Merge tag 'amlogic-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/khilman...
[linux-2.6-microblaze.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23
24 #define CREATE_TRACE_POINTS
25 #include "trace_arm.h"
26
27 #include <linux/uaccess.h>
28 #include <asm/ptrace.h>
29 #include <asm/mman.h>
30 #include <asm/tlbflush.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpufeature.h>
33 #include <asm/virt.h>
34 #include <asm/kvm_arm.h>
35 #include <asm/kvm_asm.h>
36 #include <asm/kvm_mmu.h>
37 #include <asm/kvm_emulate.h>
38 #include <asm/kvm_coproc.h>
39 #include <asm/sections.h>
40
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension        virt");
47 #endif
48
49 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
50
51 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
52 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
53
54 /* The VMID used in the VTTBR */
55 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
56 static u32 kvm_next_vmid;
57 static DEFINE_SPINLOCK(kvm_vmid_lock);
58
59 static bool vgic_present;
60
61 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
62 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
63
64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
65 {
66         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
67 }
68
69 int kvm_arch_hardware_setup(void *opaque)
70 {
71         return 0;
72 }
73
74 int kvm_arch_check_processor_compat(void *opaque)
75 {
76         return 0;
77 }
78
79 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
80                             struct kvm_enable_cap *cap)
81 {
82         int r;
83
84         if (cap->flags)
85                 return -EINVAL;
86
87         switch (cap->cap) {
88         case KVM_CAP_ARM_NISV_TO_USER:
89                 r = 0;
90                 kvm->arch.return_nisv_io_abort_to_user = true;
91                 break;
92         default:
93                 r = -EINVAL;
94                 break;
95         }
96
97         return r;
98 }
99
100 static int kvm_arm_default_max_vcpus(void)
101 {
102         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
103 }
104
105 /**
106  * kvm_arch_init_vm - initializes a VM data structure
107  * @kvm:        pointer to the KVM struct
108  */
109 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
110 {
111         int ret;
112
113         ret = kvm_arm_setup_stage2(kvm, type);
114         if (ret)
115                 return ret;
116
117         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
118         if (ret)
119                 return ret;
120
121         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
122         if (ret)
123                 goto out_free_stage2_pgd;
124
125         kvm_vgic_early_init(kvm);
126
127         /* The maximum number of VCPUs is limited by the host's GIC model */
128         kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
129
130         return ret;
131 out_free_stage2_pgd:
132         kvm_free_stage2_pgd(&kvm->arch.mmu);
133         return ret;
134 }
135
136 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
137 {
138         return VM_FAULT_SIGBUS;
139 }
140
141
142 /**
143  * kvm_arch_destroy_vm - destroy the VM data structure
144  * @kvm:        pointer to the KVM struct
145  */
146 void kvm_arch_destroy_vm(struct kvm *kvm)
147 {
148         int i;
149
150         bitmap_free(kvm->arch.pmu_filter);
151
152         kvm_vgic_destroy(kvm);
153
154         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
155                 if (kvm->vcpus[i]) {
156                         kvm_vcpu_destroy(kvm->vcpus[i]);
157                         kvm->vcpus[i] = NULL;
158                 }
159         }
160         atomic_set(&kvm->online_vcpus, 0);
161 }
162
163 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
164 {
165         int r;
166         switch (ext) {
167         case KVM_CAP_IRQCHIP:
168                 r = vgic_present;
169                 break;
170         case KVM_CAP_IOEVENTFD:
171         case KVM_CAP_DEVICE_CTRL:
172         case KVM_CAP_USER_MEMORY:
173         case KVM_CAP_SYNC_MMU:
174         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
175         case KVM_CAP_ONE_REG:
176         case KVM_CAP_ARM_PSCI:
177         case KVM_CAP_ARM_PSCI_0_2:
178         case KVM_CAP_READONLY_MEM:
179         case KVM_CAP_MP_STATE:
180         case KVM_CAP_IMMEDIATE_EXIT:
181         case KVM_CAP_VCPU_EVENTS:
182         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
183         case KVM_CAP_ARM_NISV_TO_USER:
184         case KVM_CAP_ARM_INJECT_EXT_DABT:
185                 r = 1;
186                 break;
187         case KVM_CAP_ARM_SET_DEVICE_ADDR:
188                 r = 1;
189                 break;
190         case KVM_CAP_NR_VCPUS:
191                 r = num_online_cpus();
192                 break;
193         case KVM_CAP_MAX_VCPUS:
194         case KVM_CAP_MAX_VCPU_ID:
195                 if (kvm)
196                         r = kvm->arch.max_vcpus;
197                 else
198                         r = kvm_arm_default_max_vcpus();
199                 break;
200         case KVM_CAP_MSI_DEVID:
201                 if (!kvm)
202                         r = -EINVAL;
203                 else
204                         r = kvm->arch.vgic.msis_require_devid;
205                 break;
206         case KVM_CAP_ARM_USER_IRQ:
207                 /*
208                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
209                  * (bump this number if adding more devices)
210                  */
211                 r = 1;
212                 break;
213         case KVM_CAP_STEAL_TIME:
214                 r = kvm_arm_pvtime_supported();
215                 break;
216         default:
217                 r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
218                 break;
219         }
220         return r;
221 }
222
223 long kvm_arch_dev_ioctl(struct file *filp,
224                         unsigned int ioctl, unsigned long arg)
225 {
226         return -EINVAL;
227 }
228
229 struct kvm *kvm_arch_alloc_vm(void)
230 {
231         if (!has_vhe())
232                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
233
234         return vzalloc(sizeof(struct kvm));
235 }
236
237 void kvm_arch_free_vm(struct kvm *kvm)
238 {
239         if (!has_vhe())
240                 kfree(kvm);
241         else
242                 vfree(kvm);
243 }
244
245 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
246 {
247         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
248                 return -EBUSY;
249
250         if (id >= kvm->arch.max_vcpus)
251                 return -EINVAL;
252
253         return 0;
254 }
255
256 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
257 {
258         int err;
259
260         /* Force users to call KVM_ARM_VCPU_INIT */
261         vcpu->arch.target = -1;
262         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
263
264         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
265
266         /* Set up the timer */
267         kvm_timer_vcpu_init(vcpu);
268
269         kvm_pmu_vcpu_init(vcpu);
270
271         kvm_arm_reset_debug_ptr(vcpu);
272
273         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
274
275         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
276
277         err = kvm_vgic_vcpu_init(vcpu);
278         if (err)
279                 return err;
280
281         return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
282 }
283
284 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
285 {
286 }
287
288 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
289 {
290         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
291                 static_branch_dec(&userspace_irqchip_in_use);
292
293         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
294         kvm_timer_vcpu_terminate(vcpu);
295         kvm_pmu_vcpu_destroy(vcpu);
296
297         kvm_arm_vcpu_destroy(vcpu);
298 }
299
300 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
301 {
302         return kvm_timer_is_pending(vcpu);
303 }
304
305 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
306 {
307         /*
308          * If we're about to block (most likely because we've just hit a
309          * WFI), we need to sync back the state of the GIC CPU interface
310          * so that we have the latest PMR and group enables. This ensures
311          * that kvm_arch_vcpu_runnable has up-to-date data to decide
312          * whether we have pending interrupts.
313          *
314          * For the same reason, we want to tell GICv4 that we need
315          * doorbells to be signalled, should an interrupt become pending.
316          */
317         preempt_disable();
318         kvm_vgic_vmcr_sync(vcpu);
319         vgic_v4_put(vcpu, true);
320         preempt_enable();
321 }
322
323 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
324 {
325         preempt_disable();
326         vgic_v4_load(vcpu);
327         preempt_enable();
328 }
329
330 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
331 {
332         struct kvm_s2_mmu *mmu;
333         int *last_ran;
334
335         mmu = vcpu->arch.hw_mmu;
336         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
337
338         /*
339          * We might get preempted before the vCPU actually runs, but
340          * over-invalidation doesn't affect correctness.
341          */
342         if (*last_ran != vcpu->vcpu_id) {
343                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
344                 *last_ran = vcpu->vcpu_id;
345         }
346
347         vcpu->cpu = cpu;
348
349         kvm_vgic_load(vcpu);
350         kvm_timer_vcpu_load(vcpu);
351         if (has_vhe())
352                 kvm_vcpu_load_sysregs_vhe(vcpu);
353         kvm_arch_vcpu_load_fp(vcpu);
354         kvm_vcpu_pmu_restore_guest(vcpu);
355         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
356                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
357
358         if (single_task_running())
359                 vcpu_clear_wfx_traps(vcpu);
360         else
361                 vcpu_set_wfx_traps(vcpu);
362
363         if (vcpu_has_ptrauth(vcpu))
364                 vcpu_ptrauth_disable(vcpu);
365 }
366
367 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
368 {
369         kvm_arch_vcpu_put_fp(vcpu);
370         if (has_vhe())
371                 kvm_vcpu_put_sysregs_vhe(vcpu);
372         kvm_timer_vcpu_put(vcpu);
373         kvm_vgic_put(vcpu);
374         kvm_vcpu_pmu_restore_host(vcpu);
375
376         vcpu->cpu = -1;
377 }
378
379 static void vcpu_power_off(struct kvm_vcpu *vcpu)
380 {
381         vcpu->arch.power_off = true;
382         kvm_make_request(KVM_REQ_SLEEP, vcpu);
383         kvm_vcpu_kick(vcpu);
384 }
385
386 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
387                                     struct kvm_mp_state *mp_state)
388 {
389         if (vcpu->arch.power_off)
390                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
391         else
392                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
393
394         return 0;
395 }
396
397 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
398                                     struct kvm_mp_state *mp_state)
399 {
400         int ret = 0;
401
402         switch (mp_state->mp_state) {
403         case KVM_MP_STATE_RUNNABLE:
404                 vcpu->arch.power_off = false;
405                 break;
406         case KVM_MP_STATE_STOPPED:
407                 vcpu_power_off(vcpu);
408                 break;
409         default:
410                 ret = -EINVAL;
411         }
412
413         return ret;
414 }
415
416 /**
417  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
418  * @v:          The VCPU pointer
419  *
420  * If the guest CPU is not waiting for interrupts or an interrupt line is
421  * asserted, the CPU is by definition runnable.
422  */
423 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
424 {
425         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
426         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
427                 && !v->arch.power_off && !v->arch.pause);
428 }
429
430 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
431 {
432         return vcpu_mode_priv(vcpu);
433 }
434
435 /* Just ensure a guest exit from a particular CPU */
436 static void exit_vm_noop(void *info)
437 {
438 }
439
440 void force_vm_exit(const cpumask_t *mask)
441 {
442         preempt_disable();
443         smp_call_function_many(mask, exit_vm_noop, NULL, true);
444         preempt_enable();
445 }
446
447 /**
448  * need_new_vmid_gen - check that the VMID is still valid
449  * @vmid: The VMID to check
450  *
451  * return true if there is a new generation of VMIDs being used
452  *
453  * The hardware supports a limited set of values with the value zero reserved
454  * for the host, so we check if an assigned value belongs to a previous
455  * generation, which requires us to assign a new value. If we're the first to
456  * use a VMID for the new generation, we must flush necessary caches and TLBs
457  * on all CPUs.
458  */
459 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
460 {
461         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
462         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
463         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
464 }
465
466 /**
467  * update_vmid - Update the vmid with a valid VMID for the current generation
468  * @vmid: The stage-2 VMID information struct
469  */
470 static void update_vmid(struct kvm_vmid *vmid)
471 {
472         if (!need_new_vmid_gen(vmid))
473                 return;
474
475         spin_lock(&kvm_vmid_lock);
476
477         /*
478          * We need to re-check the vmid_gen here to ensure that if another vcpu
479          * already allocated a valid vmid for this vm, then this vcpu should
480          * use the same vmid.
481          */
482         if (!need_new_vmid_gen(vmid)) {
483                 spin_unlock(&kvm_vmid_lock);
484                 return;
485         }
486
487         /* First user of a new VMID generation? */
488         if (unlikely(kvm_next_vmid == 0)) {
489                 atomic64_inc(&kvm_vmid_gen);
490                 kvm_next_vmid = 1;
491
492                 /*
493                  * On SMP we know no other CPUs can use this CPU's or each
494                  * other's VMID after force_vm_exit returns since the
495                  * kvm_vmid_lock blocks them from reentry to the guest.
496                  */
497                 force_vm_exit(cpu_all_mask);
498                 /*
499                  * Now broadcast TLB + ICACHE invalidation over the inner
500                  * shareable domain to make sure all data structures are
501                  * clean.
502                  */
503                 kvm_call_hyp(__kvm_flush_vm_context);
504         }
505
506         vmid->vmid = kvm_next_vmid;
507         kvm_next_vmid++;
508         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
509
510         smp_wmb();
511         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
512
513         spin_unlock(&kvm_vmid_lock);
514 }
515
516 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
517 {
518         struct kvm *kvm = vcpu->kvm;
519         int ret = 0;
520
521         if (likely(vcpu->arch.has_run_once))
522                 return 0;
523
524         if (!kvm_arm_vcpu_is_finalized(vcpu))
525                 return -EPERM;
526
527         vcpu->arch.has_run_once = true;
528
529         if (likely(irqchip_in_kernel(kvm))) {
530                 /*
531                  * Map the VGIC hardware resources before running a vcpu the
532                  * first time on this VM.
533                  */
534                 if (unlikely(!vgic_ready(kvm))) {
535                         ret = kvm_vgic_map_resources(kvm);
536                         if (ret)
537                                 return ret;
538                 }
539         } else {
540                 /*
541                  * Tell the rest of the code that there are userspace irqchip
542                  * VMs in the wild.
543                  */
544                 static_branch_inc(&userspace_irqchip_in_use);
545         }
546
547         ret = kvm_timer_enable(vcpu);
548         if (ret)
549                 return ret;
550
551         ret = kvm_arm_pmu_v3_enable(vcpu);
552
553         return ret;
554 }
555
556 bool kvm_arch_intc_initialized(struct kvm *kvm)
557 {
558         return vgic_initialized(kvm);
559 }
560
561 void kvm_arm_halt_guest(struct kvm *kvm)
562 {
563         int i;
564         struct kvm_vcpu *vcpu;
565
566         kvm_for_each_vcpu(i, vcpu, kvm)
567                 vcpu->arch.pause = true;
568         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
569 }
570
571 void kvm_arm_resume_guest(struct kvm *kvm)
572 {
573         int i;
574         struct kvm_vcpu *vcpu;
575
576         kvm_for_each_vcpu(i, vcpu, kvm) {
577                 vcpu->arch.pause = false;
578                 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
579         }
580 }
581
582 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
583 {
584         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
585
586         rcuwait_wait_event(wait,
587                            (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
588                            TASK_INTERRUPTIBLE);
589
590         if (vcpu->arch.power_off || vcpu->arch.pause) {
591                 /* Awaken to handle a signal, request we sleep again later. */
592                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
593         }
594
595         /*
596          * Make sure we will observe a potential reset request if we've
597          * observed a change to the power state. Pairs with the smp_wmb() in
598          * kvm_psci_vcpu_on().
599          */
600         smp_rmb();
601 }
602
603 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
604 {
605         return vcpu->arch.target >= 0;
606 }
607
608 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
609 {
610         if (kvm_request_pending(vcpu)) {
611                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
612                         vcpu_req_sleep(vcpu);
613
614                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
615                         kvm_reset_vcpu(vcpu);
616
617                 /*
618                  * Clear IRQ_PENDING requests that were made to guarantee
619                  * that a VCPU sees new virtual interrupts.
620                  */
621                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
622
623                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
624                         kvm_update_stolen_time(vcpu);
625
626                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
627                         /* The distributor enable bits were changed */
628                         preempt_disable();
629                         vgic_v4_put(vcpu, false);
630                         vgic_v4_load(vcpu);
631                         preempt_enable();
632                 }
633         }
634 }
635
636 /**
637  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
638  * @vcpu:       The VCPU pointer
639  *
640  * This function is called through the VCPU_RUN ioctl called from user space. It
641  * will execute VM code in a loop until the time slice for the process is used
642  * or some emulation is needed from user space in which case the function will
643  * return with return value 0 and with the kvm_run structure filled in with the
644  * required data for the requested emulation.
645  */
646 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
647 {
648         struct kvm_run *run = vcpu->run;
649         int ret;
650
651         if (unlikely(!kvm_vcpu_initialized(vcpu)))
652                 return -ENOEXEC;
653
654         ret = kvm_vcpu_first_run_init(vcpu);
655         if (ret)
656                 return ret;
657
658         if (run->exit_reason == KVM_EXIT_MMIO) {
659                 ret = kvm_handle_mmio_return(vcpu);
660                 if (ret)
661                         return ret;
662         }
663
664         if (run->immediate_exit)
665                 return -EINTR;
666
667         vcpu_load(vcpu);
668
669         kvm_sigset_activate(vcpu);
670
671         ret = 1;
672         run->exit_reason = KVM_EXIT_UNKNOWN;
673         while (ret > 0) {
674                 /*
675                  * Check conditions before entering the guest
676                  */
677                 cond_resched();
678
679                 update_vmid(&vcpu->arch.hw_mmu->vmid);
680
681                 check_vcpu_requests(vcpu);
682
683                 /*
684                  * Preparing the interrupts to be injected also
685                  * involves poking the GIC, which must be done in a
686                  * non-preemptible context.
687                  */
688                 preempt_disable();
689
690                 kvm_pmu_flush_hwstate(vcpu);
691
692                 local_irq_disable();
693
694                 kvm_vgic_flush_hwstate(vcpu);
695
696                 /*
697                  * Exit if we have a signal pending so that we can deliver the
698                  * signal to user space.
699                  */
700                 if (signal_pending(current)) {
701                         ret = -EINTR;
702                         run->exit_reason = KVM_EXIT_INTR;
703                 }
704
705                 /*
706                  * If we're using a userspace irqchip, then check if we need
707                  * to tell a userspace irqchip about timer or PMU level
708                  * changes and if so, exit to userspace (the actual level
709                  * state gets updated in kvm_timer_update_run and
710                  * kvm_pmu_update_run below).
711                  */
712                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
713                         if (kvm_timer_should_notify_user(vcpu) ||
714                             kvm_pmu_should_notify_user(vcpu)) {
715                                 ret = -EINTR;
716                                 run->exit_reason = KVM_EXIT_INTR;
717                         }
718                 }
719
720                 /*
721                  * Ensure we set mode to IN_GUEST_MODE after we disable
722                  * interrupts and before the final VCPU requests check.
723                  * See the comment in kvm_vcpu_exiting_guest_mode() and
724                  * Documentation/virt/kvm/vcpu-requests.rst
725                  */
726                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
727
728                 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
729                     kvm_request_pending(vcpu)) {
730                         vcpu->mode = OUTSIDE_GUEST_MODE;
731                         isb(); /* Ensure work in x_flush_hwstate is committed */
732                         kvm_pmu_sync_hwstate(vcpu);
733                         if (static_branch_unlikely(&userspace_irqchip_in_use))
734                                 kvm_timer_sync_user(vcpu);
735                         kvm_vgic_sync_hwstate(vcpu);
736                         local_irq_enable();
737                         preempt_enable();
738                         continue;
739                 }
740
741                 kvm_arm_setup_debug(vcpu);
742
743                 /**************************************************************
744                  * Enter the guest
745                  */
746                 trace_kvm_entry(*vcpu_pc(vcpu));
747                 guest_enter_irqoff();
748
749                 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
750
751                 vcpu->mode = OUTSIDE_GUEST_MODE;
752                 vcpu->stat.exits++;
753                 /*
754                  * Back from guest
755                  *************************************************************/
756
757                 kvm_arm_clear_debug(vcpu);
758
759                 /*
760                  * We must sync the PMU state before the vgic state so
761                  * that the vgic can properly sample the updated state of the
762                  * interrupt line.
763                  */
764                 kvm_pmu_sync_hwstate(vcpu);
765
766                 /*
767                  * Sync the vgic state before syncing the timer state because
768                  * the timer code needs to know if the virtual timer
769                  * interrupts are active.
770                  */
771                 kvm_vgic_sync_hwstate(vcpu);
772
773                 /*
774                  * Sync the timer hardware state before enabling interrupts as
775                  * we don't want vtimer interrupts to race with syncing the
776                  * timer virtual interrupt state.
777                  */
778                 if (static_branch_unlikely(&userspace_irqchip_in_use))
779                         kvm_timer_sync_user(vcpu);
780
781                 kvm_arch_vcpu_ctxsync_fp(vcpu);
782
783                 /*
784                  * We may have taken a host interrupt in HYP mode (ie
785                  * while executing the guest). This interrupt is still
786                  * pending, as we haven't serviced it yet!
787                  *
788                  * We're now back in SVC mode, with interrupts
789                  * disabled.  Enabling the interrupts now will have
790                  * the effect of taking the interrupt again, in SVC
791                  * mode this time.
792                  */
793                 local_irq_enable();
794
795                 /*
796                  * We do local_irq_enable() before calling guest_exit() so
797                  * that if a timer interrupt hits while running the guest we
798                  * account that tick as being spent in the guest.  We enable
799                  * preemption after calling guest_exit() so that if we get
800                  * preempted we make sure ticks after that is not counted as
801                  * guest time.
802                  */
803                 guest_exit();
804                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
805
806                 /* Exit types that need handling before we can be preempted */
807                 handle_exit_early(vcpu, ret);
808
809                 preempt_enable();
810
811                 ret = handle_exit(vcpu, ret);
812         }
813
814         /* Tell userspace about in-kernel device output levels */
815         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
816                 kvm_timer_update_run(vcpu);
817                 kvm_pmu_update_run(vcpu);
818         }
819
820         kvm_sigset_deactivate(vcpu);
821
822         vcpu_put(vcpu);
823         return ret;
824 }
825
826 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
827 {
828         int bit_index;
829         bool set;
830         unsigned long *hcr;
831
832         if (number == KVM_ARM_IRQ_CPU_IRQ)
833                 bit_index = __ffs(HCR_VI);
834         else /* KVM_ARM_IRQ_CPU_FIQ */
835                 bit_index = __ffs(HCR_VF);
836
837         hcr = vcpu_hcr(vcpu);
838         if (level)
839                 set = test_and_set_bit(bit_index, hcr);
840         else
841                 set = test_and_clear_bit(bit_index, hcr);
842
843         /*
844          * If we didn't change anything, no need to wake up or kick other CPUs
845          */
846         if (set == level)
847                 return 0;
848
849         /*
850          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
851          * trigger a world-switch round on the running physical CPU to set the
852          * virtual IRQ/FIQ fields in the HCR appropriately.
853          */
854         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
855         kvm_vcpu_kick(vcpu);
856
857         return 0;
858 }
859
860 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
861                           bool line_status)
862 {
863         u32 irq = irq_level->irq;
864         unsigned int irq_type, vcpu_idx, irq_num;
865         int nrcpus = atomic_read(&kvm->online_vcpus);
866         struct kvm_vcpu *vcpu = NULL;
867         bool level = irq_level->level;
868
869         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
870         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
871         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
872         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
873
874         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
875
876         switch (irq_type) {
877         case KVM_ARM_IRQ_TYPE_CPU:
878                 if (irqchip_in_kernel(kvm))
879                         return -ENXIO;
880
881                 if (vcpu_idx >= nrcpus)
882                         return -EINVAL;
883
884                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
885                 if (!vcpu)
886                         return -EINVAL;
887
888                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
889                         return -EINVAL;
890
891                 return vcpu_interrupt_line(vcpu, irq_num, level);
892         case KVM_ARM_IRQ_TYPE_PPI:
893                 if (!irqchip_in_kernel(kvm))
894                         return -ENXIO;
895
896                 if (vcpu_idx >= nrcpus)
897                         return -EINVAL;
898
899                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
900                 if (!vcpu)
901                         return -EINVAL;
902
903                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
904                         return -EINVAL;
905
906                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
907         case KVM_ARM_IRQ_TYPE_SPI:
908                 if (!irqchip_in_kernel(kvm))
909                         return -ENXIO;
910
911                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
912                         return -EINVAL;
913
914                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
915         }
916
917         return -EINVAL;
918 }
919
920 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
921                                const struct kvm_vcpu_init *init)
922 {
923         unsigned int i, ret;
924         int phys_target = kvm_target_cpu();
925
926         if (init->target != phys_target)
927                 return -EINVAL;
928
929         /*
930          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
931          * use the same target.
932          */
933         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
934                 return -EINVAL;
935
936         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
937         for (i = 0; i < sizeof(init->features) * 8; i++) {
938                 bool set = (init->features[i / 32] & (1 << (i % 32)));
939
940                 if (set && i >= KVM_VCPU_MAX_FEATURES)
941                         return -ENOENT;
942
943                 /*
944                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
945                  * use the same feature set.
946                  */
947                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
948                     test_bit(i, vcpu->arch.features) != set)
949                         return -EINVAL;
950
951                 if (set)
952                         set_bit(i, vcpu->arch.features);
953         }
954
955         vcpu->arch.target = phys_target;
956
957         /* Now we know what it is, we can reset it. */
958         ret = kvm_reset_vcpu(vcpu);
959         if (ret) {
960                 vcpu->arch.target = -1;
961                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
962         }
963
964         return ret;
965 }
966
967 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
968                                          struct kvm_vcpu_init *init)
969 {
970         int ret;
971
972         ret = kvm_vcpu_set_target(vcpu, init);
973         if (ret)
974                 return ret;
975
976         /*
977          * Ensure a rebooted VM will fault in RAM pages and detect if the
978          * guest MMU is turned off and flush the caches as needed.
979          *
980          * S2FWB enforces all memory accesses to RAM being cacheable,
981          * ensuring that the data side is always coherent. We still
982          * need to invalidate the I-cache though, as FWB does *not*
983          * imply CTR_EL0.DIC.
984          */
985         if (vcpu->arch.has_run_once) {
986                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
987                         stage2_unmap_vm(vcpu->kvm);
988                 else
989                         __flush_icache_all();
990         }
991
992         vcpu_reset_hcr(vcpu);
993
994         /*
995          * Handle the "start in power-off" case.
996          */
997         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
998                 vcpu_power_off(vcpu);
999         else
1000                 vcpu->arch.power_off = false;
1001
1002         return 0;
1003 }
1004
1005 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1006                                  struct kvm_device_attr *attr)
1007 {
1008         int ret = -ENXIO;
1009
1010         switch (attr->group) {
1011         default:
1012                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1013                 break;
1014         }
1015
1016         return ret;
1017 }
1018
1019 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1020                                  struct kvm_device_attr *attr)
1021 {
1022         int ret = -ENXIO;
1023
1024         switch (attr->group) {
1025         default:
1026                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1027                 break;
1028         }
1029
1030         return ret;
1031 }
1032
1033 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1034                                  struct kvm_device_attr *attr)
1035 {
1036         int ret = -ENXIO;
1037
1038         switch (attr->group) {
1039         default:
1040                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1041                 break;
1042         }
1043
1044         return ret;
1045 }
1046
1047 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1048                                    struct kvm_vcpu_events *events)
1049 {
1050         memset(events, 0, sizeof(*events));
1051
1052         return __kvm_arm_vcpu_get_events(vcpu, events);
1053 }
1054
1055 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1056                                    struct kvm_vcpu_events *events)
1057 {
1058         int i;
1059
1060         /* check whether the reserved field is zero */
1061         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1062                 if (events->reserved[i])
1063                         return -EINVAL;
1064
1065         /* check whether the pad field is zero */
1066         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1067                 if (events->exception.pad[i])
1068                         return -EINVAL;
1069
1070         return __kvm_arm_vcpu_set_events(vcpu, events);
1071 }
1072
1073 long kvm_arch_vcpu_ioctl(struct file *filp,
1074                          unsigned int ioctl, unsigned long arg)
1075 {
1076         struct kvm_vcpu *vcpu = filp->private_data;
1077         void __user *argp = (void __user *)arg;
1078         struct kvm_device_attr attr;
1079         long r;
1080
1081         switch (ioctl) {
1082         case KVM_ARM_VCPU_INIT: {
1083                 struct kvm_vcpu_init init;
1084
1085                 r = -EFAULT;
1086                 if (copy_from_user(&init, argp, sizeof(init)))
1087                         break;
1088
1089                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1090                 break;
1091         }
1092         case KVM_SET_ONE_REG:
1093         case KVM_GET_ONE_REG: {
1094                 struct kvm_one_reg reg;
1095
1096                 r = -ENOEXEC;
1097                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1098                         break;
1099
1100                 r = -EFAULT;
1101                 if (copy_from_user(&reg, argp, sizeof(reg)))
1102                         break;
1103
1104                 if (ioctl == KVM_SET_ONE_REG)
1105                         r = kvm_arm_set_reg(vcpu, &reg);
1106                 else
1107                         r = kvm_arm_get_reg(vcpu, &reg);
1108                 break;
1109         }
1110         case KVM_GET_REG_LIST: {
1111                 struct kvm_reg_list __user *user_list = argp;
1112                 struct kvm_reg_list reg_list;
1113                 unsigned n;
1114
1115                 r = -ENOEXEC;
1116                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1117                         break;
1118
1119                 r = -EPERM;
1120                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1121                         break;
1122
1123                 r = -EFAULT;
1124                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1125                         break;
1126                 n = reg_list.n;
1127                 reg_list.n = kvm_arm_num_regs(vcpu);
1128                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1129                         break;
1130                 r = -E2BIG;
1131                 if (n < reg_list.n)
1132                         break;
1133                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1134                 break;
1135         }
1136         case KVM_SET_DEVICE_ATTR: {
1137                 r = -EFAULT;
1138                 if (copy_from_user(&attr, argp, sizeof(attr)))
1139                         break;
1140                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1141                 break;
1142         }
1143         case KVM_GET_DEVICE_ATTR: {
1144                 r = -EFAULT;
1145                 if (copy_from_user(&attr, argp, sizeof(attr)))
1146                         break;
1147                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1148                 break;
1149         }
1150         case KVM_HAS_DEVICE_ATTR: {
1151                 r = -EFAULT;
1152                 if (copy_from_user(&attr, argp, sizeof(attr)))
1153                         break;
1154                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1155                 break;
1156         }
1157         case KVM_GET_VCPU_EVENTS: {
1158                 struct kvm_vcpu_events events;
1159
1160                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1161                         return -EINVAL;
1162
1163                 if (copy_to_user(argp, &events, sizeof(events)))
1164                         return -EFAULT;
1165
1166                 return 0;
1167         }
1168         case KVM_SET_VCPU_EVENTS: {
1169                 struct kvm_vcpu_events events;
1170
1171                 if (copy_from_user(&events, argp, sizeof(events)))
1172                         return -EFAULT;
1173
1174                 return kvm_arm_vcpu_set_events(vcpu, &events);
1175         }
1176         case KVM_ARM_VCPU_FINALIZE: {
1177                 int what;
1178
1179                 if (!kvm_vcpu_initialized(vcpu))
1180                         return -ENOEXEC;
1181
1182                 if (get_user(what, (const int __user *)argp))
1183                         return -EFAULT;
1184
1185                 return kvm_arm_vcpu_finalize(vcpu, what);
1186         }
1187         default:
1188                 r = -EINVAL;
1189         }
1190
1191         return r;
1192 }
1193
1194 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1195 {
1196
1197 }
1198
1199 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1200                                         struct kvm_memory_slot *memslot)
1201 {
1202         kvm_flush_remote_tlbs(kvm);
1203 }
1204
1205 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1206                                         struct kvm_arm_device_addr *dev_addr)
1207 {
1208         unsigned long dev_id, type;
1209
1210         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1211                 KVM_ARM_DEVICE_ID_SHIFT;
1212         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1213                 KVM_ARM_DEVICE_TYPE_SHIFT;
1214
1215         switch (dev_id) {
1216         case KVM_ARM_DEVICE_VGIC_V2:
1217                 if (!vgic_present)
1218                         return -ENXIO;
1219                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1220         default:
1221                 return -ENODEV;
1222         }
1223 }
1224
1225 long kvm_arch_vm_ioctl(struct file *filp,
1226                        unsigned int ioctl, unsigned long arg)
1227 {
1228         struct kvm *kvm = filp->private_data;
1229         void __user *argp = (void __user *)arg;
1230
1231         switch (ioctl) {
1232         case KVM_CREATE_IRQCHIP: {
1233                 int ret;
1234                 if (!vgic_present)
1235                         return -ENXIO;
1236                 mutex_lock(&kvm->lock);
1237                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1238                 mutex_unlock(&kvm->lock);
1239                 return ret;
1240         }
1241         case KVM_ARM_SET_DEVICE_ADDR: {
1242                 struct kvm_arm_device_addr dev_addr;
1243
1244                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1245                         return -EFAULT;
1246                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1247         }
1248         case KVM_ARM_PREFERRED_TARGET: {
1249                 int err;
1250                 struct kvm_vcpu_init init;
1251
1252                 err = kvm_vcpu_preferred_target(&init);
1253                 if (err)
1254                         return err;
1255
1256                 if (copy_to_user(argp, &init, sizeof(init)))
1257                         return -EFAULT;
1258
1259                 return 0;
1260         }
1261         default:
1262                 return -EINVAL;
1263         }
1264 }
1265
1266 static unsigned long nvhe_percpu_size(void)
1267 {
1268         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1269                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1270 }
1271
1272 static unsigned long nvhe_percpu_order(void)
1273 {
1274         unsigned long size = nvhe_percpu_size();
1275
1276         return size ? get_order(size) : 0;
1277 }
1278
1279 static int kvm_map_vectors(void)
1280 {
1281         /*
1282          * SV2  = ARM64_SPECTRE_V2
1283          * HEL2 = ARM64_HARDEN_EL2_VECTORS
1284          *
1285          * !SV2 + !HEL2 -> use direct vectors
1286          *  SV2 + !HEL2 -> use hardened vectors in place
1287          * !SV2 +  HEL2 -> allocate one vector slot and use exec mapping
1288          *  SV2 +  HEL2 -> use hardened vectors and use exec mapping
1289          */
1290         if (cpus_have_const_cap(ARM64_SPECTRE_V2)) {
1291                 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs);
1292                 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
1293         }
1294
1295         if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
1296                 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs);
1297                 unsigned long size = __BP_HARDEN_HYP_VECS_SZ;
1298
1299                 /*
1300                  * Always allocate a spare vector slot, as we don't
1301                  * know yet which CPUs have a BP hardening slot that
1302                  * we can reuse.
1303                  */
1304                 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
1305                 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
1306                 return create_hyp_exec_mappings(vect_pa, size,
1307                                                 &__kvm_bp_vect_base);
1308         }
1309
1310         return 0;
1311 }
1312
1313 static void cpu_init_hyp_mode(void)
1314 {
1315         phys_addr_t pgd_ptr;
1316         unsigned long hyp_stack_ptr;
1317         unsigned long vector_ptr;
1318         unsigned long tpidr_el2;
1319         struct arm_smccc_res res;
1320
1321         /* Switch from the HYP stub to our own HYP init vector */
1322         __hyp_set_vectors(kvm_get_idmap_vector());
1323
1324         /*
1325          * Calculate the raw per-cpu offset without a translation from the
1326          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1327          * so that we can use adr_l to access per-cpu variables in EL2.
1328          */
1329         tpidr_el2 = (unsigned long)this_cpu_ptr_nvhe_sym(__per_cpu_start) -
1330                     (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1331
1332         pgd_ptr = kvm_mmu_get_httbr();
1333         hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1334         hyp_stack_ptr = kern_hyp_va(hyp_stack_ptr);
1335         vector_ptr = (unsigned long)kern_hyp_va(kvm_ksym_ref(__kvm_hyp_host_vector));
1336
1337         /*
1338          * Call initialization code, and switch to the full blown HYP code.
1339          * If the cpucaps haven't been finalized yet, something has gone very
1340          * wrong, and hyp will crash and burn when it uses any
1341          * cpus_have_const_cap() wrapper.
1342          */
1343         BUG_ON(!system_capabilities_finalized());
1344         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init),
1345                           pgd_ptr, tpidr_el2, hyp_stack_ptr, vector_ptr, &res);
1346         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1347
1348         /*
1349          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1350          * at EL2.
1351          */
1352         if (this_cpu_has_cap(ARM64_SSBS) &&
1353             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1354                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1355         }
1356 }
1357
1358 static void cpu_hyp_reset(void)
1359 {
1360         if (!is_kernel_in_hyp_mode())
1361                 __hyp_reset_vectors();
1362 }
1363
1364 static void cpu_hyp_reinit(void)
1365 {
1366         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1367
1368         cpu_hyp_reset();
1369
1370         *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)kvm_get_hyp_vector();
1371
1372         if (is_kernel_in_hyp_mode())
1373                 kvm_timer_init_vhe();
1374         else
1375                 cpu_init_hyp_mode();
1376
1377         kvm_arm_init_debug();
1378
1379         if (vgic_present)
1380                 kvm_vgic_init_cpu_hardware();
1381 }
1382
1383 static void _kvm_arch_hardware_enable(void *discard)
1384 {
1385         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1386                 cpu_hyp_reinit();
1387                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1388         }
1389 }
1390
1391 int kvm_arch_hardware_enable(void)
1392 {
1393         _kvm_arch_hardware_enable(NULL);
1394         return 0;
1395 }
1396
1397 static void _kvm_arch_hardware_disable(void *discard)
1398 {
1399         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1400                 cpu_hyp_reset();
1401                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1402         }
1403 }
1404
1405 void kvm_arch_hardware_disable(void)
1406 {
1407         _kvm_arch_hardware_disable(NULL);
1408 }
1409
1410 #ifdef CONFIG_CPU_PM
1411 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1412                                     unsigned long cmd,
1413                                     void *v)
1414 {
1415         /*
1416          * kvm_arm_hardware_enabled is left with its old value over
1417          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1418          * re-enable hyp.
1419          */
1420         switch (cmd) {
1421         case CPU_PM_ENTER:
1422                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1423                         /*
1424                          * don't update kvm_arm_hardware_enabled here
1425                          * so that the hardware will be re-enabled
1426                          * when we resume. See below.
1427                          */
1428                         cpu_hyp_reset();
1429
1430                 return NOTIFY_OK;
1431         case CPU_PM_ENTER_FAILED:
1432         case CPU_PM_EXIT:
1433                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1434                         /* The hardware was enabled before suspend. */
1435                         cpu_hyp_reinit();
1436
1437                 return NOTIFY_OK;
1438
1439         default:
1440                 return NOTIFY_DONE;
1441         }
1442 }
1443
1444 static struct notifier_block hyp_init_cpu_pm_nb = {
1445         .notifier_call = hyp_init_cpu_pm_notifier,
1446 };
1447
1448 static void __init hyp_cpu_pm_init(void)
1449 {
1450         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1451 }
1452 static void __init hyp_cpu_pm_exit(void)
1453 {
1454         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1455 }
1456 #else
1457 static inline void hyp_cpu_pm_init(void)
1458 {
1459 }
1460 static inline void hyp_cpu_pm_exit(void)
1461 {
1462 }
1463 #endif
1464
1465 static int init_common_resources(void)
1466 {
1467         return kvm_set_ipa_limit();
1468 }
1469
1470 static int init_subsystems(void)
1471 {
1472         int err = 0;
1473
1474         /*
1475          * Enable hardware so that subsystem initialisation can access EL2.
1476          */
1477         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1478
1479         /*
1480          * Register CPU lower-power notifier
1481          */
1482         hyp_cpu_pm_init();
1483
1484         /*
1485          * Init HYP view of VGIC
1486          */
1487         err = kvm_vgic_hyp_init();
1488         switch (err) {
1489         case 0:
1490                 vgic_present = true;
1491                 break;
1492         case -ENODEV:
1493         case -ENXIO:
1494                 vgic_present = false;
1495                 err = 0;
1496                 break;
1497         default:
1498                 goto out;
1499         }
1500
1501         /*
1502          * Init HYP architected timer support
1503          */
1504         err = kvm_timer_hyp_init(vgic_present);
1505         if (err)
1506                 goto out;
1507
1508         kvm_perf_init();
1509         kvm_coproc_table_init();
1510
1511 out:
1512         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1513
1514         return err;
1515 }
1516
1517 static void teardown_hyp_mode(void)
1518 {
1519         int cpu;
1520
1521         free_hyp_pgds();
1522         for_each_possible_cpu(cpu) {
1523                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1524                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1525         }
1526 }
1527
1528 /**
1529  * Inits Hyp-mode on all online CPUs
1530  */
1531 static int init_hyp_mode(void)
1532 {
1533         int cpu;
1534         int err = 0;
1535
1536         /*
1537          * Allocate Hyp PGD and setup Hyp identity mapping
1538          */
1539         err = kvm_mmu_init();
1540         if (err)
1541                 goto out_err;
1542
1543         /*
1544          * Allocate stack pages for Hypervisor-mode
1545          */
1546         for_each_possible_cpu(cpu) {
1547                 unsigned long stack_page;
1548
1549                 stack_page = __get_free_page(GFP_KERNEL);
1550                 if (!stack_page) {
1551                         err = -ENOMEM;
1552                         goto out_err;
1553                 }
1554
1555                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1556         }
1557
1558         /*
1559          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1560          */
1561         for_each_possible_cpu(cpu) {
1562                 struct page *page;
1563                 void *page_addr;
1564
1565                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1566                 if (!page) {
1567                         err = -ENOMEM;
1568                         goto out_err;
1569                 }
1570
1571                 page_addr = page_address(page);
1572                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1573                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1574         }
1575
1576         /*
1577          * Map the Hyp-code called directly from the host
1578          */
1579         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1580                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1581         if (err) {
1582                 kvm_err("Cannot map world-switch code\n");
1583                 goto out_err;
1584         }
1585
1586         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1587                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1588         if (err) {
1589                 kvm_err("Cannot map rodata section\n");
1590                 goto out_err;
1591         }
1592
1593         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1594                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1595         if (err) {
1596                 kvm_err("Cannot map bss section\n");
1597                 goto out_err;
1598         }
1599
1600         err = kvm_map_vectors();
1601         if (err) {
1602                 kvm_err("Cannot map vectors\n");
1603                 goto out_err;
1604         }
1605
1606         /*
1607          * Map the Hyp stack pages
1608          */
1609         for_each_possible_cpu(cpu) {
1610                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1611                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1612                                           PAGE_HYP);
1613
1614                 if (err) {
1615                         kvm_err("Cannot map hyp stack\n");
1616                         goto out_err;
1617                 }
1618         }
1619
1620         /*
1621          * Map Hyp percpu pages
1622          */
1623         for_each_possible_cpu(cpu) {
1624                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1625                 char *percpu_end = percpu_begin + nvhe_percpu_size();
1626
1627                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1628
1629                 if (err) {
1630                         kvm_err("Cannot map hyp percpu region\n");
1631                         goto out_err;
1632                 }
1633         }
1634
1635         return 0;
1636
1637 out_err:
1638         teardown_hyp_mode();
1639         kvm_err("error initializing Hyp mode: %d\n", err);
1640         return err;
1641 }
1642
1643 static void check_kvm_target_cpu(void *ret)
1644 {
1645         *(int *)ret = kvm_target_cpu();
1646 }
1647
1648 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1649 {
1650         struct kvm_vcpu *vcpu;
1651         int i;
1652
1653         mpidr &= MPIDR_HWID_BITMASK;
1654         kvm_for_each_vcpu(i, vcpu, kvm) {
1655                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1656                         return vcpu;
1657         }
1658         return NULL;
1659 }
1660
1661 bool kvm_arch_has_irq_bypass(void)
1662 {
1663         return true;
1664 }
1665
1666 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1667                                       struct irq_bypass_producer *prod)
1668 {
1669         struct kvm_kernel_irqfd *irqfd =
1670                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1671
1672         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1673                                           &irqfd->irq_entry);
1674 }
1675 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1676                                       struct irq_bypass_producer *prod)
1677 {
1678         struct kvm_kernel_irqfd *irqfd =
1679                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1680
1681         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1682                                      &irqfd->irq_entry);
1683 }
1684
1685 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1686 {
1687         struct kvm_kernel_irqfd *irqfd =
1688                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1689
1690         kvm_arm_halt_guest(irqfd->kvm);
1691 }
1692
1693 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1694 {
1695         struct kvm_kernel_irqfd *irqfd =
1696                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1697
1698         kvm_arm_resume_guest(irqfd->kvm);
1699 }
1700
1701 /**
1702  * Initialize Hyp-mode and memory mappings on all CPUs.
1703  */
1704 int kvm_arch_init(void *opaque)
1705 {
1706         int err;
1707         int ret, cpu;
1708         bool in_hyp_mode;
1709
1710         if (!is_hyp_mode_available()) {
1711                 kvm_info("HYP mode not available\n");
1712                 return -ENODEV;
1713         }
1714
1715         in_hyp_mode = is_kernel_in_hyp_mode();
1716
1717         if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1718                 kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1719                 return -ENODEV;
1720         }
1721
1722         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE))
1723                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
1724                          "Only trusted guests should be used on this system.\n");
1725
1726         for_each_online_cpu(cpu) {
1727                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1728                 if (ret < 0) {
1729                         kvm_err("Error, CPU %d not supported!\n", cpu);
1730                         return -ENODEV;
1731                 }
1732         }
1733
1734         err = init_common_resources();
1735         if (err)
1736                 return err;
1737
1738         err = kvm_arm_init_sve();
1739         if (err)
1740                 return err;
1741
1742         if (!in_hyp_mode) {
1743                 err = init_hyp_mode();
1744                 if (err)
1745                         goto out_err;
1746         }
1747
1748         err = init_subsystems();
1749         if (err)
1750                 goto out_hyp;
1751
1752         if (in_hyp_mode)
1753                 kvm_info("VHE mode initialized successfully\n");
1754         else
1755                 kvm_info("Hyp mode initialized successfully\n");
1756
1757         return 0;
1758
1759 out_hyp:
1760         hyp_cpu_pm_exit();
1761         if (!in_hyp_mode)
1762                 teardown_hyp_mode();
1763 out_err:
1764         return err;
1765 }
1766
1767 /* NOP: Compiling as a module not supported */
1768 void kvm_arch_exit(void)
1769 {
1770         kvm_perf_teardown();
1771 }
1772
1773 static int arm_init(void)
1774 {
1775         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1776         return rc;
1777 }
1778
1779 module_init(arm_init);