KVM: arm64: Set CSV2 for guests on hardware unaffected by Spectre-v2
[linux-2.6-microblaze.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29
30 #include <trace/events/kvm.h>
31
32 #include "sys_regs.h"
33
34 #include "trace.h"
35
36 /*
37  * All of this file is extremely similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46
47 static bool read_from_write_only(struct kvm_vcpu *vcpu,
48                                  struct sys_reg_params *params,
49                                  const struct sys_reg_desc *r)
50 {
51         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
52         print_sys_reg_instr(params);
53         kvm_inject_undefined(vcpu);
54         return false;
55 }
56
57 static bool write_to_read_only(struct kvm_vcpu *vcpu,
58                                struct sys_reg_params *params,
59                                const struct sys_reg_desc *r)
60 {
61         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
62         print_sys_reg_instr(params);
63         kvm_inject_undefined(vcpu);
64         return false;
65 }
66
67 static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
68 {
69         /*
70          * System registers listed in the switch are not saved on every
71          * exit from the guest but are only saved on vcpu_put.
72          *
73          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
74          * should never be listed below, because the guest cannot modify its
75          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
76          * thread when emulating cross-VCPU communication.
77          */
78         switch (reg) {
79         case CSSELR_EL1:        *val = read_sysreg_s(SYS_CSSELR_EL1);   break;
80         case SCTLR_EL1:         *val = read_sysreg_s(SYS_SCTLR_EL12);   break;
81         case CPACR_EL1:         *val = read_sysreg_s(SYS_CPACR_EL12);   break;
82         case TTBR0_EL1:         *val = read_sysreg_s(SYS_TTBR0_EL12);   break;
83         case TTBR1_EL1:         *val = read_sysreg_s(SYS_TTBR1_EL12);   break;
84         case TCR_EL1:           *val = read_sysreg_s(SYS_TCR_EL12);     break;
85         case ESR_EL1:           *val = read_sysreg_s(SYS_ESR_EL12);     break;
86         case AFSR0_EL1:         *val = read_sysreg_s(SYS_AFSR0_EL12);   break;
87         case AFSR1_EL1:         *val = read_sysreg_s(SYS_AFSR1_EL12);   break;
88         case FAR_EL1:           *val = read_sysreg_s(SYS_FAR_EL12);     break;
89         case MAIR_EL1:          *val = read_sysreg_s(SYS_MAIR_EL12);    break;
90         case VBAR_EL1:          *val = read_sysreg_s(SYS_VBAR_EL12);    break;
91         case CONTEXTIDR_EL1:    *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
92         case TPIDR_EL0:         *val = read_sysreg_s(SYS_TPIDR_EL0);    break;
93         case TPIDRRO_EL0:       *val = read_sysreg_s(SYS_TPIDRRO_EL0);  break;
94         case TPIDR_EL1:         *val = read_sysreg_s(SYS_TPIDR_EL1);    break;
95         case AMAIR_EL1:         *val = read_sysreg_s(SYS_AMAIR_EL12);   break;
96         case CNTKCTL_EL1:       *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
97         case ELR_EL1:           *val = read_sysreg_s(SYS_ELR_EL12);     break;
98         case PAR_EL1:           *val = read_sysreg_s(SYS_PAR_EL1);      break;
99         case DACR32_EL2:        *val = read_sysreg_s(SYS_DACR32_EL2);   break;
100         case IFSR32_EL2:        *val = read_sysreg_s(SYS_IFSR32_EL2);   break;
101         case DBGVCR32_EL2:      *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
102         default:                return false;
103         }
104
105         return true;
106 }
107
108 static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
109 {
110         /*
111          * System registers listed in the switch are not restored on every
112          * entry to the guest but are only restored on vcpu_load.
113          *
114          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
115          * should never be listed below, because the MPIDR should only be set
116          * once, before running the VCPU, and never changed later.
117          */
118         switch (reg) {
119         case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    break;
120         case SCTLR_EL1:         write_sysreg_s(val, SYS_SCTLR_EL12);    break;
121         case CPACR_EL1:         write_sysreg_s(val, SYS_CPACR_EL12);    break;
122         case TTBR0_EL1:         write_sysreg_s(val, SYS_TTBR0_EL12);    break;
123         case TTBR1_EL1:         write_sysreg_s(val, SYS_TTBR1_EL12);    break;
124         case TCR_EL1:           write_sysreg_s(val, SYS_TCR_EL12);      break;
125         case ESR_EL1:           write_sysreg_s(val, SYS_ESR_EL12);      break;
126         case AFSR0_EL1:         write_sysreg_s(val, SYS_AFSR0_EL12);    break;
127         case AFSR1_EL1:         write_sysreg_s(val, SYS_AFSR1_EL12);    break;
128         case FAR_EL1:           write_sysreg_s(val, SYS_FAR_EL12);      break;
129         case MAIR_EL1:          write_sysreg_s(val, SYS_MAIR_EL12);     break;
130         case VBAR_EL1:          write_sysreg_s(val, SYS_VBAR_EL12);     break;
131         case CONTEXTIDR_EL1:    write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
132         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     break;
133         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   break;
134         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     break;
135         case AMAIR_EL1:         write_sysreg_s(val, SYS_AMAIR_EL12);    break;
136         case CNTKCTL_EL1:       write_sysreg_s(val, SYS_CNTKCTL_EL12);  break;
137         case ELR_EL1:           write_sysreg_s(val, SYS_ELR_EL12);      break;
138         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       break;
139         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    break;
140         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    break;
141         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  break;
142         default:                return false;
143         }
144
145         return true;
146 }
147
148 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
149 {
150         u64 val = 0x8badf00d8badf00d;
151
152         if (vcpu->arch.sysregs_loaded_on_cpu &&
153             __vcpu_read_sys_reg_from_cpu(reg, &val))
154                 return val;
155
156         return __vcpu_sys_reg(vcpu, reg);
157 }
158
159 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
160 {
161         if (vcpu->arch.sysregs_loaded_on_cpu &&
162             __vcpu_write_sys_reg_to_cpu(val, reg))
163                 return;
164
165          __vcpu_sys_reg(vcpu, reg) = val;
166 }
167
168 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
169 static u32 cache_levels;
170
171 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
172 #define CSSELR_MAX 12
173
174 /* Which cache CCSIDR represents depends on CSSELR value. */
175 static u32 get_ccsidr(u32 csselr)
176 {
177         u32 ccsidr;
178
179         /* Make sure noone else changes CSSELR during this! */
180         local_irq_disable();
181         write_sysreg(csselr, csselr_el1);
182         isb();
183         ccsidr = read_sysreg(ccsidr_el1);
184         local_irq_enable();
185
186         return ccsidr;
187 }
188
189 /*
190  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
191  */
192 static bool access_dcsw(struct kvm_vcpu *vcpu,
193                         struct sys_reg_params *p,
194                         const struct sys_reg_desc *r)
195 {
196         if (!p->is_write)
197                 return read_from_write_only(vcpu, p, r);
198
199         /*
200          * Only track S/W ops if we don't have FWB. It still indicates
201          * that the guest is a bit broken (S/W operations should only
202          * be done by firmware, knowing that there is only a single
203          * CPU left in the system, and certainly not from non-secure
204          * software).
205          */
206         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
207                 kvm_set_way_flush(vcpu);
208
209         return true;
210 }
211
212 /*
213  * Generic accessor for VM registers. Only called as long as HCR_TVM
214  * is set. If the guest enables the MMU, we stop trapping the VM
215  * sys_regs and leave it in complete control of the caches.
216  */
217 static bool access_vm_reg(struct kvm_vcpu *vcpu,
218                           struct sys_reg_params *p,
219                           const struct sys_reg_desc *r)
220 {
221         bool was_enabled = vcpu_has_cache_enabled(vcpu);
222         u64 val;
223         int reg = r->reg;
224
225         BUG_ON(!p->is_write);
226
227         /* See the 32bit mapping in kvm_host.h */
228         if (p->is_aarch32)
229                 reg = r->reg / 2;
230
231         if (!p->is_aarch32 || !p->is_32bit) {
232                 val = p->regval;
233         } else {
234                 val = vcpu_read_sys_reg(vcpu, reg);
235                 if (r->reg % 2)
236                         val = (p->regval << 32) | (u64)lower_32_bits(val);
237                 else
238                         val = ((u64)upper_32_bits(val) << 32) |
239                                 lower_32_bits(p->regval);
240         }
241         vcpu_write_sys_reg(vcpu, val, reg);
242
243         kvm_toggle_cache(vcpu, was_enabled);
244         return true;
245 }
246
247 static bool access_actlr(struct kvm_vcpu *vcpu,
248                          struct sys_reg_params *p,
249                          const struct sys_reg_desc *r)
250 {
251         if (p->is_write)
252                 return ignore_write(vcpu, p);
253
254         p->regval = vcpu_read_sys_reg(vcpu, ACTLR_EL1);
255
256         if (p->is_aarch32) {
257                 if (r->Op2 & 2)
258                         p->regval = upper_32_bits(p->regval);
259                 else
260                         p->regval = lower_32_bits(p->regval);
261         }
262
263         return true;
264 }
265
266 /*
267  * Trap handler for the GICv3 SGI generation system register.
268  * Forward the request to the VGIC emulation.
269  * The cp15_64 code makes sure this automatically works
270  * for both AArch64 and AArch32 accesses.
271  */
272 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
273                            struct sys_reg_params *p,
274                            const struct sys_reg_desc *r)
275 {
276         bool g1;
277
278         if (!p->is_write)
279                 return read_from_write_only(vcpu, p, r);
280
281         /*
282          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
283          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
284          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
285          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
286          * group.
287          */
288         if (p->is_aarch32) {
289                 switch (p->Op1) {
290                 default:                /* Keep GCC quiet */
291                 case 0:                 /* ICC_SGI1R */
292                         g1 = true;
293                         break;
294                 case 1:                 /* ICC_ASGI1R */
295                 case 2:                 /* ICC_SGI0R */
296                         g1 = false;
297                         break;
298                 }
299         } else {
300                 switch (p->Op2) {
301                 default:                /* Keep GCC quiet */
302                 case 5:                 /* ICC_SGI1R_EL1 */
303                         g1 = true;
304                         break;
305                 case 6:                 /* ICC_ASGI1R_EL1 */
306                 case 7:                 /* ICC_SGI0R_EL1 */
307                         g1 = false;
308                         break;
309                 }
310         }
311
312         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
313
314         return true;
315 }
316
317 static bool access_gic_sre(struct kvm_vcpu *vcpu,
318                            struct sys_reg_params *p,
319                            const struct sys_reg_desc *r)
320 {
321         if (p->is_write)
322                 return ignore_write(vcpu, p);
323
324         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
325         return true;
326 }
327
328 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
329                         struct sys_reg_params *p,
330                         const struct sys_reg_desc *r)
331 {
332         if (p->is_write)
333                 return ignore_write(vcpu, p);
334         else
335                 return read_zero(vcpu, p);
336 }
337
338 /*
339  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
340  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
341  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
342  * treat it separately.
343  */
344 static bool trap_loregion(struct kvm_vcpu *vcpu,
345                           struct sys_reg_params *p,
346                           const struct sys_reg_desc *r)
347 {
348         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
349         u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
350                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
351
352         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
353                 kvm_inject_undefined(vcpu);
354                 return false;
355         }
356
357         if (p->is_write && sr == SYS_LORID_EL1)
358                 return write_to_read_only(vcpu, p, r);
359
360         return trap_raz_wi(vcpu, p, r);
361 }
362
363 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
364                            struct sys_reg_params *p,
365                            const struct sys_reg_desc *r)
366 {
367         if (p->is_write) {
368                 return ignore_write(vcpu, p);
369         } else {
370                 p->regval = (1 << 3);
371                 return true;
372         }
373 }
374
375 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
376                                    struct sys_reg_params *p,
377                                    const struct sys_reg_desc *r)
378 {
379         if (p->is_write) {
380                 return ignore_write(vcpu, p);
381         } else {
382                 p->regval = read_sysreg(dbgauthstatus_el1);
383                 return true;
384         }
385 }
386
387 /*
388  * We want to avoid world-switching all the DBG registers all the
389  * time:
390  * 
391  * - If we've touched any debug register, it is likely that we're
392  *   going to touch more of them. It then makes sense to disable the
393  *   traps and start doing the save/restore dance
394  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
395  *   then mandatory to save/restore the registers, as the guest
396  *   depends on them.
397  * 
398  * For this, we use a DIRTY bit, indicating the guest has modified the
399  * debug registers, used as follow:
400  *
401  * On guest entry:
402  * - If the dirty bit is set (because we're coming back from trapping),
403  *   disable the traps, save host registers, restore guest registers.
404  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
405  *   set the dirty bit, disable the traps, save host registers,
406  *   restore guest registers.
407  * - Otherwise, enable the traps
408  *
409  * On guest exit:
410  * - If the dirty bit is set, save guest registers, restore host
411  *   registers and clear the dirty bit. This ensure that the host can
412  *   now use the debug registers.
413  */
414 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
415                             struct sys_reg_params *p,
416                             const struct sys_reg_desc *r)
417 {
418         if (p->is_write) {
419                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
420                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
421         } else {
422                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
423         }
424
425         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
426
427         return true;
428 }
429
430 /*
431  * reg_to_dbg/dbg_to_reg
432  *
433  * A 32 bit write to a debug register leave top bits alone
434  * A 32 bit read from a debug register only returns the bottom bits
435  *
436  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
437  * hyp.S code switches between host and guest values in future.
438  */
439 static void reg_to_dbg(struct kvm_vcpu *vcpu,
440                        struct sys_reg_params *p,
441                        u64 *dbg_reg)
442 {
443         u64 val = p->regval;
444
445         if (p->is_32bit) {
446                 val &= 0xffffffffUL;
447                 val |= ((*dbg_reg >> 32) << 32);
448         }
449
450         *dbg_reg = val;
451         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
452 }
453
454 static void dbg_to_reg(struct kvm_vcpu *vcpu,
455                        struct sys_reg_params *p,
456                        u64 *dbg_reg)
457 {
458         p->regval = *dbg_reg;
459         if (p->is_32bit)
460                 p->regval &= 0xffffffffUL;
461 }
462
463 static bool trap_bvr(struct kvm_vcpu *vcpu,
464                      struct sys_reg_params *p,
465                      const struct sys_reg_desc *rd)
466 {
467         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
468
469         if (p->is_write)
470                 reg_to_dbg(vcpu, p, dbg_reg);
471         else
472                 dbg_to_reg(vcpu, p, dbg_reg);
473
474         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
475
476         return true;
477 }
478
479 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
480                 const struct kvm_one_reg *reg, void __user *uaddr)
481 {
482         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
483
484         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
485                 return -EFAULT;
486         return 0;
487 }
488
489 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
490         const struct kvm_one_reg *reg, void __user *uaddr)
491 {
492         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
493
494         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
495                 return -EFAULT;
496         return 0;
497 }
498
499 static void reset_bvr(struct kvm_vcpu *vcpu,
500                       const struct sys_reg_desc *rd)
501 {
502         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
503 }
504
505 static bool trap_bcr(struct kvm_vcpu *vcpu,
506                      struct sys_reg_params *p,
507                      const struct sys_reg_desc *rd)
508 {
509         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
510
511         if (p->is_write)
512                 reg_to_dbg(vcpu, p, dbg_reg);
513         else
514                 dbg_to_reg(vcpu, p, dbg_reg);
515
516         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
517
518         return true;
519 }
520
521 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
522                 const struct kvm_one_reg *reg, void __user *uaddr)
523 {
524         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
525
526         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
527                 return -EFAULT;
528
529         return 0;
530 }
531
532 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
533         const struct kvm_one_reg *reg, void __user *uaddr)
534 {
535         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
536
537         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
538                 return -EFAULT;
539         return 0;
540 }
541
542 static void reset_bcr(struct kvm_vcpu *vcpu,
543                       const struct sys_reg_desc *rd)
544 {
545         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
546 }
547
548 static bool trap_wvr(struct kvm_vcpu *vcpu,
549                      struct sys_reg_params *p,
550                      const struct sys_reg_desc *rd)
551 {
552         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
553
554         if (p->is_write)
555                 reg_to_dbg(vcpu, p, dbg_reg);
556         else
557                 dbg_to_reg(vcpu, p, dbg_reg);
558
559         trace_trap_reg(__func__, rd->reg, p->is_write,
560                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
561
562         return true;
563 }
564
565 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
566                 const struct kvm_one_reg *reg, void __user *uaddr)
567 {
568         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
569
570         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
571                 return -EFAULT;
572         return 0;
573 }
574
575 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
576         const struct kvm_one_reg *reg, void __user *uaddr)
577 {
578         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
579
580         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
581                 return -EFAULT;
582         return 0;
583 }
584
585 static void reset_wvr(struct kvm_vcpu *vcpu,
586                       const struct sys_reg_desc *rd)
587 {
588         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
589 }
590
591 static bool trap_wcr(struct kvm_vcpu *vcpu,
592                      struct sys_reg_params *p,
593                      const struct sys_reg_desc *rd)
594 {
595         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
596
597         if (p->is_write)
598                 reg_to_dbg(vcpu, p, dbg_reg);
599         else
600                 dbg_to_reg(vcpu, p, dbg_reg);
601
602         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
603
604         return true;
605 }
606
607 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
608                 const struct kvm_one_reg *reg, void __user *uaddr)
609 {
610         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
611
612         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
613                 return -EFAULT;
614         return 0;
615 }
616
617 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
618         const struct kvm_one_reg *reg, void __user *uaddr)
619 {
620         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
621
622         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
623                 return -EFAULT;
624         return 0;
625 }
626
627 static void reset_wcr(struct kvm_vcpu *vcpu,
628                       const struct sys_reg_desc *rd)
629 {
630         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
631 }
632
633 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
634 {
635         u64 amair = read_sysreg(amair_el1);
636         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
637 }
638
639 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
640 {
641         u64 actlr = read_sysreg(actlr_el1);
642         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
643 }
644
645 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
646 {
647         u64 mpidr;
648
649         /*
650          * Map the vcpu_id into the first three affinity level fields of
651          * the MPIDR. We limit the number of VCPUs in level 0 due to a
652          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
653          * of the GICv3 to be able to address each CPU directly when
654          * sending IPIs.
655          */
656         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
657         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
658         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
659         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
660 }
661
662 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
663 {
664         u64 pmcr, val;
665
666         pmcr = read_sysreg(pmcr_el0);
667         /*
668          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
669          * except PMCR.E resetting to zero.
670          */
671         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
672                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
673         if (!system_supports_32bit_el0())
674                 val |= ARMV8_PMU_PMCR_LC;
675         __vcpu_sys_reg(vcpu, r->reg) = val;
676 }
677
678 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
679 {
680         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
681         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
682
683         if (!enabled)
684                 kvm_inject_undefined(vcpu);
685
686         return !enabled;
687 }
688
689 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
690 {
691         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
692 }
693
694 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
695 {
696         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
697 }
698
699 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
700 {
701         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
702 }
703
704 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
705 {
706         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
707 }
708
709 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
710                         const struct sys_reg_desc *r)
711 {
712         u64 val;
713
714         if (!kvm_arm_pmu_v3_ready(vcpu))
715                 return trap_raz_wi(vcpu, p, r);
716
717         if (pmu_access_el0_disabled(vcpu))
718                 return false;
719
720         if (p->is_write) {
721                 /* Only update writeable bits of PMCR */
722                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
723                 val &= ~ARMV8_PMU_PMCR_MASK;
724                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
725                 if (!system_supports_32bit_el0())
726                         val |= ARMV8_PMU_PMCR_LC;
727                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
728                 kvm_pmu_handle_pmcr(vcpu, val);
729                 kvm_vcpu_pmu_restore_guest(vcpu);
730         } else {
731                 /* PMCR.P & PMCR.C are RAZ */
732                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
733                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
734                 p->regval = val;
735         }
736
737         return true;
738 }
739
740 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
741                           const struct sys_reg_desc *r)
742 {
743         if (!kvm_arm_pmu_v3_ready(vcpu))
744                 return trap_raz_wi(vcpu, p, r);
745
746         if (pmu_access_event_counter_el0_disabled(vcpu))
747                 return false;
748
749         if (p->is_write)
750                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
751         else
752                 /* return PMSELR.SEL field */
753                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
754                             & ARMV8_PMU_COUNTER_MASK;
755
756         return true;
757 }
758
759 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
760                           const struct sys_reg_desc *r)
761 {
762         u64 pmceid;
763
764         if (!kvm_arm_pmu_v3_ready(vcpu))
765                 return trap_raz_wi(vcpu, p, r);
766
767         BUG_ON(p->is_write);
768
769         if (pmu_access_el0_disabled(vcpu))
770                 return false;
771
772         if (!(p->Op2 & 1))
773                 pmceid = read_sysreg(pmceid0_el0);
774         else
775                 pmceid = read_sysreg(pmceid1_el0);
776
777         p->regval = pmceid;
778
779         return true;
780 }
781
782 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
783 {
784         u64 pmcr, val;
785
786         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
787         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
788         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
789                 kvm_inject_undefined(vcpu);
790                 return false;
791         }
792
793         return true;
794 }
795
796 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
797                               struct sys_reg_params *p,
798                               const struct sys_reg_desc *r)
799 {
800         u64 idx;
801
802         if (!kvm_arm_pmu_v3_ready(vcpu))
803                 return trap_raz_wi(vcpu, p, r);
804
805         if (r->CRn == 9 && r->CRm == 13) {
806                 if (r->Op2 == 2) {
807                         /* PMXEVCNTR_EL0 */
808                         if (pmu_access_event_counter_el0_disabled(vcpu))
809                                 return false;
810
811                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
812                               & ARMV8_PMU_COUNTER_MASK;
813                 } else if (r->Op2 == 0) {
814                         /* PMCCNTR_EL0 */
815                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
816                                 return false;
817
818                         idx = ARMV8_PMU_CYCLE_IDX;
819                 } else {
820                         return false;
821                 }
822         } else if (r->CRn == 0 && r->CRm == 9) {
823                 /* PMCCNTR */
824                 if (pmu_access_event_counter_el0_disabled(vcpu))
825                         return false;
826
827                 idx = ARMV8_PMU_CYCLE_IDX;
828         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
829                 /* PMEVCNTRn_EL0 */
830                 if (pmu_access_event_counter_el0_disabled(vcpu))
831                         return false;
832
833                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
834         } else {
835                 return false;
836         }
837
838         if (!pmu_counter_idx_valid(vcpu, idx))
839                 return false;
840
841         if (p->is_write) {
842                 if (pmu_access_el0_disabled(vcpu))
843                         return false;
844
845                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
846         } else {
847                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
848         }
849
850         return true;
851 }
852
853 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
854                                const struct sys_reg_desc *r)
855 {
856         u64 idx, reg;
857
858         if (!kvm_arm_pmu_v3_ready(vcpu))
859                 return trap_raz_wi(vcpu, p, r);
860
861         if (pmu_access_el0_disabled(vcpu))
862                 return false;
863
864         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
865                 /* PMXEVTYPER_EL0 */
866                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
867                 reg = PMEVTYPER0_EL0 + idx;
868         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
869                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
870                 if (idx == ARMV8_PMU_CYCLE_IDX)
871                         reg = PMCCFILTR_EL0;
872                 else
873                         /* PMEVTYPERn_EL0 */
874                         reg = PMEVTYPER0_EL0 + idx;
875         } else {
876                 BUG();
877         }
878
879         if (!pmu_counter_idx_valid(vcpu, idx))
880                 return false;
881
882         if (p->is_write) {
883                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
884                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
885                 kvm_vcpu_pmu_restore_guest(vcpu);
886         } else {
887                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
888         }
889
890         return true;
891 }
892
893 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
894                            const struct sys_reg_desc *r)
895 {
896         u64 val, mask;
897
898         if (!kvm_arm_pmu_v3_ready(vcpu))
899                 return trap_raz_wi(vcpu, p, r);
900
901         if (pmu_access_el0_disabled(vcpu))
902                 return false;
903
904         mask = kvm_pmu_valid_counter_mask(vcpu);
905         if (p->is_write) {
906                 val = p->regval & mask;
907                 if (r->Op2 & 0x1) {
908                         /* accessing PMCNTENSET_EL0 */
909                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
910                         kvm_pmu_enable_counter_mask(vcpu, val);
911                         kvm_vcpu_pmu_restore_guest(vcpu);
912                 } else {
913                         /* accessing PMCNTENCLR_EL0 */
914                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
915                         kvm_pmu_disable_counter_mask(vcpu, val);
916                 }
917         } else {
918                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
919         }
920
921         return true;
922 }
923
924 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
925                            const struct sys_reg_desc *r)
926 {
927         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
928
929         if (!kvm_arm_pmu_v3_ready(vcpu))
930                 return trap_raz_wi(vcpu, p, r);
931
932         if (!vcpu_mode_priv(vcpu)) {
933                 kvm_inject_undefined(vcpu);
934                 return false;
935         }
936
937         if (p->is_write) {
938                 u64 val = p->regval & mask;
939
940                 if (r->Op2 & 0x1)
941                         /* accessing PMINTENSET_EL1 */
942                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
943                 else
944                         /* accessing PMINTENCLR_EL1 */
945                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
946         } else {
947                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
948         }
949
950         return true;
951 }
952
953 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
954                          const struct sys_reg_desc *r)
955 {
956         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
957
958         if (!kvm_arm_pmu_v3_ready(vcpu))
959                 return trap_raz_wi(vcpu, p, r);
960
961         if (pmu_access_el0_disabled(vcpu))
962                 return false;
963
964         if (p->is_write) {
965                 if (r->CRm & 0x2)
966                         /* accessing PMOVSSET_EL0 */
967                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
968                 else
969                         /* accessing PMOVSCLR_EL0 */
970                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
971         } else {
972                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
973         }
974
975         return true;
976 }
977
978 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
979                            const struct sys_reg_desc *r)
980 {
981         u64 mask;
982
983         if (!kvm_arm_pmu_v3_ready(vcpu))
984                 return trap_raz_wi(vcpu, p, r);
985
986         if (!p->is_write)
987                 return read_from_write_only(vcpu, p, r);
988
989         if (pmu_write_swinc_el0_disabled(vcpu))
990                 return false;
991
992         mask = kvm_pmu_valid_counter_mask(vcpu);
993         kvm_pmu_software_increment(vcpu, p->regval & mask);
994         return true;
995 }
996
997 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
998                              const struct sys_reg_desc *r)
999 {
1000         if (!kvm_arm_pmu_v3_ready(vcpu))
1001                 return trap_raz_wi(vcpu, p, r);
1002
1003         if (p->is_write) {
1004                 if (!vcpu_mode_priv(vcpu)) {
1005                         kvm_inject_undefined(vcpu);
1006                         return false;
1007                 }
1008
1009                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1010                                p->regval & ARMV8_PMU_USERENR_MASK;
1011         } else {
1012                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1013                             & ARMV8_PMU_USERENR_MASK;
1014         }
1015
1016         return true;
1017 }
1018
1019 #define reg_to_encoding(x)                                              \
1020         sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
1021                 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
1022
1023 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1024 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
1025         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
1026           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
1027         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
1028           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
1029         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
1030           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
1031         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
1032           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1033
1034 /* Macro to expand the PMEVCNTRn_EL0 register */
1035 #define PMU_PMEVCNTR_EL0(n)                                             \
1036         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
1037           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1038
1039 /* Macro to expand the PMEVTYPERn_EL0 register */
1040 #define PMU_PMEVTYPER_EL0(n)                                            \
1041         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
1042           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1043
1044 static bool access_amu(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1045                              const struct sys_reg_desc *r)
1046 {
1047         kvm_inject_undefined(vcpu);
1048
1049         return false;
1050 }
1051
1052 /* Macro to expand the AMU counter and type registers*/
1053 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), access_amu }
1054 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), access_amu }
1055 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), access_amu }
1056 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), access_amu }
1057
1058 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1059                          struct sys_reg_params *p,
1060                          const struct sys_reg_desc *rd)
1061 {
1062         /*
1063          * If we land here, that is because we didn't fixup the access on exit
1064          * by allowing the PtrAuth sysregs. The only way this happens is when
1065          * the guest does not have PtrAuth support enabled.
1066          */
1067         kvm_inject_undefined(vcpu);
1068
1069         return false;
1070 }
1071
1072 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1073                         const struct sys_reg_desc *rd)
1074 {
1075         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1076 }
1077
1078 #define __PTRAUTH_KEY(k)                                                \
1079         { SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k,           \
1080         .visibility = ptrauth_visibility}
1081
1082 #define PTRAUTH_KEY(k)                                                  \
1083         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1084         __PTRAUTH_KEY(k ## KEYHI_EL1)
1085
1086 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1087                               struct sys_reg_params *p,
1088                               const struct sys_reg_desc *r)
1089 {
1090         enum kvm_arch_timers tmr;
1091         enum kvm_arch_timer_regs treg;
1092         u64 reg = reg_to_encoding(r);
1093
1094         switch (reg) {
1095         case SYS_CNTP_TVAL_EL0:
1096         case SYS_AARCH32_CNTP_TVAL:
1097                 tmr = TIMER_PTIMER;
1098                 treg = TIMER_REG_TVAL;
1099                 break;
1100         case SYS_CNTP_CTL_EL0:
1101         case SYS_AARCH32_CNTP_CTL:
1102                 tmr = TIMER_PTIMER;
1103                 treg = TIMER_REG_CTL;
1104                 break;
1105         case SYS_CNTP_CVAL_EL0:
1106         case SYS_AARCH32_CNTP_CVAL:
1107                 tmr = TIMER_PTIMER;
1108                 treg = TIMER_REG_CVAL;
1109                 break;
1110         default:
1111                 BUG();
1112         }
1113
1114         if (p->is_write)
1115                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1116         else
1117                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1118
1119         return true;
1120 }
1121
1122 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1123 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1124                 struct sys_reg_desc const *r, bool raz)
1125 {
1126         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1127                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1128         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1129
1130         if (id == SYS_ID_AA64PFR0_EL1) {
1131                 if (!vcpu_has_sve(vcpu))
1132                         val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1133                 val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1134                 if (!(val & (0xfUL << ID_AA64PFR0_CSV2_SHIFT)) &&
1135                     arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
1136                         val |= (1UL << ID_AA64PFR0_CSV2_SHIFT);
1137         } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1138                 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1139                          (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1140                          (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1141                          (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1142         } else if (id == SYS_ID_AA64DFR0_EL1) {
1143                 /* Limit guests to PMUv3 for ARMv8.1 */
1144                 val = cpuid_feature_cap_perfmon_field(val,
1145                                                 ID_AA64DFR0_PMUVER_SHIFT,
1146                                                 ID_AA64DFR0_PMUVER_8_1);
1147         } else if (id == SYS_ID_DFR0_EL1) {
1148                 /* Limit guests to PMUv3 for ARMv8.1 */
1149                 val = cpuid_feature_cap_perfmon_field(val,
1150                                                 ID_DFR0_PERFMON_SHIFT,
1151                                                 ID_DFR0_PERFMON_8_1);
1152         }
1153
1154         return val;
1155 }
1156
1157 /* cpufeature ID register access trap handlers */
1158
1159 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1160                             struct sys_reg_params *p,
1161                             const struct sys_reg_desc *r,
1162                             bool raz)
1163 {
1164         if (p->is_write)
1165                 return write_to_read_only(vcpu, p, r);
1166
1167         p->regval = read_id_reg(vcpu, r, raz);
1168         return true;
1169 }
1170
1171 static bool access_id_reg(struct kvm_vcpu *vcpu,
1172                           struct sys_reg_params *p,
1173                           const struct sys_reg_desc *r)
1174 {
1175         return __access_id_reg(vcpu, p, r, false);
1176 }
1177
1178 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1179                               struct sys_reg_params *p,
1180                               const struct sys_reg_desc *r)
1181 {
1182         return __access_id_reg(vcpu, p, r, true);
1183 }
1184
1185 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1186 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1187 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1188
1189 /* Visibility overrides for SVE-specific control registers */
1190 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1191                                    const struct sys_reg_desc *rd)
1192 {
1193         if (vcpu_has_sve(vcpu))
1194                 return 0;
1195
1196         return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1197 }
1198
1199 /* Visibility overrides for SVE-specific ID registers */
1200 static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
1201                                       const struct sys_reg_desc *rd)
1202 {
1203         if (vcpu_has_sve(vcpu))
1204                 return 0;
1205
1206         return REG_HIDDEN_USER;
1207 }
1208
1209 /* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
1210 static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
1211 {
1212         if (!vcpu_has_sve(vcpu))
1213                 return 0;
1214
1215         return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
1216 }
1217
1218 static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1219                                    struct sys_reg_params *p,
1220                                    const struct sys_reg_desc *rd)
1221 {
1222         if (p->is_write)
1223                 return write_to_read_only(vcpu, p, rd);
1224
1225         p->regval = guest_id_aa64zfr0_el1(vcpu);
1226         return true;
1227 }
1228
1229 static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1230                 const struct sys_reg_desc *rd,
1231                 const struct kvm_one_reg *reg, void __user *uaddr)
1232 {
1233         u64 val;
1234
1235         if (WARN_ON(!vcpu_has_sve(vcpu)))
1236                 return -ENOENT;
1237
1238         val = guest_id_aa64zfr0_el1(vcpu);
1239         return reg_to_user(uaddr, &val, reg->id);
1240 }
1241
1242 static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1243                 const struct sys_reg_desc *rd,
1244                 const struct kvm_one_reg *reg, void __user *uaddr)
1245 {
1246         const u64 id = sys_reg_to_index(rd);
1247         int err;
1248         u64 val;
1249
1250         if (WARN_ON(!vcpu_has_sve(vcpu)))
1251                 return -ENOENT;
1252
1253         err = reg_from_user(&val, uaddr, id);
1254         if (err)
1255                 return err;
1256
1257         /* This is what we mean by invariant: you can't change it. */
1258         if (val != guest_id_aa64zfr0_el1(vcpu))
1259                 return -EINVAL;
1260
1261         return 0;
1262 }
1263
1264 /*
1265  * cpufeature ID register user accessors
1266  *
1267  * For now, these registers are immutable for userspace, so no values
1268  * are stored, and for set_id_reg() we don't allow the effective value
1269  * to be changed.
1270  */
1271 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1272                         const struct sys_reg_desc *rd, void __user *uaddr,
1273                         bool raz)
1274 {
1275         const u64 id = sys_reg_to_index(rd);
1276         const u64 val = read_id_reg(vcpu, rd, raz);
1277
1278         return reg_to_user(uaddr, &val, id);
1279 }
1280
1281 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1282                         const struct sys_reg_desc *rd, void __user *uaddr,
1283                         bool raz)
1284 {
1285         const u64 id = sys_reg_to_index(rd);
1286         int err;
1287         u64 val;
1288
1289         err = reg_from_user(&val, uaddr, id);
1290         if (err)
1291                 return err;
1292
1293         /* This is what we mean by invariant: you can't change it. */
1294         if (val != read_id_reg(vcpu, rd, raz))
1295                 return -EINVAL;
1296
1297         return 0;
1298 }
1299
1300 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1301                       const struct kvm_one_reg *reg, void __user *uaddr)
1302 {
1303         return __get_id_reg(vcpu, rd, uaddr, false);
1304 }
1305
1306 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1307                       const struct kvm_one_reg *reg, void __user *uaddr)
1308 {
1309         return __set_id_reg(vcpu, rd, uaddr, false);
1310 }
1311
1312 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1313                           const struct kvm_one_reg *reg, void __user *uaddr)
1314 {
1315         return __get_id_reg(vcpu, rd, uaddr, true);
1316 }
1317
1318 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1319                           const struct kvm_one_reg *reg, void __user *uaddr)
1320 {
1321         return __set_id_reg(vcpu, rd, uaddr, true);
1322 }
1323
1324 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1325                        const struct sys_reg_desc *r)
1326 {
1327         if (p->is_write)
1328                 return write_to_read_only(vcpu, p, r);
1329
1330         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1331         return true;
1332 }
1333
1334 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1335                          const struct sys_reg_desc *r)
1336 {
1337         if (p->is_write)
1338                 return write_to_read_only(vcpu, p, r);
1339
1340         p->regval = read_sysreg(clidr_el1);
1341         return true;
1342 }
1343
1344 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1345                           const struct sys_reg_desc *r)
1346 {
1347         int reg = r->reg;
1348
1349         /* See the 32bit mapping in kvm_host.h */
1350         if (p->is_aarch32)
1351                 reg = r->reg / 2;
1352
1353         if (p->is_write)
1354                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1355         else
1356                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1357         return true;
1358 }
1359
1360 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1361                           const struct sys_reg_desc *r)
1362 {
1363         u32 csselr;
1364
1365         if (p->is_write)
1366                 return write_to_read_only(vcpu, p, r);
1367
1368         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1369         p->regval = get_ccsidr(csselr);
1370
1371         /*
1372          * Guests should not be doing cache operations by set/way at all, and
1373          * for this reason, we trap them and attempt to infer the intent, so
1374          * that we can flush the entire guest's address space at the appropriate
1375          * time.
1376          * To prevent this trapping from causing performance problems, let's
1377          * expose the geometry of all data and unified caches (which are
1378          * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1379          * [If guests should attempt to infer aliasing properties from the
1380          * geometry (which is not permitted by the architecture), they would
1381          * only do so for virtually indexed caches.]
1382          */
1383         if (!(csselr & 1)) // data or unified cache
1384                 p->regval &= ~GENMASK(27, 3);
1385         return true;
1386 }
1387
1388 /* sys_reg_desc initialiser for known cpufeature ID registers */
1389 #define ID_SANITISED(name) {                    \
1390         SYS_DESC(SYS_##name),                   \
1391         .access = access_id_reg,                \
1392         .get_user = get_id_reg,                 \
1393         .set_user = set_id_reg,                 \
1394 }
1395
1396 /*
1397  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1398  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1399  * (1 <= crm < 8, 0 <= Op2 < 8).
1400  */
1401 #define ID_UNALLOCATED(crm, op2) {                      \
1402         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1403         .access = access_raz_id_reg,                    \
1404         .get_user = get_raz_id_reg,                     \
1405         .set_user = set_raz_id_reg,                     \
1406 }
1407
1408 /*
1409  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1410  * For now, these are exposed just like unallocated ID regs: they appear
1411  * RAZ for the guest.
1412  */
1413 #define ID_HIDDEN(name) {                       \
1414         SYS_DESC(SYS_##name),                   \
1415         .access = access_raz_id_reg,            \
1416         .get_user = get_raz_id_reg,             \
1417         .set_user = set_raz_id_reg,             \
1418 }
1419
1420 /*
1421  * Architected system registers.
1422  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1423  *
1424  * Debug handling: We do trap most, if not all debug related system
1425  * registers. The implementation is good enough to ensure that a guest
1426  * can use these with minimal performance degradation. The drawback is
1427  * that we don't implement any of the external debug, none of the
1428  * OSlock protocol. This should be revisited if we ever encounter a
1429  * more demanding guest...
1430  */
1431 static const struct sys_reg_desc sys_reg_descs[] = {
1432         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1433         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1434         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1435
1436         DBG_BCR_BVR_WCR_WVR_EL1(0),
1437         DBG_BCR_BVR_WCR_WVR_EL1(1),
1438         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1439         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1440         DBG_BCR_BVR_WCR_WVR_EL1(2),
1441         DBG_BCR_BVR_WCR_WVR_EL1(3),
1442         DBG_BCR_BVR_WCR_WVR_EL1(4),
1443         DBG_BCR_BVR_WCR_WVR_EL1(5),
1444         DBG_BCR_BVR_WCR_WVR_EL1(6),
1445         DBG_BCR_BVR_WCR_WVR_EL1(7),
1446         DBG_BCR_BVR_WCR_WVR_EL1(8),
1447         DBG_BCR_BVR_WCR_WVR_EL1(9),
1448         DBG_BCR_BVR_WCR_WVR_EL1(10),
1449         DBG_BCR_BVR_WCR_WVR_EL1(11),
1450         DBG_BCR_BVR_WCR_WVR_EL1(12),
1451         DBG_BCR_BVR_WCR_WVR_EL1(13),
1452         DBG_BCR_BVR_WCR_WVR_EL1(14),
1453         DBG_BCR_BVR_WCR_WVR_EL1(15),
1454
1455         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1456         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1457         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1458         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1459         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1460         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1461         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1462         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1463
1464         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1465         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1466         // DBGDTR[TR]X_EL0 share the same encoding
1467         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1468
1469         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1470
1471         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1472
1473         /*
1474          * ID regs: all ID_SANITISED() entries here must have corresponding
1475          * entries in arm64_ftr_regs[].
1476          */
1477
1478         /* AArch64 mappings of the AArch32 ID registers */
1479         /* CRm=1 */
1480         ID_SANITISED(ID_PFR0_EL1),
1481         ID_SANITISED(ID_PFR1_EL1),
1482         ID_SANITISED(ID_DFR0_EL1),
1483         ID_HIDDEN(ID_AFR0_EL1),
1484         ID_SANITISED(ID_MMFR0_EL1),
1485         ID_SANITISED(ID_MMFR1_EL1),
1486         ID_SANITISED(ID_MMFR2_EL1),
1487         ID_SANITISED(ID_MMFR3_EL1),
1488
1489         /* CRm=2 */
1490         ID_SANITISED(ID_ISAR0_EL1),
1491         ID_SANITISED(ID_ISAR1_EL1),
1492         ID_SANITISED(ID_ISAR2_EL1),
1493         ID_SANITISED(ID_ISAR3_EL1),
1494         ID_SANITISED(ID_ISAR4_EL1),
1495         ID_SANITISED(ID_ISAR5_EL1),
1496         ID_SANITISED(ID_MMFR4_EL1),
1497         ID_SANITISED(ID_ISAR6_EL1),
1498
1499         /* CRm=3 */
1500         ID_SANITISED(MVFR0_EL1),
1501         ID_SANITISED(MVFR1_EL1),
1502         ID_SANITISED(MVFR2_EL1),
1503         ID_UNALLOCATED(3,3),
1504         ID_SANITISED(ID_PFR2_EL1),
1505         ID_HIDDEN(ID_DFR1_EL1),
1506         ID_SANITISED(ID_MMFR5_EL1),
1507         ID_UNALLOCATED(3,7),
1508
1509         /* AArch64 ID registers */
1510         /* CRm=4 */
1511         ID_SANITISED(ID_AA64PFR0_EL1),
1512         ID_SANITISED(ID_AA64PFR1_EL1),
1513         ID_UNALLOCATED(4,2),
1514         ID_UNALLOCATED(4,3),
1515         { SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
1516         ID_UNALLOCATED(4,5),
1517         ID_UNALLOCATED(4,6),
1518         ID_UNALLOCATED(4,7),
1519
1520         /* CRm=5 */
1521         ID_SANITISED(ID_AA64DFR0_EL1),
1522         ID_SANITISED(ID_AA64DFR1_EL1),
1523         ID_UNALLOCATED(5,2),
1524         ID_UNALLOCATED(5,3),
1525         ID_HIDDEN(ID_AA64AFR0_EL1),
1526         ID_HIDDEN(ID_AA64AFR1_EL1),
1527         ID_UNALLOCATED(5,6),
1528         ID_UNALLOCATED(5,7),
1529
1530         /* CRm=6 */
1531         ID_SANITISED(ID_AA64ISAR0_EL1),
1532         ID_SANITISED(ID_AA64ISAR1_EL1),
1533         ID_UNALLOCATED(6,2),
1534         ID_UNALLOCATED(6,3),
1535         ID_UNALLOCATED(6,4),
1536         ID_UNALLOCATED(6,5),
1537         ID_UNALLOCATED(6,6),
1538         ID_UNALLOCATED(6,7),
1539
1540         /* CRm=7 */
1541         ID_SANITISED(ID_AA64MMFR0_EL1),
1542         ID_SANITISED(ID_AA64MMFR1_EL1),
1543         ID_SANITISED(ID_AA64MMFR2_EL1),
1544         ID_UNALLOCATED(7,3),
1545         ID_UNALLOCATED(7,4),
1546         ID_UNALLOCATED(7,5),
1547         ID_UNALLOCATED(7,6),
1548         ID_UNALLOCATED(7,7),
1549
1550         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1551         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1552         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1553         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1554         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1555         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1556         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1557
1558         PTRAUTH_KEY(APIA),
1559         PTRAUTH_KEY(APIB),
1560         PTRAUTH_KEY(APDA),
1561         PTRAUTH_KEY(APDB),
1562         PTRAUTH_KEY(APGA),
1563
1564         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1565         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1566         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1567
1568         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1569         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1570         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1571         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1572         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1573         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1574         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1575         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1576
1577         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1578         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1579
1580         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1581         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1582
1583         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1584         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1585
1586         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1587         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1588         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1589         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1590         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1591
1592         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1593         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1594
1595         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1596         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1597         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1598         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1599         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1600         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1601         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1602         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1603         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1604         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1605         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1606         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1607
1608         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1609         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1610
1611         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1612
1613         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1614         { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1615         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1616         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1617
1618         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1619         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1620         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1621         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1622         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1623         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1624         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1625         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1626         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1627         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1628         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1629         /*
1630          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1631          * in 32bit mode. Here we choose to reset it as zero for consistency.
1632          */
1633         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1634         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1635
1636         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1637         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1638
1639         { SYS_DESC(SYS_AMCR_EL0), access_amu },
1640         { SYS_DESC(SYS_AMCFGR_EL0), access_amu },
1641         { SYS_DESC(SYS_AMCGCR_EL0), access_amu },
1642         { SYS_DESC(SYS_AMUSERENR_EL0), access_amu },
1643         { SYS_DESC(SYS_AMCNTENCLR0_EL0), access_amu },
1644         { SYS_DESC(SYS_AMCNTENSET0_EL0), access_amu },
1645         { SYS_DESC(SYS_AMCNTENCLR1_EL0), access_amu },
1646         { SYS_DESC(SYS_AMCNTENSET1_EL0), access_amu },
1647         AMU_AMEVCNTR0_EL0(0),
1648         AMU_AMEVCNTR0_EL0(1),
1649         AMU_AMEVCNTR0_EL0(2),
1650         AMU_AMEVCNTR0_EL0(3),
1651         AMU_AMEVCNTR0_EL0(4),
1652         AMU_AMEVCNTR0_EL0(5),
1653         AMU_AMEVCNTR0_EL0(6),
1654         AMU_AMEVCNTR0_EL0(7),
1655         AMU_AMEVCNTR0_EL0(8),
1656         AMU_AMEVCNTR0_EL0(9),
1657         AMU_AMEVCNTR0_EL0(10),
1658         AMU_AMEVCNTR0_EL0(11),
1659         AMU_AMEVCNTR0_EL0(12),
1660         AMU_AMEVCNTR0_EL0(13),
1661         AMU_AMEVCNTR0_EL0(14),
1662         AMU_AMEVCNTR0_EL0(15),
1663         AMU_AMEVTYPER0_EL0(0),
1664         AMU_AMEVTYPER0_EL0(1),
1665         AMU_AMEVTYPER0_EL0(2),
1666         AMU_AMEVTYPER0_EL0(3),
1667         AMU_AMEVTYPER0_EL0(4),
1668         AMU_AMEVTYPER0_EL0(5),
1669         AMU_AMEVTYPER0_EL0(6),
1670         AMU_AMEVTYPER0_EL0(7),
1671         AMU_AMEVTYPER0_EL0(8),
1672         AMU_AMEVTYPER0_EL0(9),
1673         AMU_AMEVTYPER0_EL0(10),
1674         AMU_AMEVTYPER0_EL0(11),
1675         AMU_AMEVTYPER0_EL0(12),
1676         AMU_AMEVTYPER0_EL0(13),
1677         AMU_AMEVTYPER0_EL0(14),
1678         AMU_AMEVTYPER0_EL0(15),
1679         AMU_AMEVCNTR1_EL0(0),
1680         AMU_AMEVCNTR1_EL0(1),
1681         AMU_AMEVCNTR1_EL0(2),
1682         AMU_AMEVCNTR1_EL0(3),
1683         AMU_AMEVCNTR1_EL0(4),
1684         AMU_AMEVCNTR1_EL0(5),
1685         AMU_AMEVCNTR1_EL0(6),
1686         AMU_AMEVCNTR1_EL0(7),
1687         AMU_AMEVCNTR1_EL0(8),
1688         AMU_AMEVCNTR1_EL0(9),
1689         AMU_AMEVCNTR1_EL0(10),
1690         AMU_AMEVCNTR1_EL0(11),
1691         AMU_AMEVCNTR1_EL0(12),
1692         AMU_AMEVCNTR1_EL0(13),
1693         AMU_AMEVCNTR1_EL0(14),
1694         AMU_AMEVCNTR1_EL0(15),
1695         AMU_AMEVTYPER1_EL0(0),
1696         AMU_AMEVTYPER1_EL0(1),
1697         AMU_AMEVTYPER1_EL0(2),
1698         AMU_AMEVTYPER1_EL0(3),
1699         AMU_AMEVTYPER1_EL0(4),
1700         AMU_AMEVTYPER1_EL0(5),
1701         AMU_AMEVTYPER1_EL0(6),
1702         AMU_AMEVTYPER1_EL0(7),
1703         AMU_AMEVTYPER1_EL0(8),
1704         AMU_AMEVTYPER1_EL0(9),
1705         AMU_AMEVTYPER1_EL0(10),
1706         AMU_AMEVTYPER1_EL0(11),
1707         AMU_AMEVTYPER1_EL0(12),
1708         AMU_AMEVTYPER1_EL0(13),
1709         AMU_AMEVTYPER1_EL0(14),
1710         AMU_AMEVTYPER1_EL0(15),
1711
1712         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1713         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1714         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1715
1716         /* PMEVCNTRn_EL0 */
1717         PMU_PMEVCNTR_EL0(0),
1718         PMU_PMEVCNTR_EL0(1),
1719         PMU_PMEVCNTR_EL0(2),
1720         PMU_PMEVCNTR_EL0(3),
1721         PMU_PMEVCNTR_EL0(4),
1722         PMU_PMEVCNTR_EL0(5),
1723         PMU_PMEVCNTR_EL0(6),
1724         PMU_PMEVCNTR_EL0(7),
1725         PMU_PMEVCNTR_EL0(8),
1726         PMU_PMEVCNTR_EL0(9),
1727         PMU_PMEVCNTR_EL0(10),
1728         PMU_PMEVCNTR_EL0(11),
1729         PMU_PMEVCNTR_EL0(12),
1730         PMU_PMEVCNTR_EL0(13),
1731         PMU_PMEVCNTR_EL0(14),
1732         PMU_PMEVCNTR_EL0(15),
1733         PMU_PMEVCNTR_EL0(16),
1734         PMU_PMEVCNTR_EL0(17),
1735         PMU_PMEVCNTR_EL0(18),
1736         PMU_PMEVCNTR_EL0(19),
1737         PMU_PMEVCNTR_EL0(20),
1738         PMU_PMEVCNTR_EL0(21),
1739         PMU_PMEVCNTR_EL0(22),
1740         PMU_PMEVCNTR_EL0(23),
1741         PMU_PMEVCNTR_EL0(24),
1742         PMU_PMEVCNTR_EL0(25),
1743         PMU_PMEVCNTR_EL0(26),
1744         PMU_PMEVCNTR_EL0(27),
1745         PMU_PMEVCNTR_EL0(28),
1746         PMU_PMEVCNTR_EL0(29),
1747         PMU_PMEVCNTR_EL0(30),
1748         /* PMEVTYPERn_EL0 */
1749         PMU_PMEVTYPER_EL0(0),
1750         PMU_PMEVTYPER_EL0(1),
1751         PMU_PMEVTYPER_EL0(2),
1752         PMU_PMEVTYPER_EL0(3),
1753         PMU_PMEVTYPER_EL0(4),
1754         PMU_PMEVTYPER_EL0(5),
1755         PMU_PMEVTYPER_EL0(6),
1756         PMU_PMEVTYPER_EL0(7),
1757         PMU_PMEVTYPER_EL0(8),
1758         PMU_PMEVTYPER_EL0(9),
1759         PMU_PMEVTYPER_EL0(10),
1760         PMU_PMEVTYPER_EL0(11),
1761         PMU_PMEVTYPER_EL0(12),
1762         PMU_PMEVTYPER_EL0(13),
1763         PMU_PMEVTYPER_EL0(14),
1764         PMU_PMEVTYPER_EL0(15),
1765         PMU_PMEVTYPER_EL0(16),
1766         PMU_PMEVTYPER_EL0(17),
1767         PMU_PMEVTYPER_EL0(18),
1768         PMU_PMEVTYPER_EL0(19),
1769         PMU_PMEVTYPER_EL0(20),
1770         PMU_PMEVTYPER_EL0(21),
1771         PMU_PMEVTYPER_EL0(22),
1772         PMU_PMEVTYPER_EL0(23),
1773         PMU_PMEVTYPER_EL0(24),
1774         PMU_PMEVTYPER_EL0(25),
1775         PMU_PMEVTYPER_EL0(26),
1776         PMU_PMEVTYPER_EL0(27),
1777         PMU_PMEVTYPER_EL0(28),
1778         PMU_PMEVTYPER_EL0(29),
1779         PMU_PMEVTYPER_EL0(30),
1780         /*
1781          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1782          * in 32bit mode. Here we choose to reset it as zero for consistency.
1783          */
1784         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1785
1786         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1787         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1788         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1789 };
1790
1791 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1792                         struct sys_reg_params *p,
1793                         const struct sys_reg_desc *r)
1794 {
1795         if (p->is_write) {
1796                 return ignore_write(vcpu, p);
1797         } else {
1798                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1799                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1800                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1801
1802                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1803                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1804                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1805                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1806                 return true;
1807         }
1808 }
1809
1810 static bool trap_debug32(struct kvm_vcpu *vcpu,
1811                          struct sys_reg_params *p,
1812                          const struct sys_reg_desc *r)
1813 {
1814         if (p->is_write) {
1815                 vcpu_cp14(vcpu, r->reg) = p->regval;
1816                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1817         } else {
1818                 p->regval = vcpu_cp14(vcpu, r->reg);
1819         }
1820
1821         return true;
1822 }
1823
1824 /* AArch32 debug register mappings
1825  *
1826  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1827  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1828  *
1829  * All control registers and watchpoint value registers are mapped to
1830  * the lower 32 bits of their AArch64 equivalents. We share the trap
1831  * handlers with the above AArch64 code which checks what mode the
1832  * system is in.
1833  */
1834
1835 static bool trap_xvr(struct kvm_vcpu *vcpu,
1836                      struct sys_reg_params *p,
1837                      const struct sys_reg_desc *rd)
1838 {
1839         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1840
1841         if (p->is_write) {
1842                 u64 val = *dbg_reg;
1843
1844                 val &= 0xffffffffUL;
1845                 val |= p->regval << 32;
1846                 *dbg_reg = val;
1847
1848                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1849         } else {
1850                 p->regval = *dbg_reg >> 32;
1851         }
1852
1853         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1854
1855         return true;
1856 }
1857
1858 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1859         /* DBGBVRn */                                                   \
1860         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1861         /* DBGBCRn */                                                   \
1862         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1863         /* DBGWVRn */                                                   \
1864         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1865         /* DBGWCRn */                                                   \
1866         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1867
1868 #define DBGBXVR(n)                                                      \
1869         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1870
1871 /*
1872  * Trapped cp14 registers. We generally ignore most of the external
1873  * debug, on the principle that they don't really make sense to a
1874  * guest. Revisit this one day, would this principle change.
1875  */
1876 static const struct sys_reg_desc cp14_regs[] = {
1877         /* DBGIDR */
1878         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1879         /* DBGDTRRXext */
1880         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1881
1882         DBG_BCR_BVR_WCR_WVR(0),
1883         /* DBGDSCRint */
1884         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1885         DBG_BCR_BVR_WCR_WVR(1),
1886         /* DBGDCCINT */
1887         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1888         /* DBGDSCRext */
1889         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1890         DBG_BCR_BVR_WCR_WVR(2),
1891         /* DBGDTR[RT]Xint */
1892         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1893         /* DBGDTR[RT]Xext */
1894         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1895         DBG_BCR_BVR_WCR_WVR(3),
1896         DBG_BCR_BVR_WCR_WVR(4),
1897         DBG_BCR_BVR_WCR_WVR(5),
1898         /* DBGWFAR */
1899         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1900         /* DBGOSECCR */
1901         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1902         DBG_BCR_BVR_WCR_WVR(6),
1903         /* DBGVCR */
1904         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1905         DBG_BCR_BVR_WCR_WVR(7),
1906         DBG_BCR_BVR_WCR_WVR(8),
1907         DBG_BCR_BVR_WCR_WVR(9),
1908         DBG_BCR_BVR_WCR_WVR(10),
1909         DBG_BCR_BVR_WCR_WVR(11),
1910         DBG_BCR_BVR_WCR_WVR(12),
1911         DBG_BCR_BVR_WCR_WVR(13),
1912         DBG_BCR_BVR_WCR_WVR(14),
1913         DBG_BCR_BVR_WCR_WVR(15),
1914
1915         /* DBGDRAR (32bit) */
1916         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1917
1918         DBGBXVR(0),
1919         /* DBGOSLAR */
1920         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1921         DBGBXVR(1),
1922         /* DBGOSLSR */
1923         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1924         DBGBXVR(2),
1925         DBGBXVR(3),
1926         /* DBGOSDLR */
1927         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1928         DBGBXVR(4),
1929         /* DBGPRCR */
1930         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1931         DBGBXVR(5),
1932         DBGBXVR(6),
1933         DBGBXVR(7),
1934         DBGBXVR(8),
1935         DBGBXVR(9),
1936         DBGBXVR(10),
1937         DBGBXVR(11),
1938         DBGBXVR(12),
1939         DBGBXVR(13),
1940         DBGBXVR(14),
1941         DBGBXVR(15),
1942
1943         /* DBGDSAR (32bit) */
1944         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1945
1946         /* DBGDEVID2 */
1947         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1948         /* DBGDEVID1 */
1949         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1950         /* DBGDEVID */
1951         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1952         /* DBGCLAIMSET */
1953         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1954         /* DBGCLAIMCLR */
1955         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1956         /* DBGAUTHSTATUS */
1957         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1958 };
1959
1960 /* Trapped cp14 64bit registers */
1961 static const struct sys_reg_desc cp14_64_regs[] = {
1962         /* DBGDRAR (64bit) */
1963         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1964
1965         /* DBGDSAR (64bit) */
1966         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1967 };
1968
1969 /* Macro to expand the PMEVCNTRn register */
1970 #define PMU_PMEVCNTR(n)                                                 \
1971         /* PMEVCNTRn */                                                 \
1972         { Op1(0), CRn(0b1110),                                          \
1973           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1974           access_pmu_evcntr }
1975
1976 /* Macro to expand the PMEVTYPERn register */
1977 #define PMU_PMEVTYPER(n)                                                \
1978         /* PMEVTYPERn */                                                \
1979         { Op1(0), CRn(0b1110),                                          \
1980           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1981           access_pmu_evtyper }
1982
1983 /*
1984  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1985  * depending on the way they are accessed (as a 32bit or a 64bit
1986  * register).
1987  */
1988 static const struct sys_reg_desc cp15_regs[] = {
1989         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1990         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1991         { Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr },
1992         { Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr },
1993         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1994         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1995         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1996         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1997         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1998         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1999         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
2000         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
2001         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
2002         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
2003
2004         /*
2005          * DC{C,I,CI}SW operations:
2006          */
2007         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2008         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2009         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2010
2011         /* PMU */
2012         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
2013         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
2014         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
2015         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
2016         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
2017         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
2018         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
2019         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
2020         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
2021         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
2022         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
2023         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
2024         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
2025         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
2026         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
2027
2028         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
2029         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
2030         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
2031         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
2032
2033         /* ICC_SRE */
2034         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2035
2036         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
2037
2038         /* Arch Tmers */
2039         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2040         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2041
2042         /* PMEVCNTRn */
2043         PMU_PMEVCNTR(0),
2044         PMU_PMEVCNTR(1),
2045         PMU_PMEVCNTR(2),
2046         PMU_PMEVCNTR(3),
2047         PMU_PMEVCNTR(4),
2048         PMU_PMEVCNTR(5),
2049         PMU_PMEVCNTR(6),
2050         PMU_PMEVCNTR(7),
2051         PMU_PMEVCNTR(8),
2052         PMU_PMEVCNTR(9),
2053         PMU_PMEVCNTR(10),
2054         PMU_PMEVCNTR(11),
2055         PMU_PMEVCNTR(12),
2056         PMU_PMEVCNTR(13),
2057         PMU_PMEVCNTR(14),
2058         PMU_PMEVCNTR(15),
2059         PMU_PMEVCNTR(16),
2060         PMU_PMEVCNTR(17),
2061         PMU_PMEVCNTR(18),
2062         PMU_PMEVCNTR(19),
2063         PMU_PMEVCNTR(20),
2064         PMU_PMEVCNTR(21),
2065         PMU_PMEVCNTR(22),
2066         PMU_PMEVCNTR(23),
2067         PMU_PMEVCNTR(24),
2068         PMU_PMEVCNTR(25),
2069         PMU_PMEVCNTR(26),
2070         PMU_PMEVCNTR(27),
2071         PMU_PMEVCNTR(28),
2072         PMU_PMEVCNTR(29),
2073         PMU_PMEVCNTR(30),
2074         /* PMEVTYPERn */
2075         PMU_PMEVTYPER(0),
2076         PMU_PMEVTYPER(1),
2077         PMU_PMEVTYPER(2),
2078         PMU_PMEVTYPER(3),
2079         PMU_PMEVTYPER(4),
2080         PMU_PMEVTYPER(5),
2081         PMU_PMEVTYPER(6),
2082         PMU_PMEVTYPER(7),
2083         PMU_PMEVTYPER(8),
2084         PMU_PMEVTYPER(9),
2085         PMU_PMEVTYPER(10),
2086         PMU_PMEVTYPER(11),
2087         PMU_PMEVTYPER(12),
2088         PMU_PMEVTYPER(13),
2089         PMU_PMEVTYPER(14),
2090         PMU_PMEVTYPER(15),
2091         PMU_PMEVTYPER(16),
2092         PMU_PMEVTYPER(17),
2093         PMU_PMEVTYPER(18),
2094         PMU_PMEVTYPER(19),
2095         PMU_PMEVTYPER(20),
2096         PMU_PMEVTYPER(21),
2097         PMU_PMEVTYPER(22),
2098         PMU_PMEVTYPER(23),
2099         PMU_PMEVTYPER(24),
2100         PMU_PMEVTYPER(25),
2101         PMU_PMEVTYPER(26),
2102         PMU_PMEVTYPER(27),
2103         PMU_PMEVTYPER(28),
2104         PMU_PMEVTYPER(29),
2105         PMU_PMEVTYPER(30),
2106         /* PMCCFILTR */
2107         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2108
2109         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2110         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2111         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
2112 };
2113
2114 static const struct sys_reg_desc cp15_64_regs[] = {
2115         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
2116         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2117         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2118         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
2119         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2120         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2121         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2122 };
2123
2124 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2125                               bool is_32)
2126 {
2127         unsigned int i;
2128
2129         for (i = 0; i < n; i++) {
2130                 if (!is_32 && table[i].reg && !table[i].reset) {
2131                         kvm_err("sys_reg table %p entry %d has lacks reset\n",
2132                                 table, i);
2133                         return 1;
2134                 }
2135
2136                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2137                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2138                         return 1;
2139                 }
2140         }
2141
2142         return 0;
2143 }
2144
2145 static int match_sys_reg(const void *key, const void *elt)
2146 {
2147         const unsigned long pval = (unsigned long)key;
2148         const struct sys_reg_desc *r = elt;
2149
2150         return pval - reg_to_encoding(r);
2151 }
2152
2153 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2154                                          const struct sys_reg_desc table[],
2155                                          unsigned int num)
2156 {
2157         unsigned long pval = reg_to_encoding(params);
2158
2159         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2160 }
2161
2162 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2163 {
2164         kvm_inject_undefined(vcpu);
2165         return 1;
2166 }
2167
2168 static void perform_access(struct kvm_vcpu *vcpu,
2169                            struct sys_reg_params *params,
2170                            const struct sys_reg_desc *r)
2171 {
2172         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2173
2174         /* Check for regs disabled by runtime config */
2175         if (sysreg_hidden_from_guest(vcpu, r)) {
2176                 kvm_inject_undefined(vcpu);
2177                 return;
2178         }
2179
2180         /*
2181          * Not having an accessor means that we have configured a trap
2182          * that we don't know how to handle. This certainly qualifies
2183          * as a gross bug that should be fixed right away.
2184          */
2185         BUG_ON(!r->access);
2186
2187         /* Skip instruction if instructed so */
2188         if (likely(r->access(vcpu, params, r)))
2189                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2190 }
2191
2192 /*
2193  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2194  *                call the corresponding trap handler.
2195  *
2196  * @params: pointer to the descriptor of the access
2197  * @table: array of trap descriptors
2198  * @num: size of the trap descriptor array
2199  *
2200  * Return 0 if the access has been handled, and -1 if not.
2201  */
2202 static int emulate_cp(struct kvm_vcpu *vcpu,
2203                       struct sys_reg_params *params,
2204                       const struct sys_reg_desc *table,
2205                       size_t num)
2206 {
2207         const struct sys_reg_desc *r;
2208
2209         if (!table)
2210                 return -1;      /* Not handled */
2211
2212         r = find_reg(params, table, num);
2213
2214         if (r) {
2215                 perform_access(vcpu, params, r);
2216                 return 0;
2217         }
2218
2219         /* Not handled */
2220         return -1;
2221 }
2222
2223 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2224                                 struct sys_reg_params *params)
2225 {
2226         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2227         int cp = -1;
2228
2229         switch (esr_ec) {
2230         case ESR_ELx_EC_CP15_32:
2231         case ESR_ELx_EC_CP15_64:
2232                 cp = 15;
2233                 break;
2234         case ESR_ELx_EC_CP14_MR:
2235         case ESR_ELx_EC_CP14_64:
2236                 cp = 14;
2237                 break;
2238         default:
2239                 WARN_ON(1);
2240         }
2241
2242         print_sys_reg_msg(params,
2243                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2244                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2245         kvm_inject_undefined(vcpu);
2246 }
2247
2248 /**
2249  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2250  * @vcpu: The VCPU pointer
2251  * @run:  The kvm_run struct
2252  */
2253 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2254                             const struct sys_reg_desc *global,
2255                             size_t nr_global)
2256 {
2257         struct sys_reg_params params;
2258         u32 esr = kvm_vcpu_get_esr(vcpu);
2259         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2260         int Rt2 = (esr >> 10) & 0x1f;
2261
2262         params.is_aarch32 = true;
2263         params.is_32bit = false;
2264         params.CRm = (esr >> 1) & 0xf;
2265         params.is_write = ((esr & 1) == 0);
2266
2267         params.Op0 = 0;
2268         params.Op1 = (esr >> 16) & 0xf;
2269         params.Op2 = 0;
2270         params.CRn = 0;
2271
2272         /*
2273          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2274          * backends between AArch32 and AArch64, we get away with it.
2275          */
2276         if (params.is_write) {
2277                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2278                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2279         }
2280
2281         /*
2282          * If the table contains a handler, handle the
2283          * potential register operation in the case of a read and return
2284          * with success.
2285          */
2286         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2287                 /* Split up the value between registers for the read side */
2288                 if (!params.is_write) {
2289                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2290                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2291                 }
2292
2293                 return 1;
2294         }
2295
2296         unhandled_cp_access(vcpu, &params);
2297         return 1;
2298 }
2299
2300 /**
2301  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2302  * @vcpu: The VCPU pointer
2303  * @run:  The kvm_run struct
2304  */
2305 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2306                             const struct sys_reg_desc *global,
2307                             size_t nr_global)
2308 {
2309         struct sys_reg_params params;
2310         u32 esr = kvm_vcpu_get_esr(vcpu);
2311         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2312
2313         params.is_aarch32 = true;
2314         params.is_32bit = true;
2315         params.CRm = (esr >> 1) & 0xf;
2316         params.regval = vcpu_get_reg(vcpu, Rt);
2317         params.is_write = ((esr & 1) == 0);
2318         params.CRn = (esr >> 10) & 0xf;
2319         params.Op0 = 0;
2320         params.Op1 = (esr >> 14) & 0x7;
2321         params.Op2 = (esr >> 17) & 0x7;
2322
2323         if (!emulate_cp(vcpu, &params, global, nr_global)) {
2324                 if (!params.is_write)
2325                         vcpu_set_reg(vcpu, Rt, params.regval);
2326                 return 1;
2327         }
2328
2329         unhandled_cp_access(vcpu, &params);
2330         return 1;
2331 }
2332
2333 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2334 {
2335         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2336 }
2337
2338 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2339 {
2340         return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2341 }
2342
2343 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2344 {
2345         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2346 }
2347
2348 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2349 {
2350         return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2351 }
2352
2353 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2354 {
2355         // See ARM DDI 0487E.a, section D12.3.2
2356         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2357 }
2358
2359 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2360                            struct sys_reg_params *params)
2361 {
2362         const struct sys_reg_desc *r;
2363
2364         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2365
2366         if (likely(r)) {
2367                 perform_access(vcpu, params, r);
2368         } else if (is_imp_def_sys_reg(params)) {
2369                 kvm_inject_undefined(vcpu);
2370         } else {
2371                 print_sys_reg_msg(params,
2372                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2373                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2374                 kvm_inject_undefined(vcpu);
2375         }
2376         return 1;
2377 }
2378
2379 /**
2380  * kvm_reset_sys_regs - sets system registers to reset value
2381  * @vcpu: The VCPU pointer
2382  *
2383  * This function finds the right table above and sets the registers on the
2384  * virtual CPU struct to their architecturally defined reset values.
2385  */
2386 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2387 {
2388         unsigned long i;
2389
2390         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2391                 if (sys_reg_descs[i].reset)
2392                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2393 }
2394
2395 /**
2396  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2397  * @vcpu: The VCPU pointer
2398  */
2399 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2400 {
2401         struct sys_reg_params params;
2402         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2403         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2404         int ret;
2405
2406         trace_kvm_handle_sys_reg(esr);
2407
2408         params.is_aarch32 = false;
2409         params.is_32bit = false;
2410         params.Op0 = (esr >> 20) & 3;
2411         params.Op1 = (esr >> 14) & 0x7;
2412         params.CRn = (esr >> 10) & 0xf;
2413         params.CRm = (esr >> 1) & 0xf;
2414         params.Op2 = (esr >> 17) & 0x7;
2415         params.regval = vcpu_get_reg(vcpu, Rt);
2416         params.is_write = !(esr & 1);
2417
2418         ret = emulate_sys_reg(vcpu, &params);
2419
2420         if (!params.is_write)
2421                 vcpu_set_reg(vcpu, Rt, params.regval);
2422         return ret;
2423 }
2424
2425 /******************************************************************************
2426  * Userspace API
2427  *****************************************************************************/
2428
2429 static bool index_to_params(u64 id, struct sys_reg_params *params)
2430 {
2431         switch (id & KVM_REG_SIZE_MASK) {
2432         case KVM_REG_SIZE_U64:
2433                 /* Any unused index bits means it's not valid. */
2434                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2435                               | KVM_REG_ARM_COPROC_MASK
2436                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2437                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2438                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2439                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2440                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2441                         return false;
2442                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2443                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2444                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2445                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2446                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2447                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2448                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2449                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2450                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2451                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2452                 return true;
2453         default:
2454                 return false;
2455         }
2456 }
2457
2458 const struct sys_reg_desc *find_reg_by_id(u64 id,
2459                                           struct sys_reg_params *params,
2460                                           const struct sys_reg_desc table[],
2461                                           unsigned int num)
2462 {
2463         if (!index_to_params(id, params))
2464                 return NULL;
2465
2466         return find_reg(params, table, num);
2467 }
2468
2469 /* Decode an index value, and find the sys_reg_desc entry. */
2470 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2471                                                     u64 id)
2472 {
2473         const struct sys_reg_desc *r;
2474         struct sys_reg_params params;
2475
2476         /* We only do sys_reg for now. */
2477         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2478                 return NULL;
2479
2480         if (!index_to_params(id, &params))
2481                 return NULL;
2482
2483         r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2484
2485         /* Not saved in the sys_reg array and not otherwise accessible? */
2486         if (r && !(r->reg || r->get_user))
2487                 r = NULL;
2488
2489         return r;
2490 }
2491
2492 /*
2493  * These are the invariant sys_reg registers: we let the guest see the
2494  * host versions of these, so they're part of the guest state.
2495  *
2496  * A future CPU may provide a mechanism to present different values to
2497  * the guest, or a future kvm may trap them.
2498  */
2499
2500 #define FUNCTION_INVARIANT(reg)                                         \
2501         static void get_##reg(struct kvm_vcpu *v,                       \
2502                               const struct sys_reg_desc *r)             \
2503         {                                                               \
2504                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2505         }
2506
2507 FUNCTION_INVARIANT(midr_el1)
2508 FUNCTION_INVARIANT(revidr_el1)
2509 FUNCTION_INVARIANT(clidr_el1)
2510 FUNCTION_INVARIANT(aidr_el1)
2511
2512 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2513 {
2514         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2515 }
2516
2517 /* ->val is filled in by kvm_sys_reg_table_init() */
2518 static struct sys_reg_desc invariant_sys_regs[] = {
2519         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2520         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2521         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2522         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2523         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2524 };
2525
2526 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2527 {
2528         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2529                 return -EFAULT;
2530         return 0;
2531 }
2532
2533 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2534 {
2535         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2536                 return -EFAULT;
2537         return 0;
2538 }
2539
2540 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2541 {
2542         struct sys_reg_params params;
2543         const struct sys_reg_desc *r;
2544
2545         r = find_reg_by_id(id, &params, invariant_sys_regs,
2546                            ARRAY_SIZE(invariant_sys_regs));
2547         if (!r)
2548                 return -ENOENT;
2549
2550         return reg_to_user(uaddr, &r->val, id);
2551 }
2552
2553 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2554 {
2555         struct sys_reg_params params;
2556         const struct sys_reg_desc *r;
2557         int err;
2558         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2559
2560         r = find_reg_by_id(id, &params, invariant_sys_regs,
2561                            ARRAY_SIZE(invariant_sys_regs));
2562         if (!r)
2563                 return -ENOENT;
2564
2565         err = reg_from_user(&val, uaddr, id);
2566         if (err)
2567                 return err;
2568
2569         /* This is what we mean by invariant: you can't change it. */
2570         if (r->val != val)
2571                 return -EINVAL;
2572
2573         return 0;
2574 }
2575
2576 static bool is_valid_cache(u32 val)
2577 {
2578         u32 level, ctype;
2579
2580         if (val >= CSSELR_MAX)
2581                 return false;
2582
2583         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2584         level = (val >> 1);
2585         ctype = (cache_levels >> (level * 3)) & 7;
2586
2587         switch (ctype) {
2588         case 0: /* No cache */
2589                 return false;
2590         case 1: /* Instruction cache only */
2591                 return (val & 1);
2592         case 2: /* Data cache only */
2593         case 4: /* Unified cache */
2594                 return !(val & 1);
2595         case 3: /* Separate instruction and data caches */
2596                 return true;
2597         default: /* Reserved: we can't know instruction or data. */
2598                 return false;
2599         }
2600 }
2601
2602 static int demux_c15_get(u64 id, void __user *uaddr)
2603 {
2604         u32 val;
2605         u32 __user *uval = uaddr;
2606
2607         /* Fail if we have unknown bits set. */
2608         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2609                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2610                 return -ENOENT;
2611
2612         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2613         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2614                 if (KVM_REG_SIZE(id) != 4)
2615                         return -ENOENT;
2616                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2617                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2618                 if (!is_valid_cache(val))
2619                         return -ENOENT;
2620
2621                 return put_user(get_ccsidr(val), uval);
2622         default:
2623                 return -ENOENT;
2624         }
2625 }
2626
2627 static int demux_c15_set(u64 id, void __user *uaddr)
2628 {
2629         u32 val, newval;
2630         u32 __user *uval = uaddr;
2631
2632         /* Fail if we have unknown bits set. */
2633         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2634                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2635                 return -ENOENT;
2636
2637         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2638         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2639                 if (KVM_REG_SIZE(id) != 4)
2640                         return -ENOENT;
2641                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2642                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2643                 if (!is_valid_cache(val))
2644                         return -ENOENT;
2645
2646                 if (get_user(newval, uval))
2647                         return -EFAULT;
2648
2649                 /* This is also invariant: you can't change it. */
2650                 if (newval != get_ccsidr(val))
2651                         return -EINVAL;
2652                 return 0;
2653         default:
2654                 return -ENOENT;
2655         }
2656 }
2657
2658 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2659 {
2660         const struct sys_reg_desc *r;
2661         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2662
2663         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2664                 return demux_c15_get(reg->id, uaddr);
2665
2666         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2667                 return -ENOENT;
2668
2669         r = index_to_sys_reg_desc(vcpu, reg->id);
2670         if (!r)
2671                 return get_invariant_sys_reg(reg->id, uaddr);
2672
2673         /* Check for regs disabled by runtime config */
2674         if (sysreg_hidden_from_user(vcpu, r))
2675                 return -ENOENT;
2676
2677         if (r->get_user)
2678                 return (r->get_user)(vcpu, r, reg, uaddr);
2679
2680         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2681 }
2682
2683 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2684 {
2685         const struct sys_reg_desc *r;
2686         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2687
2688         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2689                 return demux_c15_set(reg->id, uaddr);
2690
2691         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2692                 return -ENOENT;
2693
2694         r = index_to_sys_reg_desc(vcpu, reg->id);
2695         if (!r)
2696                 return set_invariant_sys_reg(reg->id, uaddr);
2697
2698         /* Check for regs disabled by runtime config */
2699         if (sysreg_hidden_from_user(vcpu, r))
2700                 return -ENOENT;
2701
2702         if (r->set_user)
2703                 return (r->set_user)(vcpu, r, reg, uaddr);
2704
2705         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2706 }
2707
2708 static unsigned int num_demux_regs(void)
2709 {
2710         unsigned int i, count = 0;
2711
2712         for (i = 0; i < CSSELR_MAX; i++)
2713                 if (is_valid_cache(i))
2714                         count++;
2715
2716         return count;
2717 }
2718
2719 static int write_demux_regids(u64 __user *uindices)
2720 {
2721         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2722         unsigned int i;
2723
2724         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2725         for (i = 0; i < CSSELR_MAX; i++) {
2726                 if (!is_valid_cache(i))
2727                         continue;
2728                 if (put_user(val | i, uindices))
2729                         return -EFAULT;
2730                 uindices++;
2731         }
2732         return 0;
2733 }
2734
2735 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2736 {
2737         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2738                 KVM_REG_ARM64_SYSREG |
2739                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2740                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2741                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2742                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2743                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2744 }
2745
2746 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2747 {
2748         if (!*uind)
2749                 return true;
2750
2751         if (put_user(sys_reg_to_index(reg), *uind))
2752                 return false;
2753
2754         (*uind)++;
2755         return true;
2756 }
2757
2758 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2759                             const struct sys_reg_desc *rd,
2760                             u64 __user **uind,
2761                             unsigned int *total)
2762 {
2763         /*
2764          * Ignore registers we trap but don't save,
2765          * and for which no custom user accessor is provided.
2766          */
2767         if (!(rd->reg || rd->get_user))
2768                 return 0;
2769
2770         if (sysreg_hidden_from_user(vcpu, rd))
2771                 return 0;
2772
2773         if (!copy_reg_to_user(rd, uind))
2774                 return -EFAULT;
2775
2776         (*total)++;
2777         return 0;
2778 }
2779
2780 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2781 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2782 {
2783         const struct sys_reg_desc *i2, *end2;
2784         unsigned int total = 0;
2785         int err;
2786
2787         i2 = sys_reg_descs;
2788         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2789
2790         while (i2 != end2) {
2791                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2792                 if (err)
2793                         return err;
2794         }
2795         return total;
2796 }
2797
2798 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2799 {
2800         return ARRAY_SIZE(invariant_sys_regs)
2801                 + num_demux_regs()
2802                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2803 }
2804
2805 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2806 {
2807         unsigned int i;
2808         int err;
2809
2810         /* Then give them all the invariant registers' indices. */
2811         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2812                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2813                         return -EFAULT;
2814                 uindices++;
2815         }
2816
2817         err = walk_sys_regs(vcpu, uindices);
2818         if (err < 0)
2819                 return err;
2820         uindices += err;
2821
2822         return write_demux_regids(uindices);
2823 }
2824
2825 void kvm_sys_reg_table_init(void)
2826 {
2827         unsigned int i;
2828         struct sys_reg_desc clidr;
2829
2830         /* Make sure tables are unique and in order. */
2831         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2832         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2833         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2834         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2835         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2836         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2837
2838         /* We abuse the reset function to overwrite the table itself. */
2839         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2840                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2841
2842         /*
2843          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2844          *
2845          *   If software reads the Cache Type fields from Ctype1
2846          *   upwards, once it has seen a value of 0b000, no caches
2847          *   exist at further-out levels of the hierarchy. So, for
2848          *   example, if Ctype3 is the first Cache Type field with a
2849          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2850          *   ignored.
2851          */
2852         get_clidr_el1(NULL, &clidr); /* Ugly... */
2853         cache_levels = clidr.val;
2854         for (i = 0; i < 7; i++)
2855                 if (((cache_levels >> (i*3)) & 7) == 0)
2856                         break;
2857         /* Clear all higher bits. */
2858         cache_levels &= (1 << (i*3))-1;
2859 }