mt76: mt7663: introduce coredump support
[linux-2.6-microblaze.git] / arch / arm64 / kvm / pmu-emul.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Linaro Ltd.
4  * Author: Shannon Zhao <shannon.zhao@linaro.org>
5  */
6
7 #include <linux/cpu.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/perf_event.h>
11 #include <linux/perf/arm_pmu.h>
12 #include <linux/uaccess.h>
13 #include <asm/kvm_emulate.h>
14 #include <kvm/arm_pmu.h>
15 #include <kvm/arm_vgic.h>
16
17 static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx);
18 static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx);
19 static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc);
20
21 #define PERF_ATTR_CFG1_KVM_PMU_CHAINED 0x1
22
23 static u32 kvm_pmu_event_mask(struct kvm *kvm)
24 {
25         switch (kvm->arch.pmuver) {
26         case 1:                 /* ARMv8.0 */
27                 return GENMASK(9, 0);
28         case 4:                 /* ARMv8.1 */
29         case 5:                 /* ARMv8.4 */
30         case 6:                 /* ARMv8.5 */
31                 return GENMASK(15, 0);
32         default:                /* Shouldn't be here, just for sanity */
33                 WARN_ONCE(1, "Unknown PMU version %d\n", kvm->arch.pmuver);
34                 return 0;
35         }
36 }
37
38 /**
39  * kvm_pmu_idx_is_64bit - determine if select_idx is a 64bit counter
40  * @vcpu: The vcpu pointer
41  * @select_idx: The counter index
42  */
43 static bool kvm_pmu_idx_is_64bit(struct kvm_vcpu *vcpu, u64 select_idx)
44 {
45         return (select_idx == ARMV8_PMU_CYCLE_IDX &&
46                 __vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_LC);
47 }
48
49 static struct kvm_vcpu *kvm_pmc_to_vcpu(struct kvm_pmc *pmc)
50 {
51         struct kvm_pmu *pmu;
52         struct kvm_vcpu_arch *vcpu_arch;
53
54         pmc -= pmc->idx;
55         pmu = container_of(pmc, struct kvm_pmu, pmc[0]);
56         vcpu_arch = container_of(pmu, struct kvm_vcpu_arch, pmu);
57         return container_of(vcpu_arch, struct kvm_vcpu, arch);
58 }
59
60 /**
61  * kvm_pmu_pmc_is_chained - determine if the pmc is chained
62  * @pmc: The PMU counter pointer
63  */
64 static bool kvm_pmu_pmc_is_chained(struct kvm_pmc *pmc)
65 {
66         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
67
68         return test_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
69 }
70
71 /**
72  * kvm_pmu_idx_is_high_counter - determine if select_idx is a high/low counter
73  * @select_idx: The counter index
74  */
75 static bool kvm_pmu_idx_is_high_counter(u64 select_idx)
76 {
77         return select_idx & 0x1;
78 }
79
80 /**
81  * kvm_pmu_get_canonical_pmc - obtain the canonical pmc
82  * @pmc: The PMU counter pointer
83  *
84  * When a pair of PMCs are chained together we use the low counter (canonical)
85  * to hold the underlying perf event.
86  */
87 static struct kvm_pmc *kvm_pmu_get_canonical_pmc(struct kvm_pmc *pmc)
88 {
89         if (kvm_pmu_pmc_is_chained(pmc) &&
90             kvm_pmu_idx_is_high_counter(pmc->idx))
91                 return pmc - 1;
92
93         return pmc;
94 }
95 static struct kvm_pmc *kvm_pmu_get_alternate_pmc(struct kvm_pmc *pmc)
96 {
97         if (kvm_pmu_idx_is_high_counter(pmc->idx))
98                 return pmc - 1;
99         else
100                 return pmc + 1;
101 }
102
103 /**
104  * kvm_pmu_idx_has_chain_evtype - determine if the event type is chain
105  * @vcpu: The vcpu pointer
106  * @select_idx: The counter index
107  */
108 static bool kvm_pmu_idx_has_chain_evtype(struct kvm_vcpu *vcpu, u64 select_idx)
109 {
110         u64 eventsel, reg;
111
112         select_idx |= 0x1;
113
114         if (select_idx == ARMV8_PMU_CYCLE_IDX)
115                 return false;
116
117         reg = PMEVTYPER0_EL0 + select_idx;
118         eventsel = __vcpu_sys_reg(vcpu, reg) & kvm_pmu_event_mask(vcpu->kvm);
119
120         return eventsel == ARMV8_PMUV3_PERFCTR_CHAIN;
121 }
122
123 /**
124  * kvm_pmu_get_pair_counter_value - get PMU counter value
125  * @vcpu: The vcpu pointer
126  * @pmc: The PMU counter pointer
127  */
128 static u64 kvm_pmu_get_pair_counter_value(struct kvm_vcpu *vcpu,
129                                           struct kvm_pmc *pmc)
130 {
131         u64 counter, counter_high, reg, enabled, running;
132
133         if (kvm_pmu_pmc_is_chained(pmc)) {
134                 pmc = kvm_pmu_get_canonical_pmc(pmc);
135                 reg = PMEVCNTR0_EL0 + pmc->idx;
136
137                 counter = __vcpu_sys_reg(vcpu, reg);
138                 counter_high = __vcpu_sys_reg(vcpu, reg + 1);
139
140                 counter = lower_32_bits(counter) | (counter_high << 32);
141         } else {
142                 reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
143                       ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + pmc->idx;
144                 counter = __vcpu_sys_reg(vcpu, reg);
145         }
146
147         /*
148          * The real counter value is equal to the value of counter register plus
149          * the value perf event counts.
150          */
151         if (pmc->perf_event)
152                 counter += perf_event_read_value(pmc->perf_event, &enabled,
153                                                  &running);
154
155         return counter;
156 }
157
158 /**
159  * kvm_pmu_get_counter_value - get PMU counter value
160  * @vcpu: The vcpu pointer
161  * @select_idx: The counter index
162  */
163 u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
164 {
165         u64 counter;
166         struct kvm_pmu *pmu = &vcpu->arch.pmu;
167         struct kvm_pmc *pmc = &pmu->pmc[select_idx];
168
169         counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
170
171         if (kvm_pmu_pmc_is_chained(pmc) &&
172             kvm_pmu_idx_is_high_counter(select_idx))
173                 counter = upper_32_bits(counter);
174         else if (select_idx != ARMV8_PMU_CYCLE_IDX)
175                 counter = lower_32_bits(counter);
176
177         return counter;
178 }
179
180 /**
181  * kvm_pmu_set_counter_value - set PMU counter value
182  * @vcpu: The vcpu pointer
183  * @select_idx: The counter index
184  * @val: The counter value
185  */
186 void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
187 {
188         u64 reg;
189
190         reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
191               ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + select_idx;
192         __vcpu_sys_reg(vcpu, reg) += (s64)val - kvm_pmu_get_counter_value(vcpu, select_idx);
193
194         /* Recreate the perf event to reflect the updated sample_period */
195         kvm_pmu_create_perf_event(vcpu, select_idx);
196 }
197
198 /**
199  * kvm_pmu_release_perf_event - remove the perf event
200  * @pmc: The PMU counter pointer
201  */
202 static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
203 {
204         pmc = kvm_pmu_get_canonical_pmc(pmc);
205         if (pmc->perf_event) {
206                 perf_event_disable(pmc->perf_event);
207                 perf_event_release_kernel(pmc->perf_event);
208                 pmc->perf_event = NULL;
209         }
210 }
211
212 /**
213  * kvm_pmu_stop_counter - stop PMU counter
214  * @pmc: The PMU counter pointer
215  *
216  * If this counter has been configured to monitor some event, release it here.
217  */
218 static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc)
219 {
220         u64 counter, reg, val;
221
222         pmc = kvm_pmu_get_canonical_pmc(pmc);
223         if (!pmc->perf_event)
224                 return;
225
226         counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
227
228         if (pmc->idx == ARMV8_PMU_CYCLE_IDX) {
229                 reg = PMCCNTR_EL0;
230                 val = counter;
231         } else {
232                 reg = PMEVCNTR0_EL0 + pmc->idx;
233                 val = lower_32_bits(counter);
234         }
235
236         __vcpu_sys_reg(vcpu, reg) = val;
237
238         if (kvm_pmu_pmc_is_chained(pmc))
239                 __vcpu_sys_reg(vcpu, reg + 1) = upper_32_bits(counter);
240
241         kvm_pmu_release_perf_event(pmc);
242 }
243
244 /**
245  * kvm_pmu_vcpu_init - assign pmu counter idx for cpu
246  * @vcpu: The vcpu pointer
247  *
248  */
249 void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
250 {
251         int i;
252         struct kvm_pmu *pmu = &vcpu->arch.pmu;
253
254         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
255                 pmu->pmc[i].idx = i;
256 }
257
258 /**
259  * kvm_pmu_vcpu_reset - reset pmu state for cpu
260  * @vcpu: The vcpu pointer
261  *
262  */
263 void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
264 {
265         unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
266         struct kvm_pmu *pmu = &vcpu->arch.pmu;
267         int i;
268
269         for_each_set_bit(i, &mask, 32)
270                 kvm_pmu_stop_counter(vcpu, &pmu->pmc[i]);
271
272         bitmap_zero(vcpu->arch.pmu.chained, ARMV8_PMU_MAX_COUNTER_PAIRS);
273 }
274
275 /**
276  * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
277  * @vcpu: The vcpu pointer
278  *
279  */
280 void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
281 {
282         int i;
283         struct kvm_pmu *pmu = &vcpu->arch.pmu;
284
285         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++)
286                 kvm_pmu_release_perf_event(&pmu->pmc[i]);
287         irq_work_sync(&vcpu->arch.pmu.overflow_work);
288 }
289
290 u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
291 {
292         u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
293
294         val &= ARMV8_PMU_PMCR_N_MASK;
295         if (val == 0)
296                 return BIT(ARMV8_PMU_CYCLE_IDX);
297         else
298                 return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
299 }
300
301 /**
302  * kvm_pmu_enable_counter_mask - enable selected PMU counters
303  * @vcpu: The vcpu pointer
304  * @val: the value guest writes to PMCNTENSET register
305  *
306  * Call perf_event_enable to start counting the perf event
307  */
308 void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
309 {
310         int i;
311         struct kvm_pmu *pmu = &vcpu->arch.pmu;
312         struct kvm_pmc *pmc;
313
314         if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
315                 return;
316
317         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
318                 if (!(val & BIT(i)))
319                         continue;
320
321                 pmc = &pmu->pmc[i];
322
323                 /* A change in the enable state may affect the chain state */
324                 kvm_pmu_update_pmc_chained(vcpu, i);
325                 kvm_pmu_create_perf_event(vcpu, i);
326
327                 /* At this point, pmc must be the canonical */
328                 if (pmc->perf_event) {
329                         perf_event_enable(pmc->perf_event);
330                         if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
331                                 kvm_debug("fail to enable perf event\n");
332                 }
333         }
334 }
335
336 /**
337  * kvm_pmu_disable_counter_mask - disable selected PMU counters
338  * @vcpu: The vcpu pointer
339  * @val: the value guest writes to PMCNTENCLR register
340  *
341  * Call perf_event_disable to stop counting the perf event
342  */
343 void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
344 {
345         int i;
346         struct kvm_pmu *pmu = &vcpu->arch.pmu;
347         struct kvm_pmc *pmc;
348
349         if (!val)
350                 return;
351
352         for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
353                 if (!(val & BIT(i)))
354                         continue;
355
356                 pmc = &pmu->pmc[i];
357
358                 /* A change in the enable state may affect the chain state */
359                 kvm_pmu_update_pmc_chained(vcpu, i);
360                 kvm_pmu_create_perf_event(vcpu, i);
361
362                 /* At this point, pmc must be the canonical */
363                 if (pmc->perf_event)
364                         perf_event_disable(pmc->perf_event);
365         }
366 }
367
368 static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
369 {
370         u64 reg = 0;
371
372         if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
373                 reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
374                 reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
375                 reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
376                 reg &= kvm_pmu_valid_counter_mask(vcpu);
377         }
378
379         return reg;
380 }
381
382 static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
383 {
384         struct kvm_pmu *pmu = &vcpu->arch.pmu;
385         bool overflow;
386
387         if (!kvm_vcpu_has_pmu(vcpu))
388                 return;
389
390         overflow = !!kvm_pmu_overflow_status(vcpu);
391         if (pmu->irq_level == overflow)
392                 return;
393
394         pmu->irq_level = overflow;
395
396         if (likely(irqchip_in_kernel(vcpu->kvm))) {
397                 int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
398                                               pmu->irq_num, overflow, pmu);
399                 WARN_ON(ret);
400         }
401 }
402
403 bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
404 {
405         struct kvm_pmu *pmu = &vcpu->arch.pmu;
406         struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
407         bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
408
409         if (likely(irqchip_in_kernel(vcpu->kvm)))
410                 return false;
411
412         return pmu->irq_level != run_level;
413 }
414
415 /*
416  * Reflect the PMU overflow interrupt output level into the kvm_run structure
417  */
418 void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
419 {
420         struct kvm_sync_regs *regs = &vcpu->run->s.regs;
421
422         /* Populate the timer bitmap for user space */
423         regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
424         if (vcpu->arch.pmu.irq_level)
425                 regs->device_irq_level |= KVM_ARM_DEV_PMU;
426 }
427
428 /**
429  * kvm_pmu_flush_hwstate - flush pmu state to cpu
430  * @vcpu: The vcpu pointer
431  *
432  * Check if the PMU has overflowed while we were running in the host, and inject
433  * an interrupt if that was the case.
434  */
435 void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
436 {
437         kvm_pmu_update_state(vcpu);
438 }
439
440 /**
441  * kvm_pmu_sync_hwstate - sync pmu state from cpu
442  * @vcpu: The vcpu pointer
443  *
444  * Check if the PMU has overflowed while we were running in the guest, and
445  * inject an interrupt if that was the case.
446  */
447 void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
448 {
449         kvm_pmu_update_state(vcpu);
450 }
451
452 /**
453  * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
454  * to the event.
455  * This is why we need a callback to do it once outside of the NMI context.
456  */
457 static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
458 {
459         struct kvm_vcpu *vcpu;
460         struct kvm_pmu *pmu;
461
462         pmu = container_of(work, struct kvm_pmu, overflow_work);
463         vcpu = kvm_pmc_to_vcpu(pmu->pmc);
464
465         kvm_vcpu_kick(vcpu);
466 }
467
468 /**
469  * When the perf event overflows, set the overflow status and inform the vcpu.
470  */
471 static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
472                                   struct perf_sample_data *data,
473                                   struct pt_regs *regs)
474 {
475         struct kvm_pmc *pmc = perf_event->overflow_handler_context;
476         struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
477         struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
478         int idx = pmc->idx;
479         u64 period;
480
481         cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
482
483         /*
484          * Reset the sample period to the architectural limit,
485          * i.e. the point where the counter overflows.
486          */
487         period = -(local64_read(&perf_event->count));
488
489         if (!kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
490                 period &= GENMASK(31, 0);
491
492         local64_set(&perf_event->hw.period_left, 0);
493         perf_event->attr.sample_period = period;
494         perf_event->hw.sample_period = period;
495
496         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
497
498         if (kvm_pmu_overflow_status(vcpu)) {
499                 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
500
501                 if (!in_nmi())
502                         kvm_vcpu_kick(vcpu);
503                 else
504                         irq_work_queue(&vcpu->arch.pmu.overflow_work);
505         }
506
507         cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
508 }
509
510 /**
511  * kvm_pmu_software_increment - do software increment
512  * @vcpu: The vcpu pointer
513  * @val: the value guest writes to PMSWINC register
514  */
515 void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
516 {
517         struct kvm_pmu *pmu = &vcpu->arch.pmu;
518         int i;
519
520         if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E))
521                 return;
522
523         /* Weed out disabled counters */
524         val &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
525
526         for (i = 0; i < ARMV8_PMU_CYCLE_IDX; i++) {
527                 u64 type, reg;
528
529                 if (!(val & BIT(i)))
530                         continue;
531
532                 /* PMSWINC only applies to ... SW_INC! */
533                 type = __vcpu_sys_reg(vcpu, PMEVTYPER0_EL0 + i);
534                 type &= kvm_pmu_event_mask(vcpu->kvm);
535                 if (type != ARMV8_PMUV3_PERFCTR_SW_INCR)
536                         continue;
537
538                 /* increment this even SW_INC counter */
539                 reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) + 1;
540                 reg = lower_32_bits(reg);
541                 __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) = reg;
542
543                 if (reg) /* no overflow on the low part */
544                         continue;
545
546                 if (kvm_pmu_pmc_is_chained(&pmu->pmc[i])) {
547                         /* increment the high counter */
548                         reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) + 1;
549                         reg = lower_32_bits(reg);
550                         __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) = reg;
551                         if (!reg) /* mark overflow on the high counter */
552                                 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i + 1);
553                 } else {
554                         /* mark overflow on low counter */
555                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
556                 }
557         }
558 }
559
560 /**
561  * kvm_pmu_handle_pmcr - handle PMCR register
562  * @vcpu: The vcpu pointer
563  * @val: the value guest writes to PMCR register
564  */
565 void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
566 {
567         unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
568         int i;
569
570         if (val & ARMV8_PMU_PMCR_E) {
571                 kvm_pmu_enable_counter_mask(vcpu,
572                        __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask);
573         } else {
574                 kvm_pmu_disable_counter_mask(vcpu, mask);
575         }
576
577         if (val & ARMV8_PMU_PMCR_C)
578                 kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
579
580         if (val & ARMV8_PMU_PMCR_P) {
581                 for_each_set_bit(i, &mask, 32)
582                         kvm_pmu_set_counter_value(vcpu, i, 0);
583         }
584 }
585
586 static bool kvm_pmu_counter_is_enabled(struct kvm_vcpu *vcpu, u64 select_idx)
587 {
588         return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
589                (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(select_idx));
590 }
591
592 /**
593  * kvm_pmu_create_perf_event - create a perf event for a counter
594  * @vcpu: The vcpu pointer
595  * @select_idx: The number of selected counter
596  */
597 static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx)
598 {
599         struct kvm_pmu *pmu = &vcpu->arch.pmu;
600         struct kvm_pmc *pmc;
601         struct perf_event *event;
602         struct perf_event_attr attr;
603         u64 eventsel, counter, reg, data;
604
605         /*
606          * For chained counters the event type and filtering attributes are
607          * obtained from the low/even counter. We also use this counter to
608          * determine if the event is enabled/disabled.
609          */
610         pmc = kvm_pmu_get_canonical_pmc(&pmu->pmc[select_idx]);
611
612         reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
613               ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + pmc->idx;
614         data = __vcpu_sys_reg(vcpu, reg);
615
616         kvm_pmu_stop_counter(vcpu, pmc);
617         if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
618                 eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
619         else
620                 eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
621
622         /* Software increment event doesn't need to be backed by a perf event */
623         if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR)
624                 return;
625
626         /*
627          * If we have a filter in place and that the event isn't allowed, do
628          * not install a perf event either.
629          */
630         if (vcpu->kvm->arch.pmu_filter &&
631             !test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
632                 return;
633
634         memset(&attr, 0, sizeof(struct perf_event_attr));
635         attr.type = PERF_TYPE_RAW;
636         attr.size = sizeof(attr);
637         attr.pinned = 1;
638         attr.disabled = !kvm_pmu_counter_is_enabled(vcpu, pmc->idx);
639         attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
640         attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
641         attr.exclude_hv = 1; /* Don't count EL2 events */
642         attr.exclude_host = 1; /* Don't count host events */
643         attr.config = eventsel;
644
645         counter = kvm_pmu_get_pair_counter_value(vcpu, pmc);
646
647         if (kvm_pmu_pmc_is_chained(pmc)) {
648                 /**
649                  * The initial sample period (overflow count) of an event. For
650                  * chained counters we only support overflow interrupts on the
651                  * high counter.
652                  */
653                 attr.sample_period = (-counter) & GENMASK(63, 0);
654                 attr.config1 |= PERF_ATTR_CFG1_KVM_PMU_CHAINED;
655
656                 event = perf_event_create_kernel_counter(&attr, -1, current,
657                                                          kvm_pmu_perf_overflow,
658                                                          pmc + 1);
659         } else {
660                 /* The initial sample period (overflow count) of an event. */
661                 if (kvm_pmu_idx_is_64bit(vcpu, pmc->idx))
662                         attr.sample_period = (-counter) & GENMASK(63, 0);
663                 else
664                         attr.sample_period = (-counter) & GENMASK(31, 0);
665
666                 event = perf_event_create_kernel_counter(&attr, -1, current,
667                                                  kvm_pmu_perf_overflow, pmc);
668         }
669
670         if (IS_ERR(event)) {
671                 pr_err_once("kvm: pmu event creation failed %ld\n",
672                             PTR_ERR(event));
673                 return;
674         }
675
676         pmc->perf_event = event;
677 }
678
679 /**
680  * kvm_pmu_update_pmc_chained - update chained bitmap
681  * @vcpu: The vcpu pointer
682  * @select_idx: The number of selected counter
683  *
684  * Update the chained bitmap based on the event type written in the
685  * typer register and the enable state of the odd register.
686  */
687 static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx)
688 {
689         struct kvm_pmu *pmu = &vcpu->arch.pmu;
690         struct kvm_pmc *pmc = &pmu->pmc[select_idx], *canonical_pmc;
691         bool new_state, old_state;
692
693         old_state = kvm_pmu_pmc_is_chained(pmc);
694         new_state = kvm_pmu_idx_has_chain_evtype(vcpu, pmc->idx) &&
695                     kvm_pmu_counter_is_enabled(vcpu, pmc->idx | 0x1);
696
697         if (old_state == new_state)
698                 return;
699
700         canonical_pmc = kvm_pmu_get_canonical_pmc(pmc);
701         kvm_pmu_stop_counter(vcpu, canonical_pmc);
702         if (new_state) {
703                 /*
704                  * During promotion from !chained to chained we must ensure
705                  * the adjacent counter is stopped and its event destroyed
706                  */
707                 kvm_pmu_stop_counter(vcpu, kvm_pmu_get_alternate_pmc(pmc));
708                 set_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
709                 return;
710         }
711         clear_bit(pmc->idx >> 1, vcpu->arch.pmu.chained);
712 }
713
714 /**
715  * kvm_pmu_set_counter_event_type - set selected counter to monitor some event
716  * @vcpu: The vcpu pointer
717  * @data: The data guest writes to PMXEVTYPER_EL0
718  * @select_idx: The number of selected counter
719  *
720  * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
721  * event with given hardware event number. Here we call perf_event API to
722  * emulate this action and create a kernel perf event for it.
723  */
724 void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
725                                     u64 select_idx)
726 {
727         u64 reg, mask;
728
729         mask  =  ARMV8_PMU_EVTYPE_MASK;
730         mask &= ~ARMV8_PMU_EVTYPE_EVENT;
731         mask |= kvm_pmu_event_mask(vcpu->kvm);
732
733         reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
734               ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + select_idx;
735
736         __vcpu_sys_reg(vcpu, reg) = data & mask;
737
738         kvm_pmu_update_pmc_chained(vcpu, select_idx);
739         kvm_pmu_create_perf_event(vcpu, select_idx);
740 }
741
742 static int kvm_pmu_probe_pmuver(void)
743 {
744         struct perf_event_attr attr = { };
745         struct perf_event *event;
746         struct arm_pmu *pmu;
747         int pmuver = 0xf;
748
749         /*
750          * Create a dummy event that only counts user cycles. As we'll never
751          * leave this function with the event being live, it will never
752          * count anything. But it allows us to probe some of the PMU
753          * details. Yes, this is terrible.
754          */
755         attr.type = PERF_TYPE_RAW;
756         attr.size = sizeof(attr);
757         attr.pinned = 1;
758         attr.disabled = 0;
759         attr.exclude_user = 0;
760         attr.exclude_kernel = 1;
761         attr.exclude_hv = 1;
762         attr.exclude_host = 1;
763         attr.config = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
764         attr.sample_period = GENMASK(63, 0);
765
766         event = perf_event_create_kernel_counter(&attr, -1, current,
767                                                  kvm_pmu_perf_overflow, &attr);
768
769         if (IS_ERR(event)) {
770                 pr_err_once("kvm: pmu event creation failed %ld\n",
771                             PTR_ERR(event));
772                 return 0xf;
773         }
774
775         if (event->pmu) {
776                 pmu = to_arm_pmu(event->pmu);
777                 if (pmu->pmuver)
778                         pmuver = pmu->pmuver;
779         }
780
781         perf_event_disable(event);
782         perf_event_release_kernel(event);
783
784         return pmuver;
785 }
786
787 u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
788 {
789         unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
790         u64 val, mask = 0;
791         int base, i;
792
793         if (!pmceid1) {
794                 val = read_sysreg(pmceid0_el0);
795                 base = 0;
796         } else {
797                 val = read_sysreg(pmceid1_el0);
798                 base = 32;
799         }
800
801         if (!bmap)
802                 return val;
803
804         for (i = 0; i < 32; i += 8) {
805                 u64 byte;
806
807                 byte = bitmap_get_value8(bmap, base + i);
808                 mask |= byte << i;
809                 byte = bitmap_get_value8(bmap, 0x4000 + base + i);
810                 mask |= byte << (32 + i);
811         }
812
813         return val & mask;
814 }
815
816 bool kvm_arm_support_pmu_v3(void)
817 {
818         /*
819          * Check if HW_PERF_EVENTS are supported by checking the number of
820          * hardware performance counters. This could ensure the presence of
821          * a physical PMU and CONFIG_PERF_EVENT is selected.
822          */
823         return (perf_num_counters() > 0);
824 }
825
826 int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
827 {
828         if (!kvm_vcpu_has_pmu(vcpu))
829                 return 0;
830
831         if (!vcpu->arch.pmu.created)
832                 return -EINVAL;
833
834         /*
835          * A valid interrupt configuration for the PMU is either to have a
836          * properly configured interrupt number and using an in-kernel
837          * irqchip, or to not have an in-kernel GIC and not set an IRQ.
838          */
839         if (irqchip_in_kernel(vcpu->kvm)) {
840                 int irq = vcpu->arch.pmu.irq_num;
841                 /*
842                  * If we are using an in-kernel vgic, at this point we know
843                  * the vgic will be initialized, so we can check the PMU irq
844                  * number against the dimensions of the vgic and make sure
845                  * it's valid.
846                  */
847                 if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
848                         return -EINVAL;
849         } else if (kvm_arm_pmu_irq_initialized(vcpu)) {
850                    return -EINVAL;
851         }
852
853         kvm_pmu_vcpu_reset(vcpu);
854
855         return 0;
856 }
857
858 static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
859 {
860         if (irqchip_in_kernel(vcpu->kvm)) {
861                 int ret;
862
863                 /*
864                  * If using the PMU with an in-kernel virtual GIC
865                  * implementation, we require the GIC to be already
866                  * initialized when initializing the PMU.
867                  */
868                 if (!vgic_initialized(vcpu->kvm))
869                         return -ENODEV;
870
871                 if (!kvm_arm_pmu_irq_initialized(vcpu))
872                         return -ENXIO;
873
874                 ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
875                                          &vcpu->arch.pmu);
876                 if (ret)
877                         return ret;
878         }
879
880         init_irq_work(&vcpu->arch.pmu.overflow_work,
881                       kvm_pmu_perf_overflow_notify_vcpu);
882
883         vcpu->arch.pmu.created = true;
884         return 0;
885 }
886
887 /*
888  * For one VM the interrupt type must be same for each vcpu.
889  * As a PPI, the interrupt number is the same for all vcpus,
890  * while as an SPI it must be a separate number per vcpu.
891  */
892 static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
893 {
894         int i;
895         struct kvm_vcpu *vcpu;
896
897         kvm_for_each_vcpu(i, vcpu, kvm) {
898                 if (!kvm_arm_pmu_irq_initialized(vcpu))
899                         continue;
900
901                 if (irq_is_ppi(irq)) {
902                         if (vcpu->arch.pmu.irq_num != irq)
903                                 return false;
904                 } else {
905                         if (vcpu->arch.pmu.irq_num == irq)
906                                 return false;
907                 }
908         }
909
910         return true;
911 }
912
913 int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
914 {
915         if (!kvm_vcpu_has_pmu(vcpu))
916                 return -ENODEV;
917
918         if (vcpu->arch.pmu.created)
919                 return -EBUSY;
920
921         if (!vcpu->kvm->arch.pmuver)
922                 vcpu->kvm->arch.pmuver = kvm_pmu_probe_pmuver();
923
924         if (vcpu->kvm->arch.pmuver == 0xf)
925                 return -ENODEV;
926
927         switch (attr->attr) {
928         case KVM_ARM_VCPU_PMU_V3_IRQ: {
929                 int __user *uaddr = (int __user *)(long)attr->addr;
930                 int irq;
931
932                 if (!irqchip_in_kernel(vcpu->kvm))
933                         return -EINVAL;
934
935                 if (get_user(irq, uaddr))
936                         return -EFAULT;
937
938                 /* The PMU overflow interrupt can be a PPI or a valid SPI. */
939                 if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
940                         return -EINVAL;
941
942                 if (!pmu_irq_is_valid(vcpu->kvm, irq))
943                         return -EINVAL;
944
945                 if (kvm_arm_pmu_irq_initialized(vcpu))
946                         return -EBUSY;
947
948                 kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
949                 vcpu->arch.pmu.irq_num = irq;
950                 return 0;
951         }
952         case KVM_ARM_VCPU_PMU_V3_FILTER: {
953                 struct kvm_pmu_event_filter __user *uaddr;
954                 struct kvm_pmu_event_filter filter;
955                 int nr_events;
956
957                 nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
958
959                 uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
960
961                 if (copy_from_user(&filter, uaddr, sizeof(filter)))
962                         return -EFAULT;
963
964                 if (((u32)filter.base_event + filter.nevents) > nr_events ||
965                     (filter.action != KVM_PMU_EVENT_ALLOW &&
966                      filter.action != KVM_PMU_EVENT_DENY))
967                         return -EINVAL;
968
969                 mutex_lock(&vcpu->kvm->lock);
970
971                 if (!vcpu->kvm->arch.pmu_filter) {
972                         vcpu->kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL);
973                         if (!vcpu->kvm->arch.pmu_filter) {
974                                 mutex_unlock(&vcpu->kvm->lock);
975                                 return -ENOMEM;
976                         }
977
978                         /*
979                          * The default depends on the first applied filter.
980                          * If it allows events, the default is to deny.
981                          * Conversely, if the first filter denies a set of
982                          * events, the default is to allow.
983                          */
984                         if (filter.action == KVM_PMU_EVENT_ALLOW)
985                                 bitmap_zero(vcpu->kvm->arch.pmu_filter, nr_events);
986                         else
987                                 bitmap_fill(vcpu->kvm->arch.pmu_filter, nr_events);
988                 }
989
990                 if (filter.action == KVM_PMU_EVENT_ALLOW)
991                         bitmap_set(vcpu->kvm->arch.pmu_filter, filter.base_event, filter.nevents);
992                 else
993                         bitmap_clear(vcpu->kvm->arch.pmu_filter, filter.base_event, filter.nevents);
994
995                 mutex_unlock(&vcpu->kvm->lock);
996
997                 return 0;
998         }
999         case KVM_ARM_VCPU_PMU_V3_INIT:
1000                 return kvm_arm_pmu_v3_init(vcpu);
1001         }
1002
1003         return -ENXIO;
1004 }
1005
1006 int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1007 {
1008         switch (attr->attr) {
1009         case KVM_ARM_VCPU_PMU_V3_IRQ: {
1010                 int __user *uaddr = (int __user *)(long)attr->addr;
1011                 int irq;
1012
1013                 if (!irqchip_in_kernel(vcpu->kvm))
1014                         return -EINVAL;
1015
1016                 if (!kvm_vcpu_has_pmu(vcpu))
1017                         return -ENODEV;
1018
1019                 if (!kvm_arm_pmu_irq_initialized(vcpu))
1020                         return -ENXIO;
1021
1022                 irq = vcpu->arch.pmu.irq_num;
1023                 return put_user(irq, uaddr);
1024         }
1025         }
1026
1027         return -ENXIO;
1028 }
1029
1030 int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
1031 {
1032         switch (attr->attr) {
1033         case KVM_ARM_VCPU_PMU_V3_IRQ:
1034         case KVM_ARM_VCPU_PMU_V3_INIT:
1035         case KVM_ARM_VCPU_PMU_V3_FILTER:
1036                 if (kvm_vcpu_has_pmu(vcpu))
1037                         return 0;
1038         }
1039
1040         return -ENXIO;
1041 }