Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/kvm_host.h>
15 #include <linux/mm.h>
16 #include <linux/printk.h>
17 #include <linux/uaccess.h>
18
19 #include <asm/cacheflush.h>
20 #include <asm/cputype.h>
21 #include <asm/debug-monitors.h>
22 #include <asm/esr.h>
23 #include <asm/kvm_arm.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29
30 #include <trace/events/kvm.h>
31
32 #include "sys_regs.h"
33
34 #include "trace.h"
35
36 /*
37  * For AArch32, we only take care of what is being trapped. Anything
38  * that has to do with init and userspace access has to go via the
39  * 64bit interface.
40  */
41
42 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
43
44 static bool read_from_write_only(struct kvm_vcpu *vcpu,
45                                  struct sys_reg_params *params,
46                                  const struct sys_reg_desc *r)
47 {
48         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
49         print_sys_reg_instr(params);
50         kvm_inject_undefined(vcpu);
51         return false;
52 }
53
54 static bool write_to_read_only(struct kvm_vcpu *vcpu,
55                                struct sys_reg_params *params,
56                                const struct sys_reg_desc *r)
57 {
58         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
59         print_sys_reg_instr(params);
60         kvm_inject_undefined(vcpu);
61         return false;
62 }
63
64 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
65 {
66         u64 val = 0x8badf00d8badf00d;
67
68         if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
69             __vcpu_read_sys_reg_from_cpu(reg, &val))
70                 return val;
71
72         return __vcpu_sys_reg(vcpu, reg);
73 }
74
75 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
76 {
77         if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
78             __vcpu_write_sys_reg_to_cpu(val, reg))
79                 return;
80
81          __vcpu_sys_reg(vcpu, reg) = val;
82 }
83
84 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
85 static u32 cache_levels;
86
87 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
88 #define CSSELR_MAX 14
89
90 /* Which cache CCSIDR represents depends on CSSELR value. */
91 static u32 get_ccsidr(u32 csselr)
92 {
93         u32 ccsidr;
94
95         /* Make sure noone else changes CSSELR during this! */
96         local_irq_disable();
97         write_sysreg(csselr, csselr_el1);
98         isb();
99         ccsidr = read_sysreg(ccsidr_el1);
100         local_irq_enable();
101
102         return ccsidr;
103 }
104
105 /*
106  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
107  */
108 static bool access_dcsw(struct kvm_vcpu *vcpu,
109                         struct sys_reg_params *p,
110                         const struct sys_reg_desc *r)
111 {
112         if (!p->is_write)
113                 return read_from_write_only(vcpu, p, r);
114
115         /*
116          * Only track S/W ops if we don't have FWB. It still indicates
117          * that the guest is a bit broken (S/W operations should only
118          * be done by firmware, knowing that there is only a single
119          * CPU left in the system, and certainly not from non-secure
120          * software).
121          */
122         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
123                 kvm_set_way_flush(vcpu);
124
125         return true;
126 }
127
128 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
129 {
130         switch (r->aarch32_map) {
131         case AA32_LO:
132                 *mask = GENMASK_ULL(31, 0);
133                 *shift = 0;
134                 break;
135         case AA32_HI:
136                 *mask = GENMASK_ULL(63, 32);
137                 *shift = 32;
138                 break;
139         default:
140                 *mask = GENMASK_ULL(63, 0);
141                 *shift = 0;
142                 break;
143         }
144 }
145
146 /*
147  * Generic accessor for VM registers. Only called as long as HCR_TVM
148  * is set. If the guest enables the MMU, we stop trapping the VM
149  * sys_regs and leave it in complete control of the caches.
150  */
151 static bool access_vm_reg(struct kvm_vcpu *vcpu,
152                           struct sys_reg_params *p,
153                           const struct sys_reg_desc *r)
154 {
155         bool was_enabled = vcpu_has_cache_enabled(vcpu);
156         u64 val, mask, shift;
157
158         BUG_ON(!p->is_write);
159
160         get_access_mask(r, &mask, &shift);
161
162         if (~mask) {
163                 val = vcpu_read_sys_reg(vcpu, r->reg);
164                 val &= ~mask;
165         } else {
166                 val = 0;
167         }
168
169         val |= (p->regval & (mask >> shift)) << shift;
170         vcpu_write_sys_reg(vcpu, val, r->reg);
171
172         kvm_toggle_cache(vcpu, was_enabled);
173         return true;
174 }
175
176 static bool access_actlr(struct kvm_vcpu *vcpu,
177                          struct sys_reg_params *p,
178                          const struct sys_reg_desc *r)
179 {
180         u64 mask, shift;
181
182         if (p->is_write)
183                 return ignore_write(vcpu, p);
184
185         get_access_mask(r, &mask, &shift);
186         p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
187
188         return true;
189 }
190
191 /*
192  * Trap handler for the GICv3 SGI generation system register.
193  * Forward the request to the VGIC emulation.
194  * The cp15_64 code makes sure this automatically works
195  * for both AArch64 and AArch32 accesses.
196  */
197 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
198                            struct sys_reg_params *p,
199                            const struct sys_reg_desc *r)
200 {
201         bool g1;
202
203         if (!p->is_write)
204                 return read_from_write_only(vcpu, p, r);
205
206         /*
207          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
208          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
209          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
210          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
211          * group.
212          */
213         if (p->Op0 == 0) {              /* AArch32 */
214                 switch (p->Op1) {
215                 default:                /* Keep GCC quiet */
216                 case 0:                 /* ICC_SGI1R */
217                         g1 = true;
218                         break;
219                 case 1:                 /* ICC_ASGI1R */
220                 case 2:                 /* ICC_SGI0R */
221                         g1 = false;
222                         break;
223                 }
224         } else {                        /* AArch64 */
225                 switch (p->Op2) {
226                 default:                /* Keep GCC quiet */
227                 case 5:                 /* ICC_SGI1R_EL1 */
228                         g1 = true;
229                         break;
230                 case 6:                 /* ICC_ASGI1R_EL1 */
231                 case 7:                 /* ICC_SGI0R_EL1 */
232                         g1 = false;
233                         break;
234                 }
235         }
236
237         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
238
239         return true;
240 }
241
242 static bool access_gic_sre(struct kvm_vcpu *vcpu,
243                            struct sys_reg_params *p,
244                            const struct sys_reg_desc *r)
245 {
246         if (p->is_write)
247                 return ignore_write(vcpu, p);
248
249         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
250         return true;
251 }
252
253 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
254                         struct sys_reg_params *p,
255                         const struct sys_reg_desc *r)
256 {
257         if (p->is_write)
258                 return ignore_write(vcpu, p);
259         else
260                 return read_zero(vcpu, p);
261 }
262
263 /*
264  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
265  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
266  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
267  * treat it separately.
268  */
269 static bool trap_loregion(struct kvm_vcpu *vcpu,
270                           struct sys_reg_params *p,
271                           const struct sys_reg_desc *r)
272 {
273         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
274         u32 sr = reg_to_encoding(r);
275
276         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
277                 kvm_inject_undefined(vcpu);
278                 return false;
279         }
280
281         if (p->is_write && sr == SYS_LORID_EL1)
282                 return write_to_read_only(vcpu, p, r);
283
284         return trap_raz_wi(vcpu, p, r);
285 }
286
287 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
288                            struct sys_reg_params *p,
289                            const struct sys_reg_desc *r)
290 {
291         u64 oslsr;
292
293         if (!p->is_write)
294                 return read_from_write_only(vcpu, p, r);
295
296         /* Forward the OSLK bit to OSLSR */
297         oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
298         if (p->regval & SYS_OSLAR_OSLK)
299                 oslsr |= SYS_OSLSR_OSLK;
300
301         __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
302         return true;
303 }
304
305 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
306                            struct sys_reg_params *p,
307                            const struct sys_reg_desc *r)
308 {
309         if (p->is_write)
310                 return write_to_read_only(vcpu, p, r);
311
312         p->regval = __vcpu_sys_reg(vcpu, r->reg);
313         return true;
314 }
315
316 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
317                          u64 val)
318 {
319         /*
320          * The only modifiable bit is the OSLK bit. Refuse the write if
321          * userspace attempts to change any other bit in the register.
322          */
323         if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
324                 return -EINVAL;
325
326         __vcpu_sys_reg(vcpu, rd->reg) = val;
327         return 0;
328 }
329
330 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
331                                    struct sys_reg_params *p,
332                                    const struct sys_reg_desc *r)
333 {
334         if (p->is_write) {
335                 return ignore_write(vcpu, p);
336         } else {
337                 p->regval = read_sysreg(dbgauthstatus_el1);
338                 return true;
339         }
340 }
341
342 /*
343  * We want to avoid world-switching all the DBG registers all the
344  * time:
345  *
346  * - If we've touched any debug register, it is likely that we're
347  *   going to touch more of them. It then makes sense to disable the
348  *   traps and start doing the save/restore dance
349  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
350  *   then mandatory to save/restore the registers, as the guest
351  *   depends on them.
352  *
353  * For this, we use a DIRTY bit, indicating the guest has modified the
354  * debug registers, used as follow:
355  *
356  * On guest entry:
357  * - If the dirty bit is set (because we're coming back from trapping),
358  *   disable the traps, save host registers, restore guest registers.
359  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
360  *   set the dirty bit, disable the traps, save host registers,
361  *   restore guest registers.
362  * - Otherwise, enable the traps
363  *
364  * On guest exit:
365  * - If the dirty bit is set, save guest registers, restore host
366  *   registers and clear the dirty bit. This ensure that the host can
367  *   now use the debug registers.
368  */
369 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
370                             struct sys_reg_params *p,
371                             const struct sys_reg_desc *r)
372 {
373         if (p->is_write) {
374                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
375                 vcpu_set_flag(vcpu, DEBUG_DIRTY);
376         } else {
377                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
378         }
379
380         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
381
382         return true;
383 }
384
385 /*
386  * reg_to_dbg/dbg_to_reg
387  *
388  * A 32 bit write to a debug register leave top bits alone
389  * A 32 bit read from a debug register only returns the bottom bits
390  *
391  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
392  * switches between host and guest values in future.
393  */
394 static void reg_to_dbg(struct kvm_vcpu *vcpu,
395                        struct sys_reg_params *p,
396                        const struct sys_reg_desc *rd,
397                        u64 *dbg_reg)
398 {
399         u64 mask, shift, val;
400
401         get_access_mask(rd, &mask, &shift);
402
403         val = *dbg_reg;
404         val &= ~mask;
405         val |= (p->regval & (mask >> shift)) << shift;
406         *dbg_reg = val;
407
408         vcpu_set_flag(vcpu, DEBUG_DIRTY);
409 }
410
411 static void dbg_to_reg(struct kvm_vcpu *vcpu,
412                        struct sys_reg_params *p,
413                        const struct sys_reg_desc *rd,
414                        u64 *dbg_reg)
415 {
416         u64 mask, shift;
417
418         get_access_mask(rd, &mask, &shift);
419         p->regval = (*dbg_reg & mask) >> shift;
420 }
421
422 static bool trap_bvr(struct kvm_vcpu *vcpu,
423                      struct sys_reg_params *p,
424                      const struct sys_reg_desc *rd)
425 {
426         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
427
428         if (p->is_write)
429                 reg_to_dbg(vcpu, p, rd, dbg_reg);
430         else
431                 dbg_to_reg(vcpu, p, rd, dbg_reg);
432
433         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
434
435         return true;
436 }
437
438 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
439                    u64 val)
440 {
441         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
442         return 0;
443 }
444
445 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
446                    u64 *val)
447 {
448         *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
449         return 0;
450 }
451
452 static void reset_bvr(struct kvm_vcpu *vcpu,
453                       const struct sys_reg_desc *rd)
454 {
455         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
456 }
457
458 static bool trap_bcr(struct kvm_vcpu *vcpu,
459                      struct sys_reg_params *p,
460                      const struct sys_reg_desc *rd)
461 {
462         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
463
464         if (p->is_write)
465                 reg_to_dbg(vcpu, p, rd, dbg_reg);
466         else
467                 dbg_to_reg(vcpu, p, rd, dbg_reg);
468
469         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
470
471         return true;
472 }
473
474 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
475                    u64 val)
476 {
477         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
478         return 0;
479 }
480
481 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
482                    u64 *val)
483 {
484         *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
485         return 0;
486 }
487
488 static void reset_bcr(struct kvm_vcpu *vcpu,
489                       const struct sys_reg_desc *rd)
490 {
491         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
492 }
493
494 static bool trap_wvr(struct kvm_vcpu *vcpu,
495                      struct sys_reg_params *p,
496                      const struct sys_reg_desc *rd)
497 {
498         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
499
500         if (p->is_write)
501                 reg_to_dbg(vcpu, p, rd, dbg_reg);
502         else
503                 dbg_to_reg(vcpu, p, rd, dbg_reg);
504
505         trace_trap_reg(__func__, rd->CRm, p->is_write,
506                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
507
508         return true;
509 }
510
511 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
512                    u64 val)
513 {
514         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
515         return 0;
516 }
517
518 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
519                    u64 *val)
520 {
521         *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
522         return 0;
523 }
524
525 static void reset_wvr(struct kvm_vcpu *vcpu,
526                       const struct sys_reg_desc *rd)
527 {
528         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
529 }
530
531 static bool trap_wcr(struct kvm_vcpu *vcpu,
532                      struct sys_reg_params *p,
533                      const struct sys_reg_desc *rd)
534 {
535         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
536
537         if (p->is_write)
538                 reg_to_dbg(vcpu, p, rd, dbg_reg);
539         else
540                 dbg_to_reg(vcpu, p, rd, dbg_reg);
541
542         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
543
544         return true;
545 }
546
547 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
548                    u64 val)
549 {
550         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
551         return 0;
552 }
553
554 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
555                    u64 *val)
556 {
557         *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
558         return 0;
559 }
560
561 static void reset_wcr(struct kvm_vcpu *vcpu,
562                       const struct sys_reg_desc *rd)
563 {
564         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
565 }
566
567 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
568 {
569         u64 amair = read_sysreg(amair_el1);
570         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
571 }
572
573 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
574 {
575         u64 actlr = read_sysreg(actlr_el1);
576         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
577 }
578
579 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
580 {
581         u64 mpidr;
582
583         /*
584          * Map the vcpu_id into the first three affinity level fields of
585          * the MPIDR. We limit the number of VCPUs in level 0 due to a
586          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
587          * of the GICv3 to be able to address each CPU directly when
588          * sending IPIs.
589          */
590         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
591         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
592         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
593         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
594 }
595
596 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
597                                    const struct sys_reg_desc *r)
598 {
599         if (kvm_vcpu_has_pmu(vcpu))
600                 return 0;
601
602         return REG_HIDDEN;
603 }
604
605 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
606 {
607         u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
608
609         /* No PMU available, any PMU reg may UNDEF... */
610         if (!kvm_arm_support_pmu_v3())
611                 return;
612
613         n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
614         n &= ARMV8_PMU_PMCR_N_MASK;
615         if (n)
616                 mask |= GENMASK(n - 1, 0);
617
618         reset_unknown(vcpu, r);
619         __vcpu_sys_reg(vcpu, r->reg) &= mask;
620 }
621
622 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
623 {
624         reset_unknown(vcpu, r);
625         __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
626 }
627
628 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
629 {
630         reset_unknown(vcpu, r);
631         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
632 }
633
634 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
635 {
636         reset_unknown(vcpu, r);
637         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
638 }
639
640 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
641 {
642         u64 pmcr, val;
643
644         /* No PMU available, PMCR_EL0 may UNDEF... */
645         if (!kvm_arm_support_pmu_v3())
646                 return;
647
648         pmcr = read_sysreg(pmcr_el0);
649         /*
650          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
651          * except PMCR.E resetting to zero.
652          */
653         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
654                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
655         if (!system_supports_32bit_el0())
656                 val |= ARMV8_PMU_PMCR_LC;
657         __vcpu_sys_reg(vcpu, r->reg) = val;
658 }
659
660 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
661 {
662         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
663         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
664
665         if (!enabled)
666                 kvm_inject_undefined(vcpu);
667
668         return !enabled;
669 }
670
671 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
672 {
673         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
674 }
675
676 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
677 {
678         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
679 }
680
681 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
682 {
683         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
684 }
685
686 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
687 {
688         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
689 }
690
691 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
692                         const struct sys_reg_desc *r)
693 {
694         u64 val;
695
696         if (pmu_access_el0_disabled(vcpu))
697                 return false;
698
699         if (p->is_write) {
700                 /* Only update writeable bits of PMCR */
701                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
702                 val &= ~ARMV8_PMU_PMCR_MASK;
703                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
704                 if (!system_supports_32bit_el0())
705                         val |= ARMV8_PMU_PMCR_LC;
706                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
707                 kvm_pmu_handle_pmcr(vcpu, val);
708                 kvm_vcpu_pmu_restore_guest(vcpu);
709         } else {
710                 /* PMCR.P & PMCR.C are RAZ */
711                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
712                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
713                 p->regval = val;
714         }
715
716         return true;
717 }
718
719 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
720                           const struct sys_reg_desc *r)
721 {
722         if (pmu_access_event_counter_el0_disabled(vcpu))
723                 return false;
724
725         if (p->is_write)
726                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
727         else
728                 /* return PMSELR.SEL field */
729                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
730                             & ARMV8_PMU_COUNTER_MASK;
731
732         return true;
733 }
734
735 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
736                           const struct sys_reg_desc *r)
737 {
738         u64 pmceid, mask, shift;
739
740         BUG_ON(p->is_write);
741
742         if (pmu_access_el0_disabled(vcpu))
743                 return false;
744
745         get_access_mask(r, &mask, &shift);
746
747         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
748         pmceid &= mask;
749         pmceid >>= shift;
750
751         p->regval = pmceid;
752
753         return true;
754 }
755
756 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
757 {
758         u64 pmcr, val;
759
760         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
761         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
762         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
763                 kvm_inject_undefined(vcpu);
764                 return false;
765         }
766
767         return true;
768 }
769
770 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
771                               struct sys_reg_params *p,
772                               const struct sys_reg_desc *r)
773 {
774         u64 idx = ~0UL;
775
776         if (r->CRn == 9 && r->CRm == 13) {
777                 if (r->Op2 == 2) {
778                         /* PMXEVCNTR_EL0 */
779                         if (pmu_access_event_counter_el0_disabled(vcpu))
780                                 return false;
781
782                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
783                               & ARMV8_PMU_COUNTER_MASK;
784                 } else if (r->Op2 == 0) {
785                         /* PMCCNTR_EL0 */
786                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
787                                 return false;
788
789                         idx = ARMV8_PMU_CYCLE_IDX;
790                 }
791         } else if (r->CRn == 0 && r->CRm == 9) {
792                 /* PMCCNTR */
793                 if (pmu_access_event_counter_el0_disabled(vcpu))
794                         return false;
795
796                 idx = ARMV8_PMU_CYCLE_IDX;
797         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
798                 /* PMEVCNTRn_EL0 */
799                 if (pmu_access_event_counter_el0_disabled(vcpu))
800                         return false;
801
802                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
803         }
804
805         /* Catch any decoding mistake */
806         WARN_ON(idx == ~0UL);
807
808         if (!pmu_counter_idx_valid(vcpu, idx))
809                 return false;
810
811         if (p->is_write) {
812                 if (pmu_access_el0_disabled(vcpu))
813                         return false;
814
815                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
816         } else {
817                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
818         }
819
820         return true;
821 }
822
823 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
824                                const struct sys_reg_desc *r)
825 {
826         u64 idx, reg;
827
828         if (pmu_access_el0_disabled(vcpu))
829                 return false;
830
831         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
832                 /* PMXEVTYPER_EL0 */
833                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
834                 reg = PMEVTYPER0_EL0 + idx;
835         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
836                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
837                 if (idx == ARMV8_PMU_CYCLE_IDX)
838                         reg = PMCCFILTR_EL0;
839                 else
840                         /* PMEVTYPERn_EL0 */
841                         reg = PMEVTYPER0_EL0 + idx;
842         } else {
843                 BUG();
844         }
845
846         if (!pmu_counter_idx_valid(vcpu, idx))
847                 return false;
848
849         if (p->is_write) {
850                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
851                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
852                 kvm_vcpu_pmu_restore_guest(vcpu);
853         } else {
854                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
855         }
856
857         return true;
858 }
859
860 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
861                            const struct sys_reg_desc *r)
862 {
863         u64 val, mask;
864
865         if (pmu_access_el0_disabled(vcpu))
866                 return false;
867
868         mask = kvm_pmu_valid_counter_mask(vcpu);
869         if (p->is_write) {
870                 val = p->regval & mask;
871                 if (r->Op2 & 0x1) {
872                         /* accessing PMCNTENSET_EL0 */
873                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
874                         kvm_pmu_enable_counter_mask(vcpu, val);
875                         kvm_vcpu_pmu_restore_guest(vcpu);
876                 } else {
877                         /* accessing PMCNTENCLR_EL0 */
878                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
879                         kvm_pmu_disable_counter_mask(vcpu, val);
880                 }
881         } else {
882                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
883         }
884
885         return true;
886 }
887
888 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
889                            const struct sys_reg_desc *r)
890 {
891         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
892
893         if (check_pmu_access_disabled(vcpu, 0))
894                 return false;
895
896         if (p->is_write) {
897                 u64 val = p->regval & mask;
898
899                 if (r->Op2 & 0x1)
900                         /* accessing PMINTENSET_EL1 */
901                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
902                 else
903                         /* accessing PMINTENCLR_EL1 */
904                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
905         } else {
906                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
907         }
908
909         return true;
910 }
911
912 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
913                          const struct sys_reg_desc *r)
914 {
915         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
916
917         if (pmu_access_el0_disabled(vcpu))
918                 return false;
919
920         if (p->is_write) {
921                 if (r->CRm & 0x2)
922                         /* accessing PMOVSSET_EL0 */
923                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
924                 else
925                         /* accessing PMOVSCLR_EL0 */
926                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
927         } else {
928                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
929         }
930
931         return true;
932 }
933
934 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
935                            const struct sys_reg_desc *r)
936 {
937         u64 mask;
938
939         if (!p->is_write)
940                 return read_from_write_only(vcpu, p, r);
941
942         if (pmu_write_swinc_el0_disabled(vcpu))
943                 return false;
944
945         mask = kvm_pmu_valid_counter_mask(vcpu);
946         kvm_pmu_software_increment(vcpu, p->regval & mask);
947         return true;
948 }
949
950 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
951                              const struct sys_reg_desc *r)
952 {
953         if (p->is_write) {
954                 if (!vcpu_mode_priv(vcpu)) {
955                         kvm_inject_undefined(vcpu);
956                         return false;
957                 }
958
959                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
960                                p->regval & ARMV8_PMU_USERENR_MASK;
961         } else {
962                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
963                             & ARMV8_PMU_USERENR_MASK;
964         }
965
966         return true;
967 }
968
969 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
970 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
971         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
972           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
973         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
974           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
975         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
976           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
977         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
978           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
979
980 #define PMU_SYS_REG(r)                                          \
981         SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
982
983 /* Macro to expand the PMEVCNTRn_EL0 register */
984 #define PMU_PMEVCNTR_EL0(n)                                             \
985         { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),                            \
986           .reset = reset_pmevcntr,                                      \
987           .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
988
989 /* Macro to expand the PMEVTYPERn_EL0 register */
990 #define PMU_PMEVTYPER_EL0(n)                                            \
991         { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),                           \
992           .reset = reset_pmevtyper,                                     \
993           .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
994
995 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
996                          const struct sys_reg_desc *r)
997 {
998         kvm_inject_undefined(vcpu);
999
1000         return false;
1001 }
1002
1003 /* Macro to expand the AMU counter and type registers*/
1004 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1005 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1006 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1007 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1008
1009 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1010                         const struct sys_reg_desc *rd)
1011 {
1012         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1013 }
1014
1015 /*
1016  * If we land here on a PtrAuth access, that is because we didn't
1017  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1018  * way this happens is when the guest does not have PtrAuth support
1019  * enabled.
1020  */
1021 #define __PTRAUTH_KEY(k)                                                \
1022         { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
1023         .visibility = ptrauth_visibility}
1024
1025 #define PTRAUTH_KEY(k)                                                  \
1026         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1027         __PTRAUTH_KEY(k ## KEYHI_EL1)
1028
1029 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1030                               struct sys_reg_params *p,
1031                               const struct sys_reg_desc *r)
1032 {
1033         enum kvm_arch_timers tmr;
1034         enum kvm_arch_timer_regs treg;
1035         u64 reg = reg_to_encoding(r);
1036
1037         switch (reg) {
1038         case SYS_CNTP_TVAL_EL0:
1039         case SYS_AARCH32_CNTP_TVAL:
1040                 tmr = TIMER_PTIMER;
1041                 treg = TIMER_REG_TVAL;
1042                 break;
1043         case SYS_CNTP_CTL_EL0:
1044         case SYS_AARCH32_CNTP_CTL:
1045                 tmr = TIMER_PTIMER;
1046                 treg = TIMER_REG_CTL;
1047                 break;
1048         case SYS_CNTP_CVAL_EL0:
1049         case SYS_AARCH32_CNTP_CVAL:
1050                 tmr = TIMER_PTIMER;
1051                 treg = TIMER_REG_CVAL;
1052                 break;
1053         default:
1054                 BUG();
1055         }
1056
1057         if (p->is_write)
1058                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1059         else
1060                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1061
1062         return true;
1063 }
1064
1065 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1066 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1067                 struct sys_reg_desc const *r, bool raz)
1068 {
1069         u32 id = reg_to_encoding(r);
1070         u64 val;
1071
1072         if (raz)
1073                 return 0;
1074
1075         val = read_sanitised_ftr_reg(id);
1076
1077         switch (id) {
1078         case SYS_ID_AA64PFR0_EL1:
1079                 if (!vcpu_has_sve(vcpu))
1080                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_SVE);
1081                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_AMU);
1082                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2);
1083                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1084                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3);
1085                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1086                 if (kvm_vgic_global_state.type == VGIC_V3) {
1087                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_GIC);
1088                         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_GIC), 1);
1089                 }
1090                 break;
1091         case SYS_ID_AA64PFR1_EL1:
1092                 if (!kvm_has_mte(vcpu->kvm))
1093                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE);
1094
1095                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_SME);
1096                 break;
1097         case SYS_ID_AA64ISAR1_EL1:
1098                 if (!vcpu_has_ptrauth(vcpu))
1099                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1100                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1101                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1102                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1103                 break;
1104         case SYS_ID_AA64ISAR2_EL1:
1105                 if (!vcpu_has_ptrauth(vcpu))
1106                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1107                                  ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1108                 if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1109                         val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1110                 break;
1111         case SYS_ID_AA64DFR0_EL1:
1112                 /* Limit debug to ARMv8.0 */
1113                 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER);
1114                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), 6);
1115                 /* Limit guests to PMUv3 for ARMv8.4 */
1116                 val = cpuid_feature_cap_perfmon_field(val,
1117                                                       ID_AA64DFR0_PMUVER_SHIFT,
1118                                                       kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
1119                 /* Hide SPE from guests */
1120                 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER);
1121                 break;
1122         case SYS_ID_DFR0_EL1:
1123                 /* Limit guests to PMUv3 for ARMv8.4 */
1124                 val = cpuid_feature_cap_perfmon_field(val,
1125                                                       ID_DFR0_PERFMON_SHIFT,
1126                                                       kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
1127                 break;
1128         }
1129
1130         return val;
1131 }
1132
1133 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1134                                   const struct sys_reg_desc *r)
1135 {
1136         u32 id = reg_to_encoding(r);
1137
1138         switch (id) {
1139         case SYS_ID_AA64ZFR0_EL1:
1140                 if (!vcpu_has_sve(vcpu))
1141                         return REG_RAZ;
1142                 break;
1143         }
1144
1145         return 0;
1146 }
1147
1148 /* cpufeature ID register access trap handlers */
1149
1150 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1151                             struct sys_reg_params *p,
1152                             const struct sys_reg_desc *r,
1153                             bool raz)
1154 {
1155         if (p->is_write)
1156                 return write_to_read_only(vcpu, p, r);
1157
1158         p->regval = read_id_reg(vcpu, r, raz);
1159         return true;
1160 }
1161
1162 static bool access_id_reg(struct kvm_vcpu *vcpu,
1163                           struct sys_reg_params *p,
1164                           const struct sys_reg_desc *r)
1165 {
1166         bool raz = sysreg_visible_as_raz(vcpu, r);
1167
1168         return __access_id_reg(vcpu, p, r, raz);
1169 }
1170
1171 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1172                               struct sys_reg_params *p,
1173                               const struct sys_reg_desc *r)
1174 {
1175         return __access_id_reg(vcpu, p, r, true);
1176 }
1177
1178 /* Visibility overrides for SVE-specific control registers */
1179 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1180                                    const struct sys_reg_desc *rd)
1181 {
1182         if (vcpu_has_sve(vcpu))
1183                 return 0;
1184
1185         return REG_HIDDEN;
1186 }
1187
1188 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1189                                const struct sys_reg_desc *rd,
1190                                u64 val)
1191 {
1192         u8 csv2, csv3;
1193
1194         /*
1195          * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1196          * it doesn't promise more than what is actually provided (the
1197          * guest could otherwise be covered in ectoplasmic residue).
1198          */
1199         csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1200         if (csv2 > 1 ||
1201             (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1202                 return -EINVAL;
1203
1204         /* Same thing for CSV3 */
1205         csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1206         if (csv3 > 1 ||
1207             (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1208                 return -EINVAL;
1209
1210         /* We can only differ with CSV[23], and anything else is an error */
1211         val ^= read_id_reg(vcpu, rd, false);
1212         val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1213                  (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1214         if (val)
1215                 return -EINVAL;
1216
1217         vcpu->kvm->arch.pfr0_csv2 = csv2;
1218         vcpu->kvm->arch.pfr0_csv3 = csv3;
1219
1220         return 0;
1221 }
1222
1223 /*
1224  * cpufeature ID register user accessors
1225  *
1226  * For now, these registers are immutable for userspace, so no values
1227  * are stored, and for set_id_reg() we don't allow the effective value
1228  * to be changed.
1229  */
1230 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1231                         const struct sys_reg_desc *rd, u64 *val,
1232                         bool raz)
1233 {
1234         *val = read_id_reg(vcpu, rd, raz);
1235         return 0;
1236 }
1237
1238 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1239                         const struct sys_reg_desc *rd, u64 val,
1240                         bool raz)
1241 {
1242         /* This is what we mean by invariant: you can't change it. */
1243         if (val != read_id_reg(vcpu, rd, raz))
1244                 return -EINVAL;
1245
1246         return 0;
1247 }
1248
1249 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1250                       u64 *val)
1251 {
1252         bool raz = sysreg_visible_as_raz(vcpu, rd);
1253
1254         return __get_id_reg(vcpu, rd, val, raz);
1255 }
1256
1257 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1258                       u64 val)
1259 {
1260         bool raz = sysreg_visible_as_raz(vcpu, rd);
1261
1262         return __set_id_reg(vcpu, rd, val, raz);
1263 }
1264
1265 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1266                           u64 val)
1267 {
1268         return __set_id_reg(vcpu, rd, val, true);
1269 }
1270
1271 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1272                        u64 *val)
1273 {
1274         *val = 0;
1275         return 0;
1276 }
1277
1278 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1279                       u64 val)
1280 {
1281         return 0;
1282 }
1283
1284 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1285                        const struct sys_reg_desc *r)
1286 {
1287         if (p->is_write)
1288                 return write_to_read_only(vcpu, p, r);
1289
1290         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1291         return true;
1292 }
1293
1294 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1295                          const struct sys_reg_desc *r)
1296 {
1297         if (p->is_write)
1298                 return write_to_read_only(vcpu, p, r);
1299
1300         p->regval = read_sysreg(clidr_el1);
1301         return true;
1302 }
1303
1304 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1305                           const struct sys_reg_desc *r)
1306 {
1307         int reg = r->reg;
1308
1309         if (p->is_write)
1310                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1311         else
1312                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1313         return true;
1314 }
1315
1316 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1317                           const struct sys_reg_desc *r)
1318 {
1319         u32 csselr;
1320
1321         if (p->is_write)
1322                 return write_to_read_only(vcpu, p, r);
1323
1324         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1325         p->regval = get_ccsidr(csselr);
1326
1327         /*
1328          * Guests should not be doing cache operations by set/way at all, and
1329          * for this reason, we trap them and attempt to infer the intent, so
1330          * that we can flush the entire guest's address space at the appropriate
1331          * time.
1332          * To prevent this trapping from causing performance problems, let's
1333          * expose the geometry of all data and unified caches (which are
1334          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1335          * [If guests should attempt to infer aliasing properties from the
1336          * geometry (which is not permitted by the architecture), they would
1337          * only do so for virtually indexed caches.]
1338          */
1339         if (!(csselr & 1)) // data or unified cache
1340                 p->regval &= ~GENMASK(27, 3);
1341         return true;
1342 }
1343
1344 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1345                                    const struct sys_reg_desc *rd)
1346 {
1347         if (kvm_has_mte(vcpu->kvm))
1348                 return 0;
1349
1350         return REG_HIDDEN;
1351 }
1352
1353 #define MTE_REG(name) {                         \
1354         SYS_DESC(SYS_##name),                   \
1355         .access = undef_access,                 \
1356         .reset = reset_unknown,                 \
1357         .reg = name,                            \
1358         .visibility = mte_visibility,           \
1359 }
1360
1361 /* sys_reg_desc initialiser for known cpufeature ID registers */
1362 #define ID_SANITISED(name) {                    \
1363         SYS_DESC(SYS_##name),                   \
1364         .access = access_id_reg,                \
1365         .get_user = get_id_reg,                 \
1366         .set_user = set_id_reg,                 \
1367         .visibility = id_visibility,            \
1368 }
1369
1370 /*
1371  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1372  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1373  * (1 <= crm < 8, 0 <= Op2 < 8).
1374  */
1375 #define ID_UNALLOCATED(crm, op2) {                      \
1376         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1377         .access = access_raz_id_reg,                    \
1378         .get_user = get_raz_reg,                        \
1379         .set_user = set_raz_id_reg,                     \
1380 }
1381
1382 /*
1383  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1384  * For now, these are exposed just like unallocated ID regs: they appear
1385  * RAZ for the guest.
1386  */
1387 #define ID_HIDDEN(name) {                       \
1388         SYS_DESC(SYS_##name),                   \
1389         .access = access_raz_id_reg,            \
1390         .get_user = get_raz_reg,                \
1391         .set_user = set_raz_id_reg,             \
1392 }
1393
1394 /*
1395  * Architected system registers.
1396  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1397  *
1398  * Debug handling: We do trap most, if not all debug related system
1399  * registers. The implementation is good enough to ensure that a guest
1400  * can use these with minimal performance degradation. The drawback is
1401  * that we don't implement any of the external debug architecture.
1402  * This should be revisited if we ever encounter a more demanding
1403  * guest...
1404  */
1405 static const struct sys_reg_desc sys_reg_descs[] = {
1406         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1407         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1408         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1409
1410         DBG_BCR_BVR_WCR_WVR_EL1(0),
1411         DBG_BCR_BVR_WCR_WVR_EL1(1),
1412         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1413         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1414         DBG_BCR_BVR_WCR_WVR_EL1(2),
1415         DBG_BCR_BVR_WCR_WVR_EL1(3),
1416         DBG_BCR_BVR_WCR_WVR_EL1(4),
1417         DBG_BCR_BVR_WCR_WVR_EL1(5),
1418         DBG_BCR_BVR_WCR_WVR_EL1(6),
1419         DBG_BCR_BVR_WCR_WVR_EL1(7),
1420         DBG_BCR_BVR_WCR_WVR_EL1(8),
1421         DBG_BCR_BVR_WCR_WVR_EL1(9),
1422         DBG_BCR_BVR_WCR_WVR_EL1(10),
1423         DBG_BCR_BVR_WCR_WVR_EL1(11),
1424         DBG_BCR_BVR_WCR_WVR_EL1(12),
1425         DBG_BCR_BVR_WCR_WVR_EL1(13),
1426         DBG_BCR_BVR_WCR_WVR_EL1(14),
1427         DBG_BCR_BVR_WCR_WVR_EL1(15),
1428
1429         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1430         { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1431         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1432                 SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1433         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1434         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1435         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1436         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1437         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1438
1439         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1440         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1441         // DBGDTR[TR]X_EL0 share the same encoding
1442         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1443
1444         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1445
1446         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1447
1448         /*
1449          * ID regs: all ID_SANITISED() entries here must have corresponding
1450          * entries in arm64_ftr_regs[].
1451          */
1452
1453         /* AArch64 mappings of the AArch32 ID registers */
1454         /* CRm=1 */
1455         ID_SANITISED(ID_PFR0_EL1),
1456         ID_SANITISED(ID_PFR1_EL1),
1457         ID_SANITISED(ID_DFR0_EL1),
1458         ID_HIDDEN(ID_AFR0_EL1),
1459         ID_SANITISED(ID_MMFR0_EL1),
1460         ID_SANITISED(ID_MMFR1_EL1),
1461         ID_SANITISED(ID_MMFR2_EL1),
1462         ID_SANITISED(ID_MMFR3_EL1),
1463
1464         /* CRm=2 */
1465         ID_SANITISED(ID_ISAR0_EL1),
1466         ID_SANITISED(ID_ISAR1_EL1),
1467         ID_SANITISED(ID_ISAR2_EL1),
1468         ID_SANITISED(ID_ISAR3_EL1),
1469         ID_SANITISED(ID_ISAR4_EL1),
1470         ID_SANITISED(ID_ISAR5_EL1),
1471         ID_SANITISED(ID_MMFR4_EL1),
1472         ID_SANITISED(ID_ISAR6_EL1),
1473
1474         /* CRm=3 */
1475         ID_SANITISED(MVFR0_EL1),
1476         ID_SANITISED(MVFR1_EL1),
1477         ID_SANITISED(MVFR2_EL1),
1478         ID_UNALLOCATED(3,3),
1479         ID_SANITISED(ID_PFR2_EL1),
1480         ID_HIDDEN(ID_DFR1_EL1),
1481         ID_SANITISED(ID_MMFR5_EL1),
1482         ID_UNALLOCATED(3,7),
1483
1484         /* AArch64 ID registers */
1485         /* CRm=4 */
1486         { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1487           .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1488         ID_SANITISED(ID_AA64PFR1_EL1),
1489         ID_UNALLOCATED(4,2),
1490         ID_UNALLOCATED(4,3),
1491         ID_SANITISED(ID_AA64ZFR0_EL1),
1492         ID_HIDDEN(ID_AA64SMFR0_EL1),
1493         ID_UNALLOCATED(4,6),
1494         ID_UNALLOCATED(4,7),
1495
1496         /* CRm=5 */
1497         ID_SANITISED(ID_AA64DFR0_EL1),
1498         ID_SANITISED(ID_AA64DFR1_EL1),
1499         ID_UNALLOCATED(5,2),
1500         ID_UNALLOCATED(5,3),
1501         ID_HIDDEN(ID_AA64AFR0_EL1),
1502         ID_HIDDEN(ID_AA64AFR1_EL1),
1503         ID_UNALLOCATED(5,6),
1504         ID_UNALLOCATED(5,7),
1505
1506         /* CRm=6 */
1507         ID_SANITISED(ID_AA64ISAR0_EL1),
1508         ID_SANITISED(ID_AA64ISAR1_EL1),
1509         ID_SANITISED(ID_AA64ISAR2_EL1),
1510         ID_UNALLOCATED(6,3),
1511         ID_UNALLOCATED(6,4),
1512         ID_UNALLOCATED(6,5),
1513         ID_UNALLOCATED(6,6),
1514         ID_UNALLOCATED(6,7),
1515
1516         /* CRm=7 */
1517         ID_SANITISED(ID_AA64MMFR0_EL1),
1518         ID_SANITISED(ID_AA64MMFR1_EL1),
1519         ID_SANITISED(ID_AA64MMFR2_EL1),
1520         ID_UNALLOCATED(7,3),
1521         ID_UNALLOCATED(7,4),
1522         ID_UNALLOCATED(7,5),
1523         ID_UNALLOCATED(7,6),
1524         ID_UNALLOCATED(7,7),
1525
1526         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1527         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1528         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1529
1530         MTE_REG(RGSR_EL1),
1531         MTE_REG(GCR_EL1),
1532
1533         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1534         { SYS_DESC(SYS_TRFCR_EL1), undef_access },
1535         { SYS_DESC(SYS_SMPRI_EL1), undef_access },
1536         { SYS_DESC(SYS_SMCR_EL1), undef_access },
1537         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1538         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1539         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1540
1541         PTRAUTH_KEY(APIA),
1542         PTRAUTH_KEY(APIB),
1543         PTRAUTH_KEY(APDA),
1544         PTRAUTH_KEY(APDB),
1545         PTRAUTH_KEY(APGA),
1546
1547         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1548         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1549         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1550
1551         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1552         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1553         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1554         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1555         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1556         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1557         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1558         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1559
1560         MTE_REG(TFSR_EL1),
1561         MTE_REG(TFSRE0_EL1),
1562
1563         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1564         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1565
1566         { SYS_DESC(SYS_PMSCR_EL1), undef_access },
1567         { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1568         { SYS_DESC(SYS_PMSICR_EL1), undef_access },
1569         { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1570         { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1571         { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1572         { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1573         { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1574         { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1575         { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1576         { SYS_DESC(SYS_PMBSR_EL1), undef_access },
1577         /* PMBIDR_EL1 is not trapped */
1578
1579         { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1580           .access = access_pminten, .reg = PMINTENSET_EL1 },
1581         { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1582           .access = access_pminten, .reg = PMINTENSET_EL1 },
1583         { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1584
1585         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1586         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1587
1588         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1589         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1590         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1591         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1592         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1593
1594         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1595         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1596
1597         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1598         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1599         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1600         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1601         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1602         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1603         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1604         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1605         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1606         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1607         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1608         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1609
1610         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1611         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1612
1613         { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1614
1615         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1616
1617         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1618         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1619         { SYS_DESC(SYS_SMIDR_EL1), undef_access },
1620         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1621         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1622         { SYS_DESC(SYS_SVCR), undef_access },
1623
1624         { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1625           .reset = reset_pmcr, .reg = PMCR_EL0 },
1626         { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1627           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1628         { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1629           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1630         { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1631           .access = access_pmovs, .reg = PMOVSSET_EL0 },
1632         /*
1633          * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1634          * previously (and pointlessly) advertised in the past...
1635          */
1636         { PMU_SYS_REG(SYS_PMSWINC_EL0),
1637           .get_user = get_raz_reg, .set_user = set_wi_reg,
1638           .access = access_pmswinc, .reset = NULL },
1639         { PMU_SYS_REG(SYS_PMSELR_EL0),
1640           .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
1641         { PMU_SYS_REG(SYS_PMCEID0_EL0),
1642           .access = access_pmceid, .reset = NULL },
1643         { PMU_SYS_REG(SYS_PMCEID1_EL0),
1644           .access = access_pmceid, .reset = NULL },
1645         { PMU_SYS_REG(SYS_PMCCNTR_EL0),
1646           .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
1647         { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1648           .access = access_pmu_evtyper, .reset = NULL },
1649         { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1650           .access = access_pmu_evcntr, .reset = NULL },
1651         /*
1652          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1653          * in 32bit mode. Here we choose to reset it as zero for consistency.
1654          */
1655         { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1656           .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1657         { PMU_SYS_REG(SYS_PMOVSSET_EL0),
1658           .access = access_pmovs, .reg = PMOVSSET_EL0 },
1659
1660         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1661         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1662         { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
1663
1664         { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1665
1666         { SYS_DESC(SYS_AMCR_EL0), undef_access },
1667         { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1668         { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1669         { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1670         { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1671         { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1672         { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1673         { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1674         AMU_AMEVCNTR0_EL0(0),
1675         AMU_AMEVCNTR0_EL0(1),
1676         AMU_AMEVCNTR0_EL0(2),
1677         AMU_AMEVCNTR0_EL0(3),
1678         AMU_AMEVCNTR0_EL0(4),
1679         AMU_AMEVCNTR0_EL0(5),
1680         AMU_AMEVCNTR0_EL0(6),
1681         AMU_AMEVCNTR0_EL0(7),
1682         AMU_AMEVCNTR0_EL0(8),
1683         AMU_AMEVCNTR0_EL0(9),
1684         AMU_AMEVCNTR0_EL0(10),
1685         AMU_AMEVCNTR0_EL0(11),
1686         AMU_AMEVCNTR0_EL0(12),
1687         AMU_AMEVCNTR0_EL0(13),
1688         AMU_AMEVCNTR0_EL0(14),
1689         AMU_AMEVCNTR0_EL0(15),
1690         AMU_AMEVTYPER0_EL0(0),
1691         AMU_AMEVTYPER0_EL0(1),
1692         AMU_AMEVTYPER0_EL0(2),
1693         AMU_AMEVTYPER0_EL0(3),
1694         AMU_AMEVTYPER0_EL0(4),
1695         AMU_AMEVTYPER0_EL0(5),
1696         AMU_AMEVTYPER0_EL0(6),
1697         AMU_AMEVTYPER0_EL0(7),
1698         AMU_AMEVTYPER0_EL0(8),
1699         AMU_AMEVTYPER0_EL0(9),
1700         AMU_AMEVTYPER0_EL0(10),
1701         AMU_AMEVTYPER0_EL0(11),
1702         AMU_AMEVTYPER0_EL0(12),
1703         AMU_AMEVTYPER0_EL0(13),
1704         AMU_AMEVTYPER0_EL0(14),
1705         AMU_AMEVTYPER0_EL0(15),
1706         AMU_AMEVCNTR1_EL0(0),
1707         AMU_AMEVCNTR1_EL0(1),
1708         AMU_AMEVCNTR1_EL0(2),
1709         AMU_AMEVCNTR1_EL0(3),
1710         AMU_AMEVCNTR1_EL0(4),
1711         AMU_AMEVCNTR1_EL0(5),
1712         AMU_AMEVCNTR1_EL0(6),
1713         AMU_AMEVCNTR1_EL0(7),
1714         AMU_AMEVCNTR1_EL0(8),
1715         AMU_AMEVCNTR1_EL0(9),
1716         AMU_AMEVCNTR1_EL0(10),
1717         AMU_AMEVCNTR1_EL0(11),
1718         AMU_AMEVCNTR1_EL0(12),
1719         AMU_AMEVCNTR1_EL0(13),
1720         AMU_AMEVCNTR1_EL0(14),
1721         AMU_AMEVCNTR1_EL0(15),
1722         AMU_AMEVTYPER1_EL0(0),
1723         AMU_AMEVTYPER1_EL0(1),
1724         AMU_AMEVTYPER1_EL0(2),
1725         AMU_AMEVTYPER1_EL0(3),
1726         AMU_AMEVTYPER1_EL0(4),
1727         AMU_AMEVTYPER1_EL0(5),
1728         AMU_AMEVTYPER1_EL0(6),
1729         AMU_AMEVTYPER1_EL0(7),
1730         AMU_AMEVTYPER1_EL0(8),
1731         AMU_AMEVTYPER1_EL0(9),
1732         AMU_AMEVTYPER1_EL0(10),
1733         AMU_AMEVTYPER1_EL0(11),
1734         AMU_AMEVTYPER1_EL0(12),
1735         AMU_AMEVTYPER1_EL0(13),
1736         AMU_AMEVTYPER1_EL0(14),
1737         AMU_AMEVTYPER1_EL0(15),
1738
1739         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1740         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1741         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1742
1743         /* PMEVCNTRn_EL0 */
1744         PMU_PMEVCNTR_EL0(0),
1745         PMU_PMEVCNTR_EL0(1),
1746         PMU_PMEVCNTR_EL0(2),
1747         PMU_PMEVCNTR_EL0(3),
1748         PMU_PMEVCNTR_EL0(4),
1749         PMU_PMEVCNTR_EL0(5),
1750         PMU_PMEVCNTR_EL0(6),
1751         PMU_PMEVCNTR_EL0(7),
1752         PMU_PMEVCNTR_EL0(8),
1753         PMU_PMEVCNTR_EL0(9),
1754         PMU_PMEVCNTR_EL0(10),
1755         PMU_PMEVCNTR_EL0(11),
1756         PMU_PMEVCNTR_EL0(12),
1757         PMU_PMEVCNTR_EL0(13),
1758         PMU_PMEVCNTR_EL0(14),
1759         PMU_PMEVCNTR_EL0(15),
1760         PMU_PMEVCNTR_EL0(16),
1761         PMU_PMEVCNTR_EL0(17),
1762         PMU_PMEVCNTR_EL0(18),
1763         PMU_PMEVCNTR_EL0(19),
1764         PMU_PMEVCNTR_EL0(20),
1765         PMU_PMEVCNTR_EL0(21),
1766         PMU_PMEVCNTR_EL0(22),
1767         PMU_PMEVCNTR_EL0(23),
1768         PMU_PMEVCNTR_EL0(24),
1769         PMU_PMEVCNTR_EL0(25),
1770         PMU_PMEVCNTR_EL0(26),
1771         PMU_PMEVCNTR_EL0(27),
1772         PMU_PMEVCNTR_EL0(28),
1773         PMU_PMEVCNTR_EL0(29),
1774         PMU_PMEVCNTR_EL0(30),
1775         /* PMEVTYPERn_EL0 */
1776         PMU_PMEVTYPER_EL0(0),
1777         PMU_PMEVTYPER_EL0(1),
1778         PMU_PMEVTYPER_EL0(2),
1779         PMU_PMEVTYPER_EL0(3),
1780         PMU_PMEVTYPER_EL0(4),
1781         PMU_PMEVTYPER_EL0(5),
1782         PMU_PMEVTYPER_EL0(6),
1783         PMU_PMEVTYPER_EL0(7),
1784         PMU_PMEVTYPER_EL0(8),
1785         PMU_PMEVTYPER_EL0(9),
1786         PMU_PMEVTYPER_EL0(10),
1787         PMU_PMEVTYPER_EL0(11),
1788         PMU_PMEVTYPER_EL0(12),
1789         PMU_PMEVTYPER_EL0(13),
1790         PMU_PMEVTYPER_EL0(14),
1791         PMU_PMEVTYPER_EL0(15),
1792         PMU_PMEVTYPER_EL0(16),
1793         PMU_PMEVTYPER_EL0(17),
1794         PMU_PMEVTYPER_EL0(18),
1795         PMU_PMEVTYPER_EL0(19),
1796         PMU_PMEVTYPER_EL0(20),
1797         PMU_PMEVTYPER_EL0(21),
1798         PMU_PMEVTYPER_EL0(22),
1799         PMU_PMEVTYPER_EL0(23),
1800         PMU_PMEVTYPER_EL0(24),
1801         PMU_PMEVTYPER_EL0(25),
1802         PMU_PMEVTYPER_EL0(26),
1803         PMU_PMEVTYPER_EL0(27),
1804         PMU_PMEVTYPER_EL0(28),
1805         PMU_PMEVTYPER_EL0(29),
1806         PMU_PMEVTYPER_EL0(30),
1807         /*
1808          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1809          * in 32bit mode. Here we choose to reset it as zero for consistency.
1810          */
1811         { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1812           .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1813
1814         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1815         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1816         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1817 };
1818
1819 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
1820                         struct sys_reg_params *p,
1821                         const struct sys_reg_desc *r)
1822 {
1823         if (p->is_write) {
1824                 return ignore_write(vcpu, p);
1825         } else {
1826                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1827                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1828                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1829
1830                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1831                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1832                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1833                              | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
1834                 return true;
1835         }
1836 }
1837
1838 /*
1839  * AArch32 debug register mappings
1840  *
1841  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1842  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1843  *
1844  * None of the other registers share their location, so treat them as
1845  * if they were 64bit.
1846  */
1847 #define DBG_BCR_BVR_WCR_WVR(n)                                                \
1848         /* DBGBVRn */                                                         \
1849         { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1850         /* DBGBCRn */                                                         \
1851         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
1852         /* DBGWVRn */                                                         \
1853         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
1854         /* DBGWCRn */                                                         \
1855         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1856
1857 #define DBGBXVR(n)                                                            \
1858         { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1859
1860 /*
1861  * Trapped cp14 registers. We generally ignore most of the external
1862  * debug, on the principle that they don't really make sense to a
1863  * guest. Revisit this one day, would this principle change.
1864  */
1865 static const struct sys_reg_desc cp14_regs[] = {
1866         /* DBGDIDR */
1867         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
1868         /* DBGDTRRXext */
1869         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1870
1871         DBG_BCR_BVR_WCR_WVR(0),
1872         /* DBGDSCRint */
1873         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1874         DBG_BCR_BVR_WCR_WVR(1),
1875         /* DBGDCCINT */
1876         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1877         /* DBGDSCRext */
1878         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1879         DBG_BCR_BVR_WCR_WVR(2),
1880         /* DBGDTR[RT]Xint */
1881         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1882         /* DBGDTR[RT]Xext */
1883         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1884         DBG_BCR_BVR_WCR_WVR(3),
1885         DBG_BCR_BVR_WCR_WVR(4),
1886         DBG_BCR_BVR_WCR_WVR(5),
1887         /* DBGWFAR */
1888         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1889         /* DBGOSECCR */
1890         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1891         DBG_BCR_BVR_WCR_WVR(6),
1892         /* DBGVCR */
1893         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1894         DBG_BCR_BVR_WCR_WVR(7),
1895         DBG_BCR_BVR_WCR_WVR(8),
1896         DBG_BCR_BVR_WCR_WVR(9),
1897         DBG_BCR_BVR_WCR_WVR(10),
1898         DBG_BCR_BVR_WCR_WVR(11),
1899         DBG_BCR_BVR_WCR_WVR(12),
1900         DBG_BCR_BVR_WCR_WVR(13),
1901         DBG_BCR_BVR_WCR_WVR(14),
1902         DBG_BCR_BVR_WCR_WVR(15),
1903
1904         /* DBGDRAR (32bit) */
1905         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1906
1907         DBGBXVR(0),
1908         /* DBGOSLAR */
1909         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
1910         DBGBXVR(1),
1911         /* DBGOSLSR */
1912         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
1913         DBGBXVR(2),
1914         DBGBXVR(3),
1915         /* DBGOSDLR */
1916         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1917         DBGBXVR(4),
1918         /* DBGPRCR */
1919         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1920         DBGBXVR(5),
1921         DBGBXVR(6),
1922         DBGBXVR(7),
1923         DBGBXVR(8),
1924         DBGBXVR(9),
1925         DBGBXVR(10),
1926         DBGBXVR(11),
1927         DBGBXVR(12),
1928         DBGBXVR(13),
1929         DBGBXVR(14),
1930         DBGBXVR(15),
1931
1932         /* DBGDSAR (32bit) */
1933         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1934
1935         /* DBGDEVID2 */
1936         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1937         /* DBGDEVID1 */
1938         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1939         /* DBGDEVID */
1940         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1941         /* DBGCLAIMSET */
1942         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1943         /* DBGCLAIMCLR */
1944         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1945         /* DBGAUTHSTATUS */
1946         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1947 };
1948
1949 /* Trapped cp14 64bit registers */
1950 static const struct sys_reg_desc cp14_64_regs[] = {
1951         /* DBGDRAR (64bit) */
1952         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1953
1954         /* DBGDSAR (64bit) */
1955         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1956 };
1957
1958 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)                  \
1959         AA32(_map),                                                     \
1960         Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),                     \
1961         .visibility = pmu_visibility
1962
1963 /* Macro to expand the PMEVCNTRn register */
1964 #define PMU_PMEVCNTR(n)                                                 \
1965         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
1966           (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
1967           .access = access_pmu_evcntr }
1968
1969 /* Macro to expand the PMEVTYPERn register */
1970 #define PMU_PMEVTYPER(n)                                                \
1971         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
1972           (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
1973           .access = access_pmu_evtyper }
1974 /*
1975  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1976  * depending on the way they are accessed (as a 32bit or a 64bit
1977  * register).
1978  */
1979 static const struct sys_reg_desc cp15_regs[] = {
1980         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1981         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1982         /* ACTLR */
1983         { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1984         /* ACTLR2 */
1985         { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1986         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1987         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1988         /* TTBCR */
1989         { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1990         /* TTBCR2 */
1991         { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1992         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1993         /* DFSR */
1994         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
1995         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
1996         /* ADFSR */
1997         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
1998         /* AIFSR */
1999         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2000         /* DFAR */
2001         { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2002         /* IFAR */
2003         { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2004
2005         /*
2006          * DC{C,I,CI}SW operations:
2007          */
2008         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2009         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2010         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2011
2012         /* PMU */
2013         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2014         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2015         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2016         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2017         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2018         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2019         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2020         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2021         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2022         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2023         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2024         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2025         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2026         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2027         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2028         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2029         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2030         /* PMMIR */
2031         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2032
2033         /* PRRR/MAIR0 */
2034         { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2035         /* NMRR/MAIR1 */
2036         { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2037         /* AMAIR0 */
2038         { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2039         /* AMAIR1 */
2040         { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2041
2042         /* ICC_SRE */
2043         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2044
2045         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2046
2047         /* Arch Tmers */
2048         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2049         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2050
2051         /* PMEVCNTRn */
2052         PMU_PMEVCNTR(0),
2053         PMU_PMEVCNTR(1),
2054         PMU_PMEVCNTR(2),
2055         PMU_PMEVCNTR(3),
2056         PMU_PMEVCNTR(4),
2057         PMU_PMEVCNTR(5),
2058         PMU_PMEVCNTR(6),
2059         PMU_PMEVCNTR(7),
2060         PMU_PMEVCNTR(8),
2061         PMU_PMEVCNTR(9),
2062         PMU_PMEVCNTR(10),
2063         PMU_PMEVCNTR(11),
2064         PMU_PMEVCNTR(12),
2065         PMU_PMEVCNTR(13),
2066         PMU_PMEVCNTR(14),
2067         PMU_PMEVCNTR(15),
2068         PMU_PMEVCNTR(16),
2069         PMU_PMEVCNTR(17),
2070         PMU_PMEVCNTR(18),
2071         PMU_PMEVCNTR(19),
2072         PMU_PMEVCNTR(20),
2073         PMU_PMEVCNTR(21),
2074         PMU_PMEVCNTR(22),
2075         PMU_PMEVCNTR(23),
2076         PMU_PMEVCNTR(24),
2077         PMU_PMEVCNTR(25),
2078         PMU_PMEVCNTR(26),
2079         PMU_PMEVCNTR(27),
2080         PMU_PMEVCNTR(28),
2081         PMU_PMEVCNTR(29),
2082         PMU_PMEVCNTR(30),
2083         /* PMEVTYPERn */
2084         PMU_PMEVTYPER(0),
2085         PMU_PMEVTYPER(1),
2086         PMU_PMEVTYPER(2),
2087         PMU_PMEVTYPER(3),
2088         PMU_PMEVTYPER(4),
2089         PMU_PMEVTYPER(5),
2090         PMU_PMEVTYPER(6),
2091         PMU_PMEVTYPER(7),
2092         PMU_PMEVTYPER(8),
2093         PMU_PMEVTYPER(9),
2094         PMU_PMEVTYPER(10),
2095         PMU_PMEVTYPER(11),
2096         PMU_PMEVTYPER(12),
2097         PMU_PMEVTYPER(13),
2098         PMU_PMEVTYPER(14),
2099         PMU_PMEVTYPER(15),
2100         PMU_PMEVTYPER(16),
2101         PMU_PMEVTYPER(17),
2102         PMU_PMEVTYPER(18),
2103         PMU_PMEVTYPER(19),
2104         PMU_PMEVTYPER(20),
2105         PMU_PMEVTYPER(21),
2106         PMU_PMEVTYPER(22),
2107         PMU_PMEVTYPER(23),
2108         PMU_PMEVTYPER(24),
2109         PMU_PMEVTYPER(25),
2110         PMU_PMEVTYPER(26),
2111         PMU_PMEVTYPER(27),
2112         PMU_PMEVTYPER(28),
2113         PMU_PMEVTYPER(29),
2114         PMU_PMEVTYPER(30),
2115         /* PMCCFILTR */
2116         { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2117
2118         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2119         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2120         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2121 };
2122
2123 static const struct sys_reg_desc cp15_64_regs[] = {
2124         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2125         { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2126         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2127         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2128         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2129         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2130         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2131 };
2132
2133 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2134                                bool is_32)
2135 {
2136         unsigned int i;
2137
2138         for (i = 0; i < n; i++) {
2139                 if (!is_32 && table[i].reg && !table[i].reset) {
2140                         kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2141                         return false;
2142                 }
2143
2144                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2145                         kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2146                         return false;
2147                 }
2148         }
2149
2150         return true;
2151 }
2152
2153 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2154 {
2155         kvm_inject_undefined(vcpu);
2156         return 1;
2157 }
2158
2159 static void perform_access(struct kvm_vcpu *vcpu,
2160                            struct sys_reg_params *params,
2161                            const struct sys_reg_desc *r)
2162 {
2163         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2164
2165         /* Check for regs disabled by runtime config */
2166         if (sysreg_hidden(vcpu, r)) {
2167                 kvm_inject_undefined(vcpu);
2168                 return;
2169         }
2170
2171         /*
2172          * Not having an accessor means that we have configured a trap
2173          * that we don't know how to handle. This certainly qualifies
2174          * as a gross bug that should be fixed right away.
2175          */
2176         BUG_ON(!r->access);
2177
2178         /* Skip instruction if instructed so */
2179         if (likely(r->access(vcpu, params, r)))
2180                 kvm_incr_pc(vcpu);
2181 }
2182
2183 /*
2184  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2185  *                call the corresponding trap handler.
2186  *
2187  * @params: pointer to the descriptor of the access
2188  * @table: array of trap descriptors
2189  * @num: size of the trap descriptor array
2190  *
2191  * Return true if the access has been handled, false if not.
2192  */
2193 static bool emulate_cp(struct kvm_vcpu *vcpu,
2194                        struct sys_reg_params *params,
2195                        const struct sys_reg_desc *table,
2196                        size_t num)
2197 {
2198         const struct sys_reg_desc *r;
2199
2200         if (!table)
2201                 return false;   /* Not handled */
2202
2203         r = find_reg(params, table, num);
2204
2205         if (r) {
2206                 perform_access(vcpu, params, r);
2207                 return true;
2208         }
2209
2210         /* Not handled */
2211         return false;
2212 }
2213
2214 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2215                                 struct sys_reg_params *params)
2216 {
2217         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2218         int cp = -1;
2219
2220         switch (esr_ec) {
2221         case ESR_ELx_EC_CP15_32:
2222         case ESR_ELx_EC_CP15_64:
2223                 cp = 15;
2224                 break;
2225         case ESR_ELx_EC_CP14_MR:
2226         case ESR_ELx_EC_CP14_64:
2227                 cp = 14;
2228                 break;
2229         default:
2230                 WARN_ON(1);
2231         }
2232
2233         print_sys_reg_msg(params,
2234                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2235                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2236         kvm_inject_undefined(vcpu);
2237 }
2238
2239 /**
2240  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2241  * @vcpu: The VCPU pointer
2242  * @run:  The kvm_run struct
2243  */
2244 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2245                             const struct sys_reg_desc *global,
2246                             size_t nr_global)
2247 {
2248         struct sys_reg_params params;
2249         u64 esr = kvm_vcpu_get_esr(vcpu);
2250         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2251         int Rt2 = (esr >> 10) & 0x1f;
2252
2253         params.CRm = (esr >> 1) & 0xf;
2254         params.is_write = ((esr & 1) == 0);
2255
2256         params.Op0 = 0;
2257         params.Op1 = (esr >> 16) & 0xf;
2258         params.Op2 = 0;
2259         params.CRn = 0;
2260
2261         /*
2262          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2263          * backends between AArch32 and AArch64, we get away with it.
2264          */
2265         if (params.is_write) {
2266                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2267                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2268         }
2269
2270         /*
2271          * If the table contains a handler, handle the
2272          * potential register operation in the case of a read and return
2273          * with success.
2274          */
2275         if (emulate_cp(vcpu, &params, global, nr_global)) {
2276                 /* Split up the value between registers for the read side */
2277                 if (!params.is_write) {
2278                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2279                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2280                 }
2281
2282                 return 1;
2283         }
2284
2285         unhandled_cp_access(vcpu, &params);
2286         return 1;
2287 }
2288
2289 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2290
2291 /*
2292  * The CP10 ID registers are architecturally mapped to AArch64 feature
2293  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2294  * from AArch32.
2295  */
2296 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
2297 {
2298         u8 reg_id = (esr >> 10) & 0xf;
2299         bool valid;
2300
2301         params->is_write = ((esr & 1) == 0);
2302         params->Op0 = 3;
2303         params->Op1 = 0;
2304         params->CRn = 0;
2305         params->CRm = 3;
2306
2307         /* CP10 ID registers are read-only */
2308         valid = !params->is_write;
2309
2310         switch (reg_id) {
2311         /* MVFR0 */
2312         case 0b0111:
2313                 params->Op2 = 0;
2314                 break;
2315         /* MVFR1 */
2316         case 0b0110:
2317                 params->Op2 = 1;
2318                 break;
2319         /* MVFR2 */
2320         case 0b0101:
2321                 params->Op2 = 2;
2322                 break;
2323         default:
2324                 valid = false;
2325         }
2326
2327         if (valid)
2328                 return true;
2329
2330         kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
2331                       params->is_write ? "write" : "read", reg_id);
2332         return false;
2333 }
2334
2335 /**
2336  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
2337  *                        VFP Register' from AArch32.
2338  * @vcpu: The vCPU pointer
2339  *
2340  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
2341  * Work out the correct AArch64 system register encoding and reroute to the
2342  * AArch64 system register emulation.
2343  */
2344 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
2345 {
2346         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2347         u64 esr = kvm_vcpu_get_esr(vcpu);
2348         struct sys_reg_params params;
2349
2350         /* UNDEF on any unhandled register access */
2351         if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
2352                 kvm_inject_undefined(vcpu);
2353                 return 1;
2354         }
2355
2356         if (emulate_sys_reg(vcpu, &params))
2357                 vcpu_set_reg(vcpu, Rt, params.regval);
2358
2359         return 1;
2360 }
2361
2362 /**
2363  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
2364  *                             CRn=0, which corresponds to the AArch32 feature
2365  *                             registers.
2366  * @vcpu: the vCPU pointer
2367  * @params: the system register access parameters.
2368  *
2369  * Our cp15 system register tables do not enumerate the AArch32 feature
2370  * registers. Conveniently, our AArch64 table does, and the AArch32 system
2371  * register encoding can be trivially remapped into the AArch64 for the feature
2372  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
2373  *
2374  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
2375  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
2376  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
2377  * treat undefined registers in this range as RAZ.
2378  */
2379 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
2380                                    struct sys_reg_params *params)
2381 {
2382         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2383
2384         /* Treat impossible writes to RO registers as UNDEFINED */
2385         if (params->is_write) {
2386                 unhandled_cp_access(vcpu, params);
2387                 return 1;
2388         }
2389
2390         params->Op0 = 3;
2391
2392         /*
2393          * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
2394          * Avoid conflicting with future expansion of AArch64 feature registers
2395          * and simply treat them as RAZ here.
2396          */
2397         if (params->CRm > 3)
2398                 params->regval = 0;
2399         else if (!emulate_sys_reg(vcpu, params))
2400                 return 1;
2401
2402         vcpu_set_reg(vcpu, Rt, params->regval);
2403         return 1;
2404 }
2405
2406 /**
2407  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2408  * @vcpu: The VCPU pointer
2409  * @run:  The kvm_run struct
2410  */
2411 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2412                             struct sys_reg_params *params,
2413                             const struct sys_reg_desc *global,
2414                             size_t nr_global)
2415 {
2416         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2417
2418         params->regval = vcpu_get_reg(vcpu, Rt);
2419
2420         if (emulate_cp(vcpu, params, global, nr_global)) {
2421                 if (!params->is_write)
2422                         vcpu_set_reg(vcpu, Rt, params->regval);
2423                 return 1;
2424         }
2425
2426         unhandled_cp_access(vcpu, params);
2427         return 1;
2428 }
2429
2430 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2431 {
2432         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2433 }
2434
2435 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2436 {
2437         struct sys_reg_params params;
2438
2439         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2440
2441         /*
2442          * Certain AArch32 ID registers are handled by rerouting to the AArch64
2443          * system register table. Registers in the ID range where CRm=0 are
2444          * excluded from this scheme as they do not trivially map into AArch64
2445          * system register encodings.
2446          */
2447         if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
2448                 return kvm_emulate_cp15_id_reg(vcpu, &params);
2449
2450         return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
2451 }
2452
2453 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2454 {
2455         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2456 }
2457
2458 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2459 {
2460         struct sys_reg_params params;
2461
2462         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2463
2464         return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
2465 }
2466
2467 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2468 {
2469         // See ARM DDI 0487E.a, section D12.3.2
2470         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2471 }
2472
2473 /**
2474  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
2475  * @vcpu: The VCPU pointer
2476  * @params: Decoded system register parameters
2477  *
2478  * Return: true if the system register access was successful, false otherwise.
2479  */
2480 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
2481                            struct sys_reg_params *params)
2482 {
2483         const struct sys_reg_desc *r;
2484
2485         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2486
2487         if (likely(r)) {
2488                 perform_access(vcpu, params, r);
2489                 return true;
2490         }
2491
2492         if (is_imp_def_sys_reg(params)) {
2493                 kvm_inject_undefined(vcpu);
2494         } else {
2495                 print_sys_reg_msg(params,
2496                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2497                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2498                 kvm_inject_undefined(vcpu);
2499         }
2500         return false;
2501 }
2502
2503 /**
2504  * kvm_reset_sys_regs - sets system registers to reset value
2505  * @vcpu: The VCPU pointer
2506  *
2507  * This function finds the right table above and sets the registers on the
2508  * virtual CPU struct to their architecturally defined reset values.
2509  */
2510 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2511 {
2512         unsigned long i;
2513
2514         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2515                 if (sys_reg_descs[i].reset)
2516                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2517 }
2518
2519 /**
2520  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2521  * @vcpu: The VCPU pointer
2522  */
2523 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2524 {
2525         struct sys_reg_params params;
2526         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2527         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2528
2529         trace_kvm_handle_sys_reg(esr);
2530
2531         params = esr_sys64_to_params(esr);
2532         params.regval = vcpu_get_reg(vcpu, Rt);
2533
2534         if (!emulate_sys_reg(vcpu, &params))
2535                 return 1;
2536
2537         if (!params.is_write)
2538                 vcpu_set_reg(vcpu, Rt, params.regval);
2539         return 1;
2540 }
2541
2542 /******************************************************************************
2543  * Userspace API
2544  *****************************************************************************/
2545
2546 static bool index_to_params(u64 id, struct sys_reg_params *params)
2547 {
2548         switch (id & KVM_REG_SIZE_MASK) {
2549         case KVM_REG_SIZE_U64:
2550                 /* Any unused index bits means it's not valid. */
2551                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2552                               | KVM_REG_ARM_COPROC_MASK
2553                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2554                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2555                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2556                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2557                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2558                         return false;
2559                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2560                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2561                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2562                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2563                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2564                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2565                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2566                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2567                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2568                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2569                 return true;
2570         default:
2571                 return false;
2572         }
2573 }
2574
2575 const struct sys_reg_desc *get_reg_by_id(u64 id,
2576                                          const struct sys_reg_desc table[],
2577                                          unsigned int num)
2578 {
2579         struct sys_reg_params params;
2580
2581         if (!index_to_params(id, &params))
2582                 return NULL;
2583
2584         return find_reg(&params, table, num);
2585 }
2586
2587 /* Decode an index value, and find the sys_reg_desc entry. */
2588 static const struct sys_reg_desc *
2589 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
2590                    const struct sys_reg_desc table[], unsigned int num)
2591
2592 {
2593         const struct sys_reg_desc *r;
2594
2595         /* We only do sys_reg for now. */
2596         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2597                 return NULL;
2598
2599         r = get_reg_by_id(id, table, num);
2600
2601         /* Not saved in the sys_reg array and not otherwise accessible? */
2602         if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
2603                 r = NULL;
2604
2605         return r;
2606 }
2607
2608 /*
2609  * These are the invariant sys_reg registers: we let the guest see the
2610  * host versions of these, so they're part of the guest state.
2611  *
2612  * A future CPU may provide a mechanism to present different values to
2613  * the guest, or a future kvm may trap them.
2614  */
2615
2616 #define FUNCTION_INVARIANT(reg)                                         \
2617         static void get_##reg(struct kvm_vcpu *v,                       \
2618                               const struct sys_reg_desc *r)             \
2619         {                                                               \
2620                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2621         }
2622
2623 FUNCTION_INVARIANT(midr_el1)
2624 FUNCTION_INVARIANT(revidr_el1)
2625 FUNCTION_INVARIANT(clidr_el1)
2626 FUNCTION_INVARIANT(aidr_el1)
2627
2628 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2629 {
2630         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2631 }
2632
2633 /* ->val is filled in by kvm_sys_reg_table_init() */
2634 static struct sys_reg_desc invariant_sys_regs[] = {
2635         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2636         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2637         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2638         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2639         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2640 };
2641
2642 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
2643 {
2644         const struct sys_reg_desc *r;
2645
2646         r = get_reg_by_id(id, invariant_sys_regs,
2647                           ARRAY_SIZE(invariant_sys_regs));
2648         if (!r)
2649                 return -ENOENT;
2650
2651         return put_user(r->val, uaddr);
2652 }
2653
2654 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
2655 {
2656         const struct sys_reg_desc *r;
2657         u64 val;
2658
2659         r = get_reg_by_id(id, invariant_sys_regs,
2660                           ARRAY_SIZE(invariant_sys_regs));
2661         if (!r)
2662                 return -ENOENT;
2663
2664         if (get_user(val, uaddr))
2665                 return -EFAULT;
2666
2667         /* This is what we mean by invariant: you can't change it. */
2668         if (r->val != val)
2669                 return -EINVAL;
2670
2671         return 0;
2672 }
2673
2674 static bool is_valid_cache(u32 val)
2675 {
2676         u32 level, ctype;
2677
2678         if (val >= CSSELR_MAX)
2679                 return false;
2680
2681         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2682         level = (val >> 1);
2683         ctype = (cache_levels >> (level * 3)) & 7;
2684
2685         switch (ctype) {
2686         case 0: /* No cache */
2687                 return false;
2688         case 1: /* Instruction cache only */
2689                 return (val & 1);
2690         case 2: /* Data cache only */
2691         case 4: /* Unified cache */
2692                 return !(val & 1);
2693         case 3: /* Separate instruction and data caches */
2694                 return true;
2695         default: /* Reserved: we can't know instruction or data. */
2696                 return false;
2697         }
2698 }
2699
2700 static int demux_c15_get(u64 id, void __user *uaddr)
2701 {
2702         u32 val;
2703         u32 __user *uval = uaddr;
2704
2705         /* Fail if we have unknown bits set. */
2706         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2707                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2708                 return -ENOENT;
2709
2710         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2711         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2712                 if (KVM_REG_SIZE(id) != 4)
2713                         return -ENOENT;
2714                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2715                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2716                 if (!is_valid_cache(val))
2717                         return -ENOENT;
2718
2719                 return put_user(get_ccsidr(val), uval);
2720         default:
2721                 return -ENOENT;
2722         }
2723 }
2724
2725 static int demux_c15_set(u64 id, void __user *uaddr)
2726 {
2727         u32 val, newval;
2728         u32 __user *uval = uaddr;
2729
2730         /* Fail if we have unknown bits set. */
2731         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2732                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2733                 return -ENOENT;
2734
2735         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2736         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2737                 if (KVM_REG_SIZE(id) != 4)
2738                         return -ENOENT;
2739                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2740                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2741                 if (!is_valid_cache(val))
2742                         return -ENOENT;
2743
2744                 if (get_user(newval, uval))
2745                         return -EFAULT;
2746
2747                 /* This is also invariant: you can't change it. */
2748                 if (newval != get_ccsidr(val))
2749                         return -EINVAL;
2750                 return 0;
2751         default:
2752                 return -ENOENT;
2753         }
2754 }
2755
2756 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
2757                          const struct sys_reg_desc table[], unsigned int num)
2758 {
2759         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
2760         const struct sys_reg_desc *r;
2761         u64 val;
2762         int ret;
2763
2764         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
2765         if (!r)
2766                 return -ENOENT;
2767
2768         if (r->get_user) {
2769                 ret = (r->get_user)(vcpu, r, &val);
2770         } else {
2771                 val = __vcpu_sys_reg(vcpu, r->reg);
2772                 ret = 0;
2773         }
2774
2775         if (!ret)
2776                 ret = put_user(val, uaddr);
2777
2778         return ret;
2779 }
2780
2781 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2782 {
2783         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2784         int err;
2785
2786         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2787                 return demux_c15_get(reg->id, uaddr);
2788
2789         err = get_invariant_sys_reg(reg->id, uaddr);
2790         if (err != -ENOENT)
2791                 return err;
2792
2793         return kvm_sys_reg_get_user(vcpu, reg,
2794                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2795 }
2796
2797 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
2798                          const struct sys_reg_desc table[], unsigned int num)
2799 {
2800         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
2801         const struct sys_reg_desc *r;
2802         u64 val;
2803         int ret;
2804
2805         if (get_user(val, uaddr))
2806                 return -EFAULT;
2807
2808         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
2809         if (!r)
2810                 return -ENOENT;
2811
2812         if (r->set_user) {
2813                 ret = (r->set_user)(vcpu, r, val);
2814         } else {
2815                 __vcpu_sys_reg(vcpu, r->reg) = val;
2816                 ret = 0;
2817         }
2818
2819         return ret;
2820 }
2821
2822 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2823 {
2824         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2825         int err;
2826
2827         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2828                 return demux_c15_set(reg->id, uaddr);
2829
2830         err = set_invariant_sys_reg(reg->id, uaddr);
2831         if (err != -ENOENT)
2832                 return err;
2833
2834         return kvm_sys_reg_set_user(vcpu, reg,
2835                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2836 }
2837
2838 static unsigned int num_demux_regs(void)
2839 {
2840         unsigned int i, count = 0;
2841
2842         for (i = 0; i < CSSELR_MAX; i++)
2843                 if (is_valid_cache(i))
2844                         count++;
2845
2846         return count;
2847 }
2848
2849 static int write_demux_regids(u64 __user *uindices)
2850 {
2851         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2852         unsigned int i;
2853
2854         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2855         for (i = 0; i < CSSELR_MAX; i++) {
2856                 if (!is_valid_cache(i))
2857                         continue;
2858                 if (put_user(val | i, uindices))
2859                         return -EFAULT;
2860                 uindices++;
2861         }
2862         return 0;
2863 }
2864
2865 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2866 {
2867         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2868                 KVM_REG_ARM64_SYSREG |
2869                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2870                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2871                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2872                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2873                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2874 }
2875
2876 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2877 {
2878         if (!*uind)
2879                 return true;
2880
2881         if (put_user(sys_reg_to_index(reg), *uind))
2882                 return false;
2883
2884         (*uind)++;
2885         return true;
2886 }
2887
2888 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2889                             const struct sys_reg_desc *rd,
2890                             u64 __user **uind,
2891                             unsigned int *total)
2892 {
2893         /*
2894          * Ignore registers we trap but don't save,
2895          * and for which no custom user accessor is provided.
2896          */
2897         if (!(rd->reg || rd->get_user))
2898                 return 0;
2899
2900         if (sysreg_hidden(vcpu, rd))
2901                 return 0;
2902
2903         if (!copy_reg_to_user(rd, uind))
2904                 return -EFAULT;
2905
2906         (*total)++;
2907         return 0;
2908 }
2909
2910 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2911 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2912 {
2913         const struct sys_reg_desc *i2, *end2;
2914         unsigned int total = 0;
2915         int err;
2916
2917         i2 = sys_reg_descs;
2918         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2919
2920         while (i2 != end2) {
2921                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2922                 if (err)
2923                         return err;
2924         }
2925         return total;
2926 }
2927
2928 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2929 {
2930         return ARRAY_SIZE(invariant_sys_regs)
2931                 + num_demux_regs()
2932                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2933 }
2934
2935 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2936 {
2937         unsigned int i;
2938         int err;
2939
2940         /* Then give them all the invariant registers' indices. */
2941         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2942                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2943                         return -EFAULT;
2944                 uindices++;
2945         }
2946
2947         err = walk_sys_regs(vcpu, uindices);
2948         if (err < 0)
2949                 return err;
2950         uindices += err;
2951
2952         return write_demux_regids(uindices);
2953 }
2954
2955 int kvm_sys_reg_table_init(void)
2956 {
2957         bool valid = true;
2958         unsigned int i;
2959         struct sys_reg_desc clidr;
2960
2961         /* Make sure tables are unique and in order. */
2962         valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
2963         valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
2964         valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
2965         valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
2966         valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
2967         valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
2968
2969         if (!valid)
2970                 return -EINVAL;
2971
2972         /* We abuse the reset function to overwrite the table itself. */
2973         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2974                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2975
2976         /*
2977          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2978          *
2979          *   If software reads the Cache Type fields from Ctype1
2980          *   upwards, once it has seen a value of 0b000, no caches
2981          *   exist at further-out levels of the hierarchy. So, for
2982          *   example, if Ctype3 is the first Cache Type field with a
2983          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2984          *   ignored.
2985          */
2986         get_clidr_el1(NULL, &clidr); /* Ugly... */
2987         cache_levels = clidr.val;
2988         for (i = 0; i < 7; i++)
2989                 if (((cache_levels >> (i*3)) & 7) == 0)
2990                         break;
2991         /* Clear all higher bits. */
2992         cache_levels &= (1 << (i*3))-1;
2993
2994         return 0;
2995 }