Merge tag 'ieee802154-for-davem-2021-08-12' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / arch / arm64 / kvm / pmu-emul.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Linaro Ltd.
4  * Author: Shannon Zhao <shannon.zhao@linaro.org>
5  */
6
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/perf_event.h>
11 #include <linux/perf/arm_pmu.h>
12 #include <linux/uaccess.h>
13 #include <asm/kvm_emulate.h>
14 #include <kvm/arm_pmu.h>
15 #include <kvm/arm_vgic.h>
16
17 static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx);
18 static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx);
19 static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc);
20
21 #define PERF_ATTR_CFG1_KVM_PMU_CHAINED 0x1
22
23 static u32 kvm_pmu_event_mask(struct kvm *kvm)
24 {
25         switch (kvm->arch.pmuver) {
26         case ID_AA64DFR0_PMUVER_8_0:
27                 return GENMASK(9, 0);
28         case ID_AA64DFR0_PMUVER_8_1:
29         case ID_AA64DFR0_PMUVER_8_4:
30         case ID_AA64DFR0_PMUVER_8_5:
31                 return GENMASK(15, 0);
32         default:                /* Shouldn't be here, just for sanity */
33                 WARN_ONCE(1, "Unknown PMU version %d\n", kvm->arch.pmuver);
34                 return 0;
35         }
36 }
37
38 /**
39  * kvm_pmu_idx_is_64bit - determine if select_idx is a 64bit counter
40  * @vcpu: The vcpu pointer
41  * @select_idx: The counter index
42  */
43 static bool kvm_pmu_idx_is_64bit(struct kvm_vcpu *vcpu, u64 select_idx)
44 {
45         return (select_idx == ARMV8_PMU_CYCLE_IDX &&
46                 __vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_LC);
47 }
48
49 static struct kvm_vcpu *kvm_pmc_to_vcpu(struct kvm_pmc *pmc)
50 {
51         struct kvm_pmu *pmu;
52         struct kvm_vcpu_arch *vcpu_arch;
53
54         pmc -= pmc->idx;
55         pmu = container_of(pmc, struct kvm_pmu, pmc[0]);
56         vcpu_arch = container_of(pmu, struct kvm_vcpu_arch, pmu);
57         return container_of(vcpu_arch, struct kvm_vcpu, arch);
58 }
59
60 /**
61  * kvm_pmu_pmc_is_chained - determine if the pmc is chained
62  * @pmc: The PMU counter pointer
63  */
64 static bool kvm_pmu_pmc_is_chained(struct kvm_pmc *pmc)
65 {
66         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
67
68         return test_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
69 }
70
71 /**
72  * kvm_pmu_idx_is_high_counter - determine if select_idx is a high/low counter
73  * @select_idx: The counter index
74  */
75 static bool kvm_pmu_idx_is_high_counter(u64 select_idx)
76 {
77         return select_idx & 0x1;
78 }
79
80 /**
81  * kvm_pmu_get_canonical_pmc - obtain the canonical pmc
82  * @pmc: The PMU counter pointer
83  *
84  * When a pair of PMCs are chained together we use the low counter (canonical)
85  * to hold the underlying perf event.
86  */
87 static struct kvm_pmc *kvm_pmu_get_canonical_pmc(struct kvm_pmc *pmc)
88 {
89         if (kvm_pmu_pmc_is_chained(pmc) &&
90             kvm_pmu_idx_is_high_counter(pmc->idx))
91                 return pmc - 1;
92
93         return pmc;
94 }
95 static struct kvm_pmc *kvm_pmu_get_alternate_pmc(struct kvm_pmc *pmc)
96 {
97         if (kvm_pmu_idx_is_high_counter(pmc->idx))
98                 return pmc - 1;
99         else
100                 return pmc + 1;
101 }
102
103 /**
104  * kvm_pmu_idx_has_chain_evtype - determine if the event type is chain
105  * @vcpu: The vcpu pointer
106  * @select_idx: The counter index
107  */
108 static bool kvm_pmu_idx_has_chain_evtype(struct kvm_vcpu *vcpu, u64 select_idx)
109 {
110         u64 eventsel, reg;
111
112         select_idx |= 0x1;
113
114         if (select_idx == ARMV8_PMU_CYCLE_IDX)
115                 return false;
116
117         reg = PMEVTYPER0_EL0 + select_idx;
118         eventsel = __vcpu_sys_reg(vcpu, reg) & kvm_pmu_event_mask(vcpu->kvm);
119
120         return eventsel == ARMV8_PMUV3_PERFCTR_CHAIN;
121 }
122
123 /**
124  * kvm_pmu_get_pair_counter_value - get PMU counter value
125  * @vcpu: The vcpu pointer
126  * @pmc: The PMU counter pointer
127  */
128 static u64 kvm_pmu_get_pair_counter_value(struct kvm_vcpu *vcpu,
129                                           struct kvm_pmc *pmc)
130 {
131         u64 counter, counter_high, reg, enabled, running;
132
133         if (kvm_pmu_pmc_is_chained(pmc)) {
134                 pmc = kvm_pmu_get_canonical_pmc(pmc);
135                 reg = PMEVCNTR0_EL0 + pmc->idx;
136
137                 counter = __vcpu_sys_reg(vcpu, reg);
138                 counter_high = __vcpu_sys_reg(vcpu, reg + 1);
139
140                 counter = lower_32_bits(counter) | (counter_high << 32);
141         } else {
142                 reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
143                       ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + pmc->idx;
144                 counter = __vcpu_sys_reg(vcpu, reg);
145         }
146
147         /*
148          * The real counter value is equal to the value of counter register plus
149          * the value perf event counts.
150          */
151         if (pmc->perf_event)
152                 counter += perf_event_read_value(pmc->perf_event, &enabled,
153                                                  &running);
154
155         return counter;
156 }
157
158 /**
159  * kvm_pmu_get_counter_value - get PMU counter value
160  * @vcpu: The vcpu pointer
161  * @select_idx: The counter index
162  */
163 u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
164 {
165         u64 counter;
166         struct kvm_pmu *pmu = &vcpu->arch.pmu;
167         struct kvm_pmc *pmc = &pmu->pmc[select_idx];
168
169         counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
170
171         if (kvm_pmu_pmc_is_chained(pmc) &&
172             kvm_pmu_idx_is_high_counter(select_idx))
173                 counter = upper_32_bits(counter);
174         else if (select_idx != ARMV8_PMU_CYCLE_IDX)
175                 counter = lower_32_bits(counter);
176
177         return counter;
178 }
179
180 /**
181  * kvm_pmu_set_counter_value - set PMU counter value
182  * @vcpu: The vcpu pointer
183  * @select_idx: The counter index
184  * @val: The counter value
185  */
186 void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
187 {
188         u64 reg;
189
190         reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
191               ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + select_idx;
192         __vcpu_sys_reg(vcpu, reg) += (s64)val - kvm_pmu_get_counter_value(vcpu, select_idx);
193
194         /* Recreate the perf event to reflect the updated sample_period */
195         kvm_pmu_create_perf_event(vcpu, select_idx);
196 }
197
198 /**
199  * kvm_pmu_release_perf_event - remove the perf event
200  * @pmc: The PMU counter pointer
201  */
202 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
203 {
204         pmc = kvm_pmu_get_canonical_pmc(pmc);
205         if (pmc->perf_event) {
206                 perf_event_disable(pmc->perf_event);
207                 perf_event_release_kernel(pmc->perf_event);
208                 pmc->perf_event = NULL;
209         }
210 }
211
212 /**
213  * kvm_pmu_stop_counter - stop PMU counter
214  * @pmc: The PMU counter pointer
215  *
216  * If this counter has been configured to monitor some event, release it here.
217  */
218 static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc)
219 {
220         u64 counter, reg, val;
221
222         pmc = kvm_pmu_get_canonical_pmc(pmc);
223         if (!pmc->perf_event)
224                 return;
225
226         counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
227
228         if (pmc->idx == ARMV8_PMU_CYCLE_IDX) {
229                 reg = PMCCNTR_EL0;
230                 val = counter;
231         } else {
232                 reg = PMEVCNTR0_EL0 + pmc->idx;
233                 val = lower_32_bits(counter);
234         }
235
236         __vcpu_sys_reg(vcpu, reg) = val;
237
238         if (kvm_pmu_pmc_is_chained(pmc))
239                 __vcpu_sys_reg(vcpu, reg + 1) = upper_32_bits(counter);
240
241         kvm_pmu_release_perf_event(pmc);
242 }
243
244 /**
245  * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
246  * @vcpu: The vcpu pointer
247  *
248  */
249 void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
250 {
251         int i;
252         struct kvm_pmu *pmu = &vcpu->arch.pmu;
253
254         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
255                 pmu->pmc[i].idx = i;
256 }
257
258 /**
259  * kvm_pmu_vcpu_reset - reset pmu state for cpu
260  * @vcpu: The vcpu pointer
261  *
262  */
263 void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
264 {
265         unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
266         struct kvm_pmu *pmu = &vcpu->arch.pmu;
267         int i;
268
269         for_each_set_bit(i, &mask, 32)
270                 kvm_pmu_stop_counter(vcpu, &pmu->pmc[i]);
271
272         bitmap_zero(vcpu->arch.pmu.chained, ARMV8_PMU_MAX_COUNTER_PAIRS);
273 }
274
275 /**
276  * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
277  * @vcpu: The vcpu pointer
278  *
279  */
280 void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
281 {
282         int i;
283         struct kvm_pmu *pmu = &vcpu->arch.pmu;
284
285         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
286                 kvm_pmu_release_perf_event(&pmu->pmc[i]);
287         irq_work_sync(&vcpu->arch.pmu.overflow_work);
288 }
289
290 u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
291 {
292         u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
293
294         val &= ARMV8_PMU_PMCR_N_MASK;
295         if (val == 0)
296                 return BIT(ARMV8_PMU_CYCLE_IDX);
297         else
298                 return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
299 }
300
301 /**
302  * kvm_pmu_enable_counter_mask - enable selected PMU counters
303  * @vcpu: The vcpu pointer
304  * @val: the value guest writes to PMCNTENSET register
305  *
306  * Call perf_event_enable to start counting the perf event
307  */
308 void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
309 {
310         int i;
311         struct kvm_pmu *pmu = &vcpu->arch.pmu;
312         struct kvm_pmc *pmc;
313
314         if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
315                 return;
316
317         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
318                 if (!(val & BIT(i)))
319                         continue;
320
321                 pmc = &pmu->pmc[i];
322
323                 /* A change in the enable state may affect the chain state */
324                 kvm_pmu_update_pmc_chained(vcpu, i);
325                 kvm_pmu_create_perf_event(vcpu, i);
326
327                 /* At this point, pmc must be the canonical */
328                 if (pmc->perf_event) {
329                         perf_event_enable(pmc->perf_event);
330                         if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
331                                 kvm_debug("fail to enable perf event\n");
332                 }
333         }
334 }
335
336 /**
337  * kvm_pmu_disable_counter_mask - disable selected PMU counters
338  * @vcpu: The vcpu pointer
339  * @val: the value guest writes to PMCNTENCLR register
340  *
341  * Call perf_event_disable to stop counting the perf event
342  */
343 void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
344 {
345         int i;
346         struct kvm_pmu *pmu = &vcpu->arch.pmu;
347         struct kvm_pmc *pmc;
348
349         if (!val)
350                 return;
351
352         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
353                 if (!(val & BIT(i)))
354                         continue;
355
356                 pmc = &pmu->pmc[i];
357
358                 /* A change in the enable state may affect the chain state */
359                 kvm_pmu_update_pmc_chained(vcpu, i);
360                 kvm_pmu_create_perf_event(vcpu, i);
361
362                 /* At this point, pmc must be the canonical */
363                 if (pmc->perf_event)
364                         perf_event_disable(pmc->perf_event);
365         }
366 }
367
368 static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
369 {
370         u64 reg = 0;
371
372         if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
373                 reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
374                 reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
375                 reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
376                 reg &= kvm_pmu_valid_counter_mask(vcpu);
377         }
378
379         return reg;
380 }
381
382 static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
383 {
384         struct kvm_pmu *pmu = &vcpu->arch.pmu;
385         bool overflow;
386
387         if (!kvm_vcpu_has_pmu(vcpu))
388                 return;
389
390         overflow = !!kvm_pmu_overflow_status(vcpu);
391         if (pmu->irq_level == overflow)
392                 return;
393
394         pmu->irq_level = overflow;
395
396         if (likely(irqchip_in_kernel(vcpu->kvm))) {
397                 int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
398                                               pmu->irq_num, overflow, pmu);
399                 WARN_ON(ret);
400         }
401 }
402
403 bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
404 {
405         struct kvm_pmu *pmu = &vcpu->arch.pmu;
406         struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
407         bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
408
409         if (likely(irqchip_in_kernel(vcpu->kvm)))
410                 return false;
411
412         return pmu->irq_level != run_level;
413 }
414
415 /*
416  * Reflect the PMU overflow interrupt output level into the kvm_run structure
417  */
418 void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
419 {
420         struct kvm_sync_regs *regs = &vcpu->run->s.regs;
421
422         /* Populate the timer bitmap for user space */
423         regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
424         if (vcpu->arch.pmu.irq_level)
425                 regs->device_irq_level |= KVM_ARM_DEV_PMU;
426 }
427
428 /**
429  * kvm_pmu_flush_hwstate - flush pmu state to cpu
430  * @vcpu: The vcpu pointer
431  *
432  * Check if the PMU has overflowed while we were running in the host, and inject
433  * an interrupt if that was the case.
434  */
435 void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
436 {
437         kvm_pmu_update_state(vcpu);
438 }
439
440 /**
441  * kvm_pmu_sync_hwstate - sync pmu state from cpu
442  * @vcpu: The vcpu pointer
443  *
444  * Check if the PMU has overflowed while we were running in the guest, and
445  * inject an interrupt if that was the case.
446  */
447 void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
448 {
449         kvm_pmu_update_state(vcpu);
450 }
451
452 /**
453  * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
454  * to the event.
455  * This is why we need a callback to do it once outside of the NMI context.
456  */
457 static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
458 {
459         struct kvm_vcpu *vcpu;
460         struct kvm_pmu *pmu;
461
462         pmu = container_of(work, struct kvm_pmu, overflow_work);
463         vcpu = kvm_pmc_to_vcpu(pmu->pmc);
464
465         kvm_vcpu_kick(vcpu);
466 }
467
468 /**
469  * When the perf event overflows, set the overflow status and inform the vcpu.
470  */
471 static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
472                                   struct perf_sample_data *data,
473                                   struct pt_regs *regs)
474 {
475         struct kvm_pmc *pmc = perf_event->overflow_handler_context;
476         struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
477         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
478         int idx = pmc->idx;
479         u64 period;
480
481         cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
482
483         /*
484          * Reset the sample period to the architectural limit,
485          * i.e. the point where the counter overflows.
486          */
487         period = -(local64_read(&perf_event->count));
488
489         if (!kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
490                 period &= GENMASK(31, 0);
491
492         local64_set(&perf_event->hw.period_left, 0);
493         perf_event->attr.sample_period = period;
494         perf_event->hw.sample_period = period;
495
496         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
497
498         if (kvm_pmu_overflow_status(vcpu)) {
499                 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
500
501                 if (!in_nmi())
502                         kvm_vcpu_kick(vcpu);
503                 else
504                         irq_work_queue(&vcpu->arch.pmu.overflow_work);
505         }
506
507         cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
508 }
509
510 /**
511  * kvm_pmu_software_increment - do software increment
512  * @vcpu: The vcpu pointer
513  * @val: the value guest writes to PMSWINC register
514  */
515 void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
516 {
517         struct kvm_pmu *pmu = &vcpu->arch.pmu;
518         int i;
519
520         if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E))
521                 return;
522
523         /* Weed out disabled counters */
524         val &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
525
526         for (i = 0; i < ARMV8_PMU_CYCLE_IDX; i++) {
527                 u64 type, reg;
528
529                 if (!(val & BIT(i)))
530                         continue;
531
532                 /* PMSWINC only applies to ... SW_INC! */
533                 type = __vcpu_sys_reg(vcpu, PMEVTYPER0_EL0 + i);
534                 type &= kvm_pmu_event_mask(vcpu->kvm);
535                 if (type != ARMV8_PMUV3_PERFCTR_SW_INCR)
536                         continue;
537
538                 /* increment this even SW_INC counter */
539                 reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) + 1;
540                 reg = lower_32_bits(reg);
541                 __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) = reg;
542
543                 if (reg) /* no overflow on the low part */
544                         continue;
545
546                 if (kvm_pmu_pmc_is_chained(&pmu->pmc[i])) {
547                         /* increment the high counter */
548                         reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) + 1;
549                         reg = lower_32_bits(reg);
550                         __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) = reg;
551                         if (!reg) /* mark overflow on the high counter */
552                                 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i + 1);
553                 } else {
554                         /* mark overflow on low counter */
555                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
556                 }
557         }
558 }
559
560 /**
561  * kvm_pmu_handle_pmcr - handle PMCR register
562  * @vcpu: The vcpu pointer
563  * @val: the value guest writes to PMCR register
564  */
565 void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
566 {
567         unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
568         int i;
569
570         if (val & ARMV8_PMU_PMCR_E) {
571                 kvm_pmu_enable_counter_mask(vcpu,
572                        __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask);
573         } else {
574                 kvm_pmu_disable_counter_mask(vcpu, mask);
575         }
576
577         if (val & ARMV8_PMU_PMCR_C)
578                 kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
579
580         if (val & ARMV8_PMU_PMCR_P) {
581                 mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
582                 for_each_set_bit(i, &mask, 32)
583                         kvm_pmu_set_counter_value(vcpu, i, 0);
584         }
585 }
586
587 static bool kvm_pmu_counter_is_enabled(struct kvm_vcpu *vcpu, u64 select_idx)
588 {
589         return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
590                (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(select_idx));
591 }
592
593 /**
594  * kvm_pmu_create_perf_event - create a perf event for a counter
595  * @vcpu: The vcpu pointer
596  * @select_idx: The number of selected counter
597  */
598 static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx)
599 {
600         struct kvm_pmu *pmu = &vcpu->arch.pmu;
601         struct kvm_pmc *pmc;
602         struct perf_event *event;
603         struct perf_event_attr attr;
604         u64 eventsel, counter, reg, data;
605
606         /*
607          * For chained counters the event type and filtering attributes are
608          * obtained from the low/even counter. We also use this counter to
609          * determine if the event is enabled/disabled.
610          */
611         pmc = kvm_pmu_get_canonical_pmc(&pmu->pmc[select_idx]);
612
613         reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
614               ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + pmc->idx;
615         data = __vcpu_sys_reg(vcpu, reg);
616
617         kvm_pmu_stop_counter(vcpu, pmc);
618         if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
619                 eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
620         else
621                 eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
622
623         /* Software increment event doesn't need to be backed by a perf event */
624         if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR)
625                 return;
626
627         /*
628          * If we have a filter in place and that the event isn't allowed, do
629          * not install a perf event either.
630          */
631         if (vcpu->kvm->arch.pmu_filter &&
632             !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
633                 return;
634
635         memset(&attr, 0, sizeof(struct perf_event_attr));
636         attr.type = PERF_TYPE_RAW;
637         attr.size = sizeof(attr);
638         attr.pinned = 1;
639         attr.disabled = !kvm_pmu_counter_is_enabled(vcpu, pmc->idx);
640         attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
641         attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
642         attr.exclude_hv = 1; /* Don't count EL2 events */
643         attr.exclude_host = 1; /* Don't count host events */
644         attr.config = eventsel;
645
646         counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
647
648         if (kvm_pmu_pmc_is_chained(pmc)) {
649                 /**
650                  * The initial sample period (overflow count) of an event. For
651                  * chained counters we only support overflow interrupts on the
652                  * high counter.
653                  */
654                 attr.sample_period = (-counter) & GENMASK(63, 0);
655                 attr.config1 |= PERF_ATTR_CFG1_KVM_PMU_CHAINED;
656
657                 event = perf_event_create_kernel_counter(&attr, -1, current,
658                                                          kvm_pmu_perf_overflow,
659                                                          pmc + 1);
660         } else {
661                 /* The initial sample period (overflow count) of an event. */
662                 if (kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
663                         attr.sample_period = (-counter) & GENMASK(63, 0);
664                 else
665                         attr.sample_period = (-counter) & GENMASK(31, 0);
666
667                 event = perf_event_create_kernel_counter(&attr, -1, current,
668                                                  kvm_pmu_perf_overflow, pmc);
669         }
670
671         if (IS_ERR(event)) {
672                 pr_err_once("kvm: pmu event creation failed %ld\n",
673                             PTR_ERR(event));
674                 return;
675         }
676
677         pmc->perf_event = event;
678 }
679
680 /**
681  * kvm_pmu_update_pmc_chained - update chained bitmap
682  * @vcpu: The vcpu pointer
683  * @select_idx: The number of selected counter
684  *
685  * Update the chained bitmap based on the event type written in the
686  * typer register and the enable state of the odd register.
687  */
688 static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx)
689 {
690         struct kvm_pmu *pmu = &vcpu->arch.pmu;
691         struct kvm_pmc *pmc = &pmu->pmc[select_idx], *canonical_pmc;
692         bool new_state, old_state;
693
694         old_state = kvm_pmu_pmc_is_chained(pmc);
695         new_state = kvm_pmu_idx_has_chain_evtype(vcpu, pmc->idx) &&
696                     kvm_pmu_counter_is_enabled(vcpu, pmc->idx | 0x1);
697
698         if (old_state == new_state)
699                 return;
700
701         canonical_pmc = kvm_pmu_get_canonical_pmc(pmc);
702         kvm_pmu_stop_counter(vcpu, canonical_pmc);
703         if (new_state) {
704                 /*
705                  * During promotion from !chained to chained we must ensure
706                  * the adjacent counter is stopped and its event destroyed
707                  */
708                 kvm_pmu_stop_counter(vcpu, kvm_pmu_get_alternate_pmc(pmc));
709                 set_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
710                 return;
711         }
712         clear_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
713 }
714
715 /**
716  * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
717  * @vcpu: The vcpu pointer
718  * @data: The data guest writes to PMXEVTYPER_EL0
719  * @select_idx: The number of selected counter
720  *
721  * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
722  * event with given hardware event number. Here we call perf_event API to
723  * emulate this action and create a kernel perf event for it.
724  */
725 void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
726                                     u64 select_idx)
727 {
728         u64 reg, mask;
729
730         mask  =  ARMV8_PMU_EVTYPE_MASK;
731         mask &= ~ARMV8_PMU_EVTYPE_EVENT;
732         mask |= kvm_pmu_event_mask(vcpu->kvm);
733
734         reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
735               ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + select_idx;
736
737         __vcpu_sys_reg(vcpu, reg) = data & mask;
738
739         kvm_pmu_update_pmc_chained(vcpu, select_idx);
740         kvm_pmu_create_perf_event(vcpu, select_idx);
741 }
742
743 int kvm_pmu_probe_pmuver(void)
744 {
745         struct perf_event_attr attr = { };
746         struct perf_event *event;
747         struct arm_pmu *pmu;
748         int pmuver = 0xf;
749
750         /*
751          * Create a dummy event that only counts user cycles. As we'll never
752          * leave this function with the event being live, it will never
753          * count anything. But it allows us to probe some of the PMU
754          * details. Yes, this is terrible.
755          */
756         attr.type = PERF_TYPE_RAW;
757         attr.size = sizeof(attr);
758         attr.pinned = 1;
759         attr.disabled = 0;
760         attr.exclude_user = 0;
761         attr.exclude_kernel = 1;
762         attr.exclude_hv = 1;
763         attr.exclude_host = 1;
764         attr.config = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
765         attr.sample_period = GENMASK(63, 0);
766
767         event = perf_event_create_kernel_counter(&attr, -1, current,
768                                                  kvm_pmu_perf_overflow, &attr);
769
770         if (IS_ERR(event)) {
771                 pr_err_once("kvm: pmu event creation failed %ld\n",
772                             PTR_ERR(event));
773                 return 0xf;
774         }
775
776         if (event->pmu) {
777                 pmu = to_arm_pmu(event->pmu);
778                 if (pmu->pmuver)
779                         pmuver = pmu->pmuver;
780         }
781
782         perf_event_disable(event);
783         perf_event_release_kernel(event);
784
785         return pmuver;
786 }
787
788 u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
789 {
790         unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
791         u64 val, mask = 0;
792         int base, i, nr_events;
793
794         if (!pmceid1) {
795                 val = read_sysreg(pmceid0_el0);
796                 base = 0;
797         } else {
798                 val = read_sysreg(pmceid1_el0);
799                 /*
800                  * Don't advertise STALL_SLOT, as PMMIR_EL0 is handled
801                  * as RAZ
802                  */
803                 if (vcpu->kvm->arch.pmuver >= ID_AA64DFR0_PMUVER_8_4)
804                         val &= ~BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32);
805                 base = 32;
806         }
807
808         if (!bmap)
809                 return val;
810
811         nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
812
813         for (i = 0; i < 32; i += 8) {
814                 u64 byte;
815
816                 byte = bitmap_get_value8(bmap, base + i);
817                 mask |= byte << i;
818                 if (nr_events >= (0x4000 + base + 32)) {
819                         byte = bitmap_get_value8(bmap, 0x4000 + base + i);
820                         mask |= byte << (32 + i);
821                 }
822         }
823
824         return val & mask;
825 }
826
827 int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
828 {
829         if (!kvm_vcpu_has_pmu(vcpu))
830                 return 0;
831
832         if (!vcpu->arch.pmu.created)
833                 return -EINVAL;
834
835         /*
836          * A valid interrupt configuration for the PMU is either to have a
837          * properly configured interrupt number and using an in-kernel
838          * irqchip, or to not have an in-kernel GIC and not set an IRQ.
839          */
840         if (irqchip_in_kernel(vcpu->kvm)) {
841                 int irq = vcpu->arch.pmu.irq_num;
842                 /*
843                  * If we are using an in-kernel vgic, at this point we know
844                  * the vgic will be initialized, so we can check the PMU irq
845                  * number against the dimensions of the vgic and make sure
846                  * it's valid.
847                  */
848                 if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
849                         return -EINVAL;
850         } else if (kvm_arm_pmu_irq_initialized(vcpu)) {
851                    return -EINVAL;
852         }
853
854         /* One-off reload of the PMU on first run */
855         kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
856
857         return 0;
858 }
859
860 static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
861 {
862         if (irqchip_in_kernel(vcpu->kvm)) {
863                 int ret;
864
865                 /*
866                  * If using the PMU with an in-kernel virtual GIC
867                  * implementation, we require the GIC to be already
868                  * initialized when initializing the PMU.
869                  */
870                 if (!vgic_initialized(vcpu->kvm))
871                         return -ENODEV;
872
873                 if (!kvm_arm_pmu_irq_initialized(vcpu))
874                         return -ENXIO;
875
876                 ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
877                                          &vcpu->arch.pmu);
878                 if (ret)
879                         return ret;
880         }
881
882         init_irq_work(&vcpu->arch.pmu.overflow_work,
883                       kvm_pmu_perf_overflow_notify_vcpu);
884
885         vcpu->arch.pmu.created = true;
886         return 0;
887 }
888
889 /*
890  * For one VM the interrupt type must be same for each vcpu.
891  * As a PPI, the interrupt number is the same for all vcpus,
892  * while as an SPI it must be a separate number per vcpu.
893  */
894 static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
895 {
896         int i;
897         struct kvm_vcpu *vcpu;
898
899         kvm_for_each_vcpu(i, vcpu, kvm) {
900                 if (!kvm_arm_pmu_irq_initialized(vcpu))
901                         continue;
902
903                 if (irq_is_ppi(irq)) {
904                         if (vcpu->arch.pmu.irq_num != irq)
905                                 return false;
906                 } else {
907                         if (vcpu->arch.pmu.irq_num == irq)
908                                 return false;
909                 }
910         }
911
912         return true;
913 }
914
915 int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
916 {
917         if (!kvm_vcpu_has_pmu(vcpu))
918                 return -ENODEV;
919
920         if (vcpu->arch.pmu.created)
921                 return -EBUSY;
922
923         if (!vcpu->kvm->arch.pmuver)
924                 vcpu->kvm->arch.pmuver = kvm_pmu_probe_pmuver();
925
926         if (vcpu->kvm->arch.pmuver == 0xf)
927                 return -ENODEV;
928
929         switch (attr->attr) {
930         case KVM_ARM_VCPU_PMU_V3_IRQ: {
931                 int __user *uaddr = (int __user *)(long)attr->addr;
932                 int irq;
933
934                 if (!irqchip_in_kernel(vcpu->kvm))
935                         return -EINVAL;
936
937                 if (get_user(irq, uaddr))
938                         return -EFAULT;
939
940                 /* The PMU overflow interrupt can be a PPI or a valid SPI. */
941                 if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
942                         return -EINVAL;
943
944                 if (!pmu_irq_is_valid(vcpu->kvm, irq))
945                         return -EINVAL;
946
947                 if (kvm_arm_pmu_irq_initialized(vcpu))
948                         return -EBUSY;
949
950                 kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
951                 vcpu->arch.pmu.irq_num = irq;
952                 return 0;
953         }
954         case KVM_ARM_VCPU_PMU_V3_FILTER: {
955                 struct kvm_pmu_event_filter __user *uaddr;
956                 struct kvm_pmu_event_filter filter;
957                 int nr_events;
958
959                 nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
960
961                 uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
962
963                 if (copy_from_user(&filter, uaddr, sizeof(filter)))
964                         return -EFAULT;
965
966                 if (((u32)filter.base_event + filter.nevents) > nr_events ||
967                     (filter.action != KVM_PMU_EVENT_ALLOW &&
968                      filter.action != KVM_PMU_EVENT_DENY))
969                         return -EINVAL;
970
971                 mutex_lock(&vcpu->kvm->lock);
972
973                 if (!vcpu->kvm->arch.pmu_filter) {
974                         vcpu->kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL);
975                         if (!vcpu->kvm->arch.pmu_filter) {
976                                 mutex_unlock(&vcpu->kvm->lock);
977                                 return -ENOMEM;
978                         }
979
980                         /*
981                          * The default depends on the first applied filter.
982                          * If it allows events, the default is to deny.
983                          * Conversely, if the first filter denies a set of
984                          * events, the default is to allow.
985                          */
986                         if (filter.action == KVM_PMU_EVENT_ALLOW)
987                                 bitmap_zero(vcpu->kvm->arch.pmu_filter, nr_events);
988                         else
989                                 bitmap_fill(vcpu->kvm->arch.pmu_filter, nr_events);
990                 }
991
992                 if (filter.action == KVM_PMU_EVENT_ALLOW)
993                         bitmap_set(vcpu->kvm->arch.pmu_filter, filter.base_event, filter.nevents);
994                 else
995                         bitmap_clear(vcpu->kvm->arch.pmu_filter, filter.base_event, filter.nevents);
996
997                 mutex_unlock(&vcpu->kvm->lock);
998
999                 return 0;
1000         }
1001         case KVM_ARM_VCPU_PMU_V3_INIT:
1002                 return kvm_arm_pmu_v3_init(vcpu);
1003         }
1004
1005         return -ENXIO;
1006 }
1007
1008 int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1009 {
1010         switch (attr->attr) {
1011         case KVM_ARM_VCPU_PMU_V3_IRQ: {
1012                 int __user *uaddr = (int __user *)(long)attr->addr;
1013                 int irq;
1014
1015                 if (!irqchip_in_kernel(vcpu->kvm))
1016                         return -EINVAL;
1017
1018                 if (!kvm_vcpu_has_pmu(vcpu))
1019                         return -ENODEV;
1020
1021                 if (!kvm_arm_pmu_irq_initialized(vcpu))
1022                         return -ENXIO;
1023
1024                 irq = vcpu->arch.pmu.irq_num;
1025                 return put_user(irq, uaddr);
1026         }
1027         }
1028
1029         return -ENXIO;
1030 }
1031
1032 int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1033 {
1034         switch (attr->attr) {
1035         case KVM_ARM_VCPU_PMU_V3_IRQ:
1036         case KVM_ARM_VCPU_PMU_V3_INIT:
1037         case KVM_ARM_VCPU_PMU_V3_FILTER:
1038                 if (kvm_vcpu_has_pmu(vcpu))
1039                         return 0;
1040         }
1041
1042         return -ENXIO;
1043 }