Merge tag 'mt76-for-kvalo-2021-01-29' of https://github.com/nbd168/wireless
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_emulate.h>
24 #include <asm/kvm_hyp.h>
25 #include <asm/kvm_mmu.h>
26 #include <asm/perf_event.h>
27 #include <asm/sysreg.h>
28
29 #include <trace/events/kvm.h>
30
31 #include "sys_regs.h"
32
33 #include "trace.h"
34
35 /*
36  * All of this file is extremely similar to the ARM coproc.c, but the
37  * types are different. My gut feeling is that it should be pretty
38  * easy to merge, but that would be an ABI breakage -- again. VFP
39  * would also need to be abstracted.
40  *
41  * For AArch32, we only take care of what is being trapped. Anything
42  * that has to do with init and userspace access has to go via the
43  * 64bit interface.
44  */
45
46 #define reg_to_encoding(x)                                              \
47         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
48                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2)
49
50 static bool read_from_write_only(struct kvm_vcpu *vcpu,
51                                  struct sys_reg_params *params,
52                                  const struct sys_reg_desc *r)
53 {
54         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
55         print_sys_reg_instr(params);
56         kvm_inject_undefined(vcpu);
57         return false;
58 }
59
60 static bool write_to_read_only(struct kvm_vcpu *vcpu,
61                                struct sys_reg_params *params,
62                                const struct sys_reg_desc *r)
63 {
64         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
65         print_sys_reg_instr(params);
66         kvm_inject_undefined(vcpu);
67         return false;
68 }
69
70 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
71 {
72         u64 val = 0x8badf00d8badf00d;
73
74         if (vcpu->arch.sysregs_loaded_on_cpu &&
75             __vcpu_read_sys_reg_from_cpu(reg, &val))
76                 return val;
77
78         return __vcpu_sys_reg(vcpu, reg);
79 }
80
81 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
82 {
83         if (vcpu->arch.sysregs_loaded_on_cpu &&
84             __vcpu_write_sys_reg_to_cpu(val, reg))
85                 return;
86
87          __vcpu_sys_reg(vcpu, reg) = val;
88 }
89
90 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
91 static u32 cache_levels;
92
93 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
94 #define CSSELR_MAX 14
95
96 /* Which cache CCSIDR represents depends on CSSELR value. */
97 static u32 get_ccsidr(u32 csselr)
98 {
99         u32 ccsidr;
100
101         /* Make sure noone else changes CSSELR during this! */
102         local_irq_disable();
103         write_sysreg(csselr, csselr_el1);
104         isb();
105         ccsidr = read_sysreg(ccsidr_el1);
106         local_irq_enable();
107
108         return ccsidr;
109 }
110
111 /*
112  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
113  */
114 static bool access_dcsw(struct kvm_vcpu *vcpu,
115                         struct sys_reg_params *p,
116                         const struct sys_reg_desc *r)
117 {
118         if (!p->is_write)
119                 return read_from_write_only(vcpu, p, r);
120
121         /*
122          * Only track S/W ops if we don't have FWB. It still indicates
123          * that the guest is a bit broken (S/W operations should only
124          * be done by firmware, knowing that there is only a single
125          * CPU left in the system, and certainly not from non-secure
126          * software).
127          */
128         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
129                 kvm_set_way_flush(vcpu);
130
131         return true;
132 }
133
134 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
135 {
136         switch (r->aarch32_map) {
137         case AA32_LO:
138                 *mask = GENMASK_ULL(31, 0);
139                 *shift = 0;
140                 break;
141         case AA32_HI:
142                 *mask = GENMASK_ULL(63, 32);
143                 *shift = 32;
144                 break;
145         default:
146                 *mask = GENMASK_ULL(63, 0);
147                 *shift = 0;
148                 break;
149         }
150 }
151
152 /*
153  * Generic accessor for VM registers. Only called as long as HCR_TVM
154  * is set. If the guest enables the MMU, we stop trapping the VM
155  * sys_regs and leave it in complete control of the caches.
156  */
157 static bool access_vm_reg(struct kvm_vcpu *vcpu,
158                           struct sys_reg_params *p,
159                           const struct sys_reg_desc *r)
160 {
161         bool was_enabled = vcpu_has_cache_enabled(vcpu);
162         u64 val, mask, shift;
163
164         BUG_ON(!p->is_write);
165
166         get_access_mask(r, &mask, &shift);
167
168         if (~mask) {
169                 val = vcpu_read_sys_reg(vcpu, r->reg);
170                 val &= ~mask;
171         } else {
172                 val = 0;
173         }
174
175         val |= (p->regval & (mask >> shift)) << shift;
176         vcpu_write_sys_reg(vcpu, val, r->reg);
177
178         kvm_toggle_cache(vcpu, was_enabled);
179         return true;
180 }
181
182 static bool access_actlr(struct kvm_vcpu *vcpu,
183                          struct sys_reg_params *p,
184                          const struct sys_reg_desc *r)
185 {
186         u64 mask, shift;
187
188         if (p->is_write)
189                 return ignore_write(vcpu, p);
190
191         get_access_mask(r, &mask, &shift);
192         p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
193
194         return true;
195 }
196
197 /*
198  * Trap handler for the GICv3 SGI generation system register.
199  * Forward the request to the VGIC emulation.
200  * The cp15_64 code makes sure this automatically works
201  * for both AArch64 and AArch32 accesses.
202  */
203 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
204                            struct sys_reg_params *p,
205                            const struct sys_reg_desc *r)
206 {
207         bool g1;
208
209         if (!p->is_write)
210                 return read_from_write_only(vcpu, p, r);
211
212         /*
213          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
214          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
215          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
216          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
217          * group.
218          */
219         if (p->Op0 == 0) {              /* AArch32 */
220                 switch (p->Op1) {
221                 default:                /* Keep GCC quiet */
222                 case 0:                 /* ICC_SGI1R */
223                         g1 = true;
224                         break;
225                 case 1:                 /* ICC_ASGI1R */
226                 case 2:                 /* ICC_SGI0R */
227                         g1 = false;
228                         break;
229                 }
230         } else {                        /* AArch64 */
231                 switch (p->Op2) {
232                 default:                /* Keep GCC quiet */
233                 case 5:                 /* ICC_SGI1R_EL1 */
234                         g1 = true;
235                         break;
236                 case 6:                 /* ICC_ASGI1R_EL1 */
237                 case 7:                 /* ICC_SGI0R_EL1 */
238                         g1 = false;
239                         break;
240                 }
241         }
242
243         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
244
245         return true;
246 }
247
248 static bool access_gic_sre(struct kvm_vcpu *vcpu,
249                            struct sys_reg_params *p,
250                            const struct sys_reg_desc *r)
251 {
252         if (p->is_write)
253                 return ignore_write(vcpu, p);
254
255         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
256         return true;
257 }
258
259 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
260                         struct sys_reg_params *p,
261                         const struct sys_reg_desc *r)
262 {
263         if (p->is_write)
264                 return ignore_write(vcpu, p);
265         else
266                 return read_zero(vcpu, p);
267 }
268
269 /*
270  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
271  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
272  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
273  * treat it separately.
274  */
275 static bool trap_loregion(struct kvm_vcpu *vcpu,
276                           struct sys_reg_params *p,
277                           const struct sys_reg_desc *r)
278 {
279         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
280         u32 sr = reg_to_encoding(r);
281
282         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
283                 kvm_inject_undefined(vcpu);
284                 return false;
285         }
286
287         if (p->is_write && sr == SYS_LORID_EL1)
288                 return write_to_read_only(vcpu, p, r);
289
290         return trap_raz_wi(vcpu, p, r);
291 }
292
293 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
294                            struct sys_reg_params *p,
295                            const struct sys_reg_desc *r)
296 {
297         if (p->is_write) {
298                 return ignore_write(vcpu, p);
299         } else {
300                 p->regval = (1 << 3);
301                 return true;
302         }
303 }
304
305 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
306                                    struct sys_reg_params *p,
307                                    const struct sys_reg_desc *r)
308 {
309         if (p->is_write) {
310                 return ignore_write(vcpu, p);
311         } else {
312                 p->regval = read_sysreg(dbgauthstatus_el1);
313                 return true;
314         }
315 }
316
317 /*
318  * We want to avoid world-switching all the DBG registers all the
319  * time:
320  * 
321  * - If we've touched any debug register, it is likely that we're
322  *   going to touch more of them. It then makes sense to disable the
323  *   traps and start doing the save/restore dance
324  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
325  *   then mandatory to save/restore the registers, as the guest
326  *   depends on them.
327  * 
328  * For this, we use a DIRTY bit, indicating the guest has modified the
329  * debug registers, used as follow:
330  *
331  * On guest entry:
332  * - If the dirty bit is set (because we're coming back from trapping),
333  *   disable the traps, save host registers, restore guest registers.
334  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
335  *   set the dirty bit, disable the traps, save host registers,
336  *   restore guest registers.
337  * - Otherwise, enable the traps
338  *
339  * On guest exit:
340  * - If the dirty bit is set, save guest registers, restore host
341  *   registers and clear the dirty bit. This ensure that the host can
342  *   now use the debug registers.
343  */
344 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
345                             struct sys_reg_params *p,
346                             const struct sys_reg_desc *r)
347 {
348         if (p->is_write) {
349                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
350                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
351         } else {
352                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
353         }
354
355         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
356
357         return true;
358 }
359
360 /*
361  * reg_to_dbg/dbg_to_reg
362  *
363  * A 32 bit write to a debug register leave top bits alone
364  * A 32 bit read from a debug register only returns the bottom bits
365  *
366  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
367  * hyp.S code switches between host and guest values in future.
368  */
369 static void reg_to_dbg(struct kvm_vcpu *vcpu,
370                        struct sys_reg_params *p,
371                        const struct sys_reg_desc *rd,
372                        u64 *dbg_reg)
373 {
374         u64 mask, shift, val;
375
376         get_access_mask(rd, &mask, &shift);
377
378         val = *dbg_reg;
379         val &= ~mask;
380         val |= (p->regval & (mask >> shift)) << shift;
381         *dbg_reg = val;
382
383         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
384 }
385
386 static void dbg_to_reg(struct kvm_vcpu *vcpu,
387                        struct sys_reg_params *p,
388                        const struct sys_reg_desc *rd,
389                        u64 *dbg_reg)
390 {
391         u64 mask, shift;
392
393         get_access_mask(rd, &mask, &shift);
394         p->regval = (*dbg_reg & mask) >> shift;
395 }
396
397 static bool trap_bvr(struct kvm_vcpu *vcpu,
398                      struct sys_reg_params *p,
399                      const struct sys_reg_desc *rd)
400 {
401         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
402
403         if (p->is_write)
404                 reg_to_dbg(vcpu, p, rd, dbg_reg);
405         else
406                 dbg_to_reg(vcpu, p, rd, dbg_reg);
407
408         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
409
410         return true;
411 }
412
413 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
414                 const struct kvm_one_reg *reg, void __user *uaddr)
415 {
416         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
417
418         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
419                 return -EFAULT;
420         return 0;
421 }
422
423 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
424         const struct kvm_one_reg *reg, void __user *uaddr)
425 {
426         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
427
428         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
429                 return -EFAULT;
430         return 0;
431 }
432
433 static void reset_bvr(struct kvm_vcpu *vcpu,
434                       const struct sys_reg_desc *rd)
435 {
436         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
437 }
438
439 static bool trap_bcr(struct kvm_vcpu *vcpu,
440                      struct sys_reg_params *p,
441                      const struct sys_reg_desc *rd)
442 {
443         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
444
445         if (p->is_write)
446                 reg_to_dbg(vcpu, p, rd, dbg_reg);
447         else
448                 dbg_to_reg(vcpu, p, rd, dbg_reg);
449
450         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
451
452         return true;
453 }
454
455 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
456                 const struct kvm_one_reg *reg, void __user *uaddr)
457 {
458         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
459
460         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
461                 return -EFAULT;
462
463         return 0;
464 }
465
466 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
467         const struct kvm_one_reg *reg, void __user *uaddr)
468 {
469         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
470
471         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
472                 return -EFAULT;
473         return 0;
474 }
475
476 static void reset_bcr(struct kvm_vcpu *vcpu,
477                       const struct sys_reg_desc *rd)
478 {
479         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
480 }
481
482 static bool trap_wvr(struct kvm_vcpu *vcpu,
483                      struct sys_reg_params *p,
484                      const struct sys_reg_desc *rd)
485 {
486         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
487
488         if (p->is_write)
489                 reg_to_dbg(vcpu, p, rd, dbg_reg);
490         else
491                 dbg_to_reg(vcpu, p, rd, dbg_reg);
492
493         trace_trap_reg(__func__, rd->reg, p->is_write,
494                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
495
496         return true;
497 }
498
499 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
500                 const struct kvm_one_reg *reg, void __user *uaddr)
501 {
502         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
503
504         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
505                 return -EFAULT;
506         return 0;
507 }
508
509 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
510         const struct kvm_one_reg *reg, void __user *uaddr)
511 {
512         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
513
514         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
515                 return -EFAULT;
516         return 0;
517 }
518
519 static void reset_wvr(struct kvm_vcpu *vcpu,
520                       const struct sys_reg_desc *rd)
521 {
522         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
523 }
524
525 static bool trap_wcr(struct kvm_vcpu *vcpu,
526                      struct sys_reg_params *p,
527                      const struct sys_reg_desc *rd)
528 {
529         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
530
531         if (p->is_write)
532                 reg_to_dbg(vcpu, p, rd, dbg_reg);
533         else
534                 dbg_to_reg(vcpu, p, rd, dbg_reg);
535
536         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
537
538         return true;
539 }
540
541 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
542                 const struct kvm_one_reg *reg, void __user *uaddr)
543 {
544         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
545
546         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
547                 return -EFAULT;
548         return 0;
549 }
550
551 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
552         const struct kvm_one_reg *reg, void __user *uaddr)
553 {
554         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
555
556         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
557                 return -EFAULT;
558         return 0;
559 }
560
561 static void reset_wcr(struct kvm_vcpu *vcpu,
562                       const struct sys_reg_desc *rd)
563 {
564         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
565 }
566
567 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
568 {
569         u64 amair = read_sysreg(amair_el1);
570         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
571 }
572
573 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
574 {
575         u64 actlr = read_sysreg(actlr_el1);
576         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
577 }
578
579 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
580 {
581         u64 mpidr;
582
583         /*
584          * Map the vcpu_id into the first three affinity level fields of
585          * the MPIDR. We limit the number of VCPUs in level 0 due to a
586          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
587          * of the GICv3 to be able to address each CPU directly when
588          * sending IPIs.
589          */
590         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
591         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
592         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
593         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
594 }
595
596 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
597                                    const struct sys_reg_desc *r)
598 {
599         if (kvm_vcpu_has_pmu(vcpu))
600                 return 0;
601
602         return REG_HIDDEN;
603 }
604
605 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
606 {
607         u64 pmcr, val;
608
609         /* No PMU available, PMCR_EL0 may UNDEF... */
610         if (!kvm_arm_support_pmu_v3())
611                 return;
612
613         pmcr = read_sysreg(pmcr_el0);
614         /*
615          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
616          * except PMCR.E resetting to zero.
617          */
618         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
619                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
620         if (!system_supports_32bit_el0())
621                 val |= ARMV8_PMU_PMCR_LC;
622         __vcpu_sys_reg(vcpu, r->reg) = val;
623 }
624
625 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
626 {
627         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
628         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
629
630         if (!enabled)
631                 kvm_inject_undefined(vcpu);
632
633         return !enabled;
634 }
635
636 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
637 {
638         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
639 }
640
641 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
642 {
643         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
644 }
645
646 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
647 {
648         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
649 }
650
651 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
652 {
653         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
654 }
655
656 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
657                         const struct sys_reg_desc *r)
658 {
659         u64 val;
660
661         if (pmu_access_el0_disabled(vcpu))
662                 return false;
663
664         if (p->is_write) {
665                 /* Only update writeable bits of PMCR */
666                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
667                 val &= ~ARMV8_PMU_PMCR_MASK;
668                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
669                 if (!system_supports_32bit_el0())
670                         val |= ARMV8_PMU_PMCR_LC;
671                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
672                 kvm_pmu_handle_pmcr(vcpu, val);
673                 kvm_vcpu_pmu_restore_guest(vcpu);
674         } else {
675                 /* PMCR.P & PMCR.C are RAZ */
676                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
677                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
678                 p->regval = val;
679         }
680
681         return true;
682 }
683
684 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
685                           const struct sys_reg_desc *r)
686 {
687         if (pmu_access_event_counter_el0_disabled(vcpu))
688                 return false;
689
690         if (p->is_write)
691                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
692         else
693                 /* return PMSELR.SEL field */
694                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
695                             & ARMV8_PMU_COUNTER_MASK;
696
697         return true;
698 }
699
700 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
701                           const struct sys_reg_desc *r)
702 {
703         u64 pmceid;
704
705         BUG_ON(p->is_write);
706
707         if (pmu_access_el0_disabled(vcpu))
708                 return false;
709
710         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
711
712         p->regval = pmceid;
713
714         return true;
715 }
716
717 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
718 {
719         u64 pmcr, val;
720
721         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
722         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
723         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
724                 kvm_inject_undefined(vcpu);
725                 return false;
726         }
727
728         return true;
729 }
730
731 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
732                               struct sys_reg_params *p,
733                               const struct sys_reg_desc *r)
734 {
735         u64 idx = ~0UL;
736
737         if (r->CRn == 9 && r->CRm == 13) {
738                 if (r->Op2 == 2) {
739                         /* PMXEVCNTR_EL0 */
740                         if (pmu_access_event_counter_el0_disabled(vcpu))
741                                 return false;
742
743                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
744                               & ARMV8_PMU_COUNTER_MASK;
745                 } else if (r->Op2 == 0) {
746                         /* PMCCNTR_EL0 */
747                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
748                                 return false;
749
750                         idx = ARMV8_PMU_CYCLE_IDX;
751                 }
752         } else if (r->CRn == 0 && r->CRm == 9) {
753                 /* PMCCNTR */
754                 if (pmu_access_event_counter_el0_disabled(vcpu))
755                         return false;
756
757                 idx = ARMV8_PMU_CYCLE_IDX;
758         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
759                 /* PMEVCNTRn_EL0 */
760                 if (pmu_access_event_counter_el0_disabled(vcpu))
761                         return false;
762
763                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
764         }
765
766         /* Catch any decoding mistake */
767         WARN_ON(idx == ~0UL);
768
769         if (!pmu_counter_idx_valid(vcpu, idx))
770                 return false;
771
772         if (p->is_write) {
773                 if (pmu_access_el0_disabled(vcpu))
774                         return false;
775
776                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
777         } else {
778                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
779         }
780
781         return true;
782 }
783
784 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
785                                const struct sys_reg_desc *r)
786 {
787         u64 idx, reg;
788
789         if (pmu_access_el0_disabled(vcpu))
790                 return false;
791
792         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
793                 /* PMXEVTYPER_EL0 */
794                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
795                 reg = PMEVTYPER0_EL0 + idx;
796         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
797                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
798                 if (idx == ARMV8_PMU_CYCLE_IDX)
799                         reg = PMCCFILTR_EL0;
800                 else
801                         /* PMEVTYPERn_EL0 */
802                         reg = PMEVTYPER0_EL0 + idx;
803         } else {
804                 BUG();
805         }
806
807         if (!pmu_counter_idx_valid(vcpu, idx))
808                 return false;
809
810         if (p->is_write) {
811                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
812                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
813                 kvm_vcpu_pmu_restore_guest(vcpu);
814         } else {
815                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
816         }
817
818         return true;
819 }
820
821 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
822                            const struct sys_reg_desc *r)
823 {
824         u64 val, mask;
825
826         if (pmu_access_el0_disabled(vcpu))
827                 return false;
828
829         mask = kvm_pmu_valid_counter_mask(vcpu);
830         if (p->is_write) {
831                 val = p->regval & mask;
832                 if (r->Op2 & 0x1) {
833                         /* accessing PMCNTENSET_EL0 */
834                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
835                         kvm_pmu_enable_counter_mask(vcpu, val);
836                         kvm_vcpu_pmu_restore_guest(vcpu);
837                 } else {
838                         /* accessing PMCNTENCLR_EL0 */
839                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
840                         kvm_pmu_disable_counter_mask(vcpu, val);
841                 }
842         } else {
843                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
844         }
845
846         return true;
847 }
848
849 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
850                            const struct sys_reg_desc *r)
851 {
852         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
853
854         if (check_pmu_access_disabled(vcpu, 0))
855                 return false;
856
857         if (p->is_write) {
858                 u64 val = p->regval & mask;
859
860                 if (r->Op2 & 0x1)
861                         /* accessing PMINTENSET_EL1 */
862                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
863                 else
864                         /* accessing PMINTENCLR_EL1 */
865                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
866         } else {
867                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
868         }
869
870         return true;
871 }
872
873 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
874                          const struct sys_reg_desc *r)
875 {
876         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
877
878         if (pmu_access_el0_disabled(vcpu))
879                 return false;
880
881         if (p->is_write) {
882                 if (r->CRm & 0x2)
883                         /* accessing PMOVSSET_EL0 */
884                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
885                 else
886                         /* accessing PMOVSCLR_EL0 */
887                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
888         } else {
889                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
890         }
891
892         return true;
893 }
894
895 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
896                            const struct sys_reg_desc *r)
897 {
898         u64 mask;
899
900         if (!p->is_write)
901                 return read_from_write_only(vcpu, p, r);
902
903         if (pmu_write_swinc_el0_disabled(vcpu))
904                 return false;
905
906         mask = kvm_pmu_valid_counter_mask(vcpu);
907         kvm_pmu_software_increment(vcpu, p->regval & mask);
908         return true;
909 }
910
911 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
912                              const struct sys_reg_desc *r)
913 {
914         if (p->is_write) {
915                 if (!vcpu_mode_priv(vcpu)) {
916                         kvm_inject_undefined(vcpu);
917                         return false;
918                 }
919
920                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
921                                p->regval & ARMV8_PMU_USERENR_MASK;
922         } else {
923                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
924                             & ARMV8_PMU_USERENR_MASK;
925         }
926
927         return true;
928 }
929
930 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
931 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
932         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
933           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
934         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
935           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
936         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
937           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
938         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
939           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
940
941 #define PMU_SYS_REG(r)                                          \
942         SYS_DESC(r), .reset = reset_unknown, .visibility = pmu_visibility
943
944 /* Macro to expand the PMEVCNTRn_EL0 register */
945 #define PMU_PMEVCNTR_EL0(n)                                             \
946         { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),                            \
947           .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
948
949 /* Macro to expand the PMEVTYPERn_EL0 register */
950 #define PMU_PMEVTYPER_EL0(n)                                            \
951         { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),                           \
952           .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
953
954 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
955                          const struct sys_reg_desc *r)
956 {
957         kvm_inject_undefined(vcpu);
958
959         return false;
960 }
961
962 /* Macro to expand the AMU counter and type registers*/
963 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
964 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
965 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
966 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
967
968 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
969                         const struct sys_reg_desc *rd)
970 {
971         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
972 }
973
974 /*
975  * If we land here on a PtrAuth access, that is because we didn't
976  * fixup the access on exit by allowing the PtrAuth sysregs. The only
977  * way this happens is when the guest does not have PtrAuth support
978  * enabled.
979  */
980 #define __PTRAUTH_KEY(k)                                                \
981         { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
982         .visibility = ptrauth_visibility}
983
984 #define PTRAUTH_KEY(k)                                                  \
985         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
986         __PTRAUTH_KEY(k ## KEYHI_EL1)
987
988 static bool access_arch_timer(struct kvm_vcpu *vcpu,
989                               struct sys_reg_params *p,
990                               const struct sys_reg_desc *r)
991 {
992         enum kvm_arch_timers tmr;
993         enum kvm_arch_timer_regs treg;
994         u64 reg = reg_to_encoding(r);
995
996         switch (reg) {
997         case SYS_CNTP_TVAL_EL0:
998         case SYS_AARCH32_CNTP_TVAL:
999                 tmr = TIMER_PTIMER;
1000                 treg = TIMER_REG_TVAL;
1001                 break;
1002         case SYS_CNTP_CTL_EL0:
1003         case SYS_AARCH32_CNTP_CTL:
1004                 tmr = TIMER_PTIMER;
1005                 treg = TIMER_REG_CTL;
1006                 break;
1007         case SYS_CNTP_CVAL_EL0:
1008         case SYS_AARCH32_CNTP_CVAL:
1009                 tmr = TIMER_PTIMER;
1010                 treg = TIMER_REG_CVAL;
1011                 break;
1012         default:
1013                 BUG();
1014         }
1015
1016         if (p->is_write)
1017                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1018         else
1019                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1020
1021         return true;
1022 }
1023
1024 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1025 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1026                 struct sys_reg_desc const *r, bool raz)
1027 {
1028         u32 id = reg_to_encoding(r);
1029         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1030
1031         if (id == SYS_ID_AA64PFR0_EL1) {
1032                 if (!vcpu_has_sve(vcpu))
1033                         val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1034                 val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1035                 val &= ~(0xfUL << ID_AA64PFR0_CSV2_SHIFT);
1036                 val |= ((u64)vcpu->kvm->arch.pfr0_csv2 << ID_AA64PFR0_CSV2_SHIFT);
1037                 val &= ~(0xfUL << ID_AA64PFR0_CSV3_SHIFT);
1038                 val |= ((u64)vcpu->kvm->arch.pfr0_csv3 << ID_AA64PFR0_CSV3_SHIFT);
1039         } else if (id == SYS_ID_AA64PFR1_EL1) {
1040                 val &= ~(0xfUL << ID_AA64PFR1_MTE_SHIFT);
1041         } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1042                 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1043                          (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1044                          (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1045                          (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1046         } else if (id == SYS_ID_AA64DFR0_EL1) {
1047                 u64 cap = 0;
1048
1049                 /* Limit guests to PMUv3 for ARMv8.1 */
1050                 if (kvm_vcpu_has_pmu(vcpu))
1051                         cap = ID_AA64DFR0_PMUVER_8_1;
1052
1053                 val = cpuid_feature_cap_perfmon_field(val,
1054                                                 ID_AA64DFR0_PMUVER_SHIFT,
1055                                                 cap);
1056         } else if (id == SYS_ID_DFR0_EL1) {
1057                 /* Limit guests to PMUv3 for ARMv8.1 */
1058                 val = cpuid_feature_cap_perfmon_field(val,
1059                                                 ID_DFR0_PERFMON_SHIFT,
1060                                                 ID_DFR0_PERFMON_8_1);
1061         }
1062
1063         return val;
1064 }
1065
1066 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1067                                   const struct sys_reg_desc *r)
1068 {
1069         u32 id = reg_to_encoding(r);
1070
1071         switch (id) {
1072         case SYS_ID_AA64ZFR0_EL1:
1073                 if (!vcpu_has_sve(vcpu))
1074                         return REG_RAZ;
1075                 break;
1076         }
1077
1078         return 0;
1079 }
1080
1081 /* cpufeature ID register access trap handlers */
1082
1083 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1084                             struct sys_reg_params *p,
1085                             const struct sys_reg_desc *r,
1086                             bool raz)
1087 {
1088         if (p->is_write)
1089                 return write_to_read_only(vcpu, p, r);
1090
1091         p->regval = read_id_reg(vcpu, r, raz);
1092         return true;
1093 }
1094
1095 static bool access_id_reg(struct kvm_vcpu *vcpu,
1096                           struct sys_reg_params *p,
1097                           const struct sys_reg_desc *r)
1098 {
1099         bool raz = sysreg_visible_as_raz(vcpu, r);
1100
1101         return __access_id_reg(vcpu, p, r, raz);
1102 }
1103
1104 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1105                               struct sys_reg_params *p,
1106                               const struct sys_reg_desc *r)
1107 {
1108         return __access_id_reg(vcpu, p, r, true);
1109 }
1110
1111 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1112 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1113 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1114
1115 /* Visibility overrides for SVE-specific control registers */
1116 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1117                                    const struct sys_reg_desc *rd)
1118 {
1119         if (vcpu_has_sve(vcpu))
1120                 return 0;
1121
1122         return REG_HIDDEN;
1123 }
1124
1125 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1126                                const struct sys_reg_desc *rd,
1127                                const struct kvm_one_reg *reg, void __user *uaddr)
1128 {
1129         const u64 id = sys_reg_to_index(rd);
1130         u8 csv2, csv3;
1131         int err;
1132         u64 val;
1133
1134         err = reg_from_user(&val, uaddr, id);
1135         if (err)
1136                 return err;
1137
1138         /*
1139          * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1140          * it doesn't promise more than what is actually provided (the
1141          * guest could otherwise be covered in ectoplasmic residue).
1142          */
1143         csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1144         if (csv2 > 1 ||
1145             (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1146                 return -EINVAL;
1147
1148         /* Same thing for CSV3 */
1149         csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1150         if (csv3 > 1 ||
1151             (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1152                 return -EINVAL;
1153
1154         /* We can only differ with CSV[23], and anything else is an error */
1155         val ^= read_id_reg(vcpu, rd, false);
1156         val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1157                  (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1158         if (val)
1159                 return -EINVAL;
1160
1161         vcpu->kvm->arch.pfr0_csv2 = csv2;
1162         vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1163
1164         return 0;
1165 }
1166
1167 /*
1168  * cpufeature ID register user accessors
1169  *
1170  * For now, these registers are immutable for userspace, so no values
1171  * are stored, and for set_id_reg() we don't allow the effective value
1172  * to be changed.
1173  */
1174 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1175                         const struct sys_reg_desc *rd, void __user *uaddr,
1176                         bool raz)
1177 {
1178         const u64 id = sys_reg_to_index(rd);
1179         const u64 val = read_id_reg(vcpu, rd, raz);
1180
1181         return reg_to_user(uaddr, &val, id);
1182 }
1183
1184 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1185                         const struct sys_reg_desc *rd, void __user *uaddr,
1186                         bool raz)
1187 {
1188         const u64 id = sys_reg_to_index(rd);
1189         int err;
1190         u64 val;
1191
1192         err = reg_from_user(&val, uaddr, id);
1193         if (err)
1194                 return err;
1195
1196         /* This is what we mean by invariant: you can't change it. */
1197         if (val != read_id_reg(vcpu, rd, raz))
1198                 return -EINVAL;
1199
1200         return 0;
1201 }
1202
1203 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1204                       const struct kvm_one_reg *reg, void __user *uaddr)
1205 {
1206         bool raz = sysreg_visible_as_raz(vcpu, rd);
1207
1208         return __get_id_reg(vcpu, rd, uaddr, raz);
1209 }
1210
1211 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1212                       const struct kvm_one_reg *reg, void __user *uaddr)
1213 {
1214         bool raz = sysreg_visible_as_raz(vcpu, rd);
1215
1216         return __set_id_reg(vcpu, rd, uaddr, raz);
1217 }
1218
1219 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1220                           const struct kvm_one_reg *reg, void __user *uaddr)
1221 {
1222         return __get_id_reg(vcpu, rd, uaddr, true);
1223 }
1224
1225 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1226                           const struct kvm_one_reg *reg, void __user *uaddr)
1227 {
1228         return __set_id_reg(vcpu, rd, uaddr, true);
1229 }
1230
1231 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1232                        const struct sys_reg_desc *r)
1233 {
1234         if (p->is_write)
1235                 return write_to_read_only(vcpu, p, r);
1236
1237         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1238         return true;
1239 }
1240
1241 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1242                          const struct sys_reg_desc *r)
1243 {
1244         if (p->is_write)
1245                 return write_to_read_only(vcpu, p, r);
1246
1247         p->regval = read_sysreg(clidr_el1);
1248         return true;
1249 }
1250
1251 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1252                           const struct sys_reg_desc *r)
1253 {
1254         int reg = r->reg;
1255
1256         if (p->is_write)
1257                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1258         else
1259                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1260         return true;
1261 }
1262
1263 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1264                           const struct sys_reg_desc *r)
1265 {
1266         u32 csselr;
1267
1268         if (p->is_write)
1269                 return write_to_read_only(vcpu, p, r);
1270
1271         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1272         p->regval = get_ccsidr(csselr);
1273
1274         /*
1275          * Guests should not be doing cache operations by set/way at all, and
1276          * for this reason, we trap them and attempt to infer the intent, so
1277          * that we can flush the entire guest's address space at the appropriate
1278          * time.
1279          * To prevent this trapping from causing performance problems, let's
1280          * expose the geometry of all data and unified caches (which are
1281          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1282          * [If guests should attempt to infer aliasing properties from the
1283          * geometry (which is not permitted by the architecture), they would
1284          * only do so for virtually indexed caches.]
1285          */
1286         if (!(csselr & 1)) // data or unified cache
1287                 p->regval &= ~GENMASK(27, 3);
1288         return true;
1289 }
1290
1291 /* sys_reg_desc initialiser for known cpufeature ID registers */
1292 #define ID_SANITISED(name) {                    \
1293         SYS_DESC(SYS_##name),                   \
1294         .access = access_id_reg,                \
1295         .get_user = get_id_reg,                 \
1296         .set_user = set_id_reg,                 \
1297         .visibility = id_visibility,            \
1298 }
1299
1300 /*
1301  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1302  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1303  * (1 <= crm < 8, 0 <= Op2 < 8).
1304  */
1305 #define ID_UNALLOCATED(crm, op2) {                      \
1306         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1307         .access = access_raz_id_reg,                    \
1308         .get_user = get_raz_id_reg,                     \
1309         .set_user = set_raz_id_reg,                     \
1310 }
1311
1312 /*
1313  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1314  * For now, these are exposed just like unallocated ID regs: they appear
1315  * RAZ for the guest.
1316  */
1317 #define ID_HIDDEN(name) {                       \
1318         SYS_DESC(SYS_##name),                   \
1319         .access = access_raz_id_reg,            \
1320         .get_user = get_raz_id_reg,             \
1321         .set_user = set_raz_id_reg,             \
1322 }
1323
1324 /*
1325  * Architected system registers.
1326  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1327  *
1328  * Debug handling: We do trap most, if not all debug related system
1329  * registers. The implementation is good enough to ensure that a guest
1330  * can use these with minimal performance degradation. The drawback is
1331  * that we don't implement any of the external debug, none of the
1332  * OSlock protocol. This should be revisited if we ever encounter a
1333  * more demanding guest...
1334  */
1335 static const struct sys_reg_desc sys_reg_descs[] = {
1336         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1337         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1338         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1339
1340         DBG_BCR_BVR_WCR_WVR_EL1(0),
1341         DBG_BCR_BVR_WCR_WVR_EL1(1),
1342         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1343         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1344         DBG_BCR_BVR_WCR_WVR_EL1(2),
1345         DBG_BCR_BVR_WCR_WVR_EL1(3),
1346         DBG_BCR_BVR_WCR_WVR_EL1(4),
1347         DBG_BCR_BVR_WCR_WVR_EL1(5),
1348         DBG_BCR_BVR_WCR_WVR_EL1(6),
1349         DBG_BCR_BVR_WCR_WVR_EL1(7),
1350         DBG_BCR_BVR_WCR_WVR_EL1(8),
1351         DBG_BCR_BVR_WCR_WVR_EL1(9),
1352         DBG_BCR_BVR_WCR_WVR_EL1(10),
1353         DBG_BCR_BVR_WCR_WVR_EL1(11),
1354         DBG_BCR_BVR_WCR_WVR_EL1(12),
1355         DBG_BCR_BVR_WCR_WVR_EL1(13),
1356         DBG_BCR_BVR_WCR_WVR_EL1(14),
1357         DBG_BCR_BVR_WCR_WVR_EL1(15),
1358
1359         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1360         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1361         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1362         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1363         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1364         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1365         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1366         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1367
1368         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1369         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1370         // DBGDTR[TR]X_EL0 share the same encoding
1371         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1372
1373         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1374
1375         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1376
1377         /*
1378          * ID regs: all ID_SANITISED() entries here must have corresponding
1379          * entries in arm64_ftr_regs[].
1380          */
1381
1382         /* AArch64 mappings of the AArch32 ID registers */
1383         /* CRm=1 */
1384         ID_SANITISED(ID_PFR0_EL1),
1385         ID_SANITISED(ID_PFR1_EL1),
1386         ID_SANITISED(ID_DFR0_EL1),
1387         ID_HIDDEN(ID_AFR0_EL1),
1388         ID_SANITISED(ID_MMFR0_EL1),
1389         ID_SANITISED(ID_MMFR1_EL1),
1390         ID_SANITISED(ID_MMFR2_EL1),
1391         ID_SANITISED(ID_MMFR3_EL1),
1392
1393         /* CRm=2 */
1394         ID_SANITISED(ID_ISAR0_EL1),
1395         ID_SANITISED(ID_ISAR1_EL1),
1396         ID_SANITISED(ID_ISAR2_EL1),
1397         ID_SANITISED(ID_ISAR3_EL1),
1398         ID_SANITISED(ID_ISAR4_EL1),
1399         ID_SANITISED(ID_ISAR5_EL1),
1400         ID_SANITISED(ID_MMFR4_EL1),
1401         ID_SANITISED(ID_ISAR6_EL1),
1402
1403         /* CRm=3 */
1404         ID_SANITISED(MVFR0_EL1),
1405         ID_SANITISED(MVFR1_EL1),
1406         ID_SANITISED(MVFR2_EL1),
1407         ID_UNALLOCATED(3,3),
1408         ID_SANITISED(ID_PFR2_EL1),
1409         ID_HIDDEN(ID_DFR1_EL1),
1410         ID_SANITISED(ID_MMFR5_EL1),
1411         ID_UNALLOCATED(3,7),
1412
1413         /* AArch64 ID registers */
1414         /* CRm=4 */
1415         { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1416           .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1417         ID_SANITISED(ID_AA64PFR1_EL1),
1418         ID_UNALLOCATED(4,2),
1419         ID_UNALLOCATED(4,3),
1420         ID_SANITISED(ID_AA64ZFR0_EL1),
1421         ID_UNALLOCATED(4,5),
1422         ID_UNALLOCATED(4,6),
1423         ID_UNALLOCATED(4,7),
1424
1425         /* CRm=5 */
1426         ID_SANITISED(ID_AA64DFR0_EL1),
1427         ID_SANITISED(ID_AA64DFR1_EL1),
1428         ID_UNALLOCATED(5,2),
1429         ID_UNALLOCATED(5,3),
1430         ID_HIDDEN(ID_AA64AFR0_EL1),
1431         ID_HIDDEN(ID_AA64AFR1_EL1),
1432         ID_UNALLOCATED(5,6),
1433         ID_UNALLOCATED(5,7),
1434
1435         /* CRm=6 */
1436         ID_SANITISED(ID_AA64ISAR0_EL1),
1437         ID_SANITISED(ID_AA64ISAR1_EL1),
1438         ID_UNALLOCATED(6,2),
1439         ID_UNALLOCATED(6,3),
1440         ID_UNALLOCATED(6,4),
1441         ID_UNALLOCATED(6,5),
1442         ID_UNALLOCATED(6,6),
1443         ID_UNALLOCATED(6,7),
1444
1445         /* CRm=7 */
1446         ID_SANITISED(ID_AA64MMFR0_EL1),
1447         ID_SANITISED(ID_AA64MMFR1_EL1),
1448         ID_SANITISED(ID_AA64MMFR2_EL1),
1449         ID_UNALLOCATED(7,3),
1450         ID_UNALLOCATED(7,4),
1451         ID_UNALLOCATED(7,5),
1452         ID_UNALLOCATED(7,6),
1453         ID_UNALLOCATED(7,7),
1454
1455         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1456         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1457         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1458
1459         { SYS_DESC(SYS_RGSR_EL1), undef_access },
1460         { SYS_DESC(SYS_GCR_EL1), undef_access },
1461
1462         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1463         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1464         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1465         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1466
1467         PTRAUTH_KEY(APIA),
1468         PTRAUTH_KEY(APIB),
1469         PTRAUTH_KEY(APDA),
1470         PTRAUTH_KEY(APDB),
1471         PTRAUTH_KEY(APGA),
1472
1473         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1474         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1475         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1476
1477         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1478         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1479         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1480         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1481         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1482         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1483         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1484         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1485
1486         { SYS_DESC(SYS_TFSR_EL1), undef_access },
1487         { SYS_DESC(SYS_TFSRE0_EL1), undef_access },
1488
1489         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1490         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1491
1492         { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1493           .access = access_pminten, .reg = PMINTENSET_EL1 },
1494         { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1495           .access = access_pminten, .reg = PMINTENSET_EL1 },
1496
1497         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1498         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1499
1500         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1501         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1502         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1503         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1504         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1505
1506         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1507         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1508
1509         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1510         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1511         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1512         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1513         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1514         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1515         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1516         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1517         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1518         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1519         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1520         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1521
1522         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1523         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1524
1525         { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1526
1527         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1528
1529         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1530         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1531         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1532         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1533
1534         { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1535           .reset = reset_pmcr, .reg = PMCR_EL0 },
1536         { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1537           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1538         { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1539           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1540         { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1541           .access = access_pmovs, .reg = PMOVSSET_EL0 },
1542         { PMU_SYS_REG(SYS_PMSWINC_EL0),
1543           .access = access_pmswinc, .reg = PMSWINC_EL0 },
1544         { PMU_SYS_REG(SYS_PMSELR_EL0),
1545           .access = access_pmselr, .reg = PMSELR_EL0 },
1546         { PMU_SYS_REG(SYS_PMCEID0_EL0),
1547           .access = access_pmceid, .reset = NULL },
1548         { PMU_SYS_REG(SYS_PMCEID1_EL0),
1549           .access = access_pmceid, .reset = NULL },
1550         { PMU_SYS_REG(SYS_PMCCNTR_EL0),
1551           .access = access_pmu_evcntr, .reg = PMCCNTR_EL0 },
1552         { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1553           .access = access_pmu_evtyper, .reset = NULL },
1554         { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1555           .access = access_pmu_evcntr, .reset = NULL },
1556         /*
1557          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1558          * in 32bit mode. Here we choose to reset it as zero for consistency.
1559          */
1560         { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1561           .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1562         { PMU_SYS_REG(SYS_PMOVSSET_EL0),
1563           .access = access_pmovs, .reg = PMOVSSET_EL0 },
1564
1565         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1566         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1567
1568         { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1569
1570         { SYS_DESC(SYS_AMCR_EL0), undef_access },
1571         { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1572         { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1573         { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1574         { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1575         { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1576         { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1577         { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1578         AMU_AMEVCNTR0_EL0(0),
1579         AMU_AMEVCNTR0_EL0(1),
1580         AMU_AMEVCNTR0_EL0(2),
1581         AMU_AMEVCNTR0_EL0(3),
1582         AMU_AMEVCNTR0_EL0(4),
1583         AMU_AMEVCNTR0_EL0(5),
1584         AMU_AMEVCNTR0_EL0(6),
1585         AMU_AMEVCNTR0_EL0(7),
1586         AMU_AMEVCNTR0_EL0(8),
1587         AMU_AMEVCNTR0_EL0(9),
1588         AMU_AMEVCNTR0_EL0(10),
1589         AMU_AMEVCNTR0_EL0(11),
1590         AMU_AMEVCNTR0_EL0(12),
1591         AMU_AMEVCNTR0_EL0(13),
1592         AMU_AMEVCNTR0_EL0(14),
1593         AMU_AMEVCNTR0_EL0(15),
1594         AMU_AMEVTYPER0_EL0(0),
1595         AMU_AMEVTYPER0_EL0(1),
1596         AMU_AMEVTYPER0_EL0(2),
1597         AMU_AMEVTYPER0_EL0(3),
1598         AMU_AMEVTYPER0_EL0(4),
1599         AMU_AMEVTYPER0_EL0(5),
1600         AMU_AMEVTYPER0_EL0(6),
1601         AMU_AMEVTYPER0_EL0(7),
1602         AMU_AMEVTYPER0_EL0(8),
1603         AMU_AMEVTYPER0_EL0(9),
1604         AMU_AMEVTYPER0_EL0(10),
1605         AMU_AMEVTYPER0_EL0(11),
1606         AMU_AMEVTYPER0_EL0(12),
1607         AMU_AMEVTYPER0_EL0(13),
1608         AMU_AMEVTYPER0_EL0(14),
1609         AMU_AMEVTYPER0_EL0(15),
1610         AMU_AMEVCNTR1_EL0(0),
1611         AMU_AMEVCNTR1_EL0(1),
1612         AMU_AMEVCNTR1_EL0(2),
1613         AMU_AMEVCNTR1_EL0(3),
1614         AMU_AMEVCNTR1_EL0(4),
1615         AMU_AMEVCNTR1_EL0(5),
1616         AMU_AMEVCNTR1_EL0(6),
1617         AMU_AMEVCNTR1_EL0(7),
1618         AMU_AMEVCNTR1_EL0(8),
1619         AMU_AMEVCNTR1_EL0(9),
1620         AMU_AMEVCNTR1_EL0(10),
1621         AMU_AMEVCNTR1_EL0(11),
1622         AMU_AMEVCNTR1_EL0(12),
1623         AMU_AMEVCNTR1_EL0(13),
1624         AMU_AMEVCNTR1_EL0(14),
1625         AMU_AMEVCNTR1_EL0(15),
1626         AMU_AMEVTYPER1_EL0(0),
1627         AMU_AMEVTYPER1_EL0(1),
1628         AMU_AMEVTYPER1_EL0(2),
1629         AMU_AMEVTYPER1_EL0(3),
1630         AMU_AMEVTYPER1_EL0(4),
1631         AMU_AMEVTYPER1_EL0(5),
1632         AMU_AMEVTYPER1_EL0(6),
1633         AMU_AMEVTYPER1_EL0(7),
1634         AMU_AMEVTYPER1_EL0(8),
1635         AMU_AMEVTYPER1_EL0(9),
1636         AMU_AMEVTYPER1_EL0(10),
1637         AMU_AMEVTYPER1_EL0(11),
1638         AMU_AMEVTYPER1_EL0(12),
1639         AMU_AMEVTYPER1_EL0(13),
1640         AMU_AMEVTYPER1_EL0(14),
1641         AMU_AMEVTYPER1_EL0(15),
1642
1643         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1644         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1645         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1646
1647         /* PMEVCNTRn_EL0 */
1648         PMU_PMEVCNTR_EL0(0),
1649         PMU_PMEVCNTR_EL0(1),
1650         PMU_PMEVCNTR_EL0(2),
1651         PMU_PMEVCNTR_EL0(3),
1652         PMU_PMEVCNTR_EL0(4),
1653         PMU_PMEVCNTR_EL0(5),
1654         PMU_PMEVCNTR_EL0(6),
1655         PMU_PMEVCNTR_EL0(7),
1656         PMU_PMEVCNTR_EL0(8),
1657         PMU_PMEVCNTR_EL0(9),
1658         PMU_PMEVCNTR_EL0(10),
1659         PMU_PMEVCNTR_EL0(11),
1660         PMU_PMEVCNTR_EL0(12),
1661         PMU_PMEVCNTR_EL0(13),
1662         PMU_PMEVCNTR_EL0(14),
1663         PMU_PMEVCNTR_EL0(15),
1664         PMU_PMEVCNTR_EL0(16),
1665         PMU_PMEVCNTR_EL0(17),
1666         PMU_PMEVCNTR_EL0(18),
1667         PMU_PMEVCNTR_EL0(19),
1668         PMU_PMEVCNTR_EL0(20),
1669         PMU_PMEVCNTR_EL0(21),
1670         PMU_PMEVCNTR_EL0(22),
1671         PMU_PMEVCNTR_EL0(23),
1672         PMU_PMEVCNTR_EL0(24),
1673         PMU_PMEVCNTR_EL0(25),
1674         PMU_PMEVCNTR_EL0(26),
1675         PMU_PMEVCNTR_EL0(27),
1676         PMU_PMEVCNTR_EL0(28),
1677         PMU_PMEVCNTR_EL0(29),
1678         PMU_PMEVCNTR_EL0(30),
1679         /* PMEVTYPERn_EL0 */
1680         PMU_PMEVTYPER_EL0(0),
1681         PMU_PMEVTYPER_EL0(1),
1682         PMU_PMEVTYPER_EL0(2),
1683         PMU_PMEVTYPER_EL0(3),
1684         PMU_PMEVTYPER_EL0(4),
1685         PMU_PMEVTYPER_EL0(5),
1686         PMU_PMEVTYPER_EL0(6),
1687         PMU_PMEVTYPER_EL0(7),
1688         PMU_PMEVTYPER_EL0(8),
1689         PMU_PMEVTYPER_EL0(9),
1690         PMU_PMEVTYPER_EL0(10),
1691         PMU_PMEVTYPER_EL0(11),
1692         PMU_PMEVTYPER_EL0(12),
1693         PMU_PMEVTYPER_EL0(13),
1694         PMU_PMEVTYPER_EL0(14),
1695         PMU_PMEVTYPER_EL0(15),
1696         PMU_PMEVTYPER_EL0(16),
1697         PMU_PMEVTYPER_EL0(17),
1698         PMU_PMEVTYPER_EL0(18),
1699         PMU_PMEVTYPER_EL0(19),
1700         PMU_PMEVTYPER_EL0(20),
1701         PMU_PMEVTYPER_EL0(21),
1702         PMU_PMEVTYPER_EL0(22),
1703         PMU_PMEVTYPER_EL0(23),
1704         PMU_PMEVTYPER_EL0(24),
1705         PMU_PMEVTYPER_EL0(25),
1706         PMU_PMEVTYPER_EL0(26),
1707         PMU_PMEVTYPER_EL0(27),
1708         PMU_PMEVTYPER_EL0(28),
1709         PMU_PMEVTYPER_EL0(29),
1710         PMU_PMEVTYPER_EL0(30),
1711         /*
1712          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1713          * in 32bit mode. Here we choose to reset it as zero for consistency.
1714          */
1715         { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1716           .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1717
1718         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1719         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1720         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1721 };
1722
1723 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1724                         struct sys_reg_params *p,
1725                         const struct sys_reg_desc *r)
1726 {
1727         if (p->is_write) {
1728                 return ignore_write(vcpu, p);
1729         } else {
1730                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1731                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1732                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1733
1734                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1735                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1736                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1737                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1738                 return true;
1739         }
1740 }
1741
1742 /*
1743  * AArch32 debug register mappings
1744  *
1745  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1746  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1747  *
1748  * None of the other registers share their location, so treat them as
1749  * if they were 64bit.
1750  */
1751 #define DBG_BCR_BVR_WCR_WVR(n)                                                \
1752         /* DBGBVRn */                                                         \
1753         { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1754         /* DBGBCRn */                                                         \
1755         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
1756         /* DBGWVRn */                                                         \
1757         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
1758         /* DBGWCRn */                                                         \
1759         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1760
1761 #define DBGBXVR(n)                                                            \
1762         { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1763
1764 /*
1765  * Trapped cp14 registers. We generally ignore most of the external
1766  * debug, on the principle that they don't really make sense to a
1767  * guest. Revisit this one day, would this principle change.
1768  */
1769 static const struct sys_reg_desc cp14_regs[] = {
1770         /* DBGIDR */
1771         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1772         /* DBGDTRRXext */
1773         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1774
1775         DBG_BCR_BVR_WCR_WVR(0),
1776         /* DBGDSCRint */
1777         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1778         DBG_BCR_BVR_WCR_WVR(1),
1779         /* DBGDCCINT */
1780         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1781         /* DBGDSCRext */
1782         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1783         DBG_BCR_BVR_WCR_WVR(2),
1784         /* DBGDTR[RT]Xint */
1785         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1786         /* DBGDTR[RT]Xext */
1787         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1788         DBG_BCR_BVR_WCR_WVR(3),
1789         DBG_BCR_BVR_WCR_WVR(4),
1790         DBG_BCR_BVR_WCR_WVR(5),
1791         /* DBGWFAR */
1792         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1793         /* DBGOSECCR */
1794         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1795         DBG_BCR_BVR_WCR_WVR(6),
1796         /* DBGVCR */
1797         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1798         DBG_BCR_BVR_WCR_WVR(7),
1799         DBG_BCR_BVR_WCR_WVR(8),
1800         DBG_BCR_BVR_WCR_WVR(9),
1801         DBG_BCR_BVR_WCR_WVR(10),
1802         DBG_BCR_BVR_WCR_WVR(11),
1803         DBG_BCR_BVR_WCR_WVR(12),
1804         DBG_BCR_BVR_WCR_WVR(13),
1805         DBG_BCR_BVR_WCR_WVR(14),
1806         DBG_BCR_BVR_WCR_WVR(15),
1807
1808         /* DBGDRAR (32bit) */
1809         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1810
1811         DBGBXVR(0),
1812         /* DBGOSLAR */
1813         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1814         DBGBXVR(1),
1815         /* DBGOSLSR */
1816         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1817         DBGBXVR(2),
1818         DBGBXVR(3),
1819         /* DBGOSDLR */
1820         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1821         DBGBXVR(4),
1822         /* DBGPRCR */
1823         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1824         DBGBXVR(5),
1825         DBGBXVR(6),
1826         DBGBXVR(7),
1827         DBGBXVR(8),
1828         DBGBXVR(9),
1829         DBGBXVR(10),
1830         DBGBXVR(11),
1831         DBGBXVR(12),
1832         DBGBXVR(13),
1833         DBGBXVR(14),
1834         DBGBXVR(15),
1835
1836         /* DBGDSAR (32bit) */
1837         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1838
1839         /* DBGDEVID2 */
1840         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1841         /* DBGDEVID1 */
1842         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1843         /* DBGDEVID */
1844         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1845         /* DBGCLAIMSET */
1846         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1847         /* DBGCLAIMCLR */
1848         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1849         /* DBGAUTHSTATUS */
1850         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1851 };
1852
1853 /* Trapped cp14 64bit registers */
1854 static const struct sys_reg_desc cp14_64_regs[] = {
1855         /* DBGDRAR (64bit) */
1856         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1857
1858         /* DBGDSAR (64bit) */
1859         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1860 };
1861
1862 /* Macro to expand the PMEVCNTRn register */
1863 #define PMU_PMEVCNTR(n)                                                 \
1864         /* PMEVCNTRn */                                                 \
1865         { Op1(0), CRn(0b1110),                                          \
1866           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1867           access_pmu_evcntr }
1868
1869 /* Macro to expand the PMEVTYPERn register */
1870 #define PMU_PMEVTYPER(n)                                                \
1871         /* PMEVTYPERn */                                                \
1872         { Op1(0), CRn(0b1110),                                          \
1873           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1874           access_pmu_evtyper }
1875
1876 /*
1877  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1878  * depending on the way they are accessed (as a 32bit or a 64bit
1879  * register).
1880  */
1881 static const struct sys_reg_desc cp15_regs[] = {
1882         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1883         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1884         /* ACTLR */
1885         { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1886         /* ACTLR2 */
1887         { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1888         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1889         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1890         /* TTBCR */
1891         { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1892         /* TTBCR2 */
1893         { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1894         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1895         /* DFSR */
1896         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
1897         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
1898         /* ADFSR */
1899         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
1900         /* AIFSR */
1901         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
1902         /* DFAR */
1903         { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
1904         /* IFAR */
1905         { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
1906
1907         /*
1908          * DC{C,I,CI}SW operations:
1909          */
1910         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1911         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1912         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1913
1914         /* PMU */
1915         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1916         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1917         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1918         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1919         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1920         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1921         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1922         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1923         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1924         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1925         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1926         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1927         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1928         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1929         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1930
1931         /* PRRR/MAIR0 */
1932         { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
1933         /* NMRR/MAIR1 */
1934         { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
1935         /* AMAIR0 */
1936         { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
1937         /* AMAIR1 */
1938         { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
1939
1940         /* ICC_SRE */
1941         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1942
1943         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
1944
1945         /* Arch Tmers */
1946         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1947         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1948
1949         /* PMEVCNTRn */
1950         PMU_PMEVCNTR(0),
1951         PMU_PMEVCNTR(1),
1952         PMU_PMEVCNTR(2),
1953         PMU_PMEVCNTR(3),
1954         PMU_PMEVCNTR(4),
1955         PMU_PMEVCNTR(5),
1956         PMU_PMEVCNTR(6),
1957         PMU_PMEVCNTR(7),
1958         PMU_PMEVCNTR(8),
1959         PMU_PMEVCNTR(9),
1960         PMU_PMEVCNTR(10),
1961         PMU_PMEVCNTR(11),
1962         PMU_PMEVCNTR(12),
1963         PMU_PMEVCNTR(13),
1964         PMU_PMEVCNTR(14),
1965         PMU_PMEVCNTR(15),
1966         PMU_PMEVCNTR(16),
1967         PMU_PMEVCNTR(17),
1968         PMU_PMEVCNTR(18),
1969         PMU_PMEVCNTR(19),
1970         PMU_PMEVCNTR(20),
1971         PMU_PMEVCNTR(21),
1972         PMU_PMEVCNTR(22),
1973         PMU_PMEVCNTR(23),
1974         PMU_PMEVCNTR(24),
1975         PMU_PMEVCNTR(25),
1976         PMU_PMEVCNTR(26),
1977         PMU_PMEVCNTR(27),
1978         PMU_PMEVCNTR(28),
1979         PMU_PMEVCNTR(29),
1980         PMU_PMEVCNTR(30),
1981         /* PMEVTYPERn */
1982         PMU_PMEVTYPER(0),
1983         PMU_PMEVTYPER(1),
1984         PMU_PMEVTYPER(2),
1985         PMU_PMEVTYPER(3),
1986         PMU_PMEVTYPER(4),
1987         PMU_PMEVTYPER(5),
1988         PMU_PMEVTYPER(6),
1989         PMU_PMEVTYPER(7),
1990         PMU_PMEVTYPER(8),
1991         PMU_PMEVTYPER(9),
1992         PMU_PMEVTYPER(10),
1993         PMU_PMEVTYPER(11),
1994         PMU_PMEVTYPER(12),
1995         PMU_PMEVTYPER(13),
1996         PMU_PMEVTYPER(14),
1997         PMU_PMEVTYPER(15),
1998         PMU_PMEVTYPER(16),
1999         PMU_PMEVTYPER(17),
2000         PMU_PMEVTYPER(18),
2001         PMU_PMEVTYPER(19),
2002         PMU_PMEVTYPER(20),
2003         PMU_PMEVTYPER(21),
2004         PMU_PMEVTYPER(22),
2005         PMU_PMEVTYPER(23),
2006         PMU_PMEVTYPER(24),
2007         PMU_PMEVTYPER(25),
2008         PMU_PMEVTYPER(26),
2009         PMU_PMEVTYPER(27),
2010         PMU_PMEVTYPER(28),
2011         PMU_PMEVTYPER(29),
2012         PMU_PMEVTYPER(30),
2013         /* PMCCFILTR */
2014         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2015
2016         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2017         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2018         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2019 };
2020
2021 static const struct sys_reg_desc cp15_64_regs[] = {
2022         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2023         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2024         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2025         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2026         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2027         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2028         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2029 };
2030
2031 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2032                               bool is_32)
2033 {
2034         unsigned int i;
2035
2036         for (i = 0; i < n; i++) {
2037                 if (!is_32 && table[i].reg && !table[i].reset) {
2038                         kvm_err("sys_reg table %p entry %d has lacks reset\n",
2039                                 table, i);
2040                         return 1;
2041                 }
2042
2043                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2044                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2045                         return 1;
2046                 }
2047         }
2048
2049         return 0;
2050 }
2051
2052 static int match_sys_reg(const void *key, const void *elt)
2053 {
2054         const unsigned long pval = (unsigned long)key;
2055         const struct sys_reg_desc *r = elt;
2056
2057         return pval - reg_to_encoding(r);
2058 }
2059
2060 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2061                                          const struct sys_reg_desc table[],
2062                                          unsigned int num)
2063 {
2064         unsigned long pval = reg_to_encoding(params);
2065
2066         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2067 }
2068
2069 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2070 {
2071         kvm_inject_undefined(vcpu);
2072         return 1;
2073 }
2074
2075 static void perform_access(struct kvm_vcpu *vcpu,
2076                            struct sys_reg_params *params,
2077                            const struct sys_reg_desc *r)
2078 {
2079         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2080
2081         /* Check for regs disabled by runtime config */
2082         if (sysreg_hidden(vcpu, r)) {
2083                 kvm_inject_undefined(vcpu);
2084                 return;
2085         }
2086
2087         /*
2088          * Not having an accessor means that we have configured a trap
2089          * that we don't know how to handle. This certainly qualifies
2090          * as a gross bug that should be fixed right away.
2091          */
2092         BUG_ON(!r->access);
2093
2094         /* Skip instruction if instructed so */
2095         if (likely(r->access(vcpu, params, r)))
2096                 kvm_incr_pc(vcpu);
2097 }
2098
2099 /*
2100  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2101  *                call the corresponding trap handler.
2102  *
2103  * @params: pointer to the descriptor of the access
2104  * @table: array of trap descriptors
2105  * @num: size of the trap descriptor array
2106  *
2107  * Return 0 if the access has been handled, and -1 if not.
2108  */
2109 static int emulate_cp(struct kvm_vcpu *vcpu,
2110                       struct sys_reg_params *params,
2111                       const struct sys_reg_desc *table,
2112                       size_t num)
2113 {
2114         const struct sys_reg_desc *r;
2115
2116         if (!table)
2117                 return -1;      /* Not handled */
2118
2119         r = find_reg(params, table, num);
2120
2121         if (r) {
2122                 perform_access(vcpu, params, r);
2123                 return 0;
2124         }
2125
2126         /* Not handled */
2127         return -1;
2128 }
2129
2130 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2131                                 struct sys_reg_params *params)
2132 {
2133         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2134         int cp = -1;
2135
2136         switch (esr_ec) {
2137         case ESR_ELx_EC_CP15_32:
2138         case ESR_ELx_EC_CP15_64:
2139                 cp = 15;
2140                 break;
2141         case ESR_ELx_EC_CP14_MR:
2142         case ESR_ELx_EC_CP14_64:
2143                 cp = 14;
2144                 break;
2145         default:
2146                 WARN_ON(1);
2147         }
2148
2149         print_sys_reg_msg(params,
2150                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2151                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2152         kvm_inject_undefined(vcpu);
2153 }
2154
2155 /**
2156  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2157  * @vcpu: The VCPU pointer
2158  * @run:  The kvm_run struct
2159  */
2160 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2161                             const struct sys_reg_desc *global,
2162                             size_t nr_global)
2163 {
2164         struct sys_reg_params params;
2165         u32 esr = kvm_vcpu_get_esr(vcpu);
2166         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2167         int Rt2 = (esr >> 10) & 0x1f;
2168
2169         params.CRm = (esr >> 1) & 0xf;
2170         params.is_write = ((esr & 1) == 0);
2171
2172         params.Op0 = 0;
2173         params.Op1 = (esr >> 16) & 0xf;
2174         params.Op2 = 0;
2175         params.CRn = 0;
2176
2177         /*
2178          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2179          * backends between AArch32 and AArch64, we get away with it.
2180          */
2181         if (params.is_write) {
2182                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2183                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2184         }
2185
2186         /*
2187          * If the table contains a handler, handle the
2188          * potential register operation in the case of a read and return
2189          * with success.
2190          */
2191         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2192                 /* Split up the value between registers for the read side */
2193                 if (!params.is_write) {
2194                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2195                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2196                 }
2197
2198                 return 1;
2199         }
2200
2201         unhandled_cp_access(vcpu, &params);
2202         return 1;
2203 }
2204
2205 /**
2206  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2207  * @vcpu: The VCPU pointer
2208  * @run:  The kvm_run struct
2209  */
2210 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2211                             const struct sys_reg_desc *global,
2212                             size_t nr_global)
2213 {
2214         struct sys_reg_params params;
2215         u32 esr = kvm_vcpu_get_esr(vcpu);
2216         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2217
2218         params.CRm = (esr >> 1) & 0xf;
2219         params.regval = vcpu_get_reg(vcpu, Rt);
2220         params.is_write = ((esr & 1) == 0);
2221         params.CRn = (esr >> 10) & 0xf;
2222         params.Op0 = 0;
2223         params.Op1 = (esr >> 14) & 0x7;
2224         params.Op2 = (esr >> 17) & 0x7;
2225
2226         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2227                 if (!params.is_write)
2228                         vcpu_set_reg(vcpu, Rt, params.regval);
2229                 return 1;
2230         }
2231
2232         unhandled_cp_access(vcpu, &params);
2233         return 1;
2234 }
2235
2236 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2237 {
2238         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2239 }
2240
2241 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2242 {
2243         return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2244 }
2245
2246 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2247 {
2248         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2249 }
2250
2251 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2252 {
2253         return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2254 }
2255
2256 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2257 {
2258         // See ARM DDI 0487E.a, section D12.3.2
2259         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2260 }
2261
2262 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2263                            struct sys_reg_params *params)
2264 {
2265         const struct sys_reg_desc *r;
2266
2267         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2268
2269         if (likely(r)) {
2270                 perform_access(vcpu, params, r);
2271         } else if (is_imp_def_sys_reg(params)) {
2272                 kvm_inject_undefined(vcpu);
2273         } else {
2274                 print_sys_reg_msg(params,
2275                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2276                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2277                 kvm_inject_undefined(vcpu);
2278         }
2279         return 1;
2280 }
2281
2282 /**
2283  * kvm_reset_sys_regs - sets system registers to reset value
2284  * @vcpu: The VCPU pointer
2285  *
2286  * This function finds the right table above and sets the registers on the
2287  * virtual CPU struct to their architecturally defined reset values.
2288  */
2289 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2290 {
2291         unsigned long i;
2292
2293         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2294                 if (sys_reg_descs[i].reset)
2295                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2296 }
2297
2298 /**
2299  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2300  * @vcpu: The VCPU pointer
2301  */
2302 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2303 {
2304         struct sys_reg_params params;
2305         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2306         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2307         int ret;
2308
2309         trace_kvm_handle_sys_reg(esr);
2310
2311         params.Op0 = (esr >> 20) & 3;
2312         params.Op1 = (esr >> 14) & 0x7;
2313         params.CRn = (esr >> 10) & 0xf;
2314         params.CRm = (esr >> 1) & 0xf;
2315         params.Op2 = (esr >> 17) & 0x7;
2316         params.regval = vcpu_get_reg(vcpu, Rt);
2317         params.is_write = !(esr & 1);
2318
2319         ret = emulate_sys_reg(vcpu, &params);
2320
2321         if (!params.is_write)
2322                 vcpu_set_reg(vcpu, Rt, params.regval);
2323         return ret;
2324 }
2325
2326 /******************************************************************************
2327  * Userspace API
2328  *****************************************************************************/
2329
2330 static bool index_to_params(u64 id, struct sys_reg_params *params)
2331 {
2332         switch (id & KVM_REG_SIZE_MASK) {
2333         case KVM_REG_SIZE_U64:
2334                 /* Any unused index bits means it's not valid. */
2335                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2336                               | KVM_REG_ARM_COPROC_MASK
2337                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2338                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2339                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2340                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2341                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2342                         return false;
2343                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2344                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2345                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2346                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2347                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2348                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2349                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2350                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2351                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2352                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2353                 return true;
2354         default:
2355                 return false;
2356         }
2357 }
2358
2359 const struct sys_reg_desc *find_reg_by_id(u64 id,
2360                                           struct sys_reg_params *params,
2361                                           const struct sys_reg_desc table[],
2362                                           unsigned int num)
2363 {
2364         if (!index_to_params(id, params))
2365                 return NULL;
2366
2367         return find_reg(params, table, num);
2368 }
2369
2370 /* Decode an index value, and find the sys_reg_desc entry. */
2371 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2372                                                     u64 id)
2373 {
2374         const struct sys_reg_desc *r;
2375         struct sys_reg_params params;
2376
2377         /* We only do sys_reg for now. */
2378         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2379                 return NULL;
2380
2381         if (!index_to_params(id, &params))
2382                 return NULL;
2383
2384         r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2385
2386         /* Not saved in the sys_reg array and not otherwise accessible? */
2387         if (r && !(r->reg || r->get_user))
2388                 r = NULL;
2389
2390         return r;
2391 }
2392
2393 /*
2394  * These are the invariant sys_reg registers: we let the guest see the
2395  * host versions of these, so they're part of the guest state.
2396  *
2397  * A future CPU may provide a mechanism to present different values to
2398  * the guest, or a future kvm may trap them.
2399  */
2400
2401 #define FUNCTION_INVARIANT(reg)                                         \
2402         static void get_##reg(struct kvm_vcpu *v,                       \
2403                               const struct sys_reg_desc *r)             \
2404         {                                                               \
2405                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2406         }
2407
2408 FUNCTION_INVARIANT(midr_el1)
2409 FUNCTION_INVARIANT(revidr_el1)
2410 FUNCTION_INVARIANT(clidr_el1)
2411 FUNCTION_INVARIANT(aidr_el1)
2412
2413 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2414 {
2415         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2416 }
2417
2418 /* ->val is filled in by kvm_sys_reg_table_init() */
2419 static struct sys_reg_desc invariant_sys_regs[] = {
2420         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2421         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2422         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2423         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2424         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2425 };
2426
2427 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2428 {
2429         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2430                 return -EFAULT;
2431         return 0;
2432 }
2433
2434 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2435 {
2436         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2437                 return -EFAULT;
2438         return 0;
2439 }
2440
2441 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2442 {
2443         struct sys_reg_params params;
2444         const struct sys_reg_desc *r;
2445
2446         r = find_reg_by_id(id, &params, invariant_sys_regs,
2447                            ARRAY_SIZE(invariant_sys_regs));
2448         if (!r)
2449                 return -ENOENT;
2450
2451         return reg_to_user(uaddr, &r->val, id);
2452 }
2453
2454 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2455 {
2456         struct sys_reg_params params;
2457         const struct sys_reg_desc *r;
2458         int err;
2459         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2460
2461         r = find_reg_by_id(id, &params, invariant_sys_regs,
2462                            ARRAY_SIZE(invariant_sys_regs));
2463         if (!r)
2464                 return -ENOENT;
2465
2466         err = reg_from_user(&val, uaddr, id);
2467         if (err)
2468                 return err;
2469
2470         /* This is what we mean by invariant: you can't change it. */
2471         if (r->val != val)
2472                 return -EINVAL;
2473
2474         return 0;
2475 }
2476
2477 static bool is_valid_cache(u32 val)
2478 {
2479         u32 level, ctype;
2480
2481         if (val >= CSSELR_MAX)
2482                 return false;
2483
2484         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2485         level = (val >> 1);
2486         ctype = (cache_levels >> (level * 3)) & 7;
2487
2488         switch (ctype) {
2489         case 0: /* No cache */
2490                 return false;
2491         case 1: /* Instruction cache only */
2492                 return (val & 1);
2493         case 2: /* Data cache only */
2494         case 4: /* Unified cache */
2495                 return !(val & 1);
2496         case 3: /* Separate instruction and data caches */
2497                 return true;
2498         default: /* Reserved: we can't know instruction or data. */
2499                 return false;
2500         }
2501 }
2502
2503 static int demux_c15_get(u64 id, void __user *uaddr)
2504 {
2505         u32 val;
2506         u32 __user *uval = uaddr;
2507
2508         /* Fail if we have unknown bits set. */
2509         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2510                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2511                 return -ENOENT;
2512
2513         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2514         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2515                 if (KVM_REG_SIZE(id) != 4)
2516                         return -ENOENT;
2517                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2518                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2519                 if (!is_valid_cache(val))
2520                         return -ENOENT;
2521
2522                 return put_user(get_ccsidr(val), uval);
2523         default:
2524                 return -ENOENT;
2525         }
2526 }
2527
2528 static int demux_c15_set(u64 id, void __user *uaddr)
2529 {
2530         u32 val, newval;
2531         u32 __user *uval = uaddr;
2532
2533         /* Fail if we have unknown bits set. */
2534         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2535                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2536                 return -ENOENT;
2537
2538         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2539         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2540                 if (KVM_REG_SIZE(id) != 4)
2541                         return -ENOENT;
2542                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2543                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2544                 if (!is_valid_cache(val))
2545                         return -ENOENT;
2546
2547                 if (get_user(newval, uval))
2548                         return -EFAULT;
2549
2550                 /* This is also invariant: you can't change it. */
2551                 if (newval != get_ccsidr(val))
2552                         return -EINVAL;
2553                 return 0;
2554         default:
2555                 return -ENOENT;
2556         }
2557 }
2558
2559 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2560 {
2561         const struct sys_reg_desc *r;
2562         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2563
2564         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2565                 return demux_c15_get(reg->id, uaddr);
2566
2567         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2568                 return -ENOENT;
2569
2570         r = index_to_sys_reg_desc(vcpu, reg->id);
2571         if (!r)
2572                 return get_invariant_sys_reg(reg->id, uaddr);
2573
2574         /* Check for regs disabled by runtime config */
2575         if (sysreg_hidden(vcpu, r))
2576                 return -ENOENT;
2577
2578         if (r->get_user)
2579                 return (r->get_user)(vcpu, r, reg, uaddr);
2580
2581         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2582 }
2583
2584 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2585 {
2586         const struct sys_reg_desc *r;
2587         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2588
2589         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2590                 return demux_c15_set(reg->id, uaddr);
2591
2592         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2593                 return -ENOENT;
2594
2595         r = index_to_sys_reg_desc(vcpu, reg->id);
2596         if (!r)
2597                 return set_invariant_sys_reg(reg->id, uaddr);
2598
2599         /* Check for regs disabled by runtime config */
2600         if (sysreg_hidden(vcpu, r))
2601                 return -ENOENT;
2602
2603         if (r->set_user)
2604                 return (r->set_user)(vcpu, r, reg, uaddr);
2605
2606         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2607 }
2608
2609 static unsigned int num_demux_regs(void)
2610 {
2611         unsigned int i, count = 0;
2612
2613         for (i = 0; i < CSSELR_MAX; i++)
2614                 if (is_valid_cache(i))
2615                         count++;
2616
2617         return count;
2618 }
2619
2620 static int write_demux_regids(u64 __user *uindices)
2621 {
2622         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2623         unsigned int i;
2624
2625         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2626         for (i = 0; i < CSSELR_MAX; i++) {
2627                 if (!is_valid_cache(i))
2628                         continue;
2629                 if (put_user(val | i, uindices))
2630                         return -EFAULT;
2631                 uindices++;
2632         }
2633         return 0;
2634 }
2635
2636 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2637 {
2638         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2639                 KVM_REG_ARM64_SYSREG |
2640                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2641                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2642                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2643                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2644                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2645 }
2646
2647 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2648 {
2649         if (!*uind)
2650                 return true;
2651
2652         if (put_user(sys_reg_to_index(reg), *uind))
2653                 return false;
2654
2655         (*uind)++;
2656         return true;
2657 }
2658
2659 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2660                             const struct sys_reg_desc *rd,
2661                             u64 __user **uind,
2662                             unsigned int *total)
2663 {
2664         /*
2665          * Ignore registers we trap but don't save,
2666          * and for which no custom user accessor is provided.
2667          */
2668         if (!(rd->reg || rd->get_user))
2669                 return 0;
2670
2671         if (sysreg_hidden(vcpu, rd))
2672                 return 0;
2673
2674         if (!copy_reg_to_user(rd, uind))
2675                 return -EFAULT;
2676
2677         (*total)++;
2678         return 0;
2679 }
2680
2681 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2682 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2683 {
2684         const struct sys_reg_desc *i2, *end2;
2685         unsigned int total = 0;
2686         int err;
2687
2688         i2 = sys_reg_descs;
2689         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2690
2691         while (i2 != end2) {
2692                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2693                 if (err)
2694                         return err;
2695         }
2696         return total;
2697 }
2698
2699 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2700 {
2701         return ARRAY_SIZE(invariant_sys_regs)
2702                 + num_demux_regs()
2703                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2704 }
2705
2706 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2707 {
2708         unsigned int i;
2709         int err;
2710
2711         /* Then give them all the invariant registers' indices. */
2712         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2713                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2714                         return -EFAULT;
2715                 uindices++;
2716         }
2717
2718         err = walk_sys_regs(vcpu, uindices);
2719         if (err < 0)
2720                 return err;
2721         uindices += err;
2722
2723         return write_demux_regids(uindices);
2724 }
2725
2726 void kvm_sys_reg_table_init(void)
2727 {
2728         unsigned int i;
2729         struct sys_reg_desc clidr;
2730
2731         /* Make sure tables are unique and in order. */
2732         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2733         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2734         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2735         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2736         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2737         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2738
2739         /* We abuse the reset function to overwrite the table itself. */
2740         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2741                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2742
2743         /*
2744          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2745          *
2746          *   If software reads the Cache Type fields from Ctype1
2747          *   upwards, once it has seen a value of 0b000, no caches
2748          *   exist at further-out levels of the hierarchy. So, for
2749          *   example, if Ctype3 is the first Cache Type field with a
2750          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2751          *   ignored.
2752          */
2753         get_clidr_el1(NULL, &clidr); /* Ugly... */
2754         cache_levels = clidr.val;
2755         for (i = 0; i < 7; i++)
2756                 if (((cache_levels >> (i*3)) & 7) == 0)
2757                         break;
2758         /* Clear all higher bits. */
2759         cache_levels &= (1 << (i*3))-1;
2760 }