Merge tag 'xfs-5.13-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
24
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
27
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/sections.h>
40
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension        virt");
47 #endif
48
49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51
52 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u32 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62
63 static bool vgic_present;
64
65 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
67
68 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
69 {
70         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
71 }
72
73 int kvm_arch_hardware_setup(void *opaque)
74 {
75         return 0;
76 }
77
78 int kvm_arch_check_processor_compat(void *opaque)
79 {
80         return 0;
81 }
82
83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
84                             struct kvm_enable_cap *cap)
85 {
86         int r;
87
88         if (cap->flags)
89                 return -EINVAL;
90
91         switch (cap->cap) {
92         case KVM_CAP_ARM_NISV_TO_USER:
93                 r = 0;
94                 kvm->arch.return_nisv_io_abort_to_user = true;
95                 break;
96         default:
97                 r = -EINVAL;
98                 break;
99         }
100
101         return r;
102 }
103
104 static int kvm_arm_default_max_vcpus(void)
105 {
106         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
107 }
108
109 static void set_default_spectre(struct kvm *kvm)
110 {
111         /*
112          * The default is to expose CSV2 == 1 if the HW isn't affected.
113          * Although this is a per-CPU feature, we make it global because
114          * asymmetric systems are just a nuisance.
115          *
116          * Userspace can override this as long as it doesn't promise
117          * the impossible.
118          */
119         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
120                 kvm->arch.pfr0_csv2 = 1;
121         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
122                 kvm->arch.pfr0_csv3 = 1;
123 }
124
125 /**
126  * kvm_arch_init_vm - initializes a VM data structure
127  * @kvm:        pointer to the KVM struct
128  */
129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
130 {
131         int ret;
132
133         ret = kvm_arm_setup_stage2(kvm, type);
134         if (ret)
135                 return ret;
136
137         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
138         if (ret)
139                 return ret;
140
141         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
142         if (ret)
143                 goto out_free_stage2_pgd;
144
145         kvm_vgic_early_init(kvm);
146
147         /* The maximum number of VCPUs is limited by the host's GIC model */
148         kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
149
150         set_default_spectre(kvm);
151
152         return ret;
153 out_free_stage2_pgd:
154         kvm_free_stage2_pgd(&kvm->arch.mmu);
155         return ret;
156 }
157
158 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
159 {
160         return VM_FAULT_SIGBUS;
161 }
162
163
164 /**
165  * kvm_arch_destroy_vm - destroy the VM data structure
166  * @kvm:        pointer to the KVM struct
167  */
168 void kvm_arch_destroy_vm(struct kvm *kvm)
169 {
170         int i;
171
172         bitmap_free(kvm->arch.pmu_filter);
173
174         kvm_vgic_destroy(kvm);
175
176         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
177                 if (kvm->vcpus[i]) {
178                         kvm_vcpu_destroy(kvm->vcpus[i]);
179                         kvm->vcpus[i] = NULL;
180                 }
181         }
182         atomic_set(&kvm->online_vcpus, 0);
183 }
184
185 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
186 {
187         int r;
188         switch (ext) {
189         case KVM_CAP_IRQCHIP:
190                 r = vgic_present;
191                 break;
192         case KVM_CAP_IOEVENTFD:
193         case KVM_CAP_DEVICE_CTRL:
194         case KVM_CAP_USER_MEMORY:
195         case KVM_CAP_SYNC_MMU:
196         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
197         case KVM_CAP_ONE_REG:
198         case KVM_CAP_ARM_PSCI:
199         case KVM_CAP_ARM_PSCI_0_2:
200         case KVM_CAP_READONLY_MEM:
201         case KVM_CAP_MP_STATE:
202         case KVM_CAP_IMMEDIATE_EXIT:
203         case KVM_CAP_VCPU_EVENTS:
204         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
205         case KVM_CAP_ARM_NISV_TO_USER:
206         case KVM_CAP_ARM_INJECT_EXT_DABT:
207         case KVM_CAP_SET_GUEST_DEBUG:
208         case KVM_CAP_VCPU_ATTRIBUTES:
209         case KVM_CAP_PTP_KVM:
210                 r = 1;
211                 break;
212         case KVM_CAP_SET_GUEST_DEBUG2:
213                 return KVM_GUESTDBG_VALID_MASK;
214         case KVM_CAP_ARM_SET_DEVICE_ADDR:
215                 r = 1;
216                 break;
217         case KVM_CAP_NR_VCPUS:
218                 r = num_online_cpus();
219                 break;
220         case KVM_CAP_MAX_VCPUS:
221         case KVM_CAP_MAX_VCPU_ID:
222                 if (kvm)
223                         r = kvm->arch.max_vcpus;
224                 else
225                         r = kvm_arm_default_max_vcpus();
226                 break;
227         case KVM_CAP_MSI_DEVID:
228                 if (!kvm)
229                         r = -EINVAL;
230                 else
231                         r = kvm->arch.vgic.msis_require_devid;
232                 break;
233         case KVM_CAP_ARM_USER_IRQ:
234                 /*
235                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
236                  * (bump this number if adding more devices)
237                  */
238                 r = 1;
239                 break;
240         case KVM_CAP_STEAL_TIME:
241                 r = kvm_arm_pvtime_supported();
242                 break;
243         case KVM_CAP_ARM_EL1_32BIT:
244                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
245                 break;
246         case KVM_CAP_GUEST_DEBUG_HW_BPS:
247                 r = get_num_brps();
248                 break;
249         case KVM_CAP_GUEST_DEBUG_HW_WPS:
250                 r = get_num_wrps();
251                 break;
252         case KVM_CAP_ARM_PMU_V3:
253                 r = kvm_arm_support_pmu_v3();
254                 break;
255         case KVM_CAP_ARM_INJECT_SERROR_ESR:
256                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
257                 break;
258         case KVM_CAP_ARM_VM_IPA_SIZE:
259                 r = get_kvm_ipa_limit();
260                 break;
261         case KVM_CAP_ARM_SVE:
262                 r = system_supports_sve();
263                 break;
264         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
265         case KVM_CAP_ARM_PTRAUTH_GENERIC:
266                 r = system_has_full_ptr_auth();
267                 break;
268         default:
269                 r = 0;
270         }
271
272         return r;
273 }
274
275 long kvm_arch_dev_ioctl(struct file *filp,
276                         unsigned int ioctl, unsigned long arg)
277 {
278         return -EINVAL;
279 }
280
281 struct kvm *kvm_arch_alloc_vm(void)
282 {
283         if (!has_vhe())
284                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
285
286         return vzalloc(sizeof(struct kvm));
287 }
288
289 void kvm_arch_free_vm(struct kvm *kvm)
290 {
291         if (!has_vhe())
292                 kfree(kvm);
293         else
294                 vfree(kvm);
295 }
296
297 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
298 {
299         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
300                 return -EBUSY;
301
302         if (id >= kvm->arch.max_vcpus)
303                 return -EINVAL;
304
305         return 0;
306 }
307
308 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
309 {
310         int err;
311
312         /* Force users to call KVM_ARM_VCPU_INIT */
313         vcpu->arch.target = -1;
314         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
315
316         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
317
318         /* Set up the timer */
319         kvm_timer_vcpu_init(vcpu);
320
321         kvm_pmu_vcpu_init(vcpu);
322
323         kvm_arm_reset_debug_ptr(vcpu);
324
325         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
326
327         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
328
329         err = kvm_vgic_vcpu_init(vcpu);
330         if (err)
331                 return err;
332
333         return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
334 }
335
336 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
337 {
338 }
339
340 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
341 {
342         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
343                 static_branch_dec(&userspace_irqchip_in_use);
344
345         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
346         kvm_timer_vcpu_terminate(vcpu);
347         kvm_pmu_vcpu_destroy(vcpu);
348
349         kvm_arm_vcpu_destroy(vcpu);
350 }
351
352 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
353 {
354         return kvm_timer_is_pending(vcpu);
355 }
356
357 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
358 {
359         /*
360          * If we're about to block (most likely because we've just hit a
361          * WFI), we need to sync back the state of the GIC CPU interface
362          * so that we have the latest PMR and group enables. This ensures
363          * that kvm_arch_vcpu_runnable has up-to-date data to decide
364          * whether we have pending interrupts.
365          *
366          * For the same reason, we want to tell GICv4 that we need
367          * doorbells to be signalled, should an interrupt become pending.
368          */
369         preempt_disable();
370         kvm_vgic_vmcr_sync(vcpu);
371         vgic_v4_put(vcpu, true);
372         preempt_enable();
373 }
374
375 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
376 {
377         preempt_disable();
378         vgic_v4_load(vcpu);
379         preempt_enable();
380 }
381
382 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
383 {
384         struct kvm_s2_mmu *mmu;
385         int *last_ran;
386
387         mmu = vcpu->arch.hw_mmu;
388         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
389
390         /*
391          * We guarantee that both TLBs and I-cache are private to each
392          * vcpu. If detecting that a vcpu from the same VM has
393          * previously run on the same physical CPU, call into the
394          * hypervisor code to nuke the relevant contexts.
395          *
396          * We might get preempted before the vCPU actually runs, but
397          * over-invalidation doesn't affect correctness.
398          */
399         if (*last_ran != vcpu->vcpu_id) {
400                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
401                 *last_ran = vcpu->vcpu_id;
402         }
403
404         vcpu->cpu = cpu;
405
406         kvm_vgic_load(vcpu);
407         kvm_timer_vcpu_load(vcpu);
408         if (has_vhe())
409                 kvm_vcpu_load_sysregs_vhe(vcpu);
410         kvm_arch_vcpu_load_fp(vcpu);
411         kvm_vcpu_pmu_restore_guest(vcpu);
412         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
413                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
414
415         if (single_task_running())
416                 vcpu_clear_wfx_traps(vcpu);
417         else
418                 vcpu_set_wfx_traps(vcpu);
419
420         if (vcpu_has_ptrauth(vcpu))
421                 vcpu_ptrauth_disable(vcpu);
422         kvm_arch_vcpu_load_debug_state_flags(vcpu);
423 }
424
425 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
426 {
427         kvm_arch_vcpu_put_debug_state_flags(vcpu);
428         kvm_arch_vcpu_put_fp(vcpu);
429         if (has_vhe())
430                 kvm_vcpu_put_sysregs_vhe(vcpu);
431         kvm_timer_vcpu_put(vcpu);
432         kvm_vgic_put(vcpu);
433         kvm_vcpu_pmu_restore_host(vcpu);
434
435         vcpu->cpu = -1;
436 }
437
438 static void vcpu_power_off(struct kvm_vcpu *vcpu)
439 {
440         vcpu->arch.power_off = true;
441         kvm_make_request(KVM_REQ_SLEEP, vcpu);
442         kvm_vcpu_kick(vcpu);
443 }
444
445 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
446                                     struct kvm_mp_state *mp_state)
447 {
448         if (vcpu->arch.power_off)
449                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
450         else
451                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
452
453         return 0;
454 }
455
456 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
457                                     struct kvm_mp_state *mp_state)
458 {
459         int ret = 0;
460
461         switch (mp_state->mp_state) {
462         case KVM_MP_STATE_RUNNABLE:
463                 vcpu->arch.power_off = false;
464                 break;
465         case KVM_MP_STATE_STOPPED:
466                 vcpu_power_off(vcpu);
467                 break;
468         default:
469                 ret = -EINVAL;
470         }
471
472         return ret;
473 }
474
475 /**
476  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
477  * @v:          The VCPU pointer
478  *
479  * If the guest CPU is not waiting for interrupts or an interrupt line is
480  * asserted, the CPU is by definition runnable.
481  */
482 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
483 {
484         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
485         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
486                 && !v->arch.power_off && !v->arch.pause);
487 }
488
489 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
490 {
491         return vcpu_mode_priv(vcpu);
492 }
493
494 /* Just ensure a guest exit from a particular CPU */
495 static void exit_vm_noop(void *info)
496 {
497 }
498
499 void force_vm_exit(const cpumask_t *mask)
500 {
501         preempt_disable();
502         smp_call_function_many(mask, exit_vm_noop, NULL, true);
503         preempt_enable();
504 }
505
506 /**
507  * need_new_vmid_gen - check that the VMID is still valid
508  * @vmid: The VMID to check
509  *
510  * return true if there is a new generation of VMIDs being used
511  *
512  * The hardware supports a limited set of values with the value zero reserved
513  * for the host, so we check if an assigned value belongs to a previous
514  * generation, which requires us to assign a new value. If we're the first to
515  * use a VMID for the new generation, we must flush necessary caches and TLBs
516  * on all CPUs.
517  */
518 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
519 {
520         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
521         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
522         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
523 }
524
525 /**
526  * update_vmid - Update the vmid with a valid VMID for the current generation
527  * @vmid: The stage-2 VMID information struct
528  */
529 static void update_vmid(struct kvm_vmid *vmid)
530 {
531         if (!need_new_vmid_gen(vmid))
532                 return;
533
534         spin_lock(&kvm_vmid_lock);
535
536         /*
537          * We need to re-check the vmid_gen here to ensure that if another vcpu
538          * already allocated a valid vmid for this vm, then this vcpu should
539          * use the same vmid.
540          */
541         if (!need_new_vmid_gen(vmid)) {
542                 spin_unlock(&kvm_vmid_lock);
543                 return;
544         }
545
546         /* First user of a new VMID generation? */
547         if (unlikely(kvm_next_vmid == 0)) {
548                 atomic64_inc(&kvm_vmid_gen);
549                 kvm_next_vmid = 1;
550
551                 /*
552                  * On SMP we know no other CPUs can use this CPU's or each
553                  * other's VMID after force_vm_exit returns since the
554                  * kvm_vmid_lock blocks them from reentry to the guest.
555                  */
556                 force_vm_exit(cpu_all_mask);
557                 /*
558                  * Now broadcast TLB + ICACHE invalidation over the inner
559                  * shareable domain to make sure all data structures are
560                  * clean.
561                  */
562                 kvm_call_hyp(__kvm_flush_vm_context);
563         }
564
565         vmid->vmid = kvm_next_vmid;
566         kvm_next_vmid++;
567         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
568
569         smp_wmb();
570         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
571
572         spin_unlock(&kvm_vmid_lock);
573 }
574
575 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
576 {
577         struct kvm *kvm = vcpu->kvm;
578         int ret = 0;
579
580         if (likely(vcpu->arch.has_run_once))
581                 return 0;
582
583         if (!kvm_arm_vcpu_is_finalized(vcpu))
584                 return -EPERM;
585
586         vcpu->arch.has_run_once = true;
587
588         kvm_arm_vcpu_init_debug(vcpu);
589
590         if (likely(irqchip_in_kernel(kvm))) {
591                 /*
592                  * Map the VGIC hardware resources before running a vcpu the
593                  * first time on this VM.
594                  */
595                 ret = kvm_vgic_map_resources(kvm);
596                 if (ret)
597                         return ret;
598         } else {
599                 /*
600                  * Tell the rest of the code that there are userspace irqchip
601                  * VMs in the wild.
602                  */
603                 static_branch_inc(&userspace_irqchip_in_use);
604         }
605
606         ret = kvm_timer_enable(vcpu);
607         if (ret)
608                 return ret;
609
610         ret = kvm_arm_pmu_v3_enable(vcpu);
611
612         return ret;
613 }
614
615 bool kvm_arch_intc_initialized(struct kvm *kvm)
616 {
617         return vgic_initialized(kvm);
618 }
619
620 void kvm_arm_halt_guest(struct kvm *kvm)
621 {
622         int i;
623         struct kvm_vcpu *vcpu;
624
625         kvm_for_each_vcpu(i, vcpu, kvm)
626                 vcpu->arch.pause = true;
627         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
628 }
629
630 void kvm_arm_resume_guest(struct kvm *kvm)
631 {
632         int i;
633         struct kvm_vcpu *vcpu;
634
635         kvm_for_each_vcpu(i, vcpu, kvm) {
636                 vcpu->arch.pause = false;
637                 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
638         }
639 }
640
641 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
642 {
643         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
644
645         rcuwait_wait_event(wait,
646                            (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
647                            TASK_INTERRUPTIBLE);
648
649         if (vcpu->arch.power_off || vcpu->arch.pause) {
650                 /* Awaken to handle a signal, request we sleep again later. */
651                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
652         }
653
654         /*
655          * Make sure we will observe a potential reset request if we've
656          * observed a change to the power state. Pairs with the smp_wmb() in
657          * kvm_psci_vcpu_on().
658          */
659         smp_rmb();
660 }
661
662 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
663 {
664         return vcpu->arch.target >= 0;
665 }
666
667 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
668 {
669         if (kvm_request_pending(vcpu)) {
670                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
671                         vcpu_req_sleep(vcpu);
672
673                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
674                         kvm_reset_vcpu(vcpu);
675
676                 /*
677                  * Clear IRQ_PENDING requests that were made to guarantee
678                  * that a VCPU sees new virtual interrupts.
679                  */
680                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
681
682                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
683                         kvm_update_stolen_time(vcpu);
684
685                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
686                         /* The distributor enable bits were changed */
687                         preempt_disable();
688                         vgic_v4_put(vcpu, false);
689                         vgic_v4_load(vcpu);
690                         preempt_enable();
691                 }
692         }
693 }
694
695 /**
696  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
697  * @vcpu:       The VCPU pointer
698  *
699  * This function is called through the VCPU_RUN ioctl called from user space. It
700  * will execute VM code in a loop until the time slice for the process is used
701  * or some emulation is needed from user space in which case the function will
702  * return with return value 0 and with the kvm_run structure filled in with the
703  * required data for the requested emulation.
704  */
705 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
706 {
707         struct kvm_run *run = vcpu->run;
708         int ret;
709
710         if (unlikely(!kvm_vcpu_initialized(vcpu)))
711                 return -ENOEXEC;
712
713         ret = kvm_vcpu_first_run_init(vcpu);
714         if (ret)
715                 return ret;
716
717         if (run->exit_reason == KVM_EXIT_MMIO) {
718                 ret = kvm_handle_mmio_return(vcpu);
719                 if (ret)
720                         return ret;
721         }
722
723         if (run->immediate_exit)
724                 return -EINTR;
725
726         vcpu_load(vcpu);
727
728         kvm_sigset_activate(vcpu);
729
730         ret = 1;
731         run->exit_reason = KVM_EXIT_UNKNOWN;
732         while (ret > 0) {
733                 /*
734                  * Check conditions before entering the guest
735                  */
736                 cond_resched();
737
738                 update_vmid(&vcpu->arch.hw_mmu->vmid);
739
740                 check_vcpu_requests(vcpu);
741
742                 /*
743                  * Preparing the interrupts to be injected also
744                  * involves poking the GIC, which must be done in a
745                  * non-preemptible context.
746                  */
747                 preempt_disable();
748
749                 kvm_pmu_flush_hwstate(vcpu);
750
751                 local_irq_disable();
752
753                 kvm_vgic_flush_hwstate(vcpu);
754
755                 /*
756                  * Exit if we have a signal pending so that we can deliver the
757                  * signal to user space.
758                  */
759                 if (signal_pending(current)) {
760                         ret = -EINTR;
761                         run->exit_reason = KVM_EXIT_INTR;
762                 }
763
764                 /*
765                  * If we're using a userspace irqchip, then check if we need
766                  * to tell a userspace irqchip about timer or PMU level
767                  * changes and if so, exit to userspace (the actual level
768                  * state gets updated in kvm_timer_update_run and
769                  * kvm_pmu_update_run below).
770                  */
771                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
772                         if (kvm_timer_should_notify_user(vcpu) ||
773                             kvm_pmu_should_notify_user(vcpu)) {
774                                 ret = -EINTR;
775                                 run->exit_reason = KVM_EXIT_INTR;
776                         }
777                 }
778
779                 /*
780                  * Ensure we set mode to IN_GUEST_MODE after we disable
781                  * interrupts and before the final VCPU requests check.
782                  * See the comment in kvm_vcpu_exiting_guest_mode() and
783                  * Documentation/virt/kvm/vcpu-requests.rst
784                  */
785                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
786
787                 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
788                     kvm_request_pending(vcpu)) {
789                         vcpu->mode = OUTSIDE_GUEST_MODE;
790                         isb(); /* Ensure work in x_flush_hwstate is committed */
791                         kvm_pmu_sync_hwstate(vcpu);
792                         if (static_branch_unlikely(&userspace_irqchip_in_use))
793                                 kvm_timer_sync_user(vcpu);
794                         kvm_vgic_sync_hwstate(vcpu);
795                         local_irq_enable();
796                         preempt_enable();
797                         continue;
798                 }
799
800                 kvm_arm_setup_debug(vcpu);
801
802                 /**************************************************************
803                  * Enter the guest
804                  */
805                 trace_kvm_entry(*vcpu_pc(vcpu));
806                 guest_enter_irqoff();
807
808                 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
809
810                 vcpu->mode = OUTSIDE_GUEST_MODE;
811                 vcpu->stat.exits++;
812                 /*
813                  * Back from guest
814                  *************************************************************/
815
816                 kvm_arm_clear_debug(vcpu);
817
818                 /*
819                  * We must sync the PMU state before the vgic state so
820                  * that the vgic can properly sample the updated state of the
821                  * interrupt line.
822                  */
823                 kvm_pmu_sync_hwstate(vcpu);
824
825                 /*
826                  * Sync the vgic state before syncing the timer state because
827                  * the timer code needs to know if the virtual timer
828                  * interrupts are active.
829                  */
830                 kvm_vgic_sync_hwstate(vcpu);
831
832                 /*
833                  * Sync the timer hardware state before enabling interrupts as
834                  * we don't want vtimer interrupts to race with syncing the
835                  * timer virtual interrupt state.
836                  */
837                 if (static_branch_unlikely(&userspace_irqchip_in_use))
838                         kvm_timer_sync_user(vcpu);
839
840                 kvm_arch_vcpu_ctxsync_fp(vcpu);
841
842                 /*
843                  * We may have taken a host interrupt in HYP mode (ie
844                  * while executing the guest). This interrupt is still
845                  * pending, as we haven't serviced it yet!
846                  *
847                  * We're now back in SVC mode, with interrupts
848                  * disabled.  Enabling the interrupts now will have
849                  * the effect of taking the interrupt again, in SVC
850                  * mode this time.
851                  */
852                 local_irq_enable();
853
854                 /*
855                  * We do local_irq_enable() before calling guest_exit() so
856                  * that if a timer interrupt hits while running the guest we
857                  * account that tick as being spent in the guest.  We enable
858                  * preemption after calling guest_exit() so that if we get
859                  * preempted we make sure ticks after that is not counted as
860                  * guest time.
861                  */
862                 guest_exit();
863                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
864
865                 /* Exit types that need handling before we can be preempted */
866                 handle_exit_early(vcpu, ret);
867
868                 preempt_enable();
869
870                 /*
871                  * The ARMv8 architecture doesn't give the hypervisor
872                  * a mechanism to prevent a guest from dropping to AArch32 EL0
873                  * if implemented by the CPU. If we spot the guest in such
874                  * state and that we decided it wasn't supposed to do so (like
875                  * with the asymmetric AArch32 case), return to userspace with
876                  * a fatal error.
877                  */
878                 if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
879                         /*
880                          * As we have caught the guest red-handed, decide that
881                          * it isn't fit for purpose anymore by making the vcpu
882                          * invalid. The VMM can try and fix it by issuing  a
883                          * KVM_ARM_VCPU_INIT if it really wants to.
884                          */
885                         vcpu->arch.target = -1;
886                         ret = ARM_EXCEPTION_IL;
887                 }
888
889                 ret = handle_exit(vcpu, ret);
890         }
891
892         /* Tell userspace about in-kernel device output levels */
893         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
894                 kvm_timer_update_run(vcpu);
895                 kvm_pmu_update_run(vcpu);
896         }
897
898         kvm_sigset_deactivate(vcpu);
899
900         vcpu_put(vcpu);
901         return ret;
902 }
903
904 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
905 {
906         int bit_index;
907         bool set;
908         unsigned long *hcr;
909
910         if (number == KVM_ARM_IRQ_CPU_IRQ)
911                 bit_index = __ffs(HCR_VI);
912         else /* KVM_ARM_IRQ_CPU_FIQ */
913                 bit_index = __ffs(HCR_VF);
914
915         hcr = vcpu_hcr(vcpu);
916         if (level)
917                 set = test_and_set_bit(bit_index, hcr);
918         else
919                 set = test_and_clear_bit(bit_index, hcr);
920
921         /*
922          * If we didn't change anything, no need to wake up or kick other CPUs
923          */
924         if (set == level)
925                 return 0;
926
927         /*
928          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
929          * trigger a world-switch round on the running physical CPU to set the
930          * virtual IRQ/FIQ fields in the HCR appropriately.
931          */
932         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
933         kvm_vcpu_kick(vcpu);
934
935         return 0;
936 }
937
938 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
939                           bool line_status)
940 {
941         u32 irq = irq_level->irq;
942         unsigned int irq_type, vcpu_idx, irq_num;
943         int nrcpus = atomic_read(&kvm->online_vcpus);
944         struct kvm_vcpu *vcpu = NULL;
945         bool level = irq_level->level;
946
947         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
948         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
949         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
950         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
951
952         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
953
954         switch (irq_type) {
955         case KVM_ARM_IRQ_TYPE_CPU:
956                 if (irqchip_in_kernel(kvm))
957                         return -ENXIO;
958
959                 if (vcpu_idx >= nrcpus)
960                         return -EINVAL;
961
962                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
963                 if (!vcpu)
964                         return -EINVAL;
965
966                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
967                         return -EINVAL;
968
969                 return vcpu_interrupt_line(vcpu, irq_num, level);
970         case KVM_ARM_IRQ_TYPE_PPI:
971                 if (!irqchip_in_kernel(kvm))
972                         return -ENXIO;
973
974                 if (vcpu_idx >= nrcpus)
975                         return -EINVAL;
976
977                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
978                 if (!vcpu)
979                         return -EINVAL;
980
981                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
982                         return -EINVAL;
983
984                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
985         case KVM_ARM_IRQ_TYPE_SPI:
986                 if (!irqchip_in_kernel(kvm))
987                         return -ENXIO;
988
989                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
990                         return -EINVAL;
991
992                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
993         }
994
995         return -EINVAL;
996 }
997
998 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
999                                const struct kvm_vcpu_init *init)
1000 {
1001         unsigned int i, ret;
1002         int phys_target = kvm_target_cpu();
1003
1004         if (init->target != phys_target)
1005                 return -EINVAL;
1006
1007         /*
1008          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1009          * use the same target.
1010          */
1011         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1012                 return -EINVAL;
1013
1014         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1015         for (i = 0; i < sizeof(init->features) * 8; i++) {
1016                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1017
1018                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1019                         return -ENOENT;
1020
1021                 /*
1022                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1023                  * use the same feature set.
1024                  */
1025                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1026                     test_bit(i, vcpu->arch.features) != set)
1027                         return -EINVAL;
1028
1029                 if (set)
1030                         set_bit(i, vcpu->arch.features);
1031         }
1032
1033         vcpu->arch.target = phys_target;
1034
1035         /* Now we know what it is, we can reset it. */
1036         ret = kvm_reset_vcpu(vcpu);
1037         if (ret) {
1038                 vcpu->arch.target = -1;
1039                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1040         }
1041
1042         return ret;
1043 }
1044
1045 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1046                                          struct kvm_vcpu_init *init)
1047 {
1048         int ret;
1049
1050         ret = kvm_vcpu_set_target(vcpu, init);
1051         if (ret)
1052                 return ret;
1053
1054         /*
1055          * Ensure a rebooted VM will fault in RAM pages and detect if the
1056          * guest MMU is turned off and flush the caches as needed.
1057          *
1058          * S2FWB enforces all memory accesses to RAM being cacheable,
1059          * ensuring that the data side is always coherent. We still
1060          * need to invalidate the I-cache though, as FWB does *not*
1061          * imply CTR_EL0.DIC.
1062          */
1063         if (vcpu->arch.has_run_once) {
1064                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1065                         stage2_unmap_vm(vcpu->kvm);
1066                 else
1067                         __flush_icache_all();
1068         }
1069
1070         vcpu_reset_hcr(vcpu);
1071
1072         /*
1073          * Handle the "start in power-off" case.
1074          */
1075         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1076                 vcpu_power_off(vcpu);
1077         else
1078                 vcpu->arch.power_off = false;
1079
1080         return 0;
1081 }
1082
1083 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1084                                  struct kvm_device_attr *attr)
1085 {
1086         int ret = -ENXIO;
1087
1088         switch (attr->group) {
1089         default:
1090                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1091                 break;
1092         }
1093
1094         return ret;
1095 }
1096
1097 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1098                                  struct kvm_device_attr *attr)
1099 {
1100         int ret = -ENXIO;
1101
1102         switch (attr->group) {
1103         default:
1104                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1105                 break;
1106         }
1107
1108         return ret;
1109 }
1110
1111 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1112                                  struct kvm_device_attr *attr)
1113 {
1114         int ret = -ENXIO;
1115
1116         switch (attr->group) {
1117         default:
1118                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1119                 break;
1120         }
1121
1122         return ret;
1123 }
1124
1125 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1126                                    struct kvm_vcpu_events *events)
1127 {
1128         memset(events, 0, sizeof(*events));
1129
1130         return __kvm_arm_vcpu_get_events(vcpu, events);
1131 }
1132
1133 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1134                                    struct kvm_vcpu_events *events)
1135 {
1136         int i;
1137
1138         /* check whether the reserved field is zero */
1139         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1140                 if (events->reserved[i])
1141                         return -EINVAL;
1142
1143         /* check whether the pad field is zero */
1144         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1145                 if (events->exception.pad[i])
1146                         return -EINVAL;
1147
1148         return __kvm_arm_vcpu_set_events(vcpu, events);
1149 }
1150
1151 long kvm_arch_vcpu_ioctl(struct file *filp,
1152                          unsigned int ioctl, unsigned long arg)
1153 {
1154         struct kvm_vcpu *vcpu = filp->private_data;
1155         void __user *argp = (void __user *)arg;
1156         struct kvm_device_attr attr;
1157         long r;
1158
1159         switch (ioctl) {
1160         case KVM_ARM_VCPU_INIT: {
1161                 struct kvm_vcpu_init init;
1162
1163                 r = -EFAULT;
1164                 if (copy_from_user(&init, argp, sizeof(init)))
1165                         break;
1166
1167                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1168                 break;
1169         }
1170         case KVM_SET_ONE_REG:
1171         case KVM_GET_ONE_REG: {
1172                 struct kvm_one_reg reg;
1173
1174                 r = -ENOEXEC;
1175                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1176                         break;
1177
1178                 r = -EFAULT;
1179                 if (copy_from_user(&reg, argp, sizeof(reg)))
1180                         break;
1181
1182                 if (ioctl == KVM_SET_ONE_REG)
1183                         r = kvm_arm_set_reg(vcpu, &reg);
1184                 else
1185                         r = kvm_arm_get_reg(vcpu, &reg);
1186                 break;
1187         }
1188         case KVM_GET_REG_LIST: {
1189                 struct kvm_reg_list __user *user_list = argp;
1190                 struct kvm_reg_list reg_list;
1191                 unsigned n;
1192
1193                 r = -ENOEXEC;
1194                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1195                         break;
1196
1197                 r = -EPERM;
1198                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1199                         break;
1200
1201                 r = -EFAULT;
1202                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1203                         break;
1204                 n = reg_list.n;
1205                 reg_list.n = kvm_arm_num_regs(vcpu);
1206                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1207                         break;
1208                 r = -E2BIG;
1209                 if (n < reg_list.n)
1210                         break;
1211                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1212                 break;
1213         }
1214         case KVM_SET_DEVICE_ATTR: {
1215                 r = -EFAULT;
1216                 if (copy_from_user(&attr, argp, sizeof(attr)))
1217                         break;
1218                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1219                 break;
1220         }
1221         case KVM_GET_DEVICE_ATTR: {
1222                 r = -EFAULT;
1223                 if (copy_from_user(&attr, argp, sizeof(attr)))
1224                         break;
1225                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1226                 break;
1227         }
1228         case KVM_HAS_DEVICE_ATTR: {
1229                 r = -EFAULT;
1230                 if (copy_from_user(&attr, argp, sizeof(attr)))
1231                         break;
1232                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1233                 break;
1234         }
1235         case KVM_GET_VCPU_EVENTS: {
1236                 struct kvm_vcpu_events events;
1237
1238                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1239                         return -EINVAL;
1240
1241                 if (copy_to_user(argp, &events, sizeof(events)))
1242                         return -EFAULT;
1243
1244                 return 0;
1245         }
1246         case KVM_SET_VCPU_EVENTS: {
1247                 struct kvm_vcpu_events events;
1248
1249                 if (copy_from_user(&events, argp, sizeof(events)))
1250                         return -EFAULT;
1251
1252                 return kvm_arm_vcpu_set_events(vcpu, &events);
1253         }
1254         case KVM_ARM_VCPU_FINALIZE: {
1255                 int what;
1256
1257                 if (!kvm_vcpu_initialized(vcpu))
1258                         return -ENOEXEC;
1259
1260                 if (get_user(what, (const int __user *)argp))
1261                         return -EFAULT;
1262
1263                 return kvm_arm_vcpu_finalize(vcpu, what);
1264         }
1265         default:
1266                 r = -EINVAL;
1267         }
1268
1269         return r;
1270 }
1271
1272 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1273 {
1274
1275 }
1276
1277 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1278                                         const struct kvm_memory_slot *memslot)
1279 {
1280         kvm_flush_remote_tlbs(kvm);
1281 }
1282
1283 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1284                                         struct kvm_arm_device_addr *dev_addr)
1285 {
1286         unsigned long dev_id, type;
1287
1288         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1289                 KVM_ARM_DEVICE_ID_SHIFT;
1290         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1291                 KVM_ARM_DEVICE_TYPE_SHIFT;
1292
1293         switch (dev_id) {
1294         case KVM_ARM_DEVICE_VGIC_V2:
1295                 if (!vgic_present)
1296                         return -ENXIO;
1297                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1298         default:
1299                 return -ENODEV;
1300         }
1301 }
1302
1303 long kvm_arch_vm_ioctl(struct file *filp,
1304                        unsigned int ioctl, unsigned long arg)
1305 {
1306         struct kvm *kvm = filp->private_data;
1307         void __user *argp = (void __user *)arg;
1308
1309         switch (ioctl) {
1310         case KVM_CREATE_IRQCHIP: {
1311                 int ret;
1312                 if (!vgic_present)
1313                         return -ENXIO;
1314                 mutex_lock(&kvm->lock);
1315                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1316                 mutex_unlock(&kvm->lock);
1317                 return ret;
1318         }
1319         case KVM_ARM_SET_DEVICE_ADDR: {
1320                 struct kvm_arm_device_addr dev_addr;
1321
1322                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1323                         return -EFAULT;
1324                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1325         }
1326         case KVM_ARM_PREFERRED_TARGET: {
1327                 int err;
1328                 struct kvm_vcpu_init init;
1329
1330                 err = kvm_vcpu_preferred_target(&init);
1331                 if (err)
1332                         return err;
1333
1334                 if (copy_to_user(argp, &init, sizeof(init)))
1335                         return -EFAULT;
1336
1337                 return 0;
1338         }
1339         default:
1340                 return -EINVAL;
1341         }
1342 }
1343
1344 static unsigned long nvhe_percpu_size(void)
1345 {
1346         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1347                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1348 }
1349
1350 static unsigned long nvhe_percpu_order(void)
1351 {
1352         unsigned long size = nvhe_percpu_size();
1353
1354         return size ? get_order(size) : 0;
1355 }
1356
1357 /* A lookup table holding the hypervisor VA for each vector slot */
1358 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1359
1360 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1361 {
1362         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1363 }
1364
1365 static int kvm_init_vector_slots(void)
1366 {
1367         int err;
1368         void *base;
1369
1370         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1371         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1372
1373         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1374         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1375
1376         if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1377                 return 0;
1378
1379         if (!has_vhe()) {
1380                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1381                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1382                 if (err)
1383                         return err;
1384         }
1385
1386         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1387         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1388         return 0;
1389 }
1390
1391 static void cpu_prepare_hyp_mode(int cpu)
1392 {
1393         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1394         unsigned long tcr;
1395
1396         /*
1397          * Calculate the raw per-cpu offset without a translation from the
1398          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1399          * so that we can use adr_l to access per-cpu variables in EL2.
1400          * Also drop the KASAN tag which gets in the way...
1401          */
1402         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1403                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1404
1405         params->mair_el2 = read_sysreg(mair_el1);
1406
1407         /*
1408          * The ID map may be configured to use an extended virtual address
1409          * range. This is only the case if system RAM is out of range for the
1410          * currently configured page size and VA_BITS, in which case we will
1411          * also need the extended virtual range for the HYP ID map, or we won't
1412          * be able to enable the EL2 MMU.
1413          *
1414          * However, at EL2, there is only one TTBR register, and we can't switch
1415          * between translation tables *and* update TCR_EL2.T0SZ at the same
1416          * time. Bottom line: we need to use the extended range with *both* our
1417          * translation tables.
1418          *
1419          * So use the same T0SZ value we use for the ID map.
1420          */
1421         tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1422         tcr &= ~TCR_T0SZ_MASK;
1423         tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1424         params->tcr_el2 = tcr;
1425
1426         params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1427         params->pgd_pa = kvm_mmu_get_httbr();
1428         if (is_protected_kvm_enabled())
1429                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1430         else
1431                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1432         params->vttbr = params->vtcr = 0;
1433
1434         /*
1435          * Flush the init params from the data cache because the struct will
1436          * be read while the MMU is off.
1437          */
1438         kvm_flush_dcache_to_poc(params, sizeof(*params));
1439 }
1440
1441 static void hyp_install_host_vector(void)
1442 {
1443         struct kvm_nvhe_init_params *params;
1444         struct arm_smccc_res res;
1445
1446         /* Switch from the HYP stub to our own HYP init vector */
1447         __hyp_set_vectors(kvm_get_idmap_vector());
1448
1449         /*
1450          * Call initialization code, and switch to the full blown HYP code.
1451          * If the cpucaps haven't been finalized yet, something has gone very
1452          * wrong, and hyp will crash and burn when it uses any
1453          * cpus_have_const_cap() wrapper.
1454          */
1455         BUG_ON(!system_capabilities_finalized());
1456         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1457         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1458         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1459 }
1460
1461 static void cpu_init_hyp_mode(void)
1462 {
1463         hyp_install_host_vector();
1464
1465         /*
1466          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1467          * at EL2.
1468          */
1469         if (this_cpu_has_cap(ARM64_SSBS) &&
1470             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1471                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1472         }
1473 }
1474
1475 static void cpu_hyp_reset(void)
1476 {
1477         if (!is_kernel_in_hyp_mode())
1478                 __hyp_reset_vectors();
1479 }
1480
1481 /*
1482  * EL2 vectors can be mapped and rerouted in a number of ways,
1483  * depending on the kernel configuration and CPU present:
1484  *
1485  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1486  *   placed in one of the vector slots, which is executed before jumping
1487  *   to the real vectors.
1488  *
1489  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1490  *   containing the hardening sequence is mapped next to the idmap page,
1491  *   and executed before jumping to the real vectors.
1492  *
1493  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1494  *   empty slot is selected, mapped next to the idmap page, and
1495  *   executed before jumping to the real vectors.
1496  *
1497  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1498  * VHE, as we don't have hypervisor-specific mappings. If the system
1499  * is VHE and yet selects this capability, it will be ignored.
1500  */
1501 static void cpu_set_hyp_vector(void)
1502 {
1503         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1504         void *vector = hyp_spectre_vector_selector[data->slot];
1505
1506         if (!is_protected_kvm_enabled())
1507                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1508         else
1509                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1510 }
1511
1512 static void cpu_hyp_reinit(void)
1513 {
1514         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1515
1516         cpu_hyp_reset();
1517
1518         if (is_kernel_in_hyp_mode())
1519                 kvm_timer_init_vhe();
1520         else
1521                 cpu_init_hyp_mode();
1522
1523         cpu_set_hyp_vector();
1524
1525         kvm_arm_init_debug();
1526
1527         if (vgic_present)
1528                 kvm_vgic_init_cpu_hardware();
1529 }
1530
1531 static void _kvm_arch_hardware_enable(void *discard)
1532 {
1533         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1534                 cpu_hyp_reinit();
1535                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1536         }
1537 }
1538
1539 int kvm_arch_hardware_enable(void)
1540 {
1541         _kvm_arch_hardware_enable(NULL);
1542         return 0;
1543 }
1544
1545 static void _kvm_arch_hardware_disable(void *discard)
1546 {
1547         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1548                 cpu_hyp_reset();
1549                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1550         }
1551 }
1552
1553 void kvm_arch_hardware_disable(void)
1554 {
1555         if (!is_protected_kvm_enabled())
1556                 _kvm_arch_hardware_disable(NULL);
1557 }
1558
1559 #ifdef CONFIG_CPU_PM
1560 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1561                                     unsigned long cmd,
1562                                     void *v)
1563 {
1564         /*
1565          * kvm_arm_hardware_enabled is left with its old value over
1566          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1567          * re-enable hyp.
1568          */
1569         switch (cmd) {
1570         case CPU_PM_ENTER:
1571                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1572                         /*
1573                          * don't update kvm_arm_hardware_enabled here
1574                          * so that the hardware will be re-enabled
1575                          * when we resume. See below.
1576                          */
1577                         cpu_hyp_reset();
1578
1579                 return NOTIFY_OK;
1580         case CPU_PM_ENTER_FAILED:
1581         case CPU_PM_EXIT:
1582                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1583                         /* The hardware was enabled before suspend. */
1584                         cpu_hyp_reinit();
1585
1586                 return NOTIFY_OK;
1587
1588         default:
1589                 return NOTIFY_DONE;
1590         }
1591 }
1592
1593 static struct notifier_block hyp_init_cpu_pm_nb = {
1594         .notifier_call = hyp_init_cpu_pm_notifier,
1595 };
1596
1597 static void hyp_cpu_pm_init(void)
1598 {
1599         if (!is_protected_kvm_enabled())
1600                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1601 }
1602 static void hyp_cpu_pm_exit(void)
1603 {
1604         if (!is_protected_kvm_enabled())
1605                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1606 }
1607 #else
1608 static inline void hyp_cpu_pm_init(void)
1609 {
1610 }
1611 static inline void hyp_cpu_pm_exit(void)
1612 {
1613 }
1614 #endif
1615
1616 static void init_cpu_logical_map(void)
1617 {
1618         unsigned int cpu;
1619
1620         /*
1621          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1622          * Only copy the set of online CPUs whose features have been chacked
1623          * against the finalized system capabilities. The hypervisor will not
1624          * allow any other CPUs from the `possible` set to boot.
1625          */
1626         for_each_online_cpu(cpu)
1627                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1628 }
1629
1630 #define init_psci_0_1_impl_state(config, what)  \
1631         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1632
1633 static bool init_psci_relay(void)
1634 {
1635         /*
1636          * If PSCI has not been initialized, protected KVM cannot install
1637          * itself on newly booted CPUs.
1638          */
1639         if (!psci_ops.get_version) {
1640                 kvm_err("Cannot initialize protected mode without PSCI\n");
1641                 return false;
1642         }
1643
1644         kvm_host_psci_config.version = psci_ops.get_version();
1645
1646         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1647                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1648                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1649                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1650                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1651                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1652         }
1653         return true;
1654 }
1655
1656 static int init_common_resources(void)
1657 {
1658         return kvm_set_ipa_limit();
1659 }
1660
1661 static int init_subsystems(void)
1662 {
1663         int err = 0;
1664
1665         /*
1666          * Enable hardware so that subsystem initialisation can access EL2.
1667          */
1668         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1669
1670         /*
1671          * Register CPU lower-power notifier
1672          */
1673         hyp_cpu_pm_init();
1674
1675         /*
1676          * Init HYP view of VGIC
1677          */
1678         err = kvm_vgic_hyp_init();
1679         switch (err) {
1680         case 0:
1681                 vgic_present = true;
1682                 break;
1683         case -ENODEV:
1684         case -ENXIO:
1685                 vgic_present = false;
1686                 err = 0;
1687                 break;
1688         default:
1689                 goto out;
1690         }
1691
1692         /*
1693          * Init HYP architected timer support
1694          */
1695         err = kvm_timer_hyp_init(vgic_present);
1696         if (err)
1697                 goto out;
1698
1699         kvm_perf_init();
1700         kvm_sys_reg_table_init();
1701
1702 out:
1703         if (err || !is_protected_kvm_enabled())
1704                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1705
1706         return err;
1707 }
1708
1709 static void teardown_hyp_mode(void)
1710 {
1711         int cpu;
1712
1713         free_hyp_pgds();
1714         for_each_possible_cpu(cpu) {
1715                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1716                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1717         }
1718 }
1719
1720 static int do_pkvm_init(u32 hyp_va_bits)
1721 {
1722         void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1723         int ret;
1724
1725         preempt_disable();
1726         hyp_install_host_vector();
1727         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1728                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1729                                 hyp_va_bits);
1730         preempt_enable();
1731
1732         return ret;
1733 }
1734
1735 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1736 {
1737         void *addr = phys_to_virt(hyp_mem_base);
1738         int ret;
1739
1740         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1741         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1742
1743         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1744         if (ret)
1745                 return ret;
1746
1747         ret = do_pkvm_init(hyp_va_bits);
1748         if (ret)
1749                 return ret;
1750
1751         free_hyp_pgds();
1752
1753         return 0;
1754 }
1755
1756 /**
1757  * Inits Hyp-mode on all online CPUs
1758  */
1759 static int init_hyp_mode(void)
1760 {
1761         u32 hyp_va_bits;
1762         int cpu;
1763         int err = -ENOMEM;
1764
1765         /*
1766          * The protected Hyp-mode cannot be initialized if the memory pool
1767          * allocation has failed.
1768          */
1769         if (is_protected_kvm_enabled() && !hyp_mem_base)
1770                 goto out_err;
1771
1772         /*
1773          * Allocate Hyp PGD and setup Hyp identity mapping
1774          */
1775         err = kvm_mmu_init(&hyp_va_bits);
1776         if (err)
1777                 goto out_err;
1778
1779         /*
1780          * Allocate stack pages for Hypervisor-mode
1781          */
1782         for_each_possible_cpu(cpu) {
1783                 unsigned long stack_page;
1784
1785                 stack_page = __get_free_page(GFP_KERNEL);
1786                 if (!stack_page) {
1787                         err = -ENOMEM;
1788                         goto out_err;
1789                 }
1790
1791                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1792         }
1793
1794         /*
1795          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1796          */
1797         for_each_possible_cpu(cpu) {
1798                 struct page *page;
1799                 void *page_addr;
1800
1801                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1802                 if (!page) {
1803                         err = -ENOMEM;
1804                         goto out_err;
1805                 }
1806
1807                 page_addr = page_address(page);
1808                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1809                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1810         }
1811
1812         /*
1813          * Map the Hyp-code called directly from the host
1814          */
1815         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1816                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1817         if (err) {
1818                 kvm_err("Cannot map world-switch code\n");
1819                 goto out_err;
1820         }
1821
1822         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1823                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1824         if (err) {
1825                 kvm_err("Cannot map .hyp.rodata section\n");
1826                 goto out_err;
1827         }
1828
1829         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1830                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1831         if (err) {
1832                 kvm_err("Cannot map rodata section\n");
1833                 goto out_err;
1834         }
1835
1836         /*
1837          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1838          * section thanks to an assertion in the linker script. Map it RW and
1839          * the rest of .bss RO.
1840          */
1841         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1842                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1843         if (err) {
1844                 kvm_err("Cannot map hyp bss section: %d\n", err);
1845                 goto out_err;
1846         }
1847
1848         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1849                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1850         if (err) {
1851                 kvm_err("Cannot map bss section\n");
1852                 goto out_err;
1853         }
1854
1855         /*
1856          * Map the Hyp stack pages
1857          */
1858         for_each_possible_cpu(cpu) {
1859                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1860                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1861                                           PAGE_HYP);
1862
1863                 if (err) {
1864                         kvm_err("Cannot map hyp stack\n");
1865                         goto out_err;
1866                 }
1867         }
1868
1869         for_each_possible_cpu(cpu) {
1870                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1871                 char *percpu_end = percpu_begin + nvhe_percpu_size();
1872
1873                 /* Map Hyp percpu pages */
1874                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1875                 if (err) {
1876                         kvm_err("Cannot map hyp percpu region\n");
1877                         goto out_err;
1878                 }
1879
1880                 /* Prepare the CPU initialization parameters */
1881                 cpu_prepare_hyp_mode(cpu);
1882         }
1883
1884         if (is_protected_kvm_enabled()) {
1885                 init_cpu_logical_map();
1886
1887                 if (!init_psci_relay()) {
1888                         err = -ENODEV;
1889                         goto out_err;
1890                 }
1891         }
1892
1893         if (is_protected_kvm_enabled()) {
1894                 err = kvm_hyp_init_protection(hyp_va_bits);
1895                 if (err) {
1896                         kvm_err("Failed to init hyp memory protection\n");
1897                         goto out_err;
1898                 }
1899         }
1900
1901         return 0;
1902
1903 out_err:
1904         teardown_hyp_mode();
1905         kvm_err("error initializing Hyp mode: %d\n", err);
1906         return err;
1907 }
1908
1909 static void _kvm_host_prot_finalize(void *discard)
1910 {
1911         WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
1912 }
1913
1914 static inline int pkvm_mark_hyp(phys_addr_t start, phys_addr_t end)
1915 {
1916         return kvm_call_hyp_nvhe(__pkvm_mark_hyp, start, end);
1917 }
1918
1919 #define pkvm_mark_hyp_section(__section)                \
1920         pkvm_mark_hyp(__pa_symbol(__section##_start),   \
1921                         __pa_symbol(__section##_end))
1922
1923 static int finalize_hyp_mode(void)
1924 {
1925         int cpu, ret;
1926
1927         if (!is_protected_kvm_enabled())
1928                 return 0;
1929
1930         ret = pkvm_mark_hyp_section(__hyp_idmap_text);
1931         if (ret)
1932                 return ret;
1933
1934         ret = pkvm_mark_hyp_section(__hyp_text);
1935         if (ret)
1936                 return ret;
1937
1938         ret = pkvm_mark_hyp_section(__hyp_rodata);
1939         if (ret)
1940                 return ret;
1941
1942         ret = pkvm_mark_hyp_section(__hyp_bss);
1943         if (ret)
1944                 return ret;
1945
1946         ret = pkvm_mark_hyp(hyp_mem_base, hyp_mem_base + hyp_mem_size);
1947         if (ret)
1948                 return ret;
1949
1950         for_each_possible_cpu(cpu) {
1951                 phys_addr_t start = virt_to_phys((void *)kvm_arm_hyp_percpu_base[cpu]);
1952                 phys_addr_t end = start + (PAGE_SIZE << nvhe_percpu_order());
1953
1954                 ret = pkvm_mark_hyp(start, end);
1955                 if (ret)
1956                         return ret;
1957
1958                 start = virt_to_phys((void *)per_cpu(kvm_arm_hyp_stack_page, cpu));
1959                 end = start + PAGE_SIZE;
1960                 ret = pkvm_mark_hyp(start, end);
1961                 if (ret)
1962                         return ret;
1963         }
1964
1965         /*
1966          * Flip the static key upfront as that may no longer be possible
1967          * once the host stage 2 is installed.
1968          */
1969         static_branch_enable(&kvm_protected_mode_initialized);
1970         on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
1971
1972         return 0;
1973 }
1974
1975 static void check_kvm_target_cpu(void *ret)
1976 {
1977         *(int *)ret = kvm_target_cpu();
1978 }
1979
1980 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1981 {
1982         struct kvm_vcpu *vcpu;
1983         int i;
1984
1985         mpidr &= MPIDR_HWID_BITMASK;
1986         kvm_for_each_vcpu(i, vcpu, kvm) {
1987                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1988                         return vcpu;
1989         }
1990         return NULL;
1991 }
1992
1993 bool kvm_arch_has_irq_bypass(void)
1994 {
1995         return true;
1996 }
1997
1998 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1999                                       struct irq_bypass_producer *prod)
2000 {
2001         struct kvm_kernel_irqfd *irqfd =
2002                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2003
2004         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2005                                           &irqfd->irq_entry);
2006 }
2007 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2008                                       struct irq_bypass_producer *prod)
2009 {
2010         struct kvm_kernel_irqfd *irqfd =
2011                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2012
2013         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2014                                      &irqfd->irq_entry);
2015 }
2016
2017 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2018 {
2019         struct kvm_kernel_irqfd *irqfd =
2020                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2021
2022         kvm_arm_halt_guest(irqfd->kvm);
2023 }
2024
2025 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2026 {
2027         struct kvm_kernel_irqfd *irqfd =
2028                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2029
2030         kvm_arm_resume_guest(irqfd->kvm);
2031 }
2032
2033 /**
2034  * Initialize Hyp-mode and memory mappings on all CPUs.
2035  */
2036 int kvm_arch_init(void *opaque)
2037 {
2038         int err;
2039         int ret, cpu;
2040         bool in_hyp_mode;
2041
2042         if (!is_hyp_mode_available()) {
2043                 kvm_info("HYP mode not available\n");
2044                 return -ENODEV;
2045         }
2046
2047         in_hyp_mode = is_kernel_in_hyp_mode();
2048
2049         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2050             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2051                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2052                          "Only trusted guests should be used on this system.\n");
2053
2054         for_each_online_cpu(cpu) {
2055                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
2056                 if (ret < 0) {
2057                         kvm_err("Error, CPU %d not supported!\n", cpu);
2058                         return -ENODEV;
2059                 }
2060         }
2061
2062         err = init_common_resources();
2063         if (err)
2064                 return err;
2065
2066         err = kvm_arm_init_sve();
2067         if (err)
2068                 return err;
2069
2070         if (!in_hyp_mode) {
2071                 err = init_hyp_mode();
2072                 if (err)
2073                         goto out_err;
2074         }
2075
2076         err = kvm_init_vector_slots();
2077         if (err) {
2078                 kvm_err("Cannot initialise vector slots\n");
2079                 goto out_err;
2080         }
2081
2082         err = init_subsystems();
2083         if (err)
2084                 goto out_hyp;
2085
2086         if (!in_hyp_mode) {
2087                 err = finalize_hyp_mode();
2088                 if (err) {
2089                         kvm_err("Failed to finalize Hyp protection\n");
2090                         goto out_hyp;
2091                 }
2092         }
2093
2094         if (is_protected_kvm_enabled()) {
2095                 kvm_info("Protected nVHE mode initialized successfully\n");
2096         } else if (in_hyp_mode) {
2097                 kvm_info("VHE mode initialized successfully\n");
2098         } else {
2099                 kvm_info("Hyp mode initialized successfully\n");
2100         }
2101
2102         return 0;
2103
2104 out_hyp:
2105         hyp_cpu_pm_exit();
2106         if (!in_hyp_mode)
2107                 teardown_hyp_mode();
2108 out_err:
2109         return err;
2110 }
2111
2112 /* NOP: Compiling as a module not supported */
2113 void kvm_arch_exit(void)
2114 {
2115         kvm_perf_teardown();
2116 }
2117
2118 static int __init early_kvm_mode_cfg(char *arg)
2119 {
2120         if (!arg)
2121                 return -EINVAL;
2122
2123         if (strcmp(arg, "protected") == 0) {
2124                 kvm_mode = KVM_MODE_PROTECTED;
2125                 return 0;
2126         }
2127
2128         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
2129                 return 0;
2130
2131         return -EINVAL;
2132 }
2133 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2134
2135 enum kvm_mode kvm_get_mode(void)
2136 {
2137         return kvm_mode;
2138 }
2139
2140 static int arm_init(void)
2141 {
2142         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2143         return rc;
2144 }
2145
2146 module_init(arm_init);