dt-bindings: clock: drop useless consumer example
[linux-2.6-microblaze.git] / arch / arm64 / kvm / hyp / pgtable.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4  * No bombay mix was harmed in the writing of this file.
5  *
6  * Copyright (C) 2020 Google LLC
7  * Author: Will Deacon <will@kernel.org>
8  */
9
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13
14
15 #define KVM_PTE_TYPE                    BIT(1)
16 #define KVM_PTE_TYPE_BLOCK              0
17 #define KVM_PTE_TYPE_PAGE               1
18 #define KVM_PTE_TYPE_TABLE              1
19
20 #define KVM_PTE_LEAF_ATTR_LO            GENMASK(11, 2)
21
22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP      GENMASK(7, 6)
24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO   3
25 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW   1
26 #define KVM_PTE_LEAF_ATTR_LO_S1_SH      GENMASK(9, 8)
27 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS   3
28 #define KVM_PTE_LEAF_ATTR_LO_S1_AF      BIT(10)
29
30 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
31 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R  BIT(6)
32 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W  BIT(7)
33 #define KVM_PTE_LEAF_ATTR_LO_S2_SH      GENMASK(9, 8)
34 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS   3
35 #define KVM_PTE_LEAF_ATTR_LO_S2_AF      BIT(10)
36
37 #define KVM_PTE_LEAF_ATTR_HI            GENMASK(63, 51)
38
39 #define KVM_PTE_LEAF_ATTR_HI_SW         GENMASK(58, 55)
40
41 #define KVM_PTE_LEAF_ATTR_HI_S1_XN      BIT(54)
42
43 #define KVM_PTE_LEAF_ATTR_HI_S2_XN      BIT(54)
44
45 #define KVM_PTE_LEAF_ATTR_S2_PERMS      (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
46                                          KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
47                                          KVM_PTE_LEAF_ATTR_HI_S2_XN)
48
49 #define KVM_INVALID_PTE_OWNER_MASK      GENMASK(9, 2)
50 #define KVM_MAX_OWNER_ID                1
51
52 struct kvm_pgtable_walk_data {
53         struct kvm_pgtable              *pgt;
54         struct kvm_pgtable_walker       *walker;
55
56         u64                             addr;
57         u64                             end;
58 };
59
60 #define KVM_PHYS_INVALID (-1ULL)
61
62 static bool kvm_phys_is_valid(u64 phys)
63 {
64         return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_PARANGE_MAX));
65 }
66
67 static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level)
68 {
69         u64 granule = kvm_granule_size(level);
70
71         if (!kvm_level_supports_block_mapping(level))
72                 return false;
73
74         if (granule > (end - addr))
75                 return false;
76
77         if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
78                 return false;
79
80         return IS_ALIGNED(addr, granule);
81 }
82
83 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
84 {
85         u64 shift = kvm_granule_shift(level);
86         u64 mask = BIT(PAGE_SHIFT - 3) - 1;
87
88         return (data->addr >> shift) & mask;
89 }
90
91 static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
92 {
93         u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
94         u64 mask = BIT(pgt->ia_bits) - 1;
95
96         return (addr & mask) >> shift;
97 }
98
99 static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data)
100 {
101         return __kvm_pgd_page_idx(data->pgt, data->addr);
102 }
103
104 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
105 {
106         struct kvm_pgtable pgt = {
107                 .ia_bits        = ia_bits,
108                 .start_level    = start_level,
109         };
110
111         return __kvm_pgd_page_idx(&pgt, -1ULL) + 1;
112 }
113
114 static bool kvm_pte_table(kvm_pte_t pte, u32 level)
115 {
116         if (level == KVM_PGTABLE_MAX_LEVELS - 1)
117                 return false;
118
119         if (!kvm_pte_valid(pte))
120                 return false;
121
122         return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
123 }
124
125 static kvm_pte_t kvm_phys_to_pte(u64 pa)
126 {
127         kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK;
128
129         if (PAGE_SHIFT == 16)
130                 pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48);
131
132         return pte;
133 }
134
135 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
136 {
137         return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
138 }
139
140 static void kvm_clear_pte(kvm_pte_t *ptep)
141 {
142         WRITE_ONCE(*ptep, 0);
143 }
144
145 static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp,
146                               struct kvm_pgtable_mm_ops *mm_ops)
147 {
148         kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
149
150         pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
151         pte |= KVM_PTE_VALID;
152
153         WARN_ON(kvm_pte_valid(old));
154         smp_store_release(ptep, pte);
155 }
156
157 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
158 {
159         kvm_pte_t pte = kvm_phys_to_pte(pa);
160         u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
161                                                            KVM_PTE_TYPE_BLOCK;
162
163         pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
164         pte |= FIELD_PREP(KVM_PTE_TYPE, type);
165         pte |= KVM_PTE_VALID;
166
167         return pte;
168 }
169
170 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
171 {
172         return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
173 }
174
175 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr,
176                                   u32 level, kvm_pte_t *ptep,
177                                   enum kvm_pgtable_walk_flags flag)
178 {
179         struct kvm_pgtable_walker *walker = data->walker;
180         return walker->cb(addr, data->end, level, ptep, flag, walker->arg);
181 }
182
183 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
184                               kvm_pte_t *pgtable, u32 level);
185
186 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
187                                       kvm_pte_t *ptep, u32 level)
188 {
189         int ret = 0;
190         u64 addr = data->addr;
191         kvm_pte_t *childp, pte = *ptep;
192         bool table = kvm_pte_table(pte, level);
193         enum kvm_pgtable_walk_flags flags = data->walker->flags;
194
195         if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
196                 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
197                                              KVM_PGTABLE_WALK_TABLE_PRE);
198         }
199
200         if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) {
201                 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
202                                              KVM_PGTABLE_WALK_LEAF);
203                 pte = *ptep;
204                 table = kvm_pte_table(pte, level);
205         }
206
207         if (ret)
208                 goto out;
209
210         if (!table) {
211                 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
212                 data->addr += kvm_granule_size(level);
213                 goto out;
214         }
215
216         childp = kvm_pte_follow(pte, data->pgt->mm_ops);
217         ret = __kvm_pgtable_walk(data, childp, level + 1);
218         if (ret)
219                 goto out;
220
221         if (flags & KVM_PGTABLE_WALK_TABLE_POST) {
222                 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
223                                              KVM_PGTABLE_WALK_TABLE_POST);
224         }
225
226 out:
227         return ret;
228 }
229
230 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
231                               kvm_pte_t *pgtable, u32 level)
232 {
233         u32 idx;
234         int ret = 0;
235
236         if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
237                 return -EINVAL;
238
239         for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
240                 kvm_pte_t *ptep = &pgtable[idx];
241
242                 if (data->addr >= data->end)
243                         break;
244
245                 ret = __kvm_pgtable_visit(data, ptep, level);
246                 if (ret)
247                         break;
248         }
249
250         return ret;
251 }
252
253 static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data)
254 {
255         u32 idx;
256         int ret = 0;
257         struct kvm_pgtable *pgt = data->pgt;
258         u64 limit = BIT(pgt->ia_bits);
259
260         if (data->addr > limit || data->end > limit)
261                 return -ERANGE;
262
263         if (!pgt->pgd)
264                 return -EINVAL;
265
266         for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) {
267                 kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE];
268
269                 ret = __kvm_pgtable_walk(data, ptep, pgt->start_level);
270                 if (ret)
271                         break;
272         }
273
274         return ret;
275 }
276
277 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
278                      struct kvm_pgtable_walker *walker)
279 {
280         struct kvm_pgtable_walk_data walk_data = {
281                 .pgt    = pgt,
282                 .addr   = ALIGN_DOWN(addr, PAGE_SIZE),
283                 .end    = PAGE_ALIGN(walk_data.addr + size),
284                 .walker = walker,
285         };
286
287         return _kvm_pgtable_walk(&walk_data);
288 }
289
290 struct leaf_walk_data {
291         kvm_pte_t       pte;
292         u32             level;
293 };
294
295 static int leaf_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
296                        enum kvm_pgtable_walk_flags flag, void * const arg)
297 {
298         struct leaf_walk_data *data = arg;
299
300         data->pte   = *ptep;
301         data->level = level;
302
303         return 0;
304 }
305
306 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
307                          kvm_pte_t *ptep, u32 *level)
308 {
309         struct leaf_walk_data data;
310         struct kvm_pgtable_walker walker = {
311                 .cb     = leaf_walker,
312                 .flags  = KVM_PGTABLE_WALK_LEAF,
313                 .arg    = &data,
314         };
315         int ret;
316
317         ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
318                                PAGE_SIZE, &walker);
319         if (!ret) {
320                 if (ptep)
321                         *ptep  = data.pte;
322                 if (level)
323                         *level = data.level;
324         }
325
326         return ret;
327 }
328
329 struct hyp_map_data {
330         u64                             phys;
331         kvm_pte_t                       attr;
332         struct kvm_pgtable_mm_ops       *mm_ops;
333 };
334
335 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
336 {
337         bool device = prot & KVM_PGTABLE_PROT_DEVICE;
338         u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
339         kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
340         u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
341         u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
342                                                KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
343
344         if (!(prot & KVM_PGTABLE_PROT_R))
345                 return -EINVAL;
346
347         if (prot & KVM_PGTABLE_PROT_X) {
348                 if (prot & KVM_PGTABLE_PROT_W)
349                         return -EINVAL;
350
351                 if (device)
352                         return -EINVAL;
353         } else {
354                 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
355         }
356
357         attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
358         attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
359         attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
360         attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
361         *ptep = attr;
362
363         return 0;
364 }
365
366 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
367 {
368         enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
369         u32 ap;
370
371         if (!kvm_pte_valid(pte))
372                 return prot;
373
374         if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
375                 prot |= KVM_PGTABLE_PROT_X;
376
377         ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
378         if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
379                 prot |= KVM_PGTABLE_PROT_R;
380         else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
381                 prot |= KVM_PGTABLE_PROT_RW;
382
383         return prot;
384 }
385
386 static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level,
387                                     kvm_pte_t *ptep, struct hyp_map_data *data)
388 {
389         kvm_pte_t new, old = *ptep;
390         u64 granule = kvm_granule_size(level), phys = data->phys;
391
392         if (!kvm_block_mapping_supported(addr, end, phys, level))
393                 return false;
394
395         data->phys += granule;
396         new = kvm_init_valid_leaf_pte(phys, data->attr, level);
397         if (old == new)
398                 return true;
399         if (!kvm_pte_valid(old))
400                 data->mm_ops->get_page(ptep);
401         else if (WARN_ON((old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
402                 return false;
403
404         smp_store_release(ptep, new);
405         return true;
406 }
407
408 static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
409                           enum kvm_pgtable_walk_flags flag, void * const arg)
410 {
411         kvm_pte_t *childp;
412         struct hyp_map_data *data = arg;
413         struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
414
415         if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg))
416                 return 0;
417
418         if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
419                 return -EINVAL;
420
421         childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
422         if (!childp)
423                 return -ENOMEM;
424
425         kvm_set_table_pte(ptep, childp, mm_ops);
426         mm_ops->get_page(ptep);
427         return 0;
428 }
429
430 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
431                         enum kvm_pgtable_prot prot)
432 {
433         int ret;
434         struct hyp_map_data map_data = {
435                 .phys   = ALIGN_DOWN(phys, PAGE_SIZE),
436                 .mm_ops = pgt->mm_ops,
437         };
438         struct kvm_pgtable_walker walker = {
439                 .cb     = hyp_map_walker,
440                 .flags  = KVM_PGTABLE_WALK_LEAF,
441                 .arg    = &map_data,
442         };
443
444         ret = hyp_set_prot_attr(prot, &map_data.attr);
445         if (ret)
446                 return ret;
447
448         ret = kvm_pgtable_walk(pgt, addr, size, &walker);
449         dsb(ishst);
450         isb();
451         return ret;
452 }
453
454 struct hyp_unmap_data {
455         u64                             unmapped;
456         struct kvm_pgtable_mm_ops       *mm_ops;
457 };
458
459 static int hyp_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
460                             enum kvm_pgtable_walk_flags flag, void * const arg)
461 {
462         kvm_pte_t pte = *ptep, *childp = NULL;
463         u64 granule = kvm_granule_size(level);
464         struct hyp_unmap_data *data = arg;
465         struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
466
467         if (!kvm_pte_valid(pte))
468                 return -EINVAL;
469
470         if (kvm_pte_table(pte, level)) {
471                 childp = kvm_pte_follow(pte, mm_ops);
472
473                 if (mm_ops->page_count(childp) != 1)
474                         return 0;
475
476                 kvm_clear_pte(ptep);
477                 dsb(ishst);
478                 __tlbi_level(vae2is, __TLBI_VADDR(addr, 0), level);
479         } else {
480                 if (end - addr < granule)
481                         return -EINVAL;
482
483                 kvm_clear_pte(ptep);
484                 dsb(ishst);
485                 __tlbi_level(vale2is, __TLBI_VADDR(addr, 0), level);
486                 data->unmapped += granule;
487         }
488
489         dsb(ish);
490         isb();
491         mm_ops->put_page(ptep);
492
493         if (childp)
494                 mm_ops->put_page(childp);
495
496         return 0;
497 }
498
499 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
500 {
501         struct hyp_unmap_data unmap_data = {
502                 .mm_ops = pgt->mm_ops,
503         };
504         struct kvm_pgtable_walker walker = {
505                 .cb     = hyp_unmap_walker,
506                 .arg    = &unmap_data,
507                 .flags  = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
508         };
509
510         if (!pgt->mm_ops->page_count)
511                 return 0;
512
513         kvm_pgtable_walk(pgt, addr, size, &walker);
514         return unmap_data.unmapped;
515 }
516
517 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
518                          struct kvm_pgtable_mm_ops *mm_ops)
519 {
520         u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
521
522         pgt->pgd = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
523         if (!pgt->pgd)
524                 return -ENOMEM;
525
526         pgt->ia_bits            = va_bits;
527         pgt->start_level        = KVM_PGTABLE_MAX_LEVELS - levels;
528         pgt->mm_ops             = mm_ops;
529         pgt->mmu                = NULL;
530         pgt->force_pte_cb       = NULL;
531
532         return 0;
533 }
534
535 static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
536                            enum kvm_pgtable_walk_flags flag, void * const arg)
537 {
538         struct kvm_pgtable_mm_ops *mm_ops = arg;
539         kvm_pte_t pte = *ptep;
540
541         if (!kvm_pte_valid(pte))
542                 return 0;
543
544         mm_ops->put_page(ptep);
545
546         if (kvm_pte_table(pte, level))
547                 mm_ops->put_page(kvm_pte_follow(pte, mm_ops));
548
549         return 0;
550 }
551
552 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
553 {
554         struct kvm_pgtable_walker walker = {
555                 .cb     = hyp_free_walker,
556                 .flags  = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
557                 .arg    = pgt->mm_ops,
558         };
559
560         WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
561         pgt->mm_ops->put_page(pgt->pgd);
562         pgt->pgd = NULL;
563 }
564
565 struct stage2_map_data {
566         u64                             phys;
567         kvm_pte_t                       attr;
568         u8                              owner_id;
569
570         kvm_pte_t                       *anchor;
571         kvm_pte_t                       *childp;
572
573         struct kvm_s2_mmu               *mmu;
574         void                            *memcache;
575
576         struct kvm_pgtable_mm_ops       *mm_ops;
577
578         /* Force mappings to page granularity */
579         bool                            force_pte;
580 };
581
582 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
583 {
584         u64 vtcr = VTCR_EL2_FLAGS;
585         u8 lvls;
586
587         vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
588         vtcr |= VTCR_EL2_T0SZ(phys_shift);
589         /*
590          * Use a minimum 2 level page table to prevent splitting
591          * host PMD huge pages at stage2.
592          */
593         lvls = stage2_pgtable_levels(phys_shift);
594         if (lvls < 2)
595                 lvls = 2;
596         vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
597
598         /*
599          * Enable the Hardware Access Flag management, unconditionally
600          * on all CPUs. The features is RES0 on CPUs without the support
601          * and must be ignored by the CPUs.
602          */
603         vtcr |= VTCR_EL2_HA;
604
605         /* Set the vmid bits */
606         vtcr |= (get_vmid_bits(mmfr1) == 16) ?
607                 VTCR_EL2_VS_16BIT :
608                 VTCR_EL2_VS_8BIT;
609
610         return vtcr;
611 }
612
613 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
614 {
615         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
616                 return false;
617
618         return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
619 }
620
621 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
622
623 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
624                                 kvm_pte_t *ptep)
625 {
626         bool device = prot & KVM_PGTABLE_PROT_DEVICE;
627         kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
628                             KVM_S2_MEMATTR(pgt, NORMAL);
629         u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
630
631         if (!(prot & KVM_PGTABLE_PROT_X))
632                 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
633         else if (device)
634                 return -EINVAL;
635
636         if (prot & KVM_PGTABLE_PROT_R)
637                 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
638
639         if (prot & KVM_PGTABLE_PROT_W)
640                 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
641
642         attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
643         attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
644         attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
645         *ptep = attr;
646
647         return 0;
648 }
649
650 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
651 {
652         enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
653
654         if (!kvm_pte_valid(pte))
655                 return prot;
656
657         if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
658                 prot |= KVM_PGTABLE_PROT_R;
659         if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
660                 prot |= KVM_PGTABLE_PROT_W;
661         if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
662                 prot |= KVM_PGTABLE_PROT_X;
663
664         return prot;
665 }
666
667 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
668 {
669         if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
670                 return true;
671
672         return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
673 }
674
675 static bool stage2_pte_is_counted(kvm_pte_t pte)
676 {
677         /*
678          * The refcount tracks valid entries as well as invalid entries if they
679          * encode ownership of a page to another entity than the page-table
680          * owner, whose id is 0.
681          */
682         return !!pte;
683 }
684
685 static void stage2_put_pte(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, u64 addr,
686                            u32 level, struct kvm_pgtable_mm_ops *mm_ops)
687 {
688         /*
689          * Clear the existing PTE, and perform break-before-make with
690          * TLB maintenance if it was valid.
691          */
692         if (kvm_pte_valid(*ptep)) {
693                 kvm_clear_pte(ptep);
694                 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level);
695         }
696
697         mm_ops->put_page(ptep);
698 }
699
700 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
701 {
702         u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
703         return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
704 }
705
706 static bool stage2_pte_executable(kvm_pte_t pte)
707 {
708         return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
709 }
710
711 static bool stage2_leaf_mapping_allowed(u64 addr, u64 end, u32 level,
712                                         struct stage2_map_data *data)
713 {
714         if (data->force_pte && (level < (KVM_PGTABLE_MAX_LEVELS - 1)))
715                 return false;
716
717         return kvm_block_mapping_supported(addr, end, data->phys, level);
718 }
719
720 static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level,
721                                       kvm_pte_t *ptep,
722                                       struct stage2_map_data *data)
723 {
724         kvm_pte_t new, old = *ptep;
725         u64 granule = kvm_granule_size(level), phys = data->phys;
726         struct kvm_pgtable *pgt = data->mmu->pgt;
727         struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
728
729         if (!stage2_leaf_mapping_allowed(addr, end, level, data))
730                 return -E2BIG;
731
732         if (kvm_phys_is_valid(phys))
733                 new = kvm_init_valid_leaf_pte(phys, data->attr, level);
734         else
735                 new = kvm_init_invalid_leaf_owner(data->owner_id);
736
737         if (stage2_pte_is_counted(old)) {
738                 /*
739                  * Skip updating the PTE if we are trying to recreate the exact
740                  * same mapping or only change the access permissions. Instead,
741                  * the vCPU will exit one more time from guest if still needed
742                  * and then go through the path of relaxing permissions.
743                  */
744                 if (!stage2_pte_needs_update(old, new))
745                         return -EAGAIN;
746
747                 stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
748         }
749
750         /* Perform CMOs before installation of the guest stage-2 PTE */
751         if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new))
752                 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
753                                                 granule);
754
755         if (mm_ops->icache_inval_pou && stage2_pte_executable(new))
756                 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
757
758         smp_store_release(ptep, new);
759         if (stage2_pte_is_counted(new))
760                 mm_ops->get_page(ptep);
761         if (kvm_phys_is_valid(phys))
762                 data->phys += granule;
763         return 0;
764 }
765
766 static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level,
767                                      kvm_pte_t *ptep,
768                                      struct stage2_map_data *data)
769 {
770         if (data->anchor)
771                 return 0;
772
773         if (!stage2_leaf_mapping_allowed(addr, end, level, data))
774                 return 0;
775
776         data->childp = kvm_pte_follow(*ptep, data->mm_ops);
777         kvm_clear_pte(ptep);
778
779         /*
780          * Invalidate the whole stage-2, as we may have numerous leaf
781          * entries below us which would otherwise need invalidating
782          * individually.
783          */
784         kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu);
785         data->anchor = ptep;
786         return 0;
787 }
788
789 static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
790                                 struct stage2_map_data *data)
791 {
792         struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
793         kvm_pte_t *childp, pte = *ptep;
794         int ret;
795
796         if (data->anchor) {
797                 if (stage2_pte_is_counted(pte))
798                         mm_ops->put_page(ptep);
799
800                 return 0;
801         }
802
803         ret = stage2_map_walker_try_leaf(addr, end, level, ptep, data);
804         if (ret != -E2BIG)
805                 return ret;
806
807         if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
808                 return -EINVAL;
809
810         if (!data->memcache)
811                 return -ENOMEM;
812
813         childp = mm_ops->zalloc_page(data->memcache);
814         if (!childp)
815                 return -ENOMEM;
816
817         /*
818          * If we've run into an existing block mapping then replace it with
819          * a table. Accesses beyond 'end' that fall within the new table
820          * will be mapped lazily.
821          */
822         if (stage2_pte_is_counted(pte))
823                 stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
824
825         kvm_set_table_pte(ptep, childp, mm_ops);
826         mm_ops->get_page(ptep);
827
828         return 0;
829 }
830
831 static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level,
832                                       kvm_pte_t *ptep,
833                                       struct stage2_map_data *data)
834 {
835         struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
836         kvm_pte_t *childp;
837         int ret = 0;
838
839         if (!data->anchor)
840                 return 0;
841
842         if (data->anchor == ptep) {
843                 childp = data->childp;
844                 data->anchor = NULL;
845                 data->childp = NULL;
846                 ret = stage2_map_walk_leaf(addr, end, level, ptep, data);
847         } else {
848                 childp = kvm_pte_follow(*ptep, mm_ops);
849         }
850
851         mm_ops->put_page(childp);
852         mm_ops->put_page(ptep);
853
854         return ret;
855 }
856
857 /*
858  * This is a little fiddly, as we use all three of the walk flags. The idea
859  * is that the TABLE_PRE callback runs for table entries on the way down,
860  * looking for table entries which we could conceivably replace with a
861  * block entry for this mapping. If it finds one, then it sets the 'anchor'
862  * field in 'struct stage2_map_data' to point at the table entry, before
863  * clearing the entry to zero and descending into the now detached table.
864  *
865  * The behaviour of the LEAF callback then depends on whether or not the
866  * anchor has been set. If not, then we're not using a block mapping higher
867  * up the table and we perform the mapping at the existing leaves instead.
868  * If, on the other hand, the anchor _is_ set, then we drop references to
869  * all valid leaves so that the pages beneath the anchor can be freed.
870  *
871  * Finally, the TABLE_POST callback does nothing if the anchor has not
872  * been set, but otherwise frees the page-table pages while walking back up
873  * the page-table, installing the block entry when it revisits the anchor
874  * pointer and clearing the anchor to NULL.
875  */
876 static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
877                              enum kvm_pgtable_walk_flags flag, void * const arg)
878 {
879         struct stage2_map_data *data = arg;
880
881         switch (flag) {
882         case KVM_PGTABLE_WALK_TABLE_PRE:
883                 return stage2_map_walk_table_pre(addr, end, level, ptep, data);
884         case KVM_PGTABLE_WALK_LEAF:
885                 return stage2_map_walk_leaf(addr, end, level, ptep, data);
886         case KVM_PGTABLE_WALK_TABLE_POST:
887                 return stage2_map_walk_table_post(addr, end, level, ptep, data);
888         }
889
890         return -EINVAL;
891 }
892
893 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
894                            u64 phys, enum kvm_pgtable_prot prot,
895                            void *mc)
896 {
897         int ret;
898         struct stage2_map_data map_data = {
899                 .phys           = ALIGN_DOWN(phys, PAGE_SIZE),
900                 .mmu            = pgt->mmu,
901                 .memcache       = mc,
902                 .mm_ops         = pgt->mm_ops,
903                 .force_pte      = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
904         };
905         struct kvm_pgtable_walker walker = {
906                 .cb             = stage2_map_walker,
907                 .flags          = KVM_PGTABLE_WALK_TABLE_PRE |
908                                   KVM_PGTABLE_WALK_LEAF |
909                                   KVM_PGTABLE_WALK_TABLE_POST,
910                 .arg            = &map_data,
911         };
912
913         if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
914                 return -EINVAL;
915
916         ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
917         if (ret)
918                 return ret;
919
920         ret = kvm_pgtable_walk(pgt, addr, size, &walker);
921         dsb(ishst);
922         return ret;
923 }
924
925 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
926                                  void *mc, u8 owner_id)
927 {
928         int ret;
929         struct stage2_map_data map_data = {
930                 .phys           = KVM_PHYS_INVALID,
931                 .mmu            = pgt->mmu,
932                 .memcache       = mc,
933                 .mm_ops         = pgt->mm_ops,
934                 .owner_id       = owner_id,
935                 .force_pte      = true,
936         };
937         struct kvm_pgtable_walker walker = {
938                 .cb             = stage2_map_walker,
939                 .flags          = KVM_PGTABLE_WALK_TABLE_PRE |
940                                   KVM_PGTABLE_WALK_LEAF |
941                                   KVM_PGTABLE_WALK_TABLE_POST,
942                 .arg            = &map_data,
943         };
944
945         if (owner_id > KVM_MAX_OWNER_ID)
946                 return -EINVAL;
947
948         ret = kvm_pgtable_walk(pgt, addr, size, &walker);
949         return ret;
950 }
951
952 static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
953                                enum kvm_pgtable_walk_flags flag,
954                                void * const arg)
955 {
956         struct kvm_pgtable *pgt = arg;
957         struct kvm_s2_mmu *mmu = pgt->mmu;
958         struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
959         kvm_pte_t pte = *ptep, *childp = NULL;
960         bool need_flush = false;
961
962         if (!kvm_pte_valid(pte)) {
963                 if (stage2_pte_is_counted(pte)) {
964                         kvm_clear_pte(ptep);
965                         mm_ops->put_page(ptep);
966                 }
967                 return 0;
968         }
969
970         if (kvm_pte_table(pte, level)) {
971                 childp = kvm_pte_follow(pte, mm_ops);
972
973                 if (mm_ops->page_count(childp) != 1)
974                         return 0;
975         } else if (stage2_pte_cacheable(pgt, pte)) {
976                 need_flush = !stage2_has_fwb(pgt);
977         }
978
979         /*
980          * This is similar to the map() path in that we unmap the entire
981          * block entry and rely on the remaining portions being faulted
982          * back lazily.
983          */
984         stage2_put_pte(ptep, mmu, addr, level, mm_ops);
985
986         if (need_flush) {
987                 kvm_pte_t *pte_follow = kvm_pte_follow(pte, mm_ops);
988
989                 dcache_clean_inval_poc((unsigned long)pte_follow,
990                                     (unsigned long)pte_follow +
991                                             kvm_granule_size(level));
992         }
993
994         if (childp)
995                 mm_ops->put_page(childp);
996
997         return 0;
998 }
999
1000 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1001 {
1002         struct kvm_pgtable_walker walker = {
1003                 .cb     = stage2_unmap_walker,
1004                 .arg    = pgt,
1005                 .flags  = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1006         };
1007
1008         return kvm_pgtable_walk(pgt, addr, size, &walker);
1009 }
1010
1011 struct stage2_attr_data {
1012         kvm_pte_t                       attr_set;
1013         kvm_pte_t                       attr_clr;
1014         kvm_pte_t                       pte;
1015         u32                             level;
1016         struct kvm_pgtable_mm_ops       *mm_ops;
1017 };
1018
1019 static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1020                               enum kvm_pgtable_walk_flags flag,
1021                               void * const arg)
1022 {
1023         kvm_pte_t pte = *ptep;
1024         struct stage2_attr_data *data = arg;
1025         struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
1026
1027         if (!kvm_pte_valid(pte))
1028                 return 0;
1029
1030         data->level = level;
1031         data->pte = pte;
1032         pte &= ~data->attr_clr;
1033         pte |= data->attr_set;
1034
1035         /*
1036          * We may race with the CPU trying to set the access flag here,
1037          * but worst-case the access flag update gets lost and will be
1038          * set on the next access instead.
1039          */
1040         if (data->pte != pte) {
1041                 /*
1042                  * Invalidate instruction cache before updating the guest
1043                  * stage-2 PTE if we are going to add executable permission.
1044                  */
1045                 if (mm_ops->icache_inval_pou &&
1046                     stage2_pte_executable(pte) && !stage2_pte_executable(*ptep))
1047                         mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1048                                                   kvm_granule_size(level));
1049                 WRITE_ONCE(*ptep, pte);
1050         }
1051
1052         return 0;
1053 }
1054
1055 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1056                                     u64 size, kvm_pte_t attr_set,
1057                                     kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1058                                     u32 *level)
1059 {
1060         int ret;
1061         kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1062         struct stage2_attr_data data = {
1063                 .attr_set       = attr_set & attr_mask,
1064                 .attr_clr       = attr_clr & attr_mask,
1065                 .mm_ops         = pgt->mm_ops,
1066         };
1067         struct kvm_pgtable_walker walker = {
1068                 .cb             = stage2_attr_walker,
1069                 .arg            = &data,
1070                 .flags          = KVM_PGTABLE_WALK_LEAF,
1071         };
1072
1073         ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1074         if (ret)
1075                 return ret;
1076
1077         if (orig_pte)
1078                 *orig_pte = data.pte;
1079
1080         if (level)
1081                 *level = data.level;
1082         return 0;
1083 }
1084
1085 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1086 {
1087         return stage2_update_leaf_attrs(pgt, addr, size, 0,
1088                                         KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1089                                         NULL, NULL);
1090 }
1091
1092 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1093 {
1094         kvm_pte_t pte = 0;
1095         stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1096                                  &pte, NULL);
1097         dsb(ishst);
1098         return pte;
1099 }
1100
1101 kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr)
1102 {
1103         kvm_pte_t pte = 0;
1104         stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF,
1105                                  &pte, NULL);
1106         /*
1107          * "But where's the TLBI?!", you scream.
1108          * "Over in the core code", I sigh.
1109          *
1110          * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1111          */
1112         return pte;
1113 }
1114
1115 bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr)
1116 {
1117         kvm_pte_t pte = 0;
1118         stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL);
1119         return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF;
1120 }
1121
1122 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1123                                    enum kvm_pgtable_prot prot)
1124 {
1125         int ret;
1126         u32 level;
1127         kvm_pte_t set = 0, clr = 0;
1128
1129         if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1130                 return -EINVAL;
1131
1132         if (prot & KVM_PGTABLE_PROT_R)
1133                 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1134
1135         if (prot & KVM_PGTABLE_PROT_W)
1136                 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1137
1138         if (prot & KVM_PGTABLE_PROT_X)
1139                 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1140
1141         ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level);
1142         if (!ret)
1143                 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level);
1144         return ret;
1145 }
1146
1147 static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1148                                enum kvm_pgtable_walk_flags flag,
1149                                void * const arg)
1150 {
1151         struct kvm_pgtable *pgt = arg;
1152         struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1153         kvm_pte_t pte = *ptep;
1154         kvm_pte_t *pte_follow;
1155
1156         if (!kvm_pte_valid(pte) || !stage2_pte_cacheable(pgt, pte))
1157                 return 0;
1158
1159         pte_follow = kvm_pte_follow(pte, mm_ops);
1160         dcache_clean_inval_poc((unsigned long)pte_follow,
1161                             (unsigned long)pte_follow +
1162                                     kvm_granule_size(level));
1163         return 0;
1164 }
1165
1166 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1167 {
1168         struct kvm_pgtable_walker walker = {
1169                 .cb     = stage2_flush_walker,
1170                 .flags  = KVM_PGTABLE_WALK_LEAF,
1171                 .arg    = pgt,
1172         };
1173
1174         if (stage2_has_fwb(pgt))
1175                 return 0;
1176
1177         return kvm_pgtable_walk(pgt, addr, size, &walker);
1178 }
1179
1180
1181 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1182                               struct kvm_pgtable_mm_ops *mm_ops,
1183                               enum kvm_pgtable_stage2_flags flags,
1184                               kvm_pgtable_force_pte_cb_t force_pte_cb)
1185 {
1186         size_t pgd_sz;
1187         u64 vtcr = mmu->arch->vtcr;
1188         u32 ia_bits = VTCR_EL2_IPA(vtcr);
1189         u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1190         u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1191
1192         pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1193         pgt->pgd = mm_ops->zalloc_pages_exact(pgd_sz);
1194         if (!pgt->pgd)
1195                 return -ENOMEM;
1196
1197         pgt->ia_bits            = ia_bits;
1198         pgt->start_level        = start_level;
1199         pgt->mm_ops             = mm_ops;
1200         pgt->mmu                = mmu;
1201         pgt->flags              = flags;
1202         pgt->force_pte_cb       = force_pte_cb;
1203
1204         /* Ensure zeroed PGD pages are visible to the hardware walker */
1205         dsb(ishst);
1206         return 0;
1207 }
1208
1209 static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1210                               enum kvm_pgtable_walk_flags flag,
1211                               void * const arg)
1212 {
1213         struct kvm_pgtable_mm_ops *mm_ops = arg;
1214         kvm_pte_t pte = *ptep;
1215
1216         if (!stage2_pte_is_counted(pte))
1217                 return 0;
1218
1219         mm_ops->put_page(ptep);
1220
1221         if (kvm_pte_table(pte, level))
1222                 mm_ops->put_page(kvm_pte_follow(pte, mm_ops));
1223
1224         return 0;
1225 }
1226
1227 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1228 {
1229         size_t pgd_sz;
1230         struct kvm_pgtable_walker walker = {
1231                 .cb     = stage2_free_walker,
1232                 .flags  = KVM_PGTABLE_WALK_LEAF |
1233                           KVM_PGTABLE_WALK_TABLE_POST,
1234                 .arg    = pgt->mm_ops,
1235         };
1236
1237         WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1238         pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1239         pgt->mm_ops->free_pages_exact(pgt->pgd, pgd_sz);
1240         pgt->pgd = NULL;
1241 }