Merge branches 'clk-range', 'clk-uniphier', 'clk-apple' and 'clk-qcom' into clk-next
[linux-2.6-microblaze.git] / arch / arm64 / kvm / hyp / include / hyp / switch.h
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
12
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
18
19 #include <kvm/arm_psci.h>
20
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/fpsimd.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/processor.h>
32
33 struct kvm_exception_table_entry {
34         int insn, fixup;
35 };
36
37 extern struct kvm_exception_table_entry __start___kvm_ex_table;
38 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
39
40 /* Check whether the FP regs were dirtied while in the host-side run loop: */
41 static inline bool update_fp_enabled(struct kvm_vcpu *vcpu)
42 {
43         /*
44          * When the system doesn't support FP/SIMD, we cannot rely on
45          * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
46          * abort on the very first access to FP and thus we should never
47          * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
48          * trap the accesses.
49          */
50         if (!system_supports_fpsimd() ||
51             vcpu->arch.flags & KVM_ARM64_FP_FOREIGN_FPSTATE)
52                 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
53                                       KVM_ARM64_FP_HOST);
54
55         return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
56 }
57
58 /* Save the 32-bit only FPSIMD system register state */
59 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
60 {
61         if (!vcpu_el1_is_32bit(vcpu))
62                 return;
63
64         __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
65 }
66
67 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
68 {
69         /*
70          * We are about to set CPTR_EL2.TFP to trap all floating point
71          * register accesses to EL2, however, the ARM ARM clearly states that
72          * traps are only taken to EL2 if the operation would not otherwise
73          * trap to EL1.  Therefore, always make sure that for 32-bit guests,
74          * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
75          * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
76          * it will cause an exception.
77          */
78         if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
79                 write_sysreg(1 << 30, fpexc32_el2);
80                 isb();
81         }
82 }
83
84 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
85 {
86         /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
87         write_sysreg(1 << 15, hstr_el2);
88
89         /*
90          * Make sure we trap PMU access from EL0 to EL2. Also sanitize
91          * PMSELR_EL0 to make sure it never contains the cycle
92          * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
93          * EL1 instead of being trapped to EL2.
94          */
95         if (kvm_arm_support_pmu_v3()) {
96                 write_sysreg(0, pmselr_el0);
97                 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
98         }
99
100         vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
101         write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
102 }
103
104 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
105 {
106         write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
107
108         write_sysreg(0, hstr_el2);
109         if (kvm_arm_support_pmu_v3())
110                 write_sysreg(0, pmuserenr_el0);
111 }
112
113 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
114 {
115         u64 hcr = vcpu->arch.hcr_el2;
116
117         if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
118                 hcr |= HCR_TVM;
119
120         write_sysreg(hcr, hcr_el2);
121
122         if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
123                 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
124 }
125
126 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
127 {
128         /*
129          * If we pended a virtual abort, preserve it until it gets
130          * cleared. See D1.14.3 (Virtual Interrupts) for details, but
131          * the crucial bit is "On taking a vSError interrupt,
132          * HCR_EL2.VSE is cleared to 0."
133          */
134         if (vcpu->arch.hcr_el2 & HCR_VSE) {
135                 vcpu->arch.hcr_el2 &= ~HCR_VSE;
136                 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
137         }
138 }
139
140 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
141 {
142         return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
143 }
144
145 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
146 {
147         sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
148         __sve_restore_state(vcpu_sve_pffr(vcpu),
149                             &vcpu->arch.ctxt.fp_regs.fpsr);
150         write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
151 }
152
153 /*
154  * We trap the first access to the FP/SIMD to save the host context and
155  * restore the guest context lazily.
156  * If FP/SIMD is not implemented, handle the trap and inject an undefined
157  * instruction exception to the guest. Similarly for trapped SVE accesses.
158  */
159 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
160 {
161         bool sve_guest;
162         u8 esr_ec;
163         u64 reg;
164
165         if (!system_supports_fpsimd())
166                 return false;
167
168         sve_guest = vcpu_has_sve(vcpu);
169         esr_ec = kvm_vcpu_trap_get_class(vcpu);
170
171         /* Don't handle SVE traps for non-SVE vcpus here: */
172         if (!sve_guest && esr_ec != ESR_ELx_EC_FP_ASIMD)
173                 return false;
174
175         /* Valid trap.  Switch the context: */
176         if (has_vhe()) {
177                 reg = CPACR_EL1_FPEN;
178                 if (sve_guest)
179                         reg |= CPACR_EL1_ZEN;
180
181                 sysreg_clear_set(cpacr_el1, 0, reg);
182         } else {
183                 reg = CPTR_EL2_TFP;
184                 if (sve_guest)
185                         reg |= CPTR_EL2_TZ;
186
187                 sysreg_clear_set(cptr_el2, reg, 0);
188         }
189         isb();
190
191         if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
192                 __fpsimd_save_state(vcpu->arch.host_fpsimd_state);
193                 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
194         }
195
196         if (sve_guest)
197                 __hyp_sve_restore_guest(vcpu);
198         else
199                 __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
200
201         /* Skip restoring fpexc32 for AArch64 guests */
202         if (!(read_sysreg(hcr_el2) & HCR_RW))
203                 write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
204
205         vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
206
207         return true;
208 }
209
210 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
211 {
212         u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
213         int rt = kvm_vcpu_sys_get_rt(vcpu);
214         u64 val = vcpu_get_reg(vcpu, rt);
215
216         /*
217          * The normal sysreg handling code expects to see the traps,
218          * let's not do anything here.
219          */
220         if (vcpu->arch.hcr_el2 & HCR_TVM)
221                 return false;
222
223         switch (sysreg) {
224         case SYS_SCTLR_EL1:
225                 write_sysreg_el1(val, SYS_SCTLR);
226                 break;
227         case SYS_TTBR0_EL1:
228                 write_sysreg_el1(val, SYS_TTBR0);
229                 break;
230         case SYS_TTBR1_EL1:
231                 write_sysreg_el1(val, SYS_TTBR1);
232                 break;
233         case SYS_TCR_EL1:
234                 write_sysreg_el1(val, SYS_TCR);
235                 break;
236         case SYS_ESR_EL1:
237                 write_sysreg_el1(val, SYS_ESR);
238                 break;
239         case SYS_FAR_EL1:
240                 write_sysreg_el1(val, SYS_FAR);
241                 break;
242         case SYS_AFSR0_EL1:
243                 write_sysreg_el1(val, SYS_AFSR0);
244                 break;
245         case SYS_AFSR1_EL1:
246                 write_sysreg_el1(val, SYS_AFSR1);
247                 break;
248         case SYS_MAIR_EL1:
249                 write_sysreg_el1(val, SYS_MAIR);
250                 break;
251         case SYS_AMAIR_EL1:
252                 write_sysreg_el1(val, SYS_AMAIR);
253                 break;
254         case SYS_CONTEXTIDR_EL1:
255                 write_sysreg_el1(val, SYS_CONTEXTIDR);
256                 break;
257         default:
258                 return false;
259         }
260
261         __kvm_skip_instr(vcpu);
262         return true;
263 }
264
265 static inline bool esr_is_ptrauth_trap(u32 esr)
266 {
267         switch (esr_sys64_to_sysreg(esr)) {
268         case SYS_APIAKEYLO_EL1:
269         case SYS_APIAKEYHI_EL1:
270         case SYS_APIBKEYLO_EL1:
271         case SYS_APIBKEYHI_EL1:
272         case SYS_APDAKEYLO_EL1:
273         case SYS_APDAKEYHI_EL1:
274         case SYS_APDBKEYLO_EL1:
275         case SYS_APDBKEYHI_EL1:
276         case SYS_APGAKEYLO_EL1:
277         case SYS_APGAKEYHI_EL1:
278                 return true;
279         }
280
281         return false;
282 }
283
284 #define __ptrauth_save_key(ctxt, key)                                   \
285         do {                                                            \
286         u64 __val;                                                      \
287         __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);                \
288         ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val;                   \
289         __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);                \
290         ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val;                   \
291 } while(0)
292
293 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
294
295 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
296 {
297         struct kvm_cpu_context *ctxt;
298         u64 val;
299
300         if (!vcpu_has_ptrauth(vcpu))
301                 return false;
302
303         ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
304         __ptrauth_save_key(ctxt, APIA);
305         __ptrauth_save_key(ctxt, APIB);
306         __ptrauth_save_key(ctxt, APDA);
307         __ptrauth_save_key(ctxt, APDB);
308         __ptrauth_save_key(ctxt, APGA);
309
310         vcpu_ptrauth_enable(vcpu);
311
312         val = read_sysreg(hcr_el2);
313         val |= (HCR_API | HCR_APK);
314         write_sysreg(val, hcr_el2);
315
316         return true;
317 }
318
319 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
320 {
321         if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
322             handle_tx2_tvm(vcpu))
323                 return true;
324
325         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
326             __vgic_v3_perform_cpuif_access(vcpu) == 1)
327                 return true;
328
329         if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
330                 return kvm_hyp_handle_ptrauth(vcpu, exit_code);
331
332         return false;
333 }
334
335 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
336 {
337         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
338             __vgic_v3_perform_cpuif_access(vcpu) == 1)
339                 return true;
340
341         return false;
342 }
343
344 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
345 {
346         if (!__populate_fault_info(vcpu))
347                 return true;
348
349         return false;
350 }
351
352 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
353 {
354         if (!__populate_fault_info(vcpu))
355                 return true;
356
357         if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
358                 bool valid;
359
360                 valid = kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
361                         kvm_vcpu_dabt_isvalid(vcpu) &&
362                         !kvm_vcpu_abt_issea(vcpu) &&
363                         !kvm_vcpu_abt_iss1tw(vcpu);
364
365                 if (valid) {
366                         int ret = __vgic_v2_perform_cpuif_access(vcpu);
367
368                         if (ret == 1)
369                                 return true;
370
371                         /* Promote an illegal access to an SError.*/
372                         if (ret == -1)
373                                 *exit_code = ARM_EXCEPTION_EL1_SERROR;
374                 }
375         }
376
377         return false;
378 }
379
380 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
381
382 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
383
384 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
385
386 /*
387  * Allow the hypervisor to handle the exit with an exit handler if it has one.
388  *
389  * Returns true if the hypervisor handled the exit, and control should go back
390  * to the guest, or false if it hasn't.
391  */
392 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
393 {
394         const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
395         exit_handler_fn fn;
396
397         fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
398
399         if (fn)
400                 return fn(vcpu, exit_code);
401
402         return false;
403 }
404
405 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
406 {
407         /*
408          * Check for the conditions of Cortex-A510's #2077057. When these occur
409          * SPSR_EL2 can't be trusted, but isn't needed either as it is
410          * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
411          * Are we single-stepping the guest, and took a PAC exception from the
412          * active-not-pending state?
413          */
414         if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)               &&
415             vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP                 &&
416             *vcpu_cpsr(vcpu) & DBG_SPSR_SS                              &&
417             ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
418                 write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
419
420         vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
421 }
422
423 /*
424  * Return true when we were able to fixup the guest exit and should return to
425  * the guest, false when we should restore the host state and return to the
426  * main run loop.
427  */
428 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
429 {
430         /*
431          * Save PSTATE early so that we can evaluate the vcpu mode
432          * early on.
433          */
434         synchronize_vcpu_pstate(vcpu, exit_code);
435
436         /*
437          * Check whether we want to repaint the state one way or
438          * another.
439          */
440         early_exit_filter(vcpu, exit_code);
441
442         if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
443                 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
444
445         if (ARM_SERROR_PENDING(*exit_code) &&
446             ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
447                 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
448
449                 /*
450                  * HVC already have an adjusted PC, which we need to
451                  * correct in order to return to after having injected
452                  * the SError.
453                  *
454                  * SMC, on the other hand, is *trapped*, meaning its
455                  * preferred return address is the SMC itself.
456                  */
457                 if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
458                         write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
459         }
460
461         /*
462          * We're using the raw exception code in order to only process
463          * the trap if no SError is pending. We will come back to the
464          * same PC once the SError has been injected, and replay the
465          * trapping instruction.
466          */
467         if (*exit_code != ARM_EXCEPTION_TRAP)
468                 goto exit;
469
470         /* Check if there's an exit handler and allow it to handle the exit. */
471         if (kvm_hyp_handle_exit(vcpu, exit_code))
472                 goto guest;
473 exit:
474         /* Return to the host kernel and handle the exit */
475         return false;
476
477 guest:
478         /* Re-enter the guest */
479         asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
480         return true;
481 }
482
483 static inline void __kvm_unexpected_el2_exception(void)
484 {
485         extern char __guest_exit_panic[];
486         unsigned long addr, fixup;
487         struct kvm_exception_table_entry *entry, *end;
488         unsigned long elr_el2 = read_sysreg(elr_el2);
489
490         entry = &__start___kvm_ex_table;
491         end = &__stop___kvm_ex_table;
492
493         while (entry < end) {
494                 addr = (unsigned long)&entry->insn + entry->insn;
495                 fixup = (unsigned long)&entry->fixup + entry->fixup;
496
497                 if (addr != elr_el2) {
498                         entry++;
499                         continue;
500                 }
501
502                 write_sysreg(fixup, elr_el2);
503                 return;
504         }
505
506         /* Trigger a panic after restoring the hyp context. */
507         write_sysreg(__guest_exit_panic, elr_el2);
508 }
509
510 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */