Merge tag 'xfs-5.13-fixes-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
24
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
27
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/sections.h>
40
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension        virt");
47 #endif
48
49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51
52 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u32 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62
63 static bool vgic_present;
64
65 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
67
68 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
69 {
70         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
71 }
72
73 int kvm_arch_hardware_setup(void *opaque)
74 {
75         return 0;
76 }
77
78 int kvm_arch_check_processor_compat(void *opaque)
79 {
80         return 0;
81 }
82
83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
84                             struct kvm_enable_cap *cap)
85 {
86         int r;
87
88         if (cap->flags)
89                 return -EINVAL;
90
91         switch (cap->cap) {
92         case KVM_CAP_ARM_NISV_TO_USER:
93                 r = 0;
94                 kvm->arch.return_nisv_io_abort_to_user = true;
95                 break;
96         default:
97                 r = -EINVAL;
98                 break;
99         }
100
101         return r;
102 }
103
104 static int kvm_arm_default_max_vcpus(void)
105 {
106         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
107 }
108
109 static void set_default_spectre(struct kvm *kvm)
110 {
111         /*
112          * The default is to expose CSV2 == 1 if the HW isn't affected.
113          * Although this is a per-CPU feature, we make it global because
114          * asymmetric systems are just a nuisance.
115          *
116          * Userspace can override this as long as it doesn't promise
117          * the impossible.
118          */
119         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
120                 kvm->arch.pfr0_csv2 = 1;
121         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
122                 kvm->arch.pfr0_csv3 = 1;
123 }
124
125 /**
126  * kvm_arch_init_vm - initializes a VM data structure
127  * @kvm:        pointer to the KVM struct
128  */
129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
130 {
131         int ret;
132
133         ret = kvm_arm_setup_stage2(kvm, type);
134         if (ret)
135                 return ret;
136
137         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
138         if (ret)
139                 return ret;
140
141         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
142         if (ret)
143                 goto out_free_stage2_pgd;
144
145         kvm_vgic_early_init(kvm);
146
147         /* The maximum number of VCPUs is limited by the host's GIC model */
148         kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
149
150         set_default_spectre(kvm);
151
152         return ret;
153 out_free_stage2_pgd:
154         kvm_free_stage2_pgd(&kvm->arch.mmu);
155         return ret;
156 }
157
158 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
159 {
160         return VM_FAULT_SIGBUS;
161 }
162
163
164 /**
165  * kvm_arch_destroy_vm - destroy the VM data structure
166  * @kvm:        pointer to the KVM struct
167  */
168 void kvm_arch_destroy_vm(struct kvm *kvm)
169 {
170         int i;
171
172         bitmap_free(kvm->arch.pmu_filter);
173
174         kvm_vgic_destroy(kvm);
175
176         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
177                 if (kvm->vcpus[i]) {
178                         kvm_vcpu_destroy(kvm->vcpus[i]);
179                         kvm->vcpus[i] = NULL;
180                 }
181         }
182         atomic_set(&kvm->online_vcpus, 0);
183 }
184
185 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
186 {
187         int r;
188         switch (ext) {
189         case KVM_CAP_IRQCHIP:
190                 r = vgic_present;
191                 break;
192         case KVM_CAP_IOEVENTFD:
193         case KVM_CAP_DEVICE_CTRL:
194         case KVM_CAP_USER_MEMORY:
195         case KVM_CAP_SYNC_MMU:
196         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
197         case KVM_CAP_ONE_REG:
198         case KVM_CAP_ARM_PSCI:
199         case KVM_CAP_ARM_PSCI_0_2:
200         case KVM_CAP_READONLY_MEM:
201         case KVM_CAP_MP_STATE:
202         case KVM_CAP_IMMEDIATE_EXIT:
203         case KVM_CAP_VCPU_EVENTS:
204         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
205         case KVM_CAP_ARM_NISV_TO_USER:
206         case KVM_CAP_ARM_INJECT_EXT_DABT:
207         case KVM_CAP_SET_GUEST_DEBUG:
208         case KVM_CAP_VCPU_ATTRIBUTES:
209         case KVM_CAP_PTP_KVM:
210                 r = 1;
211                 break;
212         case KVM_CAP_SET_GUEST_DEBUG2:
213                 return KVM_GUESTDBG_VALID_MASK;
214         case KVM_CAP_ARM_SET_DEVICE_ADDR:
215                 r = 1;
216                 break;
217         case KVM_CAP_NR_VCPUS:
218                 r = num_online_cpus();
219                 break;
220         case KVM_CAP_MAX_VCPUS:
221         case KVM_CAP_MAX_VCPU_ID:
222                 if (kvm)
223                         r = kvm->arch.max_vcpus;
224                 else
225                         r = kvm_arm_default_max_vcpus();
226                 break;
227         case KVM_CAP_MSI_DEVID:
228                 if (!kvm)
229                         r = -EINVAL;
230                 else
231                         r = kvm->arch.vgic.msis_require_devid;
232                 break;
233         case KVM_CAP_ARM_USER_IRQ:
234                 /*
235                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
236                  * (bump this number if adding more devices)
237                  */
238                 r = 1;
239                 break;
240         case KVM_CAP_STEAL_TIME:
241                 r = kvm_arm_pvtime_supported();
242                 break;
243         case KVM_CAP_ARM_EL1_32BIT:
244                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
245                 break;
246         case KVM_CAP_GUEST_DEBUG_HW_BPS:
247                 r = get_num_brps();
248                 break;
249         case KVM_CAP_GUEST_DEBUG_HW_WPS:
250                 r = get_num_wrps();
251                 break;
252         case KVM_CAP_ARM_PMU_V3:
253                 r = kvm_arm_support_pmu_v3();
254                 break;
255         case KVM_CAP_ARM_INJECT_SERROR_ESR:
256                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
257                 break;
258         case KVM_CAP_ARM_VM_IPA_SIZE:
259                 r = get_kvm_ipa_limit();
260                 break;
261         case KVM_CAP_ARM_SVE:
262                 r = system_supports_sve();
263                 break;
264         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
265         case KVM_CAP_ARM_PTRAUTH_GENERIC:
266                 r = system_has_full_ptr_auth();
267                 break;
268         default:
269                 r = 0;
270         }
271
272         return r;
273 }
274
275 long kvm_arch_dev_ioctl(struct file *filp,
276                         unsigned int ioctl, unsigned long arg)
277 {
278         return -EINVAL;
279 }
280
281 struct kvm *kvm_arch_alloc_vm(void)
282 {
283         if (!has_vhe())
284                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
285
286         return vzalloc(sizeof(struct kvm));
287 }
288
289 void kvm_arch_free_vm(struct kvm *kvm)
290 {
291         if (!has_vhe())
292                 kfree(kvm);
293         else
294                 vfree(kvm);
295 }
296
297 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
298 {
299         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
300                 return -EBUSY;
301
302         if (id >= kvm->arch.max_vcpus)
303                 return -EINVAL;
304
305         return 0;
306 }
307
308 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
309 {
310         int err;
311
312         /* Force users to call KVM_ARM_VCPU_INIT */
313         vcpu->arch.target = -1;
314         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
315
316         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
317
318         /* Set up the timer */
319         kvm_timer_vcpu_init(vcpu);
320
321         kvm_pmu_vcpu_init(vcpu);
322
323         kvm_arm_reset_debug_ptr(vcpu);
324
325         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
326
327         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
328
329         err = kvm_vgic_vcpu_init(vcpu);
330         if (err)
331                 return err;
332
333         return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
334 }
335
336 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
337 {
338 }
339
340 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
341 {
342         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
343                 static_branch_dec(&userspace_irqchip_in_use);
344
345         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
346         kvm_timer_vcpu_terminate(vcpu);
347         kvm_pmu_vcpu_destroy(vcpu);
348
349         kvm_arm_vcpu_destroy(vcpu);
350 }
351
352 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
353 {
354         return kvm_timer_is_pending(vcpu);
355 }
356
357 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
358 {
359         /*
360          * If we're about to block (most likely because we've just hit a
361          * WFI), we need to sync back the state of the GIC CPU interface
362          * so that we have the latest PMR and group enables. This ensures
363          * that kvm_arch_vcpu_runnable has up-to-date data to decide
364          * whether we have pending interrupts.
365          *
366          * For the same reason, we want to tell GICv4 that we need
367          * doorbells to be signalled, should an interrupt become pending.
368          */
369         preempt_disable();
370         kvm_vgic_vmcr_sync(vcpu);
371         vgic_v4_put(vcpu, true);
372         preempt_enable();
373 }
374
375 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
376 {
377         preempt_disable();
378         vgic_v4_load(vcpu);
379         preempt_enable();
380 }
381
382 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
383 {
384         struct kvm_s2_mmu *mmu;
385         int *last_ran;
386
387         mmu = vcpu->arch.hw_mmu;
388         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
389
390         /*
391          * We guarantee that both TLBs and I-cache are private to each
392          * vcpu. If detecting that a vcpu from the same VM has
393          * previously run on the same physical CPU, call into the
394          * hypervisor code to nuke the relevant contexts.
395          *
396          * We might get preempted before the vCPU actually runs, but
397          * over-invalidation doesn't affect correctness.
398          */
399         if (*last_ran != vcpu->vcpu_id) {
400                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
401                 *last_ran = vcpu->vcpu_id;
402         }
403
404         vcpu->cpu = cpu;
405
406         kvm_vgic_load(vcpu);
407         kvm_timer_vcpu_load(vcpu);
408         if (has_vhe())
409                 kvm_vcpu_load_sysregs_vhe(vcpu);
410         kvm_arch_vcpu_load_fp(vcpu);
411         kvm_vcpu_pmu_restore_guest(vcpu);
412         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
413                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
414
415         if (single_task_running())
416                 vcpu_clear_wfx_traps(vcpu);
417         else
418                 vcpu_set_wfx_traps(vcpu);
419
420         if (vcpu_has_ptrauth(vcpu))
421                 vcpu_ptrauth_disable(vcpu);
422         kvm_arch_vcpu_load_debug_state_flags(vcpu);
423 }
424
425 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
426 {
427         kvm_arch_vcpu_put_debug_state_flags(vcpu);
428         kvm_arch_vcpu_put_fp(vcpu);
429         if (has_vhe())
430                 kvm_vcpu_put_sysregs_vhe(vcpu);
431         kvm_timer_vcpu_put(vcpu);
432         kvm_vgic_put(vcpu);
433         kvm_vcpu_pmu_restore_host(vcpu);
434
435         vcpu->cpu = -1;
436 }
437
438 static void vcpu_power_off(struct kvm_vcpu *vcpu)
439 {
440         vcpu->arch.power_off = true;
441         kvm_make_request(KVM_REQ_SLEEP, vcpu);
442         kvm_vcpu_kick(vcpu);
443 }
444
445 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
446                                     struct kvm_mp_state *mp_state)
447 {
448         if (vcpu->arch.power_off)
449                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
450         else
451                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
452
453         return 0;
454 }
455
456 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
457                                     struct kvm_mp_state *mp_state)
458 {
459         int ret = 0;
460
461         switch (mp_state->mp_state) {
462         case KVM_MP_STATE_RUNNABLE:
463                 vcpu->arch.power_off = false;
464                 break;
465         case KVM_MP_STATE_STOPPED:
466                 vcpu_power_off(vcpu);
467                 break;
468         default:
469                 ret = -EINVAL;
470         }
471
472         return ret;
473 }
474
475 /**
476  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
477  * @v:          The VCPU pointer
478  *
479  * If the guest CPU is not waiting for interrupts or an interrupt line is
480  * asserted, the CPU is by definition runnable.
481  */
482 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
483 {
484         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
485         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
486                 && !v->arch.power_off && !v->arch.pause);
487 }
488
489 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
490 {
491         return vcpu_mode_priv(vcpu);
492 }
493
494 /* Just ensure a guest exit from a particular CPU */
495 static void exit_vm_noop(void *info)
496 {
497 }
498
499 void force_vm_exit(const cpumask_t *mask)
500 {
501         preempt_disable();
502         smp_call_function_many(mask, exit_vm_noop, NULL, true);
503         preempt_enable();
504 }
505
506 /**
507  * need_new_vmid_gen - check that the VMID is still valid
508  * @vmid: The VMID to check
509  *
510  * return true if there is a new generation of VMIDs being used
511  *
512  * The hardware supports a limited set of values with the value zero reserved
513  * for the host, so we check if an assigned value belongs to a previous
514  * generation, which requires us to assign a new value. If we're the first to
515  * use a VMID for the new generation, we must flush necessary caches and TLBs
516  * on all CPUs.
517  */
518 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
519 {
520         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
521         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
522         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
523 }
524
525 /**
526  * update_vmid - Update the vmid with a valid VMID for the current generation
527  * @vmid: The stage-2 VMID information struct
528  */
529 static void update_vmid(struct kvm_vmid *vmid)
530 {
531         if (!need_new_vmid_gen(vmid))
532                 return;
533
534         spin_lock(&kvm_vmid_lock);
535
536         /*
537          * We need to re-check the vmid_gen here to ensure that if another vcpu
538          * already allocated a valid vmid for this vm, then this vcpu should
539          * use the same vmid.
540          */
541         if (!need_new_vmid_gen(vmid)) {
542                 spin_unlock(&kvm_vmid_lock);
543                 return;
544         }
545
546         /* First user of a new VMID generation? */
547         if (unlikely(kvm_next_vmid == 0)) {
548                 atomic64_inc(&kvm_vmid_gen);
549                 kvm_next_vmid = 1;
550
551                 /*
552                  * On SMP we know no other CPUs can use this CPU's or each
553                  * other's VMID after force_vm_exit returns since the
554                  * kvm_vmid_lock blocks them from reentry to the guest.
555                  */
556                 force_vm_exit(cpu_all_mask);
557                 /*
558                  * Now broadcast TLB + ICACHE invalidation over the inner
559                  * shareable domain to make sure all data structures are
560                  * clean.
561                  */
562                 kvm_call_hyp(__kvm_flush_vm_context);
563         }
564
565         vmid->vmid = kvm_next_vmid;
566         kvm_next_vmid++;
567         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
568
569         smp_wmb();
570         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
571
572         spin_unlock(&kvm_vmid_lock);
573 }
574
575 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
576 {
577         struct kvm *kvm = vcpu->kvm;
578         int ret = 0;
579
580         if (likely(vcpu->arch.has_run_once))
581                 return 0;
582
583         if (!kvm_arm_vcpu_is_finalized(vcpu))
584                 return -EPERM;
585
586         vcpu->arch.has_run_once = true;
587
588         kvm_arm_vcpu_init_debug(vcpu);
589
590         if (likely(irqchip_in_kernel(kvm))) {
591                 /*
592                  * Map the VGIC hardware resources before running a vcpu the
593                  * first time on this VM.
594                  */
595                 ret = kvm_vgic_map_resources(kvm);
596                 if (ret)
597                         return ret;
598         } else {
599                 /*
600                  * Tell the rest of the code that there are userspace irqchip
601                  * VMs in the wild.
602                  */
603                 static_branch_inc(&userspace_irqchip_in_use);
604         }
605
606         ret = kvm_timer_enable(vcpu);
607         if (ret)
608                 return ret;
609
610         ret = kvm_arm_pmu_v3_enable(vcpu);
611
612         return ret;
613 }
614
615 bool kvm_arch_intc_initialized(struct kvm *kvm)
616 {
617         return vgic_initialized(kvm);
618 }
619
620 void kvm_arm_halt_guest(struct kvm *kvm)
621 {
622         int i;
623         struct kvm_vcpu *vcpu;
624
625         kvm_for_each_vcpu(i, vcpu, kvm)
626                 vcpu->arch.pause = true;
627         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
628 }
629
630 void kvm_arm_resume_guest(struct kvm *kvm)
631 {
632         int i;
633         struct kvm_vcpu *vcpu;
634
635         kvm_for_each_vcpu(i, vcpu, kvm) {
636                 vcpu->arch.pause = false;
637                 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
638         }
639 }
640
641 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
642 {
643         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
644
645         rcuwait_wait_event(wait,
646                            (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
647                            TASK_INTERRUPTIBLE);
648
649         if (vcpu->arch.power_off || vcpu->arch.pause) {
650                 /* Awaken to handle a signal, request we sleep again later. */
651                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
652         }
653
654         /*
655          * Make sure we will observe a potential reset request if we've
656          * observed a change to the power state. Pairs with the smp_wmb() in
657          * kvm_psci_vcpu_on().
658          */
659         smp_rmb();
660 }
661
662 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
663 {
664         return vcpu->arch.target >= 0;
665 }
666
667 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
668 {
669         if (kvm_request_pending(vcpu)) {
670                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
671                         vcpu_req_sleep(vcpu);
672
673                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
674                         kvm_reset_vcpu(vcpu);
675
676                 /*
677                  * Clear IRQ_PENDING requests that were made to guarantee
678                  * that a VCPU sees new virtual interrupts.
679                  */
680                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
681
682                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
683                         kvm_update_stolen_time(vcpu);
684
685                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
686                         /* The distributor enable bits were changed */
687                         preempt_disable();
688                         vgic_v4_put(vcpu, false);
689                         vgic_v4_load(vcpu);
690                         preempt_enable();
691                 }
692         }
693 }
694
695 /**
696  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
697  * @vcpu:       The VCPU pointer
698  *
699  * This function is called through the VCPU_RUN ioctl called from user space. It
700  * will execute VM code in a loop until the time slice for the process is used
701  * or some emulation is needed from user space in which case the function will
702  * return with return value 0 and with the kvm_run structure filled in with the
703  * required data for the requested emulation.
704  */
705 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
706 {
707         struct kvm_run *run = vcpu->run;
708         int ret;
709
710         if (unlikely(!kvm_vcpu_initialized(vcpu)))
711                 return -ENOEXEC;
712
713         ret = kvm_vcpu_first_run_init(vcpu);
714         if (ret)
715                 return ret;
716
717         if (run->exit_reason == KVM_EXIT_MMIO) {
718                 ret = kvm_handle_mmio_return(vcpu);
719                 if (ret)
720                         return ret;
721         }
722
723         vcpu_load(vcpu);
724
725         if (run->immediate_exit) {
726                 ret = -EINTR;
727                 goto out;
728         }
729
730         kvm_sigset_activate(vcpu);
731
732         ret = 1;
733         run->exit_reason = KVM_EXIT_UNKNOWN;
734         while (ret > 0) {
735                 /*
736                  * Check conditions before entering the guest
737                  */
738                 cond_resched();
739
740                 update_vmid(&vcpu->arch.hw_mmu->vmid);
741
742                 check_vcpu_requests(vcpu);
743
744                 /*
745                  * Preparing the interrupts to be injected also
746                  * involves poking the GIC, which must be done in a
747                  * non-preemptible context.
748                  */
749                 preempt_disable();
750
751                 kvm_pmu_flush_hwstate(vcpu);
752
753                 local_irq_disable();
754
755                 kvm_vgic_flush_hwstate(vcpu);
756
757                 /*
758                  * Exit if we have a signal pending so that we can deliver the
759                  * signal to user space.
760                  */
761                 if (signal_pending(current)) {
762                         ret = -EINTR;
763                         run->exit_reason = KVM_EXIT_INTR;
764                 }
765
766                 /*
767                  * If we're using a userspace irqchip, then check if we need
768                  * to tell a userspace irqchip about timer or PMU level
769                  * changes and if so, exit to userspace (the actual level
770                  * state gets updated in kvm_timer_update_run and
771                  * kvm_pmu_update_run below).
772                  */
773                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
774                         if (kvm_timer_should_notify_user(vcpu) ||
775                             kvm_pmu_should_notify_user(vcpu)) {
776                                 ret = -EINTR;
777                                 run->exit_reason = KVM_EXIT_INTR;
778                         }
779                 }
780
781                 /*
782                  * Ensure we set mode to IN_GUEST_MODE after we disable
783                  * interrupts and before the final VCPU requests check.
784                  * See the comment in kvm_vcpu_exiting_guest_mode() and
785                  * Documentation/virt/kvm/vcpu-requests.rst
786                  */
787                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
788
789                 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
790                     kvm_request_pending(vcpu)) {
791                         vcpu->mode = OUTSIDE_GUEST_MODE;
792                         isb(); /* Ensure work in x_flush_hwstate is committed */
793                         kvm_pmu_sync_hwstate(vcpu);
794                         if (static_branch_unlikely(&userspace_irqchip_in_use))
795                                 kvm_timer_sync_user(vcpu);
796                         kvm_vgic_sync_hwstate(vcpu);
797                         local_irq_enable();
798                         preempt_enable();
799                         continue;
800                 }
801
802                 kvm_arm_setup_debug(vcpu);
803
804                 /**************************************************************
805                  * Enter the guest
806                  */
807                 trace_kvm_entry(*vcpu_pc(vcpu));
808                 guest_enter_irqoff();
809
810                 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
811
812                 vcpu->mode = OUTSIDE_GUEST_MODE;
813                 vcpu->stat.exits++;
814                 /*
815                  * Back from guest
816                  *************************************************************/
817
818                 kvm_arm_clear_debug(vcpu);
819
820                 /*
821                  * We must sync the PMU state before the vgic state so
822                  * that the vgic can properly sample the updated state of the
823                  * interrupt line.
824                  */
825                 kvm_pmu_sync_hwstate(vcpu);
826
827                 /*
828                  * Sync the vgic state before syncing the timer state because
829                  * the timer code needs to know if the virtual timer
830                  * interrupts are active.
831                  */
832                 kvm_vgic_sync_hwstate(vcpu);
833
834                 /*
835                  * Sync the timer hardware state before enabling interrupts as
836                  * we don't want vtimer interrupts to race with syncing the
837                  * timer virtual interrupt state.
838                  */
839                 if (static_branch_unlikely(&userspace_irqchip_in_use))
840                         kvm_timer_sync_user(vcpu);
841
842                 kvm_arch_vcpu_ctxsync_fp(vcpu);
843
844                 /*
845                  * We may have taken a host interrupt in HYP mode (ie
846                  * while executing the guest). This interrupt is still
847                  * pending, as we haven't serviced it yet!
848                  *
849                  * We're now back in SVC mode, with interrupts
850                  * disabled.  Enabling the interrupts now will have
851                  * the effect of taking the interrupt again, in SVC
852                  * mode this time.
853                  */
854                 local_irq_enable();
855
856                 /*
857                  * We do local_irq_enable() before calling guest_exit() so
858                  * that if a timer interrupt hits while running the guest we
859                  * account that tick as being spent in the guest.  We enable
860                  * preemption after calling guest_exit() so that if we get
861                  * preempted we make sure ticks after that is not counted as
862                  * guest time.
863                  */
864                 guest_exit();
865                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
866
867                 /* Exit types that need handling before we can be preempted */
868                 handle_exit_early(vcpu, ret);
869
870                 preempt_enable();
871
872                 /*
873                  * The ARMv8 architecture doesn't give the hypervisor
874                  * a mechanism to prevent a guest from dropping to AArch32 EL0
875                  * if implemented by the CPU. If we spot the guest in such
876                  * state and that we decided it wasn't supposed to do so (like
877                  * with the asymmetric AArch32 case), return to userspace with
878                  * a fatal error.
879                  */
880                 if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
881                         /*
882                          * As we have caught the guest red-handed, decide that
883                          * it isn't fit for purpose anymore by making the vcpu
884                          * invalid. The VMM can try and fix it by issuing  a
885                          * KVM_ARM_VCPU_INIT if it really wants to.
886                          */
887                         vcpu->arch.target = -1;
888                         ret = ARM_EXCEPTION_IL;
889                 }
890
891                 ret = handle_exit(vcpu, ret);
892         }
893
894         /* Tell userspace about in-kernel device output levels */
895         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
896                 kvm_timer_update_run(vcpu);
897                 kvm_pmu_update_run(vcpu);
898         }
899
900         kvm_sigset_deactivate(vcpu);
901
902 out:
903         /*
904          * In the unlikely event that we are returning to userspace
905          * with pending exceptions or PC adjustment, commit these
906          * adjustments in order to give userspace a consistent view of
907          * the vcpu state. Note that this relies on __kvm_adjust_pc()
908          * being preempt-safe on VHE.
909          */
910         if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
911                                          KVM_ARM64_INCREMENT_PC)))
912                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
913
914         vcpu_put(vcpu);
915         return ret;
916 }
917
918 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
919 {
920         int bit_index;
921         bool set;
922         unsigned long *hcr;
923
924         if (number == KVM_ARM_IRQ_CPU_IRQ)
925                 bit_index = __ffs(HCR_VI);
926         else /* KVM_ARM_IRQ_CPU_FIQ */
927                 bit_index = __ffs(HCR_VF);
928
929         hcr = vcpu_hcr(vcpu);
930         if (level)
931                 set = test_and_set_bit(bit_index, hcr);
932         else
933                 set = test_and_clear_bit(bit_index, hcr);
934
935         /*
936          * If we didn't change anything, no need to wake up or kick other CPUs
937          */
938         if (set == level)
939                 return 0;
940
941         /*
942          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
943          * trigger a world-switch round on the running physical CPU to set the
944          * virtual IRQ/FIQ fields in the HCR appropriately.
945          */
946         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
947         kvm_vcpu_kick(vcpu);
948
949         return 0;
950 }
951
952 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
953                           bool line_status)
954 {
955         u32 irq = irq_level->irq;
956         unsigned int irq_type, vcpu_idx, irq_num;
957         int nrcpus = atomic_read(&kvm->online_vcpus);
958         struct kvm_vcpu *vcpu = NULL;
959         bool level = irq_level->level;
960
961         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
962         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
963         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
964         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
965
966         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
967
968         switch (irq_type) {
969         case KVM_ARM_IRQ_TYPE_CPU:
970                 if (irqchip_in_kernel(kvm))
971                         return -ENXIO;
972
973                 if (vcpu_idx >= nrcpus)
974                         return -EINVAL;
975
976                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
977                 if (!vcpu)
978                         return -EINVAL;
979
980                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
981                         return -EINVAL;
982
983                 return vcpu_interrupt_line(vcpu, irq_num, level);
984         case KVM_ARM_IRQ_TYPE_PPI:
985                 if (!irqchip_in_kernel(kvm))
986                         return -ENXIO;
987
988                 if (vcpu_idx >= nrcpus)
989                         return -EINVAL;
990
991                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
992                 if (!vcpu)
993                         return -EINVAL;
994
995                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
996                         return -EINVAL;
997
998                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
999         case KVM_ARM_IRQ_TYPE_SPI:
1000                 if (!irqchip_in_kernel(kvm))
1001                         return -ENXIO;
1002
1003                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1004                         return -EINVAL;
1005
1006                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1007         }
1008
1009         return -EINVAL;
1010 }
1011
1012 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1013                                const struct kvm_vcpu_init *init)
1014 {
1015         unsigned int i, ret;
1016         int phys_target = kvm_target_cpu();
1017
1018         if (init->target != phys_target)
1019                 return -EINVAL;
1020
1021         /*
1022          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1023          * use the same target.
1024          */
1025         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1026                 return -EINVAL;
1027
1028         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1029         for (i = 0; i < sizeof(init->features) * 8; i++) {
1030                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1031
1032                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1033                         return -ENOENT;
1034
1035                 /*
1036                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1037                  * use the same feature set.
1038                  */
1039                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1040                     test_bit(i, vcpu->arch.features) != set)
1041                         return -EINVAL;
1042
1043                 if (set)
1044                         set_bit(i, vcpu->arch.features);
1045         }
1046
1047         vcpu->arch.target = phys_target;
1048
1049         /* Now we know what it is, we can reset it. */
1050         ret = kvm_reset_vcpu(vcpu);
1051         if (ret) {
1052                 vcpu->arch.target = -1;
1053                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1054         }
1055
1056         return ret;
1057 }
1058
1059 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1060                                          struct kvm_vcpu_init *init)
1061 {
1062         int ret;
1063
1064         ret = kvm_vcpu_set_target(vcpu, init);
1065         if (ret)
1066                 return ret;
1067
1068         /*
1069          * Ensure a rebooted VM will fault in RAM pages and detect if the
1070          * guest MMU is turned off and flush the caches as needed.
1071          *
1072          * S2FWB enforces all memory accesses to RAM being cacheable,
1073          * ensuring that the data side is always coherent. We still
1074          * need to invalidate the I-cache though, as FWB does *not*
1075          * imply CTR_EL0.DIC.
1076          */
1077         if (vcpu->arch.has_run_once) {
1078                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1079                         stage2_unmap_vm(vcpu->kvm);
1080                 else
1081                         __flush_icache_all();
1082         }
1083
1084         vcpu_reset_hcr(vcpu);
1085
1086         /*
1087          * Handle the "start in power-off" case.
1088          */
1089         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1090                 vcpu_power_off(vcpu);
1091         else
1092                 vcpu->arch.power_off = false;
1093
1094         return 0;
1095 }
1096
1097 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1098                                  struct kvm_device_attr *attr)
1099 {
1100         int ret = -ENXIO;
1101
1102         switch (attr->group) {
1103         default:
1104                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1105                 break;
1106         }
1107
1108         return ret;
1109 }
1110
1111 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1112                                  struct kvm_device_attr *attr)
1113 {
1114         int ret = -ENXIO;
1115
1116         switch (attr->group) {
1117         default:
1118                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1119                 break;
1120         }
1121
1122         return ret;
1123 }
1124
1125 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1126                                  struct kvm_device_attr *attr)
1127 {
1128         int ret = -ENXIO;
1129
1130         switch (attr->group) {
1131         default:
1132                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1133                 break;
1134         }
1135
1136         return ret;
1137 }
1138
1139 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1140                                    struct kvm_vcpu_events *events)
1141 {
1142         memset(events, 0, sizeof(*events));
1143
1144         return __kvm_arm_vcpu_get_events(vcpu, events);
1145 }
1146
1147 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1148                                    struct kvm_vcpu_events *events)
1149 {
1150         int i;
1151
1152         /* check whether the reserved field is zero */
1153         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1154                 if (events->reserved[i])
1155                         return -EINVAL;
1156
1157         /* check whether the pad field is zero */
1158         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1159                 if (events->exception.pad[i])
1160                         return -EINVAL;
1161
1162         return __kvm_arm_vcpu_set_events(vcpu, events);
1163 }
1164
1165 long kvm_arch_vcpu_ioctl(struct file *filp,
1166                          unsigned int ioctl, unsigned long arg)
1167 {
1168         struct kvm_vcpu *vcpu = filp->private_data;
1169         void __user *argp = (void __user *)arg;
1170         struct kvm_device_attr attr;
1171         long r;
1172
1173         switch (ioctl) {
1174         case KVM_ARM_VCPU_INIT: {
1175                 struct kvm_vcpu_init init;
1176
1177                 r = -EFAULT;
1178                 if (copy_from_user(&init, argp, sizeof(init)))
1179                         break;
1180
1181                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1182                 break;
1183         }
1184         case KVM_SET_ONE_REG:
1185         case KVM_GET_ONE_REG: {
1186                 struct kvm_one_reg reg;
1187
1188                 r = -ENOEXEC;
1189                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1190                         break;
1191
1192                 r = -EFAULT;
1193                 if (copy_from_user(&reg, argp, sizeof(reg)))
1194                         break;
1195
1196                 if (ioctl == KVM_SET_ONE_REG)
1197                         r = kvm_arm_set_reg(vcpu, &reg);
1198                 else
1199                         r = kvm_arm_get_reg(vcpu, &reg);
1200                 break;
1201         }
1202         case KVM_GET_REG_LIST: {
1203                 struct kvm_reg_list __user *user_list = argp;
1204                 struct kvm_reg_list reg_list;
1205                 unsigned n;
1206
1207                 r = -ENOEXEC;
1208                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1209                         break;
1210
1211                 r = -EPERM;
1212                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1213                         break;
1214
1215                 r = -EFAULT;
1216                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1217                         break;
1218                 n = reg_list.n;
1219                 reg_list.n = kvm_arm_num_regs(vcpu);
1220                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1221                         break;
1222                 r = -E2BIG;
1223                 if (n < reg_list.n)
1224                         break;
1225                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1226                 break;
1227         }
1228         case KVM_SET_DEVICE_ATTR: {
1229                 r = -EFAULT;
1230                 if (copy_from_user(&attr, argp, sizeof(attr)))
1231                         break;
1232                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1233                 break;
1234         }
1235         case KVM_GET_DEVICE_ATTR: {
1236                 r = -EFAULT;
1237                 if (copy_from_user(&attr, argp, sizeof(attr)))
1238                         break;
1239                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1240                 break;
1241         }
1242         case KVM_HAS_DEVICE_ATTR: {
1243                 r = -EFAULT;
1244                 if (copy_from_user(&attr, argp, sizeof(attr)))
1245                         break;
1246                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1247                 break;
1248         }
1249         case KVM_GET_VCPU_EVENTS: {
1250                 struct kvm_vcpu_events events;
1251
1252                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1253                         return -EINVAL;
1254
1255                 if (copy_to_user(argp, &events, sizeof(events)))
1256                         return -EFAULT;
1257
1258                 return 0;
1259         }
1260         case KVM_SET_VCPU_EVENTS: {
1261                 struct kvm_vcpu_events events;
1262
1263                 if (copy_from_user(&events, argp, sizeof(events)))
1264                         return -EFAULT;
1265
1266                 return kvm_arm_vcpu_set_events(vcpu, &events);
1267         }
1268         case KVM_ARM_VCPU_FINALIZE: {
1269                 int what;
1270
1271                 if (!kvm_vcpu_initialized(vcpu))
1272                         return -ENOEXEC;
1273
1274                 if (get_user(what, (const int __user *)argp))
1275                         return -EFAULT;
1276
1277                 return kvm_arm_vcpu_finalize(vcpu, what);
1278         }
1279         default:
1280                 r = -EINVAL;
1281         }
1282
1283         return r;
1284 }
1285
1286 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1287 {
1288
1289 }
1290
1291 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1292                                         const struct kvm_memory_slot *memslot)
1293 {
1294         kvm_flush_remote_tlbs(kvm);
1295 }
1296
1297 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1298                                         struct kvm_arm_device_addr *dev_addr)
1299 {
1300         unsigned long dev_id, type;
1301
1302         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1303                 KVM_ARM_DEVICE_ID_SHIFT;
1304         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1305                 KVM_ARM_DEVICE_TYPE_SHIFT;
1306
1307         switch (dev_id) {
1308         case KVM_ARM_DEVICE_VGIC_V2:
1309                 if (!vgic_present)
1310                         return -ENXIO;
1311                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1312         default:
1313                 return -ENODEV;
1314         }
1315 }
1316
1317 long kvm_arch_vm_ioctl(struct file *filp,
1318                        unsigned int ioctl, unsigned long arg)
1319 {
1320         struct kvm *kvm = filp->private_data;
1321         void __user *argp = (void __user *)arg;
1322
1323         switch (ioctl) {
1324         case KVM_CREATE_IRQCHIP: {
1325                 int ret;
1326                 if (!vgic_present)
1327                         return -ENXIO;
1328                 mutex_lock(&kvm->lock);
1329                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1330                 mutex_unlock(&kvm->lock);
1331                 return ret;
1332         }
1333         case KVM_ARM_SET_DEVICE_ADDR: {
1334                 struct kvm_arm_device_addr dev_addr;
1335
1336                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1337                         return -EFAULT;
1338                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1339         }
1340         case KVM_ARM_PREFERRED_TARGET: {
1341                 int err;
1342                 struct kvm_vcpu_init init;
1343
1344                 err = kvm_vcpu_preferred_target(&init);
1345                 if (err)
1346                         return err;
1347
1348                 if (copy_to_user(argp, &init, sizeof(init)))
1349                         return -EFAULT;
1350
1351                 return 0;
1352         }
1353         default:
1354                 return -EINVAL;
1355         }
1356 }
1357
1358 static unsigned long nvhe_percpu_size(void)
1359 {
1360         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1361                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1362 }
1363
1364 static unsigned long nvhe_percpu_order(void)
1365 {
1366         unsigned long size = nvhe_percpu_size();
1367
1368         return size ? get_order(size) : 0;
1369 }
1370
1371 /* A lookup table holding the hypervisor VA for each vector slot */
1372 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1373
1374 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1375 {
1376         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1377 }
1378
1379 static int kvm_init_vector_slots(void)
1380 {
1381         int err;
1382         void *base;
1383
1384         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1385         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1386
1387         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1388         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1389
1390         if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1391                 return 0;
1392
1393         if (!has_vhe()) {
1394                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1395                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1396                 if (err)
1397                         return err;
1398         }
1399
1400         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1401         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1402         return 0;
1403 }
1404
1405 static void cpu_prepare_hyp_mode(int cpu)
1406 {
1407         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1408         unsigned long tcr;
1409
1410         /*
1411          * Calculate the raw per-cpu offset without a translation from the
1412          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1413          * so that we can use adr_l to access per-cpu variables in EL2.
1414          * Also drop the KASAN tag which gets in the way...
1415          */
1416         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1417                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1418
1419         params->mair_el2 = read_sysreg(mair_el1);
1420
1421         /*
1422          * The ID map may be configured to use an extended virtual address
1423          * range. This is only the case if system RAM is out of range for the
1424          * currently configured page size and VA_BITS, in which case we will
1425          * also need the extended virtual range for the HYP ID map, or we won't
1426          * be able to enable the EL2 MMU.
1427          *
1428          * However, at EL2, there is only one TTBR register, and we can't switch
1429          * between translation tables *and* update TCR_EL2.T0SZ at the same
1430          * time. Bottom line: we need to use the extended range with *both* our
1431          * translation tables.
1432          *
1433          * So use the same T0SZ value we use for the ID map.
1434          */
1435         tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1436         tcr &= ~TCR_T0SZ_MASK;
1437         tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1438         params->tcr_el2 = tcr;
1439
1440         params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1441         params->pgd_pa = kvm_mmu_get_httbr();
1442         if (is_protected_kvm_enabled())
1443                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1444         else
1445                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1446         params->vttbr = params->vtcr = 0;
1447
1448         /*
1449          * Flush the init params from the data cache because the struct will
1450          * be read while the MMU is off.
1451          */
1452         kvm_flush_dcache_to_poc(params, sizeof(*params));
1453 }
1454
1455 static void hyp_install_host_vector(void)
1456 {
1457         struct kvm_nvhe_init_params *params;
1458         struct arm_smccc_res res;
1459
1460         /* Switch from the HYP stub to our own HYP init vector */
1461         __hyp_set_vectors(kvm_get_idmap_vector());
1462
1463         /*
1464          * Call initialization code, and switch to the full blown HYP code.
1465          * If the cpucaps haven't been finalized yet, something has gone very
1466          * wrong, and hyp will crash and burn when it uses any
1467          * cpus_have_const_cap() wrapper.
1468          */
1469         BUG_ON(!system_capabilities_finalized());
1470         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1471         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1472         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1473 }
1474
1475 static void cpu_init_hyp_mode(void)
1476 {
1477         hyp_install_host_vector();
1478
1479         /*
1480          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1481          * at EL2.
1482          */
1483         if (this_cpu_has_cap(ARM64_SSBS) &&
1484             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1485                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1486         }
1487 }
1488
1489 static void cpu_hyp_reset(void)
1490 {
1491         if (!is_kernel_in_hyp_mode())
1492                 __hyp_reset_vectors();
1493 }
1494
1495 /*
1496  * EL2 vectors can be mapped and rerouted in a number of ways,
1497  * depending on the kernel configuration and CPU present:
1498  *
1499  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1500  *   placed in one of the vector slots, which is executed before jumping
1501  *   to the real vectors.
1502  *
1503  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1504  *   containing the hardening sequence is mapped next to the idmap page,
1505  *   and executed before jumping to the real vectors.
1506  *
1507  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1508  *   empty slot is selected, mapped next to the idmap page, and
1509  *   executed before jumping to the real vectors.
1510  *
1511  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1512  * VHE, as we don't have hypervisor-specific mappings. If the system
1513  * is VHE and yet selects this capability, it will be ignored.
1514  */
1515 static void cpu_set_hyp_vector(void)
1516 {
1517         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1518         void *vector = hyp_spectre_vector_selector[data->slot];
1519
1520         if (!is_protected_kvm_enabled())
1521                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1522         else
1523                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1524 }
1525
1526 static void cpu_hyp_reinit(void)
1527 {
1528         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1529
1530         cpu_hyp_reset();
1531
1532         if (is_kernel_in_hyp_mode())
1533                 kvm_timer_init_vhe();
1534         else
1535                 cpu_init_hyp_mode();
1536
1537         cpu_set_hyp_vector();
1538
1539         kvm_arm_init_debug();
1540
1541         if (vgic_present)
1542                 kvm_vgic_init_cpu_hardware();
1543 }
1544
1545 static void _kvm_arch_hardware_enable(void *discard)
1546 {
1547         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1548                 cpu_hyp_reinit();
1549                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1550         }
1551 }
1552
1553 int kvm_arch_hardware_enable(void)
1554 {
1555         _kvm_arch_hardware_enable(NULL);
1556         return 0;
1557 }
1558
1559 static void _kvm_arch_hardware_disable(void *discard)
1560 {
1561         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1562                 cpu_hyp_reset();
1563                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1564         }
1565 }
1566
1567 void kvm_arch_hardware_disable(void)
1568 {
1569         if (!is_protected_kvm_enabled())
1570                 _kvm_arch_hardware_disable(NULL);
1571 }
1572
1573 #ifdef CONFIG_CPU_PM
1574 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1575                                     unsigned long cmd,
1576                                     void *v)
1577 {
1578         /*
1579          * kvm_arm_hardware_enabled is left with its old value over
1580          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1581          * re-enable hyp.
1582          */
1583         switch (cmd) {
1584         case CPU_PM_ENTER:
1585                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1586                         /*
1587                          * don't update kvm_arm_hardware_enabled here
1588                          * so that the hardware will be re-enabled
1589                          * when we resume. See below.
1590                          */
1591                         cpu_hyp_reset();
1592
1593                 return NOTIFY_OK;
1594         case CPU_PM_ENTER_FAILED:
1595         case CPU_PM_EXIT:
1596                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1597                         /* The hardware was enabled before suspend. */
1598                         cpu_hyp_reinit();
1599
1600                 return NOTIFY_OK;
1601
1602         default:
1603                 return NOTIFY_DONE;
1604         }
1605 }
1606
1607 static struct notifier_block hyp_init_cpu_pm_nb = {
1608         .notifier_call = hyp_init_cpu_pm_notifier,
1609 };
1610
1611 static void hyp_cpu_pm_init(void)
1612 {
1613         if (!is_protected_kvm_enabled())
1614                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1615 }
1616 static void hyp_cpu_pm_exit(void)
1617 {
1618         if (!is_protected_kvm_enabled())
1619                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1620 }
1621 #else
1622 static inline void hyp_cpu_pm_init(void)
1623 {
1624 }
1625 static inline void hyp_cpu_pm_exit(void)
1626 {
1627 }
1628 #endif
1629
1630 static void init_cpu_logical_map(void)
1631 {
1632         unsigned int cpu;
1633
1634         /*
1635          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1636          * Only copy the set of online CPUs whose features have been chacked
1637          * against the finalized system capabilities. The hypervisor will not
1638          * allow any other CPUs from the `possible` set to boot.
1639          */
1640         for_each_online_cpu(cpu)
1641                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1642 }
1643
1644 #define init_psci_0_1_impl_state(config, what)  \
1645         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1646
1647 static bool init_psci_relay(void)
1648 {
1649         /*
1650          * If PSCI has not been initialized, protected KVM cannot install
1651          * itself on newly booted CPUs.
1652          */
1653         if (!psci_ops.get_version) {
1654                 kvm_err("Cannot initialize protected mode without PSCI\n");
1655                 return false;
1656         }
1657
1658         kvm_host_psci_config.version = psci_ops.get_version();
1659
1660         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1661                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1662                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1663                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1664                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1665                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1666         }
1667         return true;
1668 }
1669
1670 static int init_common_resources(void)
1671 {
1672         return kvm_set_ipa_limit();
1673 }
1674
1675 static int init_subsystems(void)
1676 {
1677         int err = 0;
1678
1679         /*
1680          * Enable hardware so that subsystem initialisation can access EL2.
1681          */
1682         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1683
1684         /*
1685          * Register CPU lower-power notifier
1686          */
1687         hyp_cpu_pm_init();
1688
1689         /*
1690          * Init HYP view of VGIC
1691          */
1692         err = kvm_vgic_hyp_init();
1693         switch (err) {
1694         case 0:
1695                 vgic_present = true;
1696                 break;
1697         case -ENODEV:
1698         case -ENXIO:
1699                 vgic_present = false;
1700                 err = 0;
1701                 break;
1702         default:
1703                 goto out;
1704         }
1705
1706         /*
1707          * Init HYP architected timer support
1708          */
1709         err = kvm_timer_hyp_init(vgic_present);
1710         if (err)
1711                 goto out;
1712
1713         kvm_perf_init();
1714         kvm_sys_reg_table_init();
1715
1716 out:
1717         if (err || !is_protected_kvm_enabled())
1718                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1719
1720         return err;
1721 }
1722
1723 static void teardown_hyp_mode(void)
1724 {
1725         int cpu;
1726
1727         free_hyp_pgds();
1728         for_each_possible_cpu(cpu) {
1729                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1730                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1731         }
1732 }
1733
1734 static int do_pkvm_init(u32 hyp_va_bits)
1735 {
1736         void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1737         int ret;
1738
1739         preempt_disable();
1740         hyp_install_host_vector();
1741         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1742                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1743                                 hyp_va_bits);
1744         preempt_enable();
1745
1746         return ret;
1747 }
1748
1749 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1750 {
1751         void *addr = phys_to_virt(hyp_mem_base);
1752         int ret;
1753
1754         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1755         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1756
1757         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1758         if (ret)
1759                 return ret;
1760
1761         ret = do_pkvm_init(hyp_va_bits);
1762         if (ret)
1763                 return ret;
1764
1765         free_hyp_pgds();
1766
1767         return 0;
1768 }
1769
1770 /**
1771  * Inits Hyp-mode on all online CPUs
1772  */
1773 static int init_hyp_mode(void)
1774 {
1775         u32 hyp_va_bits;
1776         int cpu;
1777         int err = -ENOMEM;
1778
1779         /*
1780          * The protected Hyp-mode cannot be initialized if the memory pool
1781          * allocation has failed.
1782          */
1783         if (is_protected_kvm_enabled() && !hyp_mem_base)
1784                 goto out_err;
1785
1786         /*
1787          * Allocate Hyp PGD and setup Hyp identity mapping
1788          */
1789         err = kvm_mmu_init(&hyp_va_bits);
1790         if (err)
1791                 goto out_err;
1792
1793         /*
1794          * Allocate stack pages for Hypervisor-mode
1795          */
1796         for_each_possible_cpu(cpu) {
1797                 unsigned long stack_page;
1798
1799                 stack_page = __get_free_page(GFP_KERNEL);
1800                 if (!stack_page) {
1801                         err = -ENOMEM;
1802                         goto out_err;
1803                 }
1804
1805                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1806         }
1807
1808         /*
1809          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1810          */
1811         for_each_possible_cpu(cpu) {
1812                 struct page *page;
1813                 void *page_addr;
1814
1815                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1816                 if (!page) {
1817                         err = -ENOMEM;
1818                         goto out_err;
1819                 }
1820
1821                 page_addr = page_address(page);
1822                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1823                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1824         }
1825
1826         /*
1827          * Map the Hyp-code called directly from the host
1828          */
1829         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1830                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1831         if (err) {
1832                 kvm_err("Cannot map world-switch code\n");
1833                 goto out_err;
1834         }
1835
1836         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1837                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1838         if (err) {
1839                 kvm_err("Cannot map .hyp.rodata section\n");
1840                 goto out_err;
1841         }
1842
1843         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1844                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1845         if (err) {
1846                 kvm_err("Cannot map rodata section\n");
1847                 goto out_err;
1848         }
1849
1850         /*
1851          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1852          * section thanks to an assertion in the linker script. Map it RW and
1853          * the rest of .bss RO.
1854          */
1855         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1856                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1857         if (err) {
1858                 kvm_err("Cannot map hyp bss section: %d\n", err);
1859                 goto out_err;
1860         }
1861
1862         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1863                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1864         if (err) {
1865                 kvm_err("Cannot map bss section\n");
1866                 goto out_err;
1867         }
1868
1869         /*
1870          * Map the Hyp stack pages
1871          */
1872         for_each_possible_cpu(cpu) {
1873                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1874                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1875                                           PAGE_HYP);
1876
1877                 if (err) {
1878                         kvm_err("Cannot map hyp stack\n");
1879                         goto out_err;
1880                 }
1881         }
1882
1883         for_each_possible_cpu(cpu) {
1884                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1885                 char *percpu_end = percpu_begin + nvhe_percpu_size();
1886
1887                 /* Map Hyp percpu pages */
1888                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1889                 if (err) {
1890                         kvm_err("Cannot map hyp percpu region\n");
1891                         goto out_err;
1892                 }
1893
1894                 /* Prepare the CPU initialization parameters */
1895                 cpu_prepare_hyp_mode(cpu);
1896         }
1897
1898         if (is_protected_kvm_enabled()) {
1899                 init_cpu_logical_map();
1900
1901                 if (!init_psci_relay()) {
1902                         err = -ENODEV;
1903                         goto out_err;
1904                 }
1905         }
1906
1907         if (is_protected_kvm_enabled()) {
1908                 err = kvm_hyp_init_protection(hyp_va_bits);
1909                 if (err) {
1910                         kvm_err("Failed to init hyp memory protection\n");
1911                         goto out_err;
1912                 }
1913         }
1914
1915         return 0;
1916
1917 out_err:
1918         teardown_hyp_mode();
1919         kvm_err("error initializing Hyp mode: %d\n", err);
1920         return err;
1921 }
1922
1923 static void _kvm_host_prot_finalize(void *discard)
1924 {
1925         WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
1926 }
1927
1928 static inline int pkvm_mark_hyp(phys_addr_t start, phys_addr_t end)
1929 {
1930         return kvm_call_hyp_nvhe(__pkvm_mark_hyp, start, end);
1931 }
1932
1933 #define pkvm_mark_hyp_section(__section)                \
1934         pkvm_mark_hyp(__pa_symbol(__section##_start),   \
1935                         __pa_symbol(__section##_end))
1936
1937 static int finalize_hyp_mode(void)
1938 {
1939         int cpu, ret;
1940
1941         if (!is_protected_kvm_enabled())
1942                 return 0;
1943
1944         ret = pkvm_mark_hyp_section(__hyp_idmap_text);
1945         if (ret)
1946                 return ret;
1947
1948         ret = pkvm_mark_hyp_section(__hyp_text);
1949         if (ret)
1950                 return ret;
1951
1952         ret = pkvm_mark_hyp_section(__hyp_rodata);
1953         if (ret)
1954                 return ret;
1955
1956         ret = pkvm_mark_hyp_section(__hyp_bss);
1957         if (ret)
1958                 return ret;
1959
1960         ret = pkvm_mark_hyp(hyp_mem_base, hyp_mem_base + hyp_mem_size);
1961         if (ret)
1962                 return ret;
1963
1964         for_each_possible_cpu(cpu) {
1965                 phys_addr_t start = virt_to_phys((void *)kvm_arm_hyp_percpu_base[cpu]);
1966                 phys_addr_t end = start + (PAGE_SIZE << nvhe_percpu_order());
1967
1968                 ret = pkvm_mark_hyp(start, end);
1969                 if (ret)
1970                         return ret;
1971
1972                 start = virt_to_phys((void *)per_cpu(kvm_arm_hyp_stack_page, cpu));
1973                 end = start + PAGE_SIZE;
1974                 ret = pkvm_mark_hyp(start, end);
1975                 if (ret)
1976                         return ret;
1977         }
1978
1979         /*
1980          * Flip the static key upfront as that may no longer be possible
1981          * once the host stage 2 is installed.
1982          */
1983         static_branch_enable(&kvm_protected_mode_initialized);
1984         on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
1985
1986         return 0;
1987 }
1988
1989 static void check_kvm_target_cpu(void *ret)
1990 {
1991         *(int *)ret = kvm_target_cpu();
1992 }
1993
1994 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1995 {
1996         struct kvm_vcpu *vcpu;
1997         int i;
1998
1999         mpidr &= MPIDR_HWID_BITMASK;
2000         kvm_for_each_vcpu(i, vcpu, kvm) {
2001                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2002                         return vcpu;
2003         }
2004         return NULL;
2005 }
2006
2007 bool kvm_arch_has_irq_bypass(void)
2008 {
2009         return true;
2010 }
2011
2012 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2013                                       struct irq_bypass_producer *prod)
2014 {
2015         struct kvm_kernel_irqfd *irqfd =
2016                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2017
2018         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2019                                           &irqfd->irq_entry);
2020 }
2021 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2022                                       struct irq_bypass_producer *prod)
2023 {
2024         struct kvm_kernel_irqfd *irqfd =
2025                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2026
2027         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2028                                      &irqfd->irq_entry);
2029 }
2030
2031 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2032 {
2033         struct kvm_kernel_irqfd *irqfd =
2034                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2035
2036         kvm_arm_halt_guest(irqfd->kvm);
2037 }
2038
2039 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2040 {
2041         struct kvm_kernel_irqfd *irqfd =
2042                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2043
2044         kvm_arm_resume_guest(irqfd->kvm);
2045 }
2046
2047 /**
2048  * Initialize Hyp-mode and memory mappings on all CPUs.
2049  */
2050 int kvm_arch_init(void *opaque)
2051 {
2052         int err;
2053         int ret, cpu;
2054         bool in_hyp_mode;
2055
2056         if (!is_hyp_mode_available()) {
2057                 kvm_info("HYP mode not available\n");
2058                 return -ENODEV;
2059         }
2060
2061         in_hyp_mode = is_kernel_in_hyp_mode();
2062
2063         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2064             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2065                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2066                          "Only trusted guests should be used on this system.\n");
2067
2068         for_each_online_cpu(cpu) {
2069                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
2070                 if (ret < 0) {
2071                         kvm_err("Error, CPU %d not supported!\n", cpu);
2072                         return -ENODEV;
2073                 }
2074         }
2075
2076         err = init_common_resources();
2077         if (err)
2078                 return err;
2079
2080         err = kvm_arm_init_sve();
2081         if (err)
2082                 return err;
2083
2084         if (!in_hyp_mode) {
2085                 err = init_hyp_mode();
2086                 if (err)
2087                         goto out_err;
2088         }
2089
2090         err = kvm_init_vector_slots();
2091         if (err) {
2092                 kvm_err("Cannot initialise vector slots\n");
2093                 goto out_err;
2094         }
2095
2096         err = init_subsystems();
2097         if (err)
2098                 goto out_hyp;
2099
2100         if (!in_hyp_mode) {
2101                 err = finalize_hyp_mode();
2102                 if (err) {
2103                         kvm_err("Failed to finalize Hyp protection\n");
2104                         goto out_hyp;
2105                 }
2106         }
2107
2108         if (is_protected_kvm_enabled()) {
2109                 kvm_info("Protected nVHE mode initialized successfully\n");
2110         } else if (in_hyp_mode) {
2111                 kvm_info("VHE mode initialized successfully\n");
2112         } else {
2113                 kvm_info("Hyp mode initialized successfully\n");
2114         }
2115
2116         return 0;
2117
2118 out_hyp:
2119         hyp_cpu_pm_exit();
2120         if (!in_hyp_mode)
2121                 teardown_hyp_mode();
2122 out_err:
2123         return err;
2124 }
2125
2126 /* NOP: Compiling as a module not supported */
2127 void kvm_arch_exit(void)
2128 {
2129         kvm_perf_teardown();
2130 }
2131
2132 static int __init early_kvm_mode_cfg(char *arg)
2133 {
2134         if (!arg)
2135                 return -EINVAL;
2136
2137         if (strcmp(arg, "protected") == 0) {
2138                 kvm_mode = KVM_MODE_PROTECTED;
2139                 return 0;
2140         }
2141
2142         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
2143                 return 0;
2144
2145         return -EINVAL;
2146 }
2147 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2148
2149 enum kvm_mode kvm_get_mode(void)
2150 {
2151         return kvm_mode;
2152 }
2153
2154 static int arm_init(void)
2155 {
2156         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2157         return rc;
2158 }
2159
2160 module_init(arm_init);