WVR(15),
1885
1886         /* DBGDRAR (32bit) */
1887         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1888
1889         DBGBXVR(0),
1890         /* DBGOSLAR */
1891         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1892         DBGBXVR(1),
1893         /* DBGOSLSR */
1894         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1895         DBGBXVR(2),
1896         DBGBXVR(3),
1897         /* DBGOSDLR */
1898         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1899         DBGBXVR(4),
1900         /* DBGPRCR */
1901         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1902         DBGBXVR(5),
1903         DBGBXVR(6),
1904         DBGBXVR(7),
1905         DBGBXVR(8),
1906         DBGBXVR(9),
1907         DBGBXVR(10),
1908         DBGBXVR(11),
1909         DBGBXVR(12),
1910         DBGBXVR(13),
1911         DBGBXVR(14),
1912         DBGBXVR(15),
1913
1914         /* DBGDSAR (32bit) */
1915         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1916
1917         /* DBGDEVID2 */
1918         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1919         /* DBGDEVID1 */
1920         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1921         /* DBGDEVID */
1922         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1923         /* DBGCLAIMSET */
1924         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1925         /* DBGCLAIMCLR */
1926         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1927         /* DBGAUTHSTATUS */
1928         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1929 };
1930
1931 /* Trapped cp14 64bit registers */
1932 static const struct sys_reg_desc cp14_64_regs[] = {
1933         /* DBGDRAR (64bit) */
1934         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1935
1936         /* DBGDSAR (64bit) */
1937         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1938 };
1939
1940 /* Macro to expand the PMEVCNTRn register */
1941 #define PMU_PMEVCNTR(n)                                                 \
1942         /* PMEVCNTRn */                                                 \
1943         { Op1(0), CRn(0b1110),                                          \
1944           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1945           access_pmu_evcntr }
1946
1947 /* Macro to expand the PMEVTYPERn register */
1948 #define PMU_PMEVTYPER(n)                                                \
1949         /* PMEVTYPERn */                                                \
1950         { Op1(0), CRn(0b1110),                                          \
1951           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1952           access_pmu_evtyper }
1953
1954 /*
1955  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1956  * depending on the way they are accessed (as a 32bit or a 64bit
1957  * register).
1958  */
1959 static const struct sys_reg_desc cp15_regs[] = {
1960         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1961         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1962         { Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr },
1963         { Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr },
1964         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1965         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1966         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1967         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1968         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1969         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1970         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1971         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1972         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1973         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1974
1975         /*
1976          * DC{C,I,CI}SW operations:
1977          */
1978         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1979         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1980         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1981
1982         /* PMU */
1983         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1984         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1985         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1986         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1987         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1988         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1989         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1990         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1991         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1992         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1993         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1994         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1995         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1996         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1997         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1998
1999         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
2000         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
2001         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
2002         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
2003
2004         /* ICC_SRE */
2005         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2006
2007         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
2008
2009         /* Arch Tmers */
2010         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2011         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2012
2013         /* PMEVCNTRn */
2014         PMU_PMEVCNTR(0),
2015         PMU_PMEVCNTR(1),
2016         PMU_PMEVCNTR(2),
2017         PMU_PMEVCNTR(3),
2018         PMU_PMEVCNTR(4),
2019         PMU_PMEVCNTR(5),
2020         PMU_PMEVCNTR(6),
2021         PMU_PMEVCNTR(7),
2022         PMU_PMEVCNTR(8),
2023         PMU_PMEVCNTR(9),
2024         PMU_PMEVCNTR(10),
2025         PMU_PMEVCNTR(11),
2026         PMU_PMEVCNTR(12),
2027         PMU_PMEVCNTR(13),
2028         PMU_PMEVCNTR(14),
2029         PMU_PMEVCNTR(15),
2030         PMU_PMEVCNTR(16),
2031         PMU_PMEVCNTR(17),
2032         PMU_PMEVCNTR(18),
2033         PMU_PMEVCNTR(19),
2034         PMU_PMEVCNTR(20),
2035         PMU_PMEVCNTR(21),
2036         PMU_PMEVCNTR(22),
2037         PMU_PMEVCNTR(23),
2038         PMU_PMEVCNTR(24),
2039         PMU_PMEVCNTR(25),
2040         PMU_PMEVCNTR(26),
2041         PMU_PMEVCNTR(27),
2042         PMU_PMEVCNTR(28),
2043         PMU_PMEVCNTR(29),
2044         PMU_PMEVCNTR(30),
2045         /* PMEVTYPERn */
2046         PMU_PMEVTYPER(0),
2047         PMU_PMEVTYPER(1),
2048         PMU_PMEVTYPER(2),
2049         PMU_PMEVTYPER(3),
2050         PMU_PMEVTYPER(4),
2051         PMU_PMEVTYPER(5),
2052         PMU_PMEVTYPER(6),
2053         PMU_PMEVTYPER(7),
2054         PMU_PMEVTYPER(8),
2055         PMU_PMEVTYPER(9),
2056         PMU_PMEVTYPER(10),
2057         PMU_PMEVTYPER(11),
2058         PMU_PMEVTYPER(12),
2059         PMU_PMEVTYPER(13),
2060         PMU_PMEVTYPER(14),
2061         PMU_PMEVTYPER(15),
2062         PMU_PMEVTYPER(16),
2063         PMU_PMEVTYPER(17),
2064         PMU_PMEVTYPER(18),
2065         PMU_PMEVTYPER(19),
2066         PMU_PMEVTYPER(20),
2067         PMU_PMEVTYPER(21),
2068         PMU_PMEVTYPER(22),
2069         PMU_PMEVTYPER(23),
2070         PMU_PMEVTYPER(24),
2071         PMU_PMEVTYPER(25),
2072         PMU_PMEVTYPER(26),
2073         PMU_PMEVTYPER(27),
2074         PMU_PMEVTYPER(28),
2075         PMU_PMEVTYPER(29),
2076         PMU_PMEVTYPER(30),
2077         /* PMCCFILTR */
2078         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2079
2080         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2081         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2082         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
2083 };
2084
2085 static const struct sys_reg_desc cp15_64_regs[] = {
2086         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
2087         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2088         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2089         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
2090         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2091         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2092         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2093 };
2094
2095 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2096                               bool is_32)
2097 {
2098         unsigned int i;
2099
2100         for (i = 0; i < n; i++) {
2101                 if (!is_32 && table[i].reg && !table[i].reset) {
2102                         kvm_err("sys_reg table %p entry %d has lacks reset\n",
2103                                 table, i);
2104                         return 1;
2105                 }
2106
2107                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2108                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2109                         return 1;
2110                 }
2111         }
2112
2113         return 0;
2114 }
2115
2116 static int match_sys_reg(const void *key, const void *elt)
2117 {
2118         const unsigned long pval = (unsigned long)key;
2119         const struct sys_reg_desc *r = elt;
2120
2121         return pval - reg_to_encoding(r);
2122 }
2123
2124 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2125                                          const struct sys_reg_desc table[],
2126                                          unsigned int num)
2127 {
2128         unsigned long pval = reg_to_encoding(params);
2129
2130         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2131 }
2132
2133 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2134 {
2135         kvm_inject_undefined(vcpu);
2136         return 1;
2137 }
2138
2139 static void perform_access(struct kvm_vcpu *vcpu,
2140                            struct sys_reg_params *params,
2141                            const struct sys_reg_desc *r)
2142 {
2143         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2144
2145         /* Check for regs disabled by runtime config */
2146         if (sysreg_hidden(vcpu, r)) {
2147                 kvm_inject_undefined(vcpu);
2148                 return;
2149         }
2150
2151         /*
2152          * Not having an accessor means that we have configured a trap
2153          * that we don't know how to handle. This certainly qualifies
2154          * as a gross bug that should be fixed right away.
2155          */
2156         BUG_ON(!r->access);
2157
2158         /* Skip instruction if instructed so */
2159         if (likely(r->access(vcpu, params, r)))
2160                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2161 }
2162
2163 /*
2164  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2165  *                call the corresponding trap handler.
2166  *
2167  * @params: pointer to the descriptor of the access
2168  * @table: array of trap descriptors
2169  * @num: size of the trap descriptor array
2170  *
2171  * Return 0 if the access has been handled, and -1 if not.
2172  */
2173 static int emulate_cp(struct kvm_vcpu *vcpu,
2174                       struct sys_reg_params *params,
2175                       const struct sys_reg_desc *table,
2176                       size_t num)
2177 {
2178         const struct sys_reg_desc *r;
2179
2180         if (!table)
2181                 return -1;      /* Not handled */
2182
2183         r = find_reg(params, table, num);
2184
2185         if (r) {
2186                 perform_access(vcpu, params, r);
2187                 return 0;
2188         }
2189
2190         /* Not handled */
2191         return -1;
2192 }
2193
2194 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2195                                 struct sys_reg_params *params)
2196 {
2197         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2198         int cp = -1;
2199
2200         switch (esr_ec) {
2201         case ESR_ELx_EC_CP15_32:
2202         case ESR_ELx_EC_CP15_64:
2203                 cp = 15;
2204                 break;
2205         case ESR_ELx_EC_CP14_MR:
2206         case ESR_ELx_EC_CP14_64:
2207                 cp = 14;
2208                 break;
2209         default:
2210                 WARN_ON(1);
2211         }
2212
2213         print_sys_reg_msg(params,
2214                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2215                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2216         kvm_inject_undefined(vcpu);
2217 }
2218
2219 /**
2220  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2221  * @vcpu: The VCPU pointer
2222  * @run:  The kvm_run struct
2223  */
2224 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2225                             const struct sys_reg_desc *global,
2226                             size_t nr_global)
2227 {
2228         struct sys_reg_params params;
2229         u32 esr = kvm_vcpu_get_esr(vcpu);
2230         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2231         int Rt2 = (esr >> 10) & 0x1f;
2232
2233         params.is_aarch32 = true;
2234         params.is_32bit = false;
2235         params.CRm = (esr >> 1) & 0xf;
2236         params.is_write = ((esr & 1) == 0);
2237
2238         params.Op0 = 0;
2239         params.Op1 = (esr >> 16) & 0xf;
2240         params.Op2 = 0;
2241         params.CRn = 0;
2242
2243         /*
2244          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2245          * backends between AArch32 and AArch64, we get away with it.
2246          */
2247         if (params.is_write) {
2248                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2249                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2250         }
2251
2252         /*
2253          * If the table contains a handler, handle the
2254          * potential register operation in the case of a read and return
2255          * with success.
2256          */
2257         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2258                 /* Split up the value between registers for the read side */
2259                 if (!params.is_write) {
2260                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2261                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2262                 }
2263
2264                 return 1;
2265         }
2266
2267         unhandled_cp_access(vcpu, &params);
2268         return 1;
2269 }
2270
2271 /**
2272  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2273  * @vcpu: The VCPU pointer
2274  * @run:  The kvm_run struct
2275  */
2276 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2277                             const struct sys_reg_desc *global,
2278                             size_t nr_global)
2279 {
2280         struct sys_reg_params params;
2281         u32 esr = kvm_vcpu_get_esr(vcpu);
2282         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2283
2284         params.is_aarch32 = true;
2285         params.is_32bit = true;
2286         params.CRm = (esr >> 1) & 0xf;
2287         params.regval = vcpu_get_reg(vcpu, Rt);
2288         params.is_write = ((esr & 1) == 0);
2289         params.CRn = (esr >> 10) & 0xf;
2290         params.Op0 = 0;
2291         params.Op1 = (esr >> 14) & 0x7;
2292         params.Op2 = (esr >> 17) & 0x7;
2293
2294         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2295                 if (!params.is_write)
2296                         vcpu_set_reg(vcpu, Rt, params.regval);
2297                 return 1;
2298         }
2299
2300         unhandled_cp_access(vcpu, &params);
2301         return 1;
2302 }
2303
2304 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2305 {
2306         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2307 }
2308
2309 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2310 {
2311         return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2312 }
2313
2314 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2315 {
2316         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2317 }
2318
2319 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2320 {
2321         return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2322 }
2323
2324 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2325 {
2326         // See ARM DDI 0487E.a, section D12.3.2
2327         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2328 }
2329
2330 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2331                            struct sys_reg_params *params)
2332 {
2333         const struct sys_reg_desc *r;
2334
2335         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2336
2337         if (likely(r)) {
2338                 perform_access(vcpu, params, r);
2339         } else if (is_imp_def_sys_reg(params)) {
2340                 kvm_inject_undefined(vcpu);
2341         } else {
2342                 print_sys_reg_msg(params,
2343                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2344                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2345                 kvm_inject_undefined(vcpu);
2346         }
2347         return 1;
2348 }
2349
2350 /**
2351  * kvm_reset_sys_regs - sets system registers to reset value
2352  * @vcpu: The VCPU pointer
2353  *
2354  * This function finds the right table above and sets the registers on the
2355  * virtual CPU struct to their architecturally defined reset values.
2356  */
2357 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2358 {
2359         unsigned long i;
2360
2361         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2362                 if (sys_reg_descs[i].reset)
2363                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2364 }
2365
2366 /**
2367  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2368  * @vcpu: The VCPU pointer
2369  */
2370 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2371 {
2372         struct sys_reg_params params;
2373         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2374         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2375         int ret;
2376
2377         trace_kvm_handle_sys_reg(esr);
2378
2379         params.is_aarch32 = false;
2380         params.is_32bit = false;
2381         params.Op0 = (esr >> 20) & 3;
2382         params.Op1 = (esr >> 14) & 0x7;
2383         params.CRn = (esr >> 10) & 0xf;
2384         params.CRm = (esr >> 1) & 0xf;
2385         params.Op2 = (esr >> 17) & 0x7;
2386         params.regval = vcpu_get_reg(vcpu, Rt);
2387         params.is_write = !(esr & 1);
2388
2389         ret = emulate_sys_reg(vcpu, &params);
2390
2391         if (!params.is_write)
2392                 vcpu_set_reg(vcpu, Rt, params.regval);
2393         return ret;
2394 }
2395
2396 /******************************************************************************
2397  * Userspace API
2398  *****************************************************************************/
2399
2400 static bool index_to_params(u64 id, struct sys_reg_params *params)
2401 {
2402         switch (id & KVM_REG_SIZE_MASK) {
2403         case KVM_REG_SIZE_U64:
2404                 /* Any unused index bits means it's not valid. */
2405                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2406                               | KVM_REG_ARM_COPROC_MASK
2407                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2408                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2409                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2410                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2411                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2412                         return false;
2413                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2414                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2415                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2416                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2417                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2418                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2419                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2420                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2421                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2422                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2423                 return true;
2424         default:
2425                 return false;
2426         }
2427 }
2428
2429 const struct sys_reg_desc *find_reg_by_id(u64 id,
2430                                           struct sys_reg_params *params,
2431                                           const struct sys_reg_desc table[],
2432                                           unsigned int num)
2433 {
2434         if (!index_to_params(id, params))
2435                 return NULL;
2436
2437         return find_reg(params, table, num);
2438 }
2439
2440 /* Decode an index value, and find the sys_reg_desc entry. */
2441 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2442                                                     u64 id)
2443 {
2444         const struct sys_reg_desc *r;
2445         struct sys_reg_params params;
2446
2447         /* We only do sys_reg for now. */
2448         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2449                 return NULL;
2450
2451         if (!index_to_params(id, &params))
2452                 return NULL;
2453
2454         r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2455
2456         /* Not saved in the sys_reg array and not otherwise accessible? */
2457         if (r && !(r->reg || r->get_user))
2458                 r = NULL;
2459
2460         return r;
2461 }
2462
2463 /*
2464  * These are the invariant sys_reg registers: we let the guest see the
2465  * host versions of these, so they're part of the guest state.
2466  *
2467  * A future CPU may provide a mechanism to present different values to
2468  * the guest, or a future kvm may trap them.
2469  */
2470
2471 #define FUNCTION_INVARIANT(reg)                                         \
2472         static void get_##reg(struct kvm_vcpu *v,                       \
2473                               const struct sys_reg_desc *r)             \
2474         {                                                               \
2475                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2476         }
2477
2478 FUNCTION_INVARIANT(midr_el1)
2479 FUNCTION_INVARIANT(revidr_el1)
2480 FUNCTION_INVARIANT(clidr_el1)
2481 FUNCTION_INVARIANT(aidr_el1)
2482
2483 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2484 {
2485         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2486 }
2487
2488 /* ->val is filled in by kvm_sys_reg_table_init() */
2489 static struct sys_reg_desc invariant_sys_regs[] = {
2490         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2491         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2492         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2493         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2494         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2495 };
2496
2497 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2498 {
2499         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2500                 return -EFAULT;
2501         return 0;
2502 }
2503
2504 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2505 {
2506         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2507                 return -EFAULT;
2508         return 0;
2509 }
2510
2511 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2512 {
2513         struct sys_reg_params params;
2514         const struct sys_reg_desc *r;
2515
2516         r = find_reg_by_id(id, &params, invariant_sys_regs,
2517                            ARRAY_SIZE(invariant_sys_regs));
2518         if (!r)
2519                 return -ENOENT;
2520
2521         return reg_to_user(uaddr, &r->val, id);
2522 }
2523
2524 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2525 {
2526         struct sys_reg_params params;
2527         const struct sys_reg_desc *r;
2528         int err;
2529         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2530
2531         r = find_reg_by_id(id, &params, invariant_sys_regs,
2532                            ARRAY_SIZE(invariant_sys_regs));
2533         if (!r)
2534                 return -ENOENT;
2535
2536         err = reg_from_user(&val, uaddr, id);
2537         if (err)
2538                 return err;
2539
2540         /* This is what we mean by invariant: you can't change it. */
2541         if (r->val != val)
2542                 return -EINVAL;
2543
2544         return 0;
2545 }
2546
2547 static bool is_valid_cache(u32 val)
2548 {
2549         u32 level, ctype;
2550
2551         if (val >= CSSELR_MAX)
2552                 return false;
2553
2554         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2555         level = (val >> 1);
2556         ctype = (cache_levels >> (level * 3)) & 7;
2557
2558         switch (ctype) {
2559         case 0: /* No cache */
2560                 return false;
2561         case 1: /* Instruction cache only */
2562                 return (val & 1);
2563         case 2: /* Data cache only */
2564         case 4: /* Unified cache */
2565                 return !(val & 1);
2566         case 3: /* Separate instruction and data caches */
2567                 return true;
2568         default: /* Reserved: we can't know instruction or data. */
2569                 return false;
2570         }
2571 }
2572
2573 static int demux_c15_get(u64 id, void __user *uaddr)
2574 {
2575         u32 val;
2576         u32 __user *uval = uaddr;
2577
2578         /* Fail if we have unknown bits set. */
2579         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2580                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2581                 return -ENOENT;
2582
2583         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2584         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2585                 if (KVM_REG_SIZE(id) != 4)
2586                         return -ENOENT;
2587                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2588                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2589                 if (!is_valid_cache(val))
2590                         return -ENOENT;
2591
2592                 return put_user(get_ccsidr(val), uval);
2593         default:
2594                 return -ENOENT;
2595         }
2596 }
2597
2598 static int demux_c15_set(u64 id, void __user *uaddr)
2599 {
2600         u32 val, newval;
2601         u32 __user *uval = uaddr;
2602
2603         /* Fail if we have unknown bits set. */
2604         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2605                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2606                 return -ENOENT;
2607
2608         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2609         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2610                 if (KVM_REG_SIZE(id) != 4)
2611                         return -ENOENT;
2612                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2613                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2614                 if (!is_valid_cache(val))
2615                         return -ENOENT;
2616
2617                 if (get_user(newval, uval))
2618                         return -EFAULT;
2619
2620                 /* This is also invariant: you can't change it. */
2621                 if (newval != get_ccsidr(val))
2622                         return -EINVAL;
2623                 return 0;
2624         default:
2625                 return -ENOENT;
2626         }
2627 }
2628
2629 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2630 {
2631         const struct sys_reg_desc *r;
2632         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2633
2634         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2635                 return demux_c15_get(reg->id, uaddr);
2636
2637         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2638                 return -ENOENT;
2639
2640         r = index_to_sys_reg_desc(vcpu, reg->id);
2641         if (!r)
2642                 return get_invariant_sys_reg(reg->id, uaddr);
2643
2644         /* Check for regs disabled by runtime config */
2645         if (sysreg_hidden(vcpu, r))
2646                 return -ENOENT;
2647
2648         if (r->get_user)
2649                 return (r->get_user)(vcpu, r, reg, uaddr);
2650
2651         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2652 }
2653
2654 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2655 {
2656         const struct sys_reg_desc *r;
2657         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2658
2659         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2660                 return demux_c15_set(reg->id, uaddr);
2661
2662         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2663                 return -ENOENT;
2664
2665         r = index_to_sys_reg_desc(vcpu, reg->id);
2666         if (!r)
2667                 return set_invariant_sys_reg(reg->id, uaddr);
2668
2669         /* Check for regs disabled by runtime config */
2670         if (sysreg_hidden(vcpu, r))
2671                 return -ENOENT;
2672
2673         if (r->set_user)
2674                 return (r->set_user)(vcpu, r, reg, uaddr);
2675
2676         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2677 }
2678
2679 static unsigned int num_demux_regs(void)
2680 {
2681         unsigned int i, count = 0;
2682
2683         for (i = 0; i < CSSELR_MAX; i++)
2684                 if (is_valid_cache(i))
2685                         count++;
2686
2687         return count;
2688 }
2689
2690 static int write_demux_regids(u64 __user *uindices)
2691 {
2692         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2693         unsigned int i;
2694
2695         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2696         for (i = 0; i < CSSELR_MAX; i++) {
2697                 if (!is_valid_cache(i))
2698                         continue;
2699                 if (put_user(val | i, uindices))
2700                         return -EFAULT;
2701                 uindices++;
2702         }
2703         return 0;
2704 }
2705
2706 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2707 {
2708         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2709                 KVM_REG_ARM64_SYSREG |
2710                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2711                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2712                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2713                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2714                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2715 }
2716
2717 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2718 {
2719         if (!*uind)
2720                 return true;
2721
2722         if (put_user(sys_reg_to_index(reg), *uind))
2723                 return false;
2724
2725         (*uind)++;
2726         return true;
2727 }
2728
2729 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2730                             const struct sys_reg_desc *rd,
2731                             u64 __user **uind,
2732                             unsigned int *total)
2733 {
2734         /*
2735          * Ignore registers we trap but don't save,
2736          * and for which no custom user accessor is provided.
2737          */
2738         if (!(rd->reg || rd->get_user))
2739                 return 0;
2740
2741         if (sysreg_hidden(vcpu, rd))
2742                 return 0;
2743
2744         if (!copy_reg_to_user(rd, uind))
2745                 return -EFAULT;
2746
2747         (*total)++;
2748         return 0;
2749 }
2750
2751 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2752 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2753 {
2754         const struct sys_reg_desc *i2, *end2;
2755         unsigned int total = 0;
2756         int err;
2757
2758         i2 = sys_reg_descs;
2759         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2760
2761         while (i2 != end2) {
2762                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2763                 if (err)
2764                         return err;
2765         }
2766         return total;
2767 }
2768
2769 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2770 {
2771         return ARRAY_SIZE(invariant_sys_regs)
2772                 + num_demux_regs()
2773                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2774 }
2775
2776 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2777 {
2778         unsigned int i;
2779         int err;
2780
2781         /* Then give them all the invariant registers' indices. */
2782         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2783                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2784                         return -EFAULT;
2785                 uindices++;
2786         }
2787
2788         err = walk_sys_regs(vcpu, uindices);
2789         if (err < 0)
2790                 return err;
2791         uindices += err;
2792
2793         return write_demux_regids(uindices);
2794 }
2795
2796 void kvm_sys_reg_table_init(void)
2797 {
2798         unsigned int i;
2799         struct sys_reg_desc clidr;
2800
2801         /* Make sure tables are unique and in order. */
2802         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2803         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2804         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2805         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2806         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2807         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2808
2809         /* We abuse the reset function to overwrite the table itself. */
2810         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2811                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2812
2813         /*
2814          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2815          *
2816          *   If software reads the Cache Type fields from Ctype1
2817          *   upwards, once it has seen a value of 0b000, no caches
2818          *   exist at further-out levels of the hierarchy. So, for
2819          *   example, if Ctype3 is the first Cache Type field with a
2820          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2821          *   ignored.
2822          */
2823         get_clidr_el1(NULL, &clidr); /* Ugly... */
2824         cache_levels = clidr.val;
2825         for (i = 0; i < 7; i++)
2826                 if (((cache_levels >> (i*3)) & 7) == 0)
2827                         break;
2828         /* Clear all higher bits. */
2829         cache_levels &= (1 << (i*3))-1;
2830 }