KVM: VMX: Fix x2APIC MSR intercept handling on !APICV platforms
[linux-2.6-microblaze.git] / arch / arm64 / kvm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_ras.h>
18 #include <asm/kvm_asm.h>
19 #include <asm/kvm_emulate.h>
20 #include <asm/virt.h>
21
22 #include "trace.h"
23
24 static pgd_t *boot_hyp_pgd;
25 static pgd_t *hyp_pgd;
26 static pgd_t *merged_hyp_pgd;
27 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
28
29 static unsigned long hyp_idmap_start;
30 static unsigned long hyp_idmap_end;
31 static phys_addr_t hyp_idmap_vector;
32
33 static unsigned long io_map_base;
34
35 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
36
37 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
38 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
39
40 static bool is_iomap(unsigned long flags)
41 {
42         return flags & KVM_S2PTE_FLAG_IS_IOMAP;
43 }
44
45 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
46 {
47         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
48 }
49
50 /**
51  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
52  * @kvm:        pointer to kvm structure.
53  *
54  * Interface to HYP function to flush all VM TLB entries
55  */
56 void kvm_flush_remote_tlbs(struct kvm *kvm)
57 {
58         kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
59 }
60
61 static void kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa,
62                                    int level)
63 {
64         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ipa, level);
65 }
66
67 /*
68  * D-Cache management functions. They take the page table entries by
69  * value, as they are flushing the cache using the kernel mapping (or
70  * kmap on 32bit).
71  */
72 static void kvm_flush_dcache_pte(pte_t pte)
73 {
74         __kvm_flush_dcache_pte(pte);
75 }
76
77 static void kvm_flush_dcache_pmd(pmd_t pmd)
78 {
79         __kvm_flush_dcache_pmd(pmd);
80 }
81
82 static void kvm_flush_dcache_pud(pud_t pud)
83 {
84         __kvm_flush_dcache_pud(pud);
85 }
86
87 static bool kvm_is_device_pfn(unsigned long pfn)
88 {
89         return !pfn_valid(pfn);
90 }
91
92 /**
93  * stage2_dissolve_pmd() - clear and flush huge PMD entry
94  * @mmu:        pointer to mmu structure to operate on
95  * @addr:       IPA
96  * @pmd:        pmd pointer for IPA
97  *
98  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
99  */
100 static void stage2_dissolve_pmd(struct kvm_s2_mmu *mmu, phys_addr_t addr, pmd_t *pmd)
101 {
102         if (!pmd_thp_or_huge(*pmd))
103                 return;
104
105         pmd_clear(pmd);
106         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
107         put_page(virt_to_page(pmd));
108 }
109
110 /**
111  * stage2_dissolve_pud() - clear and flush huge PUD entry
112  * @mmu:        pointer to mmu structure to operate on
113  * @addr:       IPA
114  * @pud:        pud pointer for IPA
115  *
116  * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
117  */
118 static void stage2_dissolve_pud(struct kvm_s2_mmu *mmu, phys_addr_t addr, pud_t *pudp)
119 {
120         struct kvm *kvm = mmu->kvm;
121
122         if (!stage2_pud_huge(kvm, *pudp))
123                 return;
124
125         stage2_pud_clear(kvm, pudp);
126         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
127         put_page(virt_to_page(pudp));
128 }
129
130 static void clear_stage2_pgd_entry(struct kvm_s2_mmu *mmu, pgd_t *pgd, phys_addr_t addr)
131 {
132         struct kvm *kvm = mmu->kvm;
133         p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL);
134         stage2_pgd_clear(kvm, pgd);
135         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
136         stage2_p4d_free(kvm, p4d_table);
137         put_page(virt_to_page(pgd));
138 }
139
140 static void clear_stage2_p4d_entry(struct kvm_s2_mmu *mmu, p4d_t *p4d, phys_addr_t addr)
141 {
142         struct kvm *kvm = mmu->kvm;
143         pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0);
144         stage2_p4d_clear(kvm, p4d);
145         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
146         stage2_pud_free(kvm, pud_table);
147         put_page(virt_to_page(p4d));
148 }
149
150 static void clear_stage2_pud_entry(struct kvm_s2_mmu *mmu, pud_t *pud, phys_addr_t addr)
151 {
152         struct kvm *kvm = mmu->kvm;
153         pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
154
155         VM_BUG_ON(stage2_pud_huge(kvm, *pud));
156         stage2_pud_clear(kvm, pud);
157         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
158         stage2_pmd_free(kvm, pmd_table);
159         put_page(virt_to_page(pud));
160 }
161
162 static void clear_stage2_pmd_entry(struct kvm_s2_mmu *mmu, pmd_t *pmd, phys_addr_t addr)
163 {
164         pte_t *pte_table = pte_offset_kernel(pmd, 0);
165         VM_BUG_ON(pmd_thp_or_huge(*pmd));
166         pmd_clear(pmd);
167         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
168         free_page((unsigned long)pte_table);
169         put_page(virt_to_page(pmd));
170 }
171
172 static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
173 {
174         WRITE_ONCE(*ptep, new_pte);
175         dsb(ishst);
176 }
177
178 static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
179 {
180         WRITE_ONCE(*pmdp, new_pmd);
181         dsb(ishst);
182 }
183
184 static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
185 {
186         kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
187 }
188
189 static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
190 {
191         WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
192         dsb(ishst);
193 }
194
195 static inline void kvm_p4d_populate(p4d_t *p4dp, pud_t *pudp)
196 {
197         WRITE_ONCE(*p4dp, kvm_mk_p4d(pudp));
198         dsb(ishst);
199 }
200
201 static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp)
202 {
203 #ifndef __PAGETABLE_P4D_FOLDED
204         WRITE_ONCE(*pgdp, kvm_mk_pgd(p4dp));
205         dsb(ishst);
206 #endif
207 }
208
209 /*
210  * Unmapping vs dcache management:
211  *
212  * If a guest maps certain memory pages as uncached, all writes will
213  * bypass the data cache and go directly to RAM.  However, the CPUs
214  * can still speculate reads (not writes) and fill cache lines with
215  * data.
216  *
217  * Those cache lines will be *clean* cache lines though, so a
218  * clean+invalidate operation is equivalent to an invalidate
219  * operation, because no cache lines are marked dirty.
220  *
221  * Those clean cache lines could be filled prior to an uncached write
222  * by the guest, and the cache coherent IO subsystem would therefore
223  * end up writing old data to disk.
224  *
225  * This is why right after unmapping a page/section and invalidating
226  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
227  * the IO subsystem will never hit in the cache.
228  *
229  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
230  * we then fully enforce cacheability of RAM, no matter what the guest
231  * does.
232  */
233 static void unmap_stage2_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
234                        phys_addr_t addr, phys_addr_t end)
235 {
236         phys_addr_t start_addr = addr;
237         pte_t *pte, *start_pte;
238
239         start_pte = pte = pte_offset_kernel(pmd, addr);
240         do {
241                 if (!pte_none(*pte)) {
242                         pte_t old_pte = *pte;
243
244                         kvm_set_pte(pte, __pte(0));
245                         kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
246
247                         /* No need to invalidate the cache for device mappings */
248                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
249                                 kvm_flush_dcache_pte(old_pte);
250
251                         put_page(virt_to_page(pte));
252                 }
253         } while (pte++, addr += PAGE_SIZE, addr != end);
254
255         if (stage2_pte_table_empty(mmu->kvm, start_pte))
256                 clear_stage2_pmd_entry(mmu, pmd, start_addr);
257 }
258
259 static void unmap_stage2_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
260                        phys_addr_t addr, phys_addr_t end)
261 {
262         struct kvm *kvm = mmu->kvm;
263         phys_addr_t next, start_addr = addr;
264         pmd_t *pmd, *start_pmd;
265
266         start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr);
267         do {
268                 next = stage2_pmd_addr_end(kvm, addr, end);
269                 if (!pmd_none(*pmd)) {
270                         if (pmd_thp_or_huge(*pmd)) {
271                                 pmd_t old_pmd = *pmd;
272
273                                 pmd_clear(pmd);
274                                 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
275
276                                 kvm_flush_dcache_pmd(old_pmd);
277
278                                 put_page(virt_to_page(pmd));
279                         } else {
280                                 unmap_stage2_ptes(mmu, pmd, addr, next);
281                         }
282                 }
283         } while (pmd++, addr = next, addr != end);
284
285         if (stage2_pmd_table_empty(kvm, start_pmd))
286                 clear_stage2_pud_entry(mmu, pud, start_addr);
287 }
288
289 static void unmap_stage2_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
290                        phys_addr_t addr, phys_addr_t end)
291 {
292         struct kvm *kvm = mmu->kvm;
293         phys_addr_t next, start_addr = addr;
294         pud_t *pud, *start_pud;
295
296         start_pud = pud = stage2_pud_offset(kvm, p4d, addr);
297         do {
298                 next = stage2_pud_addr_end(kvm, addr, end);
299                 if (!stage2_pud_none(kvm, *pud)) {
300                         if (stage2_pud_huge(kvm, *pud)) {
301                                 pud_t old_pud = *pud;
302
303                                 stage2_pud_clear(kvm, pud);
304                                 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
305                                 kvm_flush_dcache_pud(old_pud);
306                                 put_page(virt_to_page(pud));
307                         } else {
308                                 unmap_stage2_pmds(mmu, pud, addr, next);
309                         }
310                 }
311         } while (pud++, addr = next, addr != end);
312
313         if (stage2_pud_table_empty(kvm, start_pud))
314                 clear_stage2_p4d_entry(mmu, p4d, start_addr);
315 }
316
317 static void unmap_stage2_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
318                        phys_addr_t addr, phys_addr_t end)
319 {
320         struct kvm *kvm = mmu->kvm;
321         phys_addr_t next, start_addr = addr;
322         p4d_t *p4d, *start_p4d;
323
324         start_p4d = p4d = stage2_p4d_offset(kvm, pgd, addr);
325         do {
326                 next = stage2_p4d_addr_end(kvm, addr, end);
327                 if (!stage2_p4d_none(kvm, *p4d))
328                         unmap_stage2_puds(mmu, p4d, addr, next);
329         } while (p4d++, addr = next, addr != end);
330
331         if (stage2_p4d_table_empty(kvm, start_p4d))
332                 clear_stage2_pgd_entry(mmu, pgd, start_addr);
333 }
334
335 /**
336  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
337  * @kvm:   The VM pointer
338  * @start: The intermediate physical base address of the range to unmap
339  * @size:  The size of the area to unmap
340  *
341  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
342  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
343  * destroying the VM), otherwise another faulting VCPU may come in and mess
344  * with things behind our backs.
345  */
346 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
347                                  bool may_block)
348 {
349         struct kvm *kvm = mmu->kvm;
350         pgd_t *pgd;
351         phys_addr_t addr = start, end = start + size;
352         phys_addr_t next;
353
354         assert_spin_locked(&kvm->mmu_lock);
355         WARN_ON(size & ~PAGE_MASK);
356
357         pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
358         do {
359                 /*
360                  * Make sure the page table is still active, as another thread
361                  * could have possibly freed the page table, while we released
362                  * the lock.
363                  */
364                 if (!READ_ONCE(mmu->pgd))
365                         break;
366                 next = stage2_pgd_addr_end(kvm, addr, end);
367                 if (!stage2_pgd_none(kvm, *pgd))
368                         unmap_stage2_p4ds(mmu, pgd, addr, next);
369                 /*
370                  * If the range is too large, release the kvm->mmu_lock
371                  * to prevent starvation and lockup detector warnings.
372                  */
373                 if (may_block && next != end)
374                         cond_resched_lock(&kvm->mmu_lock);
375         } while (pgd++, addr = next, addr != end);
376 }
377
378 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
379 {
380         __unmap_stage2_range(mmu, start, size, true);
381 }
382
383 static void stage2_flush_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
384                               phys_addr_t addr, phys_addr_t end)
385 {
386         pte_t *pte;
387
388         pte = pte_offset_kernel(pmd, addr);
389         do {
390                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
391                         kvm_flush_dcache_pte(*pte);
392         } while (pte++, addr += PAGE_SIZE, addr != end);
393 }
394
395 static void stage2_flush_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
396                               phys_addr_t addr, phys_addr_t end)
397 {
398         struct kvm *kvm = mmu->kvm;
399         pmd_t *pmd;
400         phys_addr_t next;
401
402         pmd = stage2_pmd_offset(kvm, pud, addr);
403         do {
404                 next = stage2_pmd_addr_end(kvm, addr, end);
405                 if (!pmd_none(*pmd)) {
406                         if (pmd_thp_or_huge(*pmd))
407                                 kvm_flush_dcache_pmd(*pmd);
408                         else
409                                 stage2_flush_ptes(mmu, pmd, addr, next);
410                 }
411         } while (pmd++, addr = next, addr != end);
412 }
413
414 static void stage2_flush_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
415                               phys_addr_t addr, phys_addr_t end)
416 {
417         struct kvm *kvm = mmu->kvm;
418         pud_t *pud;
419         phys_addr_t next;
420
421         pud = stage2_pud_offset(kvm, p4d, addr);
422         do {
423                 next = stage2_pud_addr_end(kvm, addr, end);
424                 if (!stage2_pud_none(kvm, *pud)) {
425                         if (stage2_pud_huge(kvm, *pud))
426                                 kvm_flush_dcache_pud(*pud);
427                         else
428                                 stage2_flush_pmds(mmu, pud, addr, next);
429                 }
430         } while (pud++, addr = next, addr != end);
431 }
432
433 static void stage2_flush_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
434                               phys_addr_t addr, phys_addr_t end)
435 {
436         struct kvm *kvm = mmu->kvm;
437         p4d_t *p4d;
438         phys_addr_t next;
439
440         p4d = stage2_p4d_offset(kvm, pgd, addr);
441         do {
442                 next = stage2_p4d_addr_end(kvm, addr, end);
443                 if (!stage2_p4d_none(kvm, *p4d))
444                         stage2_flush_puds(mmu, p4d, addr, next);
445         } while (p4d++, addr = next, addr != end);
446 }
447
448 static void stage2_flush_memslot(struct kvm *kvm,
449                                  struct kvm_memory_slot *memslot)
450 {
451         struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
452         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
453         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
454         phys_addr_t next;
455         pgd_t *pgd;
456
457         pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
458         do {
459                 next = stage2_pgd_addr_end(kvm, addr, end);
460                 if (!stage2_pgd_none(kvm, *pgd))
461                         stage2_flush_p4ds(mmu, pgd, addr, next);
462
463                 if (next != end)
464                         cond_resched_lock(&kvm->mmu_lock);
465         } while (pgd++, addr = next, addr != end);
466 }
467
468 /**
469  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
470  * @kvm: The struct kvm pointer
471  *
472  * Go through the stage 2 page tables and invalidate any cache lines
473  * backing memory already mapped to the VM.
474  */
475 static void stage2_flush_vm(struct kvm *kvm)
476 {
477         struct kvm_memslots *slots;
478         struct kvm_memory_slot *memslot;
479         int idx;
480
481         idx = srcu_read_lock(&kvm->srcu);
482         spin_lock(&kvm->mmu_lock);
483
484         slots = kvm_memslots(kvm);
485         kvm_for_each_memslot(memslot, slots)
486                 stage2_flush_memslot(kvm, memslot);
487
488         spin_unlock(&kvm->mmu_lock);
489         srcu_read_unlock(&kvm->srcu, idx);
490 }
491
492 static void clear_hyp_pgd_entry(pgd_t *pgd)
493 {
494         p4d_t *p4d_table __maybe_unused = p4d_offset(pgd, 0UL);
495         pgd_clear(pgd);
496         p4d_free(NULL, p4d_table);
497         put_page(virt_to_page(pgd));
498 }
499
500 static void clear_hyp_p4d_entry(p4d_t *p4d)
501 {
502         pud_t *pud_table __maybe_unused = pud_offset(p4d, 0UL);
503         VM_BUG_ON(p4d_huge(*p4d));
504         p4d_clear(p4d);
505         pud_free(NULL, pud_table);
506         put_page(virt_to_page(p4d));
507 }
508
509 static void clear_hyp_pud_entry(pud_t *pud)
510 {
511         pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
512         VM_BUG_ON(pud_huge(*pud));
513         pud_clear(pud);
514         pmd_free(NULL, pmd_table);
515         put_page(virt_to_page(pud));
516 }
517
518 static void clear_hyp_pmd_entry(pmd_t *pmd)
519 {
520         pte_t *pte_table = pte_offset_kernel(pmd, 0);
521         VM_BUG_ON(pmd_thp_or_huge(*pmd));
522         pmd_clear(pmd);
523         pte_free_kernel(NULL, pte_table);
524         put_page(virt_to_page(pmd));
525 }
526
527 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
528 {
529         pte_t *pte, *start_pte;
530
531         start_pte = pte = pte_offset_kernel(pmd, addr);
532         do {
533                 if (!pte_none(*pte)) {
534                         kvm_set_pte(pte, __pte(0));
535                         put_page(virt_to_page(pte));
536                 }
537         } while (pte++, addr += PAGE_SIZE, addr != end);
538
539         if (hyp_pte_table_empty(start_pte))
540                 clear_hyp_pmd_entry(pmd);
541 }
542
543 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
544 {
545         phys_addr_t next;
546         pmd_t *pmd, *start_pmd;
547
548         start_pmd = pmd = pmd_offset(pud, addr);
549         do {
550                 next = pmd_addr_end(addr, end);
551                 /* Hyp doesn't use huge pmds */
552                 if (!pmd_none(*pmd))
553                         unmap_hyp_ptes(pmd, addr, next);
554         } while (pmd++, addr = next, addr != end);
555
556         if (hyp_pmd_table_empty(start_pmd))
557                 clear_hyp_pud_entry(pud);
558 }
559
560 static void unmap_hyp_puds(p4d_t *p4d, phys_addr_t addr, phys_addr_t end)
561 {
562         phys_addr_t next;
563         pud_t *pud, *start_pud;
564
565         start_pud = pud = pud_offset(p4d, addr);
566         do {
567                 next = pud_addr_end(addr, end);
568                 /* Hyp doesn't use huge puds */
569                 if (!pud_none(*pud))
570                         unmap_hyp_pmds(pud, addr, next);
571         } while (pud++, addr = next, addr != end);
572
573         if (hyp_pud_table_empty(start_pud))
574                 clear_hyp_p4d_entry(p4d);
575 }
576
577 static void unmap_hyp_p4ds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
578 {
579         phys_addr_t next;
580         p4d_t *p4d, *start_p4d;
581
582         start_p4d = p4d = p4d_offset(pgd, addr);
583         do {
584                 next = p4d_addr_end(addr, end);
585                 /* Hyp doesn't use huge p4ds */
586                 if (!p4d_none(*p4d))
587                         unmap_hyp_puds(p4d, addr, next);
588         } while (p4d++, addr = next, addr != end);
589
590         if (hyp_p4d_table_empty(start_p4d))
591                 clear_hyp_pgd_entry(pgd);
592 }
593
594 static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
595 {
596         return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
597 }
598
599 static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
600                               phys_addr_t start, u64 size)
601 {
602         pgd_t *pgd;
603         phys_addr_t addr = start, end = start + size;
604         phys_addr_t next;
605
606         /*
607          * We don't unmap anything from HYP, except at the hyp tear down.
608          * Hence, we don't have to invalidate the TLBs here.
609          */
610         pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
611         do {
612                 next = pgd_addr_end(addr, end);
613                 if (!pgd_none(*pgd))
614                         unmap_hyp_p4ds(pgd, addr, next);
615         } while (pgd++, addr = next, addr != end);
616 }
617
618 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
619 {
620         __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
621 }
622
623 static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
624 {
625         __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
626 }
627
628 /**
629  * free_hyp_pgds - free Hyp-mode page tables
630  *
631  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
632  * therefore contains either mappings in the kernel memory area (above
633  * PAGE_OFFSET), or device mappings in the idmap range.
634  *
635  * boot_hyp_pgd should only map the idmap range, and is only used in
636  * the extended idmap case.
637  */
638 void free_hyp_pgds(void)
639 {
640         pgd_t *id_pgd;
641
642         mutex_lock(&kvm_hyp_pgd_mutex);
643
644         id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;
645
646         if (id_pgd) {
647                 /* In case we never called hyp_mmu_init() */
648                 if (!io_map_base)
649                         io_map_base = hyp_idmap_start;
650                 unmap_hyp_idmap_range(id_pgd, io_map_base,
651                                       hyp_idmap_start + PAGE_SIZE - io_map_base);
652         }
653
654         if (boot_hyp_pgd) {
655                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
656                 boot_hyp_pgd = NULL;
657         }
658
659         if (hyp_pgd) {
660                 unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
661                                 (uintptr_t)high_memory - PAGE_OFFSET);
662
663                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
664                 hyp_pgd = NULL;
665         }
666         if (merged_hyp_pgd) {
667                 clear_page(merged_hyp_pgd);
668                 free_page((unsigned long)merged_hyp_pgd);
669                 merged_hyp_pgd = NULL;
670         }
671
672         mutex_unlock(&kvm_hyp_pgd_mutex);
673 }
674
675 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
676                                     unsigned long end, unsigned long pfn,
677                                     pgprot_t prot)
678 {
679         pte_t *pte;
680         unsigned long addr;
681
682         addr = start;
683         do {
684                 pte = pte_offset_kernel(pmd, addr);
685                 kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
686                 get_page(virt_to_page(pte));
687                 pfn++;
688         } while (addr += PAGE_SIZE, addr != end);
689 }
690
691 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
692                                    unsigned long end, unsigned long pfn,
693                                    pgprot_t prot)
694 {
695         pmd_t *pmd;
696         pte_t *pte;
697         unsigned long addr, next;
698
699         addr = start;
700         do {
701                 pmd = pmd_offset(pud, addr);
702
703                 BUG_ON(pmd_sect(*pmd));
704
705                 if (pmd_none(*pmd)) {
706                         pte = pte_alloc_one_kernel(NULL);
707                         if (!pte) {
708                                 kvm_err("Cannot allocate Hyp pte\n");
709                                 return -ENOMEM;
710                         }
711                         kvm_pmd_populate(pmd, pte);
712                         get_page(virt_to_page(pmd));
713                 }
714
715                 next = pmd_addr_end(addr, end);
716
717                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
718                 pfn += (next - addr) >> PAGE_SHIFT;
719         } while (addr = next, addr != end);
720
721         return 0;
722 }
723
724 static int create_hyp_pud_mappings(p4d_t *p4d, unsigned long start,
725                                    unsigned long end, unsigned long pfn,
726                                    pgprot_t prot)
727 {
728         pud_t *pud;
729         pmd_t *pmd;
730         unsigned long addr, next;
731         int ret;
732
733         addr = start;
734         do {
735                 pud = pud_offset(p4d, addr);
736
737                 if (pud_none_or_clear_bad(pud)) {
738                         pmd = pmd_alloc_one(NULL, addr);
739                         if (!pmd) {
740                                 kvm_err("Cannot allocate Hyp pmd\n");
741                                 return -ENOMEM;
742                         }
743                         kvm_pud_populate(pud, pmd);
744                         get_page(virt_to_page(pud));
745                 }
746
747                 next = pud_addr_end(addr, end);
748                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
749                 if (ret)
750                         return ret;
751                 pfn += (next - addr) >> PAGE_SHIFT;
752         } while (addr = next, addr != end);
753
754         return 0;
755 }
756
757 static int create_hyp_p4d_mappings(pgd_t *pgd, unsigned long start,
758                                    unsigned long end, unsigned long pfn,
759                                    pgprot_t prot)
760 {
761         p4d_t *p4d;
762         pud_t *pud;
763         unsigned long addr, next;
764         int ret;
765
766         addr = start;
767         do {
768                 p4d = p4d_offset(pgd, addr);
769
770                 if (p4d_none(*p4d)) {
771                         pud = pud_alloc_one(NULL, addr);
772                         if (!pud) {
773                                 kvm_err("Cannot allocate Hyp pud\n");
774                                 return -ENOMEM;
775                         }
776                         kvm_p4d_populate(p4d, pud);
777                         get_page(virt_to_page(p4d));
778                 }
779
780                 next = p4d_addr_end(addr, end);
781                 ret = create_hyp_pud_mappings(p4d, addr, next, pfn, prot);
782                 if (ret)
783                         return ret;
784                 pfn += (next - addr) >> PAGE_SHIFT;
785         } while (addr = next, addr != end);
786
787         return 0;
788 }
789
790 static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
791                                  unsigned long start, unsigned long end,
792                                  unsigned long pfn, pgprot_t prot)
793 {
794         pgd_t *pgd;
795         p4d_t *p4d;
796         unsigned long addr, next;
797         int err = 0;
798
799         mutex_lock(&kvm_hyp_pgd_mutex);
800         addr = start & PAGE_MASK;
801         end = PAGE_ALIGN(end);
802         do {
803                 pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
804
805                 if (pgd_none(*pgd)) {
806                         p4d = p4d_alloc_one(NULL, addr);
807                         if (!p4d) {
808                                 kvm_err("Cannot allocate Hyp p4d\n");
809                                 err = -ENOMEM;
810                                 goto out;
811                         }
812                         kvm_pgd_populate(pgd, p4d);
813                         get_page(virt_to_page(pgd));
814                 }
815
816                 next = pgd_addr_end(addr, end);
817                 err = create_hyp_p4d_mappings(pgd, addr, next, pfn, prot);
818                 if (err)
819                         goto out;
820                 pfn += (next - addr) >> PAGE_SHIFT;
821         } while (addr = next, addr != end);
822 out:
823         mutex_unlock(&kvm_hyp_pgd_mutex);
824         return err;
825 }
826
827 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
828 {
829         if (!is_vmalloc_addr(kaddr)) {
830                 BUG_ON(!virt_addr_valid(kaddr));
831                 return __pa(kaddr);
832         } else {
833                 return page_to_phys(vmalloc_to_page(kaddr)) +
834                        offset_in_page(kaddr);
835         }
836 }
837
838 /**
839  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
840  * @from:       The virtual kernel start address of the range
841  * @to:         The virtual kernel end address of the range (exclusive)
842  * @prot:       The protection to be applied to this range
843  *
844  * The same virtual address as the kernel virtual address is also used
845  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
846  * physical pages.
847  */
848 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
849 {
850         phys_addr_t phys_addr;
851         unsigned long virt_addr;
852         unsigned long start = kern_hyp_va((unsigned long)from);
853         unsigned long end = kern_hyp_va((unsigned long)to);
854
855         if (is_kernel_in_hyp_mode())
856                 return 0;
857
858         start = start & PAGE_MASK;
859         end = PAGE_ALIGN(end);
860
861         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
862                 int err;
863
864                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
865                 err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
866                                             virt_addr, virt_addr + PAGE_SIZE,
867                                             __phys_to_pfn(phys_addr),
868                                             prot);
869                 if (err)
870                         return err;
871         }
872
873         return 0;
874 }
875
876 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
877                                         unsigned long *haddr, pgprot_t prot)
878 {
879         pgd_t *pgd = hyp_pgd;
880         unsigned long base;
881         int ret = 0;
882
883         mutex_lock(&kvm_hyp_pgd_mutex);
884
885         /*
886          * This assumes that we have enough space below the idmap
887          * page to allocate our VAs. If not, the check below will
888          * kick. A potential alternative would be to detect that
889          * overflow and switch to an allocation above the idmap.
890          *
891          * The allocated size is always a multiple of PAGE_SIZE.
892          */
893         size = PAGE_ALIGN(size + offset_in_page(phys_addr));
894         base = io_map_base - size;
895
896         /*
897          * Verify that BIT(VA_BITS - 1) hasn't been flipped by
898          * allocating the new area, as it would indicate we've
899          * overflowed the idmap/IO address range.
900          */
901         if ((base ^ io_map_base) & BIT(VA_BITS - 1))
902                 ret = -ENOMEM;
903         else
904                 io_map_base = base;
905
906         mutex_unlock(&kvm_hyp_pgd_mutex);
907
908         if (ret)
909                 goto out;
910
911         if (__kvm_cpu_uses_extended_idmap())
912                 pgd = boot_hyp_pgd;
913
914         ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
915                                     base, base + size,
916                                     __phys_to_pfn(phys_addr), prot);
917         if (ret)
918                 goto out;
919
920         *haddr = base + offset_in_page(phys_addr);
921
922 out:
923         return ret;
924 }
925
926 /**
927  * create_hyp_io_mappings - Map IO into both kernel and HYP
928  * @phys_addr:  The physical start address which gets mapped
929  * @size:       Size of the region being mapped
930  * @kaddr:      Kernel VA for this mapping
931  * @haddr:      HYP VA for this mapping
932  */
933 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
934                            void __iomem **kaddr,
935                            void __iomem **haddr)
936 {
937         unsigned long addr;
938         int ret;
939
940         *kaddr = ioremap(phys_addr, size);
941         if (!*kaddr)
942                 return -ENOMEM;
943
944         if (is_kernel_in_hyp_mode()) {
945                 *haddr = *kaddr;
946                 return 0;
947         }
948
949         ret = __create_hyp_private_mapping(phys_addr, size,
950                                            &addr, PAGE_HYP_DEVICE);
951         if (ret) {
952                 iounmap(*kaddr);
953                 *kaddr = NULL;
954                 *haddr = NULL;
955                 return ret;
956         }
957
958         *haddr = (void __iomem *)addr;
959         return 0;
960 }
961
962 /**
963  * create_hyp_exec_mappings - Map an executable range into HYP
964  * @phys_addr:  The physical start address which gets mapped
965  * @size:       Size of the region being mapped
966  * @haddr:      HYP VA for this mapping
967  */
968 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
969                              void **haddr)
970 {
971         unsigned long addr;
972         int ret;
973
974         BUG_ON(is_kernel_in_hyp_mode());
975
976         ret = __create_hyp_private_mapping(phys_addr, size,
977                                            &addr, PAGE_HYP_EXEC);
978         if (ret) {
979                 *haddr = NULL;
980                 return ret;
981         }
982
983         *haddr = (void *)addr;
984         return 0;
985 }
986
987 /**
988  * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
989  * @kvm:        The pointer to the KVM structure
990  * @mmu:        The pointer to the s2 MMU structure
991  *
992  * Allocates only the stage-2 HW PGD level table(s) of size defined by
993  * stage2_pgd_size(mmu->kvm).
994  *
995  * Note we don't need locking here as this is only called when the VM is
996  * created, which can only be done once.
997  */
998 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
999 {
1000         phys_addr_t pgd_phys;
1001         pgd_t *pgd;
1002         int cpu;
1003
1004         if (mmu->pgd != NULL) {
1005                 kvm_err("kvm_arch already initialized?\n");
1006                 return -EINVAL;
1007         }
1008
1009         /* Allocate the HW PGD, making sure that each page gets its own refcount */
1010         pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO);
1011         if (!pgd)
1012                 return -ENOMEM;
1013
1014         pgd_phys = virt_to_phys(pgd);
1015         if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
1016                 return -EINVAL;
1017
1018         mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
1019         if (!mmu->last_vcpu_ran) {
1020                 free_pages_exact(pgd, stage2_pgd_size(kvm));
1021                 return -ENOMEM;
1022         }
1023
1024         for_each_possible_cpu(cpu)
1025                 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
1026
1027         mmu->kvm = kvm;
1028         mmu->pgd = pgd;
1029         mmu->pgd_phys = pgd_phys;
1030         mmu->vmid.vmid_gen = 0;
1031
1032         return 0;
1033 }
1034
1035 static void stage2_unmap_memslot(struct kvm *kvm,
1036                                  struct kvm_memory_slot *memslot)
1037 {
1038         hva_t hva = memslot->userspace_addr;
1039         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
1040         phys_addr_t size = PAGE_SIZE * memslot->npages;
1041         hva_t reg_end = hva + size;
1042
1043         /*
1044          * A memory region could potentially cover multiple VMAs, and any holes
1045          * between them, so iterate over all of them to find out if we should
1046          * unmap any of them.
1047          *
1048          *     +--------------------------------------------+
1049          * +---------------+----------------+   +----------------+
1050          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1051          * +---------------+----------------+   +----------------+
1052          *     |               memory region                |
1053          *     +--------------------------------------------+
1054          */
1055         do {
1056                 struct vm_area_struct *vma = find_vma(current->mm, hva);
1057                 hva_t vm_start, vm_end;
1058
1059                 if (!vma || vma->vm_start >= reg_end)
1060                         break;
1061
1062                 /*
1063                  * Take the intersection of this VMA with the memory region
1064                  */
1065                 vm_start = max(hva, vma->vm_start);
1066                 vm_end = min(reg_end, vma->vm_end);
1067
1068                 if (!(vma->vm_flags & VM_PFNMAP)) {
1069                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
1070                         unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
1071                 }
1072                 hva = vm_end;
1073         } while (hva < reg_end);
1074 }
1075
1076 /**
1077  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
1078  * @kvm: The struct kvm pointer
1079  *
1080  * Go through the memregions and unmap any regular RAM
1081  * backing memory already mapped to the VM.
1082  */
1083 void stage2_unmap_vm(struct kvm *kvm)
1084 {
1085         struct kvm_memslots *slots;
1086         struct kvm_memory_slot *memslot;
1087         int idx;
1088
1089         idx = srcu_read_lock(&kvm->srcu);
1090         mmap_read_lock(current->mm);
1091         spin_lock(&kvm->mmu_lock);
1092
1093         slots = kvm_memslots(kvm);
1094         kvm_for_each_memslot(memslot, slots)
1095                 stage2_unmap_memslot(kvm, memslot);
1096
1097         spin_unlock(&kvm->mmu_lock);
1098         mmap_read_unlock(current->mm);
1099         srcu_read_unlock(&kvm->srcu, idx);
1100 }
1101
1102 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
1103 {
1104         struct kvm *kvm = mmu->kvm;
1105         void *pgd = NULL;
1106
1107         spin_lock(&kvm->mmu_lock);
1108         if (mmu->pgd) {
1109                 unmap_stage2_range(mmu, 0, kvm_phys_size(kvm));
1110                 pgd = READ_ONCE(mmu->pgd);
1111                 mmu->pgd = NULL;
1112         }
1113         spin_unlock(&kvm->mmu_lock);
1114
1115         /* Free the HW pgd, one page at a time */
1116         if (pgd) {
1117                 free_pages_exact(pgd, stage2_pgd_size(kvm));
1118                 free_percpu(mmu->last_vcpu_ran);
1119         }
1120 }
1121
1122 static p4d_t *stage2_get_p4d(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
1123                              phys_addr_t addr)
1124 {
1125         struct kvm *kvm = mmu->kvm;
1126         pgd_t *pgd;
1127         p4d_t *p4d;
1128
1129         pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
1130         if (stage2_pgd_none(kvm, *pgd)) {
1131                 if (!cache)
1132                         return NULL;
1133                 p4d = kvm_mmu_memory_cache_alloc(cache);
1134                 stage2_pgd_populate(kvm, pgd, p4d);
1135                 get_page(virt_to_page(pgd));
1136         }
1137
1138         return stage2_p4d_offset(kvm, pgd, addr);
1139 }
1140
1141 static pud_t *stage2_get_pud(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
1142                              phys_addr_t addr)
1143 {
1144         struct kvm *kvm = mmu->kvm;
1145         p4d_t *p4d;
1146         pud_t *pud;
1147
1148         p4d = stage2_get_p4d(mmu, cache, addr);
1149         if (stage2_p4d_none(kvm, *p4d)) {
1150                 if (!cache)
1151                         return NULL;
1152                 pud = kvm_mmu_memory_cache_alloc(cache);
1153                 stage2_p4d_populate(kvm, p4d, pud);
1154                 get_page(virt_to_page(p4d));
1155         }
1156
1157         return stage2_pud_offset(kvm, p4d, addr);
1158 }
1159
1160 static pmd_t *stage2_get_pmd(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
1161                              phys_addr_t addr)
1162 {
1163         struct kvm *kvm = mmu->kvm;
1164         pud_t *pud;
1165         pmd_t *pmd;
1166
1167         pud = stage2_get_pud(mmu, cache, addr);
1168         if (!pud || stage2_pud_huge(kvm, *pud))
1169                 return NULL;
1170
1171         if (stage2_pud_none(kvm, *pud)) {
1172                 if (!cache)
1173                         return NULL;
1174                 pmd = kvm_mmu_memory_cache_alloc(cache);
1175                 stage2_pud_populate(kvm, pud, pmd);
1176                 get_page(virt_to_page(pud));
1177         }
1178
1179         return stage2_pmd_offset(kvm, pud, addr);
1180 }
1181
1182 static int stage2_set_pmd_huge(struct kvm_s2_mmu *mmu,
1183                                struct kvm_mmu_memory_cache *cache,
1184                                phys_addr_t addr, const pmd_t *new_pmd)
1185 {
1186         pmd_t *pmd, old_pmd;
1187
1188 retry:
1189         pmd = stage2_get_pmd(mmu, cache, addr);
1190         VM_BUG_ON(!pmd);
1191
1192         old_pmd = *pmd;
1193         /*
1194          * Multiple vcpus faulting on the same PMD entry, can
1195          * lead to them sequentially updating the PMD with the
1196          * same value. Following the break-before-make
1197          * (pmd_clear() followed by tlb_flush()) process can
1198          * hinder forward progress due to refaults generated
1199          * on missing translations.
1200          *
1201          * Skip updating the page table if the entry is
1202          * unchanged.
1203          */
1204         if (pmd_val(old_pmd) == pmd_val(*new_pmd))
1205                 return 0;
1206
1207         if (pmd_present(old_pmd)) {
1208                 /*
1209                  * If we already have PTE level mapping for this block,
1210                  * we must unmap it to avoid inconsistent TLB state and
1211                  * leaking the table page. We could end up in this situation
1212                  * if the memory slot was marked for dirty logging and was
1213                  * reverted, leaving PTE level mappings for the pages accessed
1214                  * during the period. So, unmap the PTE level mapping for this
1215                  * block and retry, as we could have released the upper level
1216                  * table in the process.
1217                  *
1218                  * Normal THP split/merge follows mmu_notifier callbacks and do
1219                  * get handled accordingly.
1220                  */
1221                 if (!pmd_thp_or_huge(old_pmd)) {
1222                         unmap_stage2_range(mmu, addr & S2_PMD_MASK, S2_PMD_SIZE);
1223                         goto retry;
1224                 }
1225                 /*
1226                  * Mapping in huge pages should only happen through a
1227                  * fault.  If a page is merged into a transparent huge
1228                  * page, the individual subpages of that huge page
1229                  * should be unmapped through MMU notifiers before we
1230                  * get here.
1231                  *
1232                  * Merging of CompoundPages is not supported; they
1233                  * should become splitting first, unmapped, merged,
1234                  * and mapped back in on-demand.
1235                  */
1236                 WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
1237                 pmd_clear(pmd);
1238                 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
1239         } else {
1240                 get_page(virt_to_page(pmd));
1241         }
1242
1243         kvm_set_pmd(pmd, *new_pmd);
1244         return 0;
1245 }
1246
1247 static int stage2_set_pud_huge(struct kvm_s2_mmu *mmu,
1248                                struct kvm_mmu_memory_cache *cache,
1249                                phys_addr_t addr, const pud_t *new_pudp)
1250 {
1251         struct kvm *kvm = mmu->kvm;
1252         pud_t *pudp, old_pud;
1253
1254 retry:
1255         pudp = stage2_get_pud(mmu, cache, addr);
1256         VM_BUG_ON(!pudp);
1257
1258         old_pud = *pudp;
1259
1260         /*
1261          * A large number of vcpus faulting on the same stage 2 entry,
1262          * can lead to a refault due to the stage2_pud_clear()/tlb_flush().
1263          * Skip updating the page tables if there is no change.
1264          */
1265         if (pud_val(old_pud) == pud_val(*new_pudp))
1266                 return 0;
1267
1268         if (stage2_pud_present(kvm, old_pud)) {
1269                 /*
1270                  * If we already have table level mapping for this block, unmap
1271                  * the range for this block and retry.
1272                  */
1273                 if (!stage2_pud_huge(kvm, old_pud)) {
1274                         unmap_stage2_range(mmu, addr & S2_PUD_MASK, S2_PUD_SIZE);
1275                         goto retry;
1276                 }
1277
1278                 WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
1279                 stage2_pud_clear(kvm, pudp);
1280                 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
1281         } else {
1282                 get_page(virt_to_page(pudp));
1283         }
1284
1285         kvm_set_pud(pudp, *new_pudp);
1286         return 0;
1287 }
1288
1289 /*
1290  * stage2_get_leaf_entry - walk the stage2 VM page tables and return
1291  * true if a valid and present leaf-entry is found. A pointer to the
1292  * leaf-entry is returned in the appropriate level variable - pudpp,
1293  * pmdpp, ptepp.
1294  */
1295 static bool stage2_get_leaf_entry(struct kvm_s2_mmu *mmu, phys_addr_t addr,
1296                                   pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1297 {
1298         struct kvm *kvm = mmu->kvm;
1299         pud_t *pudp;
1300         pmd_t *pmdp;
1301         pte_t *ptep;
1302
1303         *pudpp = NULL;
1304         *pmdpp = NULL;
1305         *ptepp = NULL;
1306
1307         pudp = stage2_get_pud(mmu, NULL, addr);
1308         if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
1309                 return false;
1310
1311         if (stage2_pud_huge(kvm, *pudp)) {
1312                 *pudpp = pudp;
1313                 return true;
1314         }
1315
1316         pmdp = stage2_pmd_offset(kvm, pudp, addr);
1317         if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
1318                 return false;
1319
1320         if (pmd_thp_or_huge(*pmdp)) {
1321                 *pmdpp = pmdp;
1322                 return true;
1323         }
1324
1325         ptep = pte_offset_kernel(pmdp, addr);
1326         if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
1327                 return false;
1328
1329         *ptepp = ptep;
1330         return true;
1331 }
1332
1333 static bool stage2_is_exec(struct kvm_s2_mmu *mmu, phys_addr_t addr, unsigned long sz)
1334 {
1335         pud_t *pudp;
1336         pmd_t *pmdp;
1337         pte_t *ptep;
1338         bool found;
1339
1340         found = stage2_get_leaf_entry(mmu, addr, &pudp, &pmdp, &ptep);
1341         if (!found)
1342                 return false;
1343
1344         if (pudp)
1345                 return sz <= PUD_SIZE && kvm_s2pud_exec(pudp);
1346         else if (pmdp)
1347                 return sz <= PMD_SIZE && kvm_s2pmd_exec(pmdp);
1348         else
1349                 return sz == PAGE_SIZE && kvm_s2pte_exec(ptep);
1350 }
1351
1352 static int stage2_set_pte(struct kvm_s2_mmu *mmu,
1353                           struct kvm_mmu_memory_cache *cache,
1354                           phys_addr_t addr, const pte_t *new_pte,
1355                           unsigned long flags)
1356 {
1357         struct kvm *kvm = mmu->kvm;
1358         pud_t *pud;
1359         pmd_t *pmd;
1360         pte_t *pte, old_pte;
1361         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
1362         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
1363
1364         VM_BUG_ON(logging_active && !cache);
1365
1366         /* Create stage-2 page table mapping - Levels 0 and 1 */
1367         pud = stage2_get_pud(mmu, cache, addr);
1368         if (!pud) {
1369                 /*
1370                  * Ignore calls from kvm_set_spte_hva for unallocated
1371                  * address ranges.
1372                  */
1373                 return 0;
1374         }
1375
1376         /*
1377          * While dirty page logging - dissolve huge PUD, then continue
1378          * on to allocate page.
1379          */
1380         if (logging_active)
1381                 stage2_dissolve_pud(mmu, addr, pud);
1382
1383         if (stage2_pud_none(kvm, *pud)) {
1384                 if (!cache)
1385                         return 0; /* ignore calls from kvm_set_spte_hva */
1386                 pmd = kvm_mmu_memory_cache_alloc(cache);
1387                 stage2_pud_populate(kvm, pud, pmd);
1388                 get_page(virt_to_page(pud));
1389         }
1390
1391         pmd = stage2_pmd_offset(kvm, pud, addr);
1392         if (!pmd) {
1393                 /*
1394                  * Ignore calls from kvm_set_spte_hva for unallocated
1395                  * address ranges.
1396                  */
1397                 return 0;
1398         }
1399
1400         /*
1401          * While dirty page logging - dissolve huge PMD, then continue on to
1402          * allocate page.
1403          */
1404         if (logging_active)
1405                 stage2_dissolve_pmd(mmu, addr, pmd);
1406
1407         /* Create stage-2 page mappings - Level 2 */
1408         if (pmd_none(*pmd)) {
1409                 if (!cache)
1410                         return 0; /* ignore calls from kvm_set_spte_hva */
1411                 pte = kvm_mmu_memory_cache_alloc(cache);
1412                 kvm_pmd_populate(pmd, pte);
1413                 get_page(virt_to_page(pmd));
1414         }
1415
1416         pte = pte_offset_kernel(pmd, addr);
1417
1418         if (iomap && pte_present(*pte))
1419                 return -EFAULT;
1420
1421         /* Create 2nd stage page table mapping - Level 3 */
1422         old_pte = *pte;
1423         if (pte_present(old_pte)) {
1424                 /* Skip page table update if there is no change */
1425                 if (pte_val(old_pte) == pte_val(*new_pte))
1426                         return 0;
1427
1428                 kvm_set_pte(pte, __pte(0));
1429                 kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
1430         } else {
1431                 get_page(virt_to_page(pte));
1432         }
1433
1434         kvm_set_pte(pte, *new_pte);
1435         return 0;
1436 }
1437
1438 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1439 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1440 {
1441         if (pte_young(*pte)) {
1442                 *pte = pte_mkold(*pte);
1443                 return 1;
1444         }
1445         return 0;
1446 }
1447 #else
1448 static int stage2_ptep_test_and_clear_young(pte_t *pte)
1449 {
1450         return __ptep_test_and_clear_young(pte);
1451 }
1452 #endif
1453
1454 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
1455 {
1456         return stage2_ptep_test_and_clear_young((pte_t *)pmd);
1457 }
1458
1459 static int stage2_pudp_test_and_clear_young(pud_t *pud)
1460 {
1461         return stage2_ptep_test_and_clear_young((pte_t *)pud);
1462 }
1463
1464 /**
1465  * kvm_phys_addr_ioremap - map a device range to guest IPA
1466  *
1467  * @kvm:        The KVM pointer
1468  * @guest_ipa:  The IPA at which to insert the mapping
1469  * @pa:         The physical address of the device
1470  * @size:       The size of the mapping
1471  */
1472 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1473                           phys_addr_t pa, unsigned long size, bool writable)
1474 {
1475         phys_addr_t addr, end;
1476         int ret = 0;
1477         unsigned long pfn;
1478         struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
1479
1480         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1481         pfn = __phys_to_pfn(pa);
1482
1483         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1484                 pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1485
1486                 if (writable)
1487                         pte = kvm_s2pte_mkwrite(pte);
1488
1489                 ret = kvm_mmu_topup_memory_cache(&cache,
1490                                                  kvm_mmu_cache_min_pages(kvm));
1491                 if (ret)
1492                         goto out;
1493                 spin_lock(&kvm->mmu_lock);
1494                 ret = stage2_set_pte(&kvm->arch.mmu, &cache, addr, &pte,
1495                                      KVM_S2PTE_FLAG_IS_IOMAP);
1496                 spin_unlock(&kvm->mmu_lock);
1497                 if (ret)
1498                         goto out;
1499
1500                 pfn++;
1501         }
1502
1503 out:
1504         kvm_mmu_free_memory_cache(&cache);
1505         return ret;
1506 }
1507
1508 /**
1509  * stage2_wp_ptes - write protect PMD range
1510  * @pmd:        pointer to pmd entry
1511  * @addr:       range start address
1512  * @end:        range end address
1513  */
1514 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1515 {
1516         pte_t *pte;
1517
1518         pte = pte_offset_kernel(pmd, addr);
1519         do {
1520                 if (!pte_none(*pte)) {
1521                         if (!kvm_s2pte_readonly(pte))
1522                                 kvm_set_s2pte_readonly(pte);
1523                 }
1524         } while (pte++, addr += PAGE_SIZE, addr != end);
1525 }
1526
1527 /**
1528  * stage2_wp_pmds - write protect PUD range
1529  * kvm:         kvm instance for the VM
1530  * @pud:        pointer to pud entry
1531  * @addr:       range start address
1532  * @end:        range end address
1533  */
1534 static void stage2_wp_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
1535                            phys_addr_t addr, phys_addr_t end)
1536 {
1537         struct kvm *kvm = mmu->kvm;
1538         pmd_t *pmd;
1539         phys_addr_t next;
1540
1541         pmd = stage2_pmd_offset(kvm, pud, addr);
1542
1543         do {
1544                 next = stage2_pmd_addr_end(kvm, addr, end);
1545                 if (!pmd_none(*pmd)) {
1546                         if (pmd_thp_or_huge(*pmd)) {
1547                                 if (!kvm_s2pmd_readonly(pmd))
1548                                         kvm_set_s2pmd_readonly(pmd);
1549                         } else {
1550                                 stage2_wp_ptes(pmd, addr, next);
1551                         }
1552                 }
1553         } while (pmd++, addr = next, addr != end);
1554 }
1555
1556 /**
1557  * stage2_wp_puds - write protect P4D range
1558  * @p4d:        pointer to p4d entry
1559  * @addr:       range start address
1560  * @end:        range end address
1561  */
1562 static void  stage2_wp_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
1563                             phys_addr_t addr, phys_addr_t end)
1564 {
1565         struct kvm *kvm = mmu->kvm;
1566         pud_t *pud;
1567         phys_addr_t next;
1568
1569         pud = stage2_pud_offset(kvm, p4d, addr);
1570         do {
1571                 next = stage2_pud_addr_end(kvm, addr, end);
1572                 if (!stage2_pud_none(kvm, *pud)) {
1573                         if (stage2_pud_huge(kvm, *pud)) {
1574                                 if (!kvm_s2pud_readonly(pud))
1575                                         kvm_set_s2pud_readonly(pud);
1576                         } else {
1577                                 stage2_wp_pmds(mmu, pud, addr, next);
1578                         }
1579                 }
1580         } while (pud++, addr = next, addr != end);
1581 }
1582
1583 /**
1584  * stage2_wp_p4ds - write protect PGD range
1585  * @pgd:        pointer to pgd entry
1586  * @addr:       range start address
1587  * @end:        range end address
1588  */
1589 static void  stage2_wp_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
1590                             phys_addr_t addr, phys_addr_t end)
1591 {
1592         struct kvm *kvm = mmu->kvm;
1593         p4d_t *p4d;
1594         phys_addr_t next;
1595
1596         p4d = stage2_p4d_offset(kvm, pgd, addr);
1597         do {
1598                 next = stage2_p4d_addr_end(kvm, addr, end);
1599                 if (!stage2_p4d_none(kvm, *p4d))
1600                         stage2_wp_puds(mmu, p4d, addr, next);
1601         } while (p4d++, addr = next, addr != end);
1602 }
1603
1604 /**
1605  * stage2_wp_range() - write protect stage2 memory region range
1606  * @kvm:        The KVM pointer
1607  * @addr:       Start address of range
1608  * @end:        End address of range
1609  */
1610 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1611 {
1612         struct kvm *kvm = mmu->kvm;
1613         pgd_t *pgd;
1614         phys_addr_t next;
1615
1616         pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
1617         do {
1618                 /*
1619                  * Release kvm_mmu_lock periodically if the memory region is
1620                  * large. Otherwise, we may see kernel panics with
1621                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1622                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1623                  * will also starve other vCPUs. We have to also make sure
1624                  * that the page tables are not freed while we released
1625                  * the lock.
1626                  */
1627                 cond_resched_lock(&kvm->mmu_lock);
1628                 if (!READ_ONCE(mmu->pgd))
1629                         break;
1630                 next = stage2_pgd_addr_end(kvm, addr, end);
1631                 if (stage2_pgd_present(kvm, *pgd))
1632                         stage2_wp_p4ds(mmu, pgd, addr, next);
1633         } while (pgd++, addr = next, addr != end);
1634 }
1635
1636 /**
1637  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1638  * @kvm:        The KVM pointer
1639  * @slot:       The memory slot to write protect
1640  *
1641  * Called to start logging dirty pages after memory region
1642  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1643  * all present PUD, PMD and PTEs are write protected in the memory region.
1644  * Afterwards read of dirty page log can be called.
1645  *
1646  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1647  * serializing operations for VM memory regions.
1648  */
1649 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1650 {
1651         struct kvm_memslots *slots = kvm_memslots(kvm);
1652         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1653         phys_addr_t start, end;
1654
1655         if (WARN_ON_ONCE(!memslot))
1656                 return;
1657
1658         start = memslot->base_gfn << PAGE_SHIFT;
1659         end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1660
1661         spin_lock(&kvm->mmu_lock);
1662         stage2_wp_range(&kvm->arch.mmu, start, end);
1663         spin_unlock(&kvm->mmu_lock);
1664         kvm_flush_remote_tlbs(kvm);
1665 }
1666
1667 /**
1668  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1669  * @kvm:        The KVM pointer
1670  * @slot:       The memory slot associated with mask
1671  * @gfn_offset: The gfn offset in memory slot
1672  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1673  *              slot to be write protected
1674  *
1675  * Walks bits set in mask write protects the associated pte's. Caller must
1676  * acquire kvm_mmu_lock.
1677  */
1678 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1679                 struct kvm_memory_slot *slot,
1680                 gfn_t gfn_offset, unsigned long mask)
1681 {
1682         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1683         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1684         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1685
1686         stage2_wp_range(&kvm->arch.mmu, start, end);
1687 }
1688
1689 /*
1690  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1691  * dirty pages.
1692  *
1693  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1694  * enable dirty logging for them.
1695  */
1696 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1697                 struct kvm_memory_slot *slot,
1698                 gfn_t gfn_offset, unsigned long mask)
1699 {
1700         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1701 }
1702
1703 static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1704 {
1705         __clean_dcache_guest_page(pfn, size);
1706 }
1707
1708 static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1709 {
1710         __invalidate_icache_guest_page(pfn, size);
1711 }
1712
1713 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1714 {
1715         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1716 }
1717
1718 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1719                                                unsigned long hva,
1720                                                unsigned long map_size)
1721 {
1722         gpa_t gpa_start;
1723         hva_t uaddr_start, uaddr_end;
1724         size_t size;
1725
1726         /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1727         if (map_size == PAGE_SIZE)
1728                 return true;
1729
1730         size = memslot->npages * PAGE_SIZE;
1731
1732         gpa_start = memslot->base_gfn << PAGE_SHIFT;
1733
1734         uaddr_start = memslot->userspace_addr;
1735         uaddr_end = uaddr_start + size;
1736
1737         /*
1738          * Pages belonging to memslots that don't have the same alignment
1739          * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1740          * PMD/PUD entries, because we'll end up mapping the wrong pages.
1741          *
1742          * Consider a layout like the following:
1743          *
1744          *    memslot->userspace_addr:
1745          *    +-----+--------------------+--------------------+---+
1746          *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1747          *    +-----+--------------------+--------------------+---+
1748          *
1749          *    memslot->base_gfn << PAGE_SHIFT:
1750          *      +---+--------------------+--------------------+-----+
1751          *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1752          *      +---+--------------------+--------------------+-----+
1753          *
1754          * If we create those stage-2 blocks, we'll end up with this incorrect
1755          * mapping:
1756          *   d -> f
1757          *   e -> g
1758          *   f -> h
1759          */
1760         if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1761                 return false;
1762
1763         /*
1764          * Next, let's make sure we're not trying to map anything not covered
1765          * by the memslot. This means we have to prohibit block size mappings
1766          * for the beginning and end of a non-block aligned and non-block sized
1767          * memory slot (illustrated by the head and tail parts of the
1768          * userspace view above containing pages 'abcde' and 'xyz',
1769          * respectively).
1770          *
1771          * Note that it doesn't matter if we do the check using the
1772          * userspace_addr or the base_gfn, as both are equally aligned (per
1773          * the check above) and equally sized.
1774          */
1775         return (hva & ~(map_size - 1)) >= uaddr_start &&
1776                (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1777 }
1778
1779 /*
1780  * Check if the given hva is backed by a transparent huge page (THP) and
1781  * whether it can be mapped using block mapping in stage2. If so, adjust
1782  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1783  * supported. This will need to be updated to support other THP sizes.
1784  *
1785  * Returns the size of the mapping.
1786  */
1787 static unsigned long
1788 transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
1789                             unsigned long hva, kvm_pfn_t *pfnp,
1790                             phys_addr_t *ipap)
1791 {
1792         kvm_pfn_t pfn = *pfnp;
1793
1794         /*
1795          * Make sure the adjustment is done only for THP pages. Also make
1796          * sure that the HVA and IPA are sufficiently aligned and that the
1797          * block map is contained within the memslot.
1798          */
1799         if (kvm_is_transparent_hugepage(pfn) &&
1800             fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1801                 /*
1802                  * The address we faulted on is backed by a transparent huge
1803                  * page.  However, because we map the compound huge page and
1804                  * not the individual tail page, we need to transfer the
1805                  * refcount to the head page.  We have to be careful that the
1806                  * THP doesn't start to split while we are adjusting the
1807                  * refcounts.
1808                  *
1809                  * We are sure this doesn't happen, because mmu_notifier_retry
1810                  * was successful and we are holding the mmu_lock, so if this
1811                  * THP is trying to split, it will be blocked in the mmu
1812                  * notifier before touching any of the pages, specifically
1813                  * before being able to call __split_huge_page_refcount().
1814                  *
1815                  * We can therefore safely transfer the refcount from PG_tail
1816                  * to PG_head and switch the pfn from a tail page to the head
1817                  * page accordingly.
1818                  */
1819                 *ipap &= PMD_MASK;
1820                 kvm_release_pfn_clean(pfn);
1821                 pfn &= ~(PTRS_PER_PMD - 1);
1822                 kvm_get_pfn(pfn);
1823                 *pfnp = pfn;
1824
1825                 return PMD_SIZE;
1826         }
1827
1828         /* Use page mapping if we cannot use block mapping. */
1829         return PAGE_SIZE;
1830 }
1831
1832 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1833                           struct kvm_memory_slot *memslot, unsigned long hva,
1834                           unsigned long fault_status)
1835 {
1836         int ret;
1837         bool write_fault, writable, force_pte = false;
1838         bool exec_fault, needs_exec;
1839         unsigned long mmu_seq;
1840         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1841         struct kvm *kvm = vcpu->kvm;
1842         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1843         struct vm_area_struct *vma;
1844         short vma_shift;
1845         kvm_pfn_t pfn;
1846         pgprot_t mem_type = PAGE_S2;
1847         bool logging_active = memslot_is_logging(memslot);
1848         unsigned long vma_pagesize, flags = 0;
1849         struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu;
1850
1851         write_fault = kvm_is_write_fault(vcpu);
1852         exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1853         VM_BUG_ON(write_fault && exec_fault);
1854
1855         if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1856                 kvm_err("Unexpected L2 read permission error\n");
1857                 return -EFAULT;
1858         }
1859
1860         /* Let's check if we will get back a huge page backed by hugetlbfs */
1861         mmap_read_lock(current->mm);
1862         vma = find_vma_intersection(current->mm, hva, hva + 1);
1863         if (unlikely(!vma)) {
1864                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1865                 mmap_read_unlock(current->mm);
1866                 return -EFAULT;
1867         }
1868
1869         if (is_vm_hugetlb_page(vma))
1870                 vma_shift = huge_page_shift(hstate_vma(vma));
1871         else
1872                 vma_shift = PAGE_SHIFT;
1873
1874         vma_pagesize = 1ULL << vma_shift;
1875         if (logging_active ||
1876             (vma->vm_flags & VM_PFNMAP) ||
1877             !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) {
1878                 force_pte = true;
1879                 vma_pagesize = PAGE_SIZE;
1880                 vma_shift = PAGE_SHIFT;
1881         }
1882
1883         /*
1884          * The stage2 has a minimum of 2 level table (For arm64 see
1885          * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can
1886          * use PMD_SIZE huge mappings (even when the PMD is folded into PGD).
1887          * As for PUD huge maps, we must make sure that we have at least
1888          * 3 levels, i.e, PMD is not folded.
1889          */
1890         if (vma_pagesize == PMD_SIZE ||
1891             (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm)))
1892                 gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1893         mmap_read_unlock(current->mm);
1894
1895         /* We need minimum second+third level pages */
1896         ret = kvm_mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm));
1897         if (ret)
1898                 return ret;
1899
1900         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1901         /*
1902          * Ensure the read of mmu_notifier_seq happens before we call
1903          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1904          * the page we just got a reference to gets unmapped before we have a
1905          * chance to grab the mmu_lock, which ensure that if the page gets
1906          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1907          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1908          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1909          */
1910         smp_rmb();
1911
1912         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1913         if (pfn == KVM_PFN_ERR_HWPOISON) {
1914                 kvm_send_hwpoison_signal(hva, vma_shift);
1915                 return 0;
1916         }
1917         if (is_error_noslot_pfn(pfn))
1918                 return -EFAULT;
1919
1920         if (kvm_is_device_pfn(pfn)) {
1921                 mem_type = PAGE_S2_DEVICE;
1922                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1923         } else if (logging_active) {
1924                 /*
1925                  * Faults on pages in a memslot with logging enabled
1926                  * should not be mapped with huge pages (it introduces churn
1927                  * and performance degradation), so force a pte mapping.
1928                  */
1929                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1930
1931                 /*
1932                  * Only actually map the page as writable if this was a write
1933                  * fault.
1934                  */
1935                 if (!write_fault)
1936                         writable = false;
1937         }
1938
1939         if (exec_fault && is_iomap(flags))
1940                 return -ENOEXEC;
1941
1942         spin_lock(&kvm->mmu_lock);
1943         if (mmu_notifier_retry(kvm, mmu_seq))
1944                 goto out_unlock;
1945
1946         /*
1947          * If we are not forced to use page mapping, check if we are
1948          * backed by a THP and thus use block mapping if possible.
1949          */
1950         if (vma_pagesize == PAGE_SIZE && !force_pte)
1951                 vma_pagesize = transparent_hugepage_adjust(memslot, hva,
1952                                                            &pfn, &fault_ipa);
1953         if (writable)
1954                 kvm_set_pfn_dirty(pfn);
1955
1956         if (fault_status != FSC_PERM && !is_iomap(flags))
1957                 clean_dcache_guest_page(pfn, vma_pagesize);
1958
1959         if (exec_fault)
1960                 invalidate_icache_guest_page(pfn, vma_pagesize);
1961
1962         /*
1963          * If we took an execution fault we have made the
1964          * icache/dcache coherent above and should now let the s2
1965          * mapping be executable.
1966          *
1967          * Write faults (!exec_fault && FSC_PERM) are orthogonal to
1968          * execute permissions, and we preserve whatever we have.
1969          */
1970         needs_exec = exec_fault ||
1971                 (fault_status == FSC_PERM &&
1972                  stage2_is_exec(mmu, fault_ipa, vma_pagesize));
1973
1974         /*
1975          * If PUD_SIZE == PMD_SIZE, there is no real PUD level, and
1976          * all we have is a 2-level page table. Trying to map a PUD in
1977          * this case would be fatally wrong.
1978          */
1979         if (PUD_SIZE != PMD_SIZE && vma_pagesize == PUD_SIZE) {
1980                 pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
1981
1982                 new_pud = kvm_pud_mkhuge(new_pud);
1983                 if (writable)
1984                         new_pud = kvm_s2pud_mkwrite(new_pud);
1985
1986                 if (needs_exec)
1987                         new_pud = kvm_s2pud_mkexec(new_pud);
1988
1989                 ret = stage2_set_pud_huge(mmu, memcache, fault_ipa, &new_pud);
1990         } else if (vma_pagesize == PMD_SIZE) {
1991                 pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
1992
1993                 new_pmd = kvm_pmd_mkhuge(new_pmd);
1994
1995                 if (writable)
1996                         new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1997
1998                 if (needs_exec)
1999                         new_pmd = kvm_s2pmd_mkexec(new_pmd);
2000
2001                 ret = stage2_set_pmd_huge(mmu, memcache, fault_ipa, &new_pmd);
2002         } else {
2003                 pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
2004
2005                 if (writable) {
2006                         new_pte = kvm_s2pte_mkwrite(new_pte);
2007                         mark_page_dirty(kvm, gfn);
2008                 }
2009
2010                 if (needs_exec)
2011                         new_pte = kvm_s2pte_mkexec(new_pte);
2012
2013                 ret = stage2_set_pte(mmu, memcache, fault_ipa, &new_pte, flags);
2014         }
2015
2016 out_unlock:
2017         spin_unlock(&kvm->mmu_lock);
2018         kvm_set_pfn_accessed(pfn);
2019         kvm_release_pfn_clean(pfn);
2020         return ret;
2021 }
2022
2023 /*
2024  * Resolve the access fault by making the page young again.
2025  * Note that because the faulting entry is guaranteed not to be
2026  * cached in the TLB, we don't need to invalidate anything.
2027  * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
2028  * so there is no need for atomic (pte|pmd)_mkyoung operations.
2029  */
2030 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
2031 {
2032         pud_t *pud;
2033         pmd_t *pmd;
2034         pte_t *pte;
2035         kvm_pfn_t pfn;
2036         bool pfn_valid = false;
2037
2038         trace_kvm_access_fault(fault_ipa);
2039
2040         spin_lock(&vcpu->kvm->mmu_lock);
2041
2042         if (!stage2_get_leaf_entry(vcpu->arch.hw_mmu, fault_ipa, &pud, &pmd, &pte))
2043                 goto out;
2044
2045         if (pud) {              /* HugeTLB */
2046                 *pud = kvm_s2pud_mkyoung(*pud);
2047                 pfn = kvm_pud_pfn(*pud);
2048                 pfn_valid = true;
2049         } else  if (pmd) {      /* THP, HugeTLB */
2050                 *pmd = pmd_mkyoung(*pmd);
2051                 pfn = pmd_pfn(*pmd);
2052                 pfn_valid = true;
2053         } else {
2054                 *pte = pte_mkyoung(*pte);       /* Just a page... */
2055                 pfn = pte_pfn(*pte);
2056                 pfn_valid = true;
2057         }
2058
2059 out:
2060         spin_unlock(&vcpu->kvm->mmu_lock);
2061         if (pfn_valid)
2062                 kvm_set_pfn_accessed(pfn);
2063 }
2064
2065 /**
2066  * kvm_handle_guest_abort - handles all 2nd stage aborts
2067  * @vcpu:       the VCPU pointer
2068  *
2069  * Any abort that gets to the host is almost guaranteed to be caused by a
2070  * missing second stage translation table entry, which can mean that either the
2071  * guest simply needs more memory and we must allocate an appropriate page or it
2072  * can mean that the guest tried to access I/O memory, which is emulated by user
2073  * space. The distinction is based on the IPA causing the fault and whether this
2074  * memory region has been registered as standard RAM by user space.
2075  */
2076 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
2077 {
2078         unsigned long fault_status;
2079         phys_addr_t fault_ipa;
2080         struct kvm_memory_slot *memslot;
2081         unsigned long hva;
2082         bool is_iabt, write_fault, writable;
2083         gfn_t gfn;
2084         int ret, idx;
2085
2086         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
2087
2088         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
2089         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
2090
2091         /* Synchronous External Abort? */
2092         if (kvm_vcpu_abt_issea(vcpu)) {
2093                 /*
2094                  * For RAS the host kernel may handle this abort.
2095                  * There is no need to pass the error into the guest.
2096                  */
2097                 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
2098                         kvm_inject_vabt(vcpu);
2099
2100                 return 1;
2101         }
2102
2103         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
2104                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
2105
2106         /* Check the stage-2 fault is trans. fault or write fault */
2107         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
2108             fault_status != FSC_ACCESS) {
2109                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
2110                         kvm_vcpu_trap_get_class(vcpu),
2111                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
2112                         (unsigned long)kvm_vcpu_get_esr(vcpu));
2113                 return -EFAULT;
2114         }
2115
2116         idx = srcu_read_lock(&vcpu->kvm->srcu);
2117
2118         gfn = fault_ipa >> PAGE_SHIFT;
2119         memslot = gfn_to_memslot(vcpu->kvm, gfn);
2120         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
2121         write_fault = kvm_is_write_fault(vcpu);
2122         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
2123                 /*
2124                  * The guest has put either its instructions or its page-tables
2125                  * somewhere it shouldn't have. Userspace won't be able to do
2126                  * anything about this (there's no syndrome for a start), so
2127                  * re-inject the abort back into the guest.
2128                  */
2129                 if (is_iabt) {
2130                         ret = -ENOEXEC;
2131                         goto out;
2132                 }
2133
2134                 if (kvm_vcpu_abt_iss1tw(vcpu)) {
2135                         kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2136                         ret = 1;
2137                         goto out_unlock;
2138                 }
2139
2140                 /*
2141                  * Check for a cache maintenance operation. Since we
2142                  * ended-up here, we know it is outside of any memory
2143                  * slot. But we can't find out if that is for a device,
2144                  * or if the guest is just being stupid. The only thing
2145                  * we know for sure is that this range cannot be cached.
2146                  *
2147                  * So let's assume that the guest is just being
2148                  * cautious, and skip the instruction.
2149                  */
2150                 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
2151                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2152                         ret = 1;
2153                         goto out_unlock;
2154                 }
2155
2156                 /*
2157                  * The IPA is reported as [MAX:12], so we need to
2158                  * complement it with the bottom 12 bits from the
2159                  * faulting VA. This is always 12 bits, irrespective
2160                  * of the page size.
2161                  */
2162                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
2163                 ret = io_mem_abort(vcpu, fault_ipa);
2164                 goto out_unlock;
2165         }
2166
2167         /* Userspace should not be able to register out-of-bounds IPAs */
2168         VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
2169
2170         if (fault_status == FSC_ACCESS) {
2171                 handle_access_fault(vcpu, fault_ipa);
2172                 ret = 1;
2173                 goto out_unlock;
2174         }
2175
2176         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
2177         if (ret == 0)
2178                 ret = 1;
2179 out:
2180         if (ret == -ENOEXEC) {
2181                 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
2182                 ret = 1;
2183         }
2184 out_unlock:
2185         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2186         return ret;
2187 }
2188
2189 static int handle_hva_to_gpa(struct kvm *kvm,
2190                              unsigned long start,
2191                              unsigned long end,
2192                              int (*handler)(struct kvm *kvm,
2193                                             gpa_t gpa, u64 size,
2194                                             void *data),
2195                              void *data)
2196 {
2197         struct kvm_memslots *slots;
2198         struct kvm_memory_slot *memslot;
2199         int ret = 0;
2200
2201         slots = kvm_memslots(kvm);
2202
2203         /* we only care about the pages that the guest sees */
2204         kvm_for_each_memslot(memslot, slots) {
2205                 unsigned long hva_start, hva_end;
2206                 gfn_t gpa;
2207
2208                 hva_start = max(start, memslot->userspace_addr);
2209                 hva_end = min(end, memslot->userspace_addr +
2210                                         (memslot->npages << PAGE_SHIFT));
2211                 if (hva_start >= hva_end)
2212                         continue;
2213
2214                 gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
2215                 ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
2216         }
2217
2218         return ret;
2219 }
2220
2221 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2222 {
2223         unsigned flags = *(unsigned *)data;
2224         bool may_block = flags & MMU_NOTIFIER_RANGE_BLOCKABLE;
2225
2226         __unmap_stage2_range(&kvm->arch.mmu, gpa, size, may_block);
2227         return 0;
2228 }
2229
2230 int kvm_unmap_hva_range(struct kvm *kvm,
2231                         unsigned long start, unsigned long end, unsigned flags)
2232 {
2233         if (!kvm->arch.mmu.pgd)
2234                 return 0;
2235
2236         trace_kvm_unmap_hva_range(start, end);
2237         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &flags);
2238         return 0;
2239 }
2240
2241 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2242 {
2243         pte_t *pte = (pte_t *)data;
2244
2245         WARN_ON(size != PAGE_SIZE);
2246         /*
2247          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
2248          * flag clear because MMU notifiers will have unmapped a huge PMD before
2249          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
2250          * therefore stage2_set_pte() never needs to clear out a huge PMD
2251          * through this calling path.
2252          */
2253         stage2_set_pte(&kvm->arch.mmu, NULL, gpa, pte, 0);
2254         return 0;
2255 }
2256
2257
2258 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
2259 {
2260         unsigned long end = hva + PAGE_SIZE;
2261         kvm_pfn_t pfn = pte_pfn(pte);
2262         pte_t stage2_pte;
2263
2264         if (!kvm->arch.mmu.pgd)
2265                 return 0;
2266
2267         trace_kvm_set_spte_hva(hva);
2268
2269         /*
2270          * We've moved a page around, probably through CoW, so let's treat it
2271          * just like a translation fault and clean the cache to the PoC.
2272          */
2273         clean_dcache_guest_page(pfn, PAGE_SIZE);
2274         stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2275         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
2276
2277         return 0;
2278 }
2279
2280 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2281 {
2282         pud_t *pud;
2283         pmd_t *pmd;
2284         pte_t *pte;
2285
2286         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2287         if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
2288                 return 0;
2289
2290         if (pud)
2291                 return stage2_pudp_test_and_clear_young(pud);
2292         else if (pmd)
2293                 return stage2_pmdp_test_and_clear_young(pmd);
2294         else
2295                 return stage2_ptep_test_and_clear_young(pte);
2296 }
2297
2298 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2299 {
2300         pud_t *pud;
2301         pmd_t *pmd;
2302         pte_t *pte;
2303
2304         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
2305         if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
2306                 return 0;
2307
2308         if (pud)
2309                 return kvm_s2pud_young(*pud);
2310         else if (pmd)
2311                 return pmd_young(*pmd);
2312         else
2313                 return pte_young(*pte);
2314 }
2315
2316 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
2317 {
2318         if (!kvm->arch.mmu.pgd)
2319                 return 0;
2320         trace_kvm_age_hva(start, end);
2321         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
2322 }
2323
2324 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2325 {
2326         if (!kvm->arch.mmu.pgd)
2327                 return 0;
2328         trace_kvm_test_age_hva(hva);
2329         return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
2330                                  kvm_test_age_hva_handler, NULL);
2331 }
2332
2333 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
2334 {
2335         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
2336 }
2337
2338 phys_addr_t kvm_mmu_get_httbr(void)
2339 {
2340         if (__kvm_cpu_uses_extended_idmap())
2341                 return virt_to_phys(merged_hyp_pgd);
2342         else
2343                 return virt_to_phys(hyp_pgd);
2344 }
2345
2346 phys_addr_t kvm_get_idmap_vector(void)
2347 {
2348         return hyp_idmap_vector;
2349 }
2350
2351 static int kvm_map_idmap_text(pgd_t *pgd)
2352 {
2353         int err;
2354
2355         /* Create the idmap in the boot page tables */
2356         err =   __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2357                                       hyp_idmap_start, hyp_idmap_end,
2358                                       __phys_to_pfn(hyp_idmap_start),
2359                                       PAGE_HYP_EXEC);
2360         if (err)
2361                 kvm_err("Failed to idmap %lx-%lx\n",
2362                         hyp_idmap_start, hyp_idmap_end);
2363
2364         return err;
2365 }
2366
2367 int kvm_mmu_init(void)
2368 {
2369         int err;
2370
2371         hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
2372         hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2373         hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
2374         hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2375         hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
2376
2377         /*
2378          * We rely on the linker script to ensure at build time that the HYP
2379          * init code does not cross a page boundary.
2380          */
2381         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2382
2383         kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
2384         kvm_debug("HYP VA range: %lx:%lx\n",
2385                   kern_hyp_va(PAGE_OFFSET),
2386                   kern_hyp_va((unsigned long)high_memory - 1));
2387
2388         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2389             hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2390             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2391                 /*
2392                  * The idmap page is intersecting with the VA space,
2393                  * it is not safe to continue further.
2394                  */
2395                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
2396                 err = -EINVAL;
2397                 goto out;
2398         }
2399
2400         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2401         if (!hyp_pgd) {
2402                 kvm_err("Hyp mode PGD not allocated\n");
2403                 err = -ENOMEM;
2404                 goto out;
2405         }
2406
2407         if (__kvm_cpu_uses_extended_idmap()) {
2408                 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2409                                                          hyp_pgd_order);
2410                 if (!boot_hyp_pgd) {
2411                         kvm_err("Hyp boot PGD not allocated\n");
2412                         err = -ENOMEM;
2413                         goto out;
2414                 }
2415
2416                 err = kvm_map_idmap_text(boot_hyp_pgd);
2417                 if (err)
2418                         goto out;
2419
2420                 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
2421                 if (!merged_hyp_pgd) {
2422                         kvm_err("Failed to allocate extra HYP pgd\n");
2423                         goto out;
2424                 }
2425                 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
2426                                     hyp_idmap_start);
2427         } else {
2428                 err = kvm_map_idmap_text(hyp_pgd);
2429                 if (err)
2430                         goto out;
2431         }
2432
2433         io_map_base = hyp_idmap_start;
2434         return 0;
2435 out:
2436         free_hyp_pgds();
2437         return err;
2438 }
2439
2440 void kvm_arch_commit_memory_region(struct kvm *kvm,
2441                                    const struct kvm_userspace_memory_region *mem,
2442                                    struct kvm_memory_slot *old,
2443                                    const struct kvm_memory_slot *new,
2444                                    enum kvm_mr_change change)
2445 {
2446         /*
2447          * At this point memslot has been committed and there is an
2448          * allocated dirty_bitmap[], dirty pages will be tracked while the
2449          * memory slot is write protected.
2450          */
2451         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2452                 /*
2453                  * If we're with initial-all-set, we don't need to write
2454                  * protect any pages because they're all reported as dirty.
2455                  * Huge pages and normal pages will be write protect gradually.
2456                  */
2457                 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
2458                         kvm_mmu_wp_memory_region(kvm, mem->slot);
2459                 }
2460         }
2461 }
2462
2463 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2464                                    struct kvm_memory_slot *memslot,
2465                                    const struct kvm_userspace_memory_region *mem,
2466                                    enum kvm_mr_change change)
2467 {
2468         hva_t hva = mem->userspace_addr;
2469         hva_t reg_end = hva + mem->memory_size;
2470         bool writable = !(mem->flags & KVM_MEM_READONLY);
2471         int ret = 0;
2472
2473         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
2474                         change != KVM_MR_FLAGS_ONLY)
2475                 return 0;
2476
2477         /*
2478          * Prevent userspace from creating a memory region outside of the IPA
2479          * space addressable by the KVM guest IPA space.
2480          */
2481         if (memslot->base_gfn + memslot->npages >=
2482             (kvm_phys_size(kvm) >> PAGE_SHIFT))
2483                 return -EFAULT;
2484
2485         mmap_read_lock(current->mm);
2486         /*
2487          * A memory region could potentially cover multiple VMAs, and any holes
2488          * between them, so iterate over all of them to find out if we can map
2489          * any of them right now.
2490          *
2491          *     +--------------------------------------------+
2492          * +---------------+----------------+   +----------------+
2493          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
2494          * +---------------+----------------+   +----------------+
2495          *     |               memory region                |
2496          *     +--------------------------------------------+
2497          */
2498         do {
2499                 struct vm_area_struct *vma = find_vma(current->mm, hva);
2500                 hva_t vm_start, vm_end;
2501
2502                 if (!vma || vma->vm_start >= reg_end)
2503                         break;
2504
2505                 /*
2506                  * Take the intersection of this VMA with the memory region
2507                  */
2508                 vm_start = max(hva, vma->vm_start);
2509                 vm_end = min(reg_end, vma->vm_end);
2510
2511                 if (vma->vm_flags & VM_PFNMAP) {
2512                         gpa_t gpa = mem->guest_phys_addr +
2513                                     (vm_start - mem->userspace_addr);
2514                         phys_addr_t pa;
2515
2516                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
2517                         pa += vm_start - vma->vm_start;
2518
2519                         /* IO region dirty page logging not allowed */
2520                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
2521                                 ret = -EINVAL;
2522                                 goto out;
2523                         }
2524
2525                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
2526                                                     vm_end - vm_start,
2527                                                     writable);
2528                         if (ret)
2529                                 break;
2530                 }
2531                 hva = vm_end;
2532         } while (hva < reg_end);
2533
2534         if (change == KVM_MR_FLAGS_ONLY)
2535                 goto out;
2536
2537         spin_lock(&kvm->mmu_lock);
2538         if (ret)
2539                 unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
2540         else
2541                 stage2_flush_memslot(kvm, memslot);
2542         spin_unlock(&kvm->mmu_lock);
2543 out:
2544         mmap_read_unlock(current->mm);
2545         return ret;
2546 }
2547
2548 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2549 {
2550 }
2551
2552 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2553 {
2554 }
2555
2556 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2557 {
2558         kvm_free_stage2_pgd(&kvm->arch.mmu);
2559 }
2560
2561 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2562                                    struct kvm_memory_slot *slot)
2563 {
2564         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2565         phys_addr_t size = slot->npages << PAGE_SHIFT;
2566
2567         spin_lock(&kvm->mmu_lock);
2568         unmap_stage2_range(&kvm->arch.mmu, gpa, size);
2569         spin_unlock(&kvm->mmu_lock);
2570 }
2571
2572 /*
2573  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2574  *
2575  * Main problems:
2576  * - S/W ops are local to a CPU (not broadcast)
2577  * - We have line migration behind our back (speculation)
2578  * - System caches don't support S/W at all (damn!)
2579  *
2580  * In the face of the above, the best we can do is to try and convert
2581  * S/W ops to VA ops. Because the guest is not allowed to infer the
2582  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2583  * which is a rather good thing for us.
2584  *
2585  * Also, it is only used when turning caches on/off ("The expected
2586  * usage of the cache maintenance instructions that operate by set/way
2587  * is associated with the cache maintenance instructions associated
2588  * with the powerdown and powerup of caches, if this is required by
2589  * the implementation.").
2590  *
2591  * We use the following policy:
2592  *
2593  * - If we trap a S/W operation, we enable VM trapping to detect
2594  *   caches being turned on/off, and do a full clean.
2595  *
2596  * - We flush the caches on both caches being turned on and off.
2597  *
2598  * - Once the caches are enabled, we stop trapping VM ops.
2599  */
2600 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2601 {
2602         unsigned long hcr = *vcpu_hcr(vcpu);
2603
2604         /*
2605          * If this is the first time we do a S/W operation
2606          * (i.e. HCR_TVM not set) flush the whole memory, and set the
2607          * VM trapping.
2608          *
2609          * Otherwise, rely on the VM trapping to wait for the MMU +
2610          * Caches to be turned off. At that point, we'll be able to
2611          * clean the caches again.
2612          */
2613         if (!(hcr & HCR_TVM)) {
2614                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2615                                         vcpu_has_cache_enabled(vcpu));
2616                 stage2_flush_vm(vcpu->kvm);
2617                 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2618         }
2619 }
2620
2621 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2622 {
2623         bool now_enabled = vcpu_has_cache_enabled(vcpu);
2624
2625         /*
2626          * If switching the MMU+caches on, need to invalidate the caches.
2627          * If switching it off, need to clean the caches.
2628          * Clean + invalidate does the trick always.
2629          */
2630         if (now_enabled != was_enabled)
2631                 stage2_flush_vm(vcpu->kvm);
2632
2633         /* Caches are now on, stop trapping VM ops (until a S/W op) */
2634         if (now_enabled)
2635                 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2636
2637         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2638 }