Merge branch 'misc.namei' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kmemleak.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/irqbypass.h>
23 #include <linux/sched/stat.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
26
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
29
30 #include <linux/uaccess.h>
31 #include <asm/ptrace.h>
32 #include <asm/mman.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpufeature.h>
36 #include <asm/virt.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
42
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
46
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55
56 /* The VMID used in the VTTBR */
57 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58 static u32 kvm_next_vmid;
59 static DEFINE_SPINLOCK(kvm_vmid_lock);
60
61 static bool vgic_present;
62
63 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
65
66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
69 }
70
71 int kvm_arch_hardware_setup(void *opaque)
72 {
73         return 0;
74 }
75
76 int kvm_arch_check_processor_compat(void *opaque)
77 {
78         return 0;
79 }
80
81 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
82                             struct kvm_enable_cap *cap)
83 {
84         int r;
85
86         if (cap->flags)
87                 return -EINVAL;
88
89         switch (cap->cap) {
90         case KVM_CAP_ARM_NISV_TO_USER:
91                 r = 0;
92                 kvm->arch.return_nisv_io_abort_to_user = true;
93                 break;
94         case KVM_CAP_ARM_MTE:
95                 mutex_lock(&kvm->lock);
96                 if (!system_supports_mte() || kvm->created_vcpus) {
97                         r = -EINVAL;
98                 } else {
99                         r = 0;
100                         kvm->arch.mte_enabled = true;
101                 }
102                 mutex_unlock(&kvm->lock);
103                 break;
104         default:
105                 r = -EINVAL;
106                 break;
107         }
108
109         return r;
110 }
111
112 static int kvm_arm_default_max_vcpus(void)
113 {
114         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
115 }
116
117 static void set_default_spectre(struct kvm *kvm)
118 {
119         /*
120          * The default is to expose CSV2 == 1 if the HW isn't affected.
121          * Although this is a per-CPU feature, we make it global because
122          * asymmetric systems are just a nuisance.
123          *
124          * Userspace can override this as long as it doesn't promise
125          * the impossible.
126          */
127         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
128                 kvm->arch.pfr0_csv2 = 1;
129         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
130                 kvm->arch.pfr0_csv3 = 1;
131 }
132
133 /**
134  * kvm_arch_init_vm - initializes a VM data structure
135  * @kvm:        pointer to the KVM struct
136  */
137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
138 {
139         int ret;
140
141         ret = kvm_arm_setup_stage2(kvm, type);
142         if (ret)
143                 return ret;
144
145         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146         if (ret)
147                 return ret;
148
149         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150         if (ret)
151                 goto out_free_stage2_pgd;
152
153         kvm_vgic_early_init(kvm);
154
155         /* The maximum number of VCPUs is limited by the host's GIC model */
156         kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157
158         set_default_spectre(kvm);
159
160         return ret;
161 out_free_stage2_pgd:
162         kvm_free_stage2_pgd(&kvm->arch.mmu);
163         return ret;
164 }
165
166 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168         return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173  * kvm_arch_destroy_vm - destroy the VM data structure
174  * @kvm:        pointer to the KVM struct
175  */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178         int i;
179
180         bitmap_free(kvm->arch.pmu_filter);
181
182         kvm_vgic_destroy(kvm);
183
184         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
185                 if (kvm->vcpus[i]) {
186                         kvm_vcpu_destroy(kvm->vcpus[i]);
187                         kvm->vcpus[i] = NULL;
188                 }
189         }
190         atomic_set(&kvm->online_vcpus, 0);
191 }
192
193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 {
195         int r;
196         switch (ext) {
197         case KVM_CAP_IRQCHIP:
198                 r = vgic_present;
199                 break;
200         case KVM_CAP_IOEVENTFD:
201         case KVM_CAP_DEVICE_CTRL:
202         case KVM_CAP_USER_MEMORY:
203         case KVM_CAP_SYNC_MMU:
204         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205         case KVM_CAP_ONE_REG:
206         case KVM_CAP_ARM_PSCI:
207         case KVM_CAP_ARM_PSCI_0_2:
208         case KVM_CAP_READONLY_MEM:
209         case KVM_CAP_MP_STATE:
210         case KVM_CAP_IMMEDIATE_EXIT:
211         case KVM_CAP_VCPU_EVENTS:
212         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
213         case KVM_CAP_ARM_NISV_TO_USER:
214         case KVM_CAP_ARM_INJECT_EXT_DABT:
215         case KVM_CAP_SET_GUEST_DEBUG:
216         case KVM_CAP_VCPU_ATTRIBUTES:
217         case KVM_CAP_PTP_KVM:
218                 r = 1;
219                 break;
220         case KVM_CAP_SET_GUEST_DEBUG2:
221                 return KVM_GUESTDBG_VALID_MASK;
222         case KVM_CAP_ARM_SET_DEVICE_ADDR:
223                 r = 1;
224                 break;
225         case KVM_CAP_NR_VCPUS:
226                 r = num_online_cpus();
227                 break;
228         case KVM_CAP_MAX_VCPUS:
229         case KVM_CAP_MAX_VCPU_ID:
230                 if (kvm)
231                         r = kvm->arch.max_vcpus;
232                 else
233                         r = kvm_arm_default_max_vcpus();
234                 break;
235         case KVM_CAP_MSI_DEVID:
236                 if (!kvm)
237                         r = -EINVAL;
238                 else
239                         r = kvm->arch.vgic.msis_require_devid;
240                 break;
241         case KVM_CAP_ARM_USER_IRQ:
242                 /*
243                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
244                  * (bump this number if adding more devices)
245                  */
246                 r = 1;
247                 break;
248         case KVM_CAP_ARM_MTE:
249                 r = system_supports_mte();
250                 break;
251         case KVM_CAP_STEAL_TIME:
252                 r = kvm_arm_pvtime_supported();
253                 break;
254         case KVM_CAP_ARM_EL1_32BIT:
255                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
256                 break;
257         case KVM_CAP_GUEST_DEBUG_HW_BPS:
258                 r = get_num_brps();
259                 break;
260         case KVM_CAP_GUEST_DEBUG_HW_WPS:
261                 r = get_num_wrps();
262                 break;
263         case KVM_CAP_ARM_PMU_V3:
264                 r = kvm_arm_support_pmu_v3();
265                 break;
266         case KVM_CAP_ARM_INJECT_SERROR_ESR:
267                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
268                 break;
269         case KVM_CAP_ARM_VM_IPA_SIZE:
270                 r = get_kvm_ipa_limit();
271                 break;
272         case KVM_CAP_ARM_SVE:
273                 r = system_supports_sve();
274                 break;
275         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
276         case KVM_CAP_ARM_PTRAUTH_GENERIC:
277                 r = system_has_full_ptr_auth();
278                 break;
279         default:
280                 r = 0;
281         }
282
283         return r;
284 }
285
286 long kvm_arch_dev_ioctl(struct file *filp,
287                         unsigned int ioctl, unsigned long arg)
288 {
289         return -EINVAL;
290 }
291
292 struct kvm *kvm_arch_alloc_vm(void)
293 {
294         if (!has_vhe())
295                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
296
297         return vzalloc(sizeof(struct kvm));
298 }
299
300 void kvm_arch_free_vm(struct kvm *kvm)
301 {
302         if (!has_vhe())
303                 kfree(kvm);
304         else
305                 vfree(kvm);
306 }
307
308 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
309 {
310         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
311                 return -EBUSY;
312
313         if (id >= kvm->arch.max_vcpus)
314                 return -EINVAL;
315
316         return 0;
317 }
318
319 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
320 {
321         int err;
322
323         /* Force users to call KVM_ARM_VCPU_INIT */
324         vcpu->arch.target = -1;
325         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
326
327         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
328
329         /* Set up the timer */
330         kvm_timer_vcpu_init(vcpu);
331
332         kvm_pmu_vcpu_init(vcpu);
333
334         kvm_arm_reset_debug_ptr(vcpu);
335
336         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
337
338         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
339
340         err = kvm_vgic_vcpu_init(vcpu);
341         if (err)
342                 return err;
343
344         return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
345 }
346
347 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
348 {
349 }
350
351 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
352 {
353         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
354                 static_branch_dec(&userspace_irqchip_in_use);
355
356         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
357         kvm_timer_vcpu_terminate(vcpu);
358         kvm_pmu_vcpu_destroy(vcpu);
359
360         kvm_arm_vcpu_destroy(vcpu);
361 }
362
363 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
364 {
365         return kvm_timer_is_pending(vcpu);
366 }
367
368 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
369 {
370         /*
371          * If we're about to block (most likely because we've just hit a
372          * WFI), we need to sync back the state of the GIC CPU interface
373          * so that we have the latest PMR and group enables. This ensures
374          * that kvm_arch_vcpu_runnable has up-to-date data to decide
375          * whether we have pending interrupts.
376          *
377          * For the same reason, we want to tell GICv4 that we need
378          * doorbells to be signalled, should an interrupt become pending.
379          */
380         preempt_disable();
381         kvm_vgic_vmcr_sync(vcpu);
382         vgic_v4_put(vcpu, true);
383         preempt_enable();
384 }
385
386 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
387 {
388         preempt_disable();
389         vgic_v4_load(vcpu);
390         preempt_enable();
391 }
392
393 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
394 {
395         struct kvm_s2_mmu *mmu;
396         int *last_ran;
397
398         mmu = vcpu->arch.hw_mmu;
399         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
400
401         /*
402          * We guarantee that both TLBs and I-cache are private to each
403          * vcpu. If detecting that a vcpu from the same VM has
404          * previously run on the same physical CPU, call into the
405          * hypervisor code to nuke the relevant contexts.
406          *
407          * We might get preempted before the vCPU actually runs, but
408          * over-invalidation doesn't affect correctness.
409          */
410         if (*last_ran != vcpu->vcpu_id) {
411                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
412                 *last_ran = vcpu->vcpu_id;
413         }
414
415         vcpu->cpu = cpu;
416
417         kvm_vgic_load(vcpu);
418         kvm_timer_vcpu_load(vcpu);
419         if (has_vhe())
420                 kvm_vcpu_load_sysregs_vhe(vcpu);
421         kvm_arch_vcpu_load_fp(vcpu);
422         kvm_vcpu_pmu_restore_guest(vcpu);
423         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
424                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
425
426         if (single_task_running())
427                 vcpu_clear_wfx_traps(vcpu);
428         else
429                 vcpu_set_wfx_traps(vcpu);
430
431         if (vcpu_has_ptrauth(vcpu))
432                 vcpu_ptrauth_disable(vcpu);
433         kvm_arch_vcpu_load_debug_state_flags(vcpu);
434 }
435
436 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
437 {
438         kvm_arch_vcpu_put_debug_state_flags(vcpu);
439         kvm_arch_vcpu_put_fp(vcpu);
440         if (has_vhe())
441                 kvm_vcpu_put_sysregs_vhe(vcpu);
442         kvm_timer_vcpu_put(vcpu);
443         kvm_vgic_put(vcpu);
444         kvm_vcpu_pmu_restore_host(vcpu);
445
446         vcpu->cpu = -1;
447 }
448
449 static void vcpu_power_off(struct kvm_vcpu *vcpu)
450 {
451         vcpu->arch.power_off = true;
452         kvm_make_request(KVM_REQ_SLEEP, vcpu);
453         kvm_vcpu_kick(vcpu);
454 }
455
456 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
457                                     struct kvm_mp_state *mp_state)
458 {
459         if (vcpu->arch.power_off)
460                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
461         else
462                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
463
464         return 0;
465 }
466
467 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
468                                     struct kvm_mp_state *mp_state)
469 {
470         int ret = 0;
471
472         switch (mp_state->mp_state) {
473         case KVM_MP_STATE_RUNNABLE:
474                 vcpu->arch.power_off = false;
475                 break;
476         case KVM_MP_STATE_STOPPED:
477                 vcpu_power_off(vcpu);
478                 break;
479         default:
480                 ret = -EINVAL;
481         }
482
483         return ret;
484 }
485
486 /**
487  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
488  * @v:          The VCPU pointer
489  *
490  * If the guest CPU is not waiting for interrupts or an interrupt line is
491  * asserted, the CPU is by definition runnable.
492  */
493 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
494 {
495         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
496         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
497                 && !v->arch.power_off && !v->arch.pause);
498 }
499
500 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
501 {
502         return vcpu_mode_priv(vcpu);
503 }
504
505 /* Just ensure a guest exit from a particular CPU */
506 static void exit_vm_noop(void *info)
507 {
508 }
509
510 void force_vm_exit(const cpumask_t *mask)
511 {
512         preempt_disable();
513         smp_call_function_many(mask, exit_vm_noop, NULL, true);
514         preempt_enable();
515 }
516
517 /**
518  * need_new_vmid_gen - check that the VMID is still valid
519  * @vmid: The VMID to check
520  *
521  * return true if there is a new generation of VMIDs being used
522  *
523  * The hardware supports a limited set of values with the value zero reserved
524  * for the host, so we check if an assigned value belongs to a previous
525  * generation, which requires us to assign a new value. If we're the first to
526  * use a VMID for the new generation, we must flush necessary caches and TLBs
527  * on all CPUs.
528  */
529 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
530 {
531         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
532         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
533         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
534 }
535
536 /**
537  * update_vmid - Update the vmid with a valid VMID for the current generation
538  * @vmid: The stage-2 VMID information struct
539  */
540 static void update_vmid(struct kvm_vmid *vmid)
541 {
542         if (!need_new_vmid_gen(vmid))
543                 return;
544
545         spin_lock(&kvm_vmid_lock);
546
547         /*
548          * We need to re-check the vmid_gen here to ensure that if another vcpu
549          * already allocated a valid vmid for this vm, then this vcpu should
550          * use the same vmid.
551          */
552         if (!need_new_vmid_gen(vmid)) {
553                 spin_unlock(&kvm_vmid_lock);
554                 return;
555         }
556
557         /* First user of a new VMID generation? */
558         if (unlikely(kvm_next_vmid == 0)) {
559                 atomic64_inc(&kvm_vmid_gen);
560                 kvm_next_vmid = 1;
561
562                 /*
563                  * On SMP we know no other CPUs can use this CPU's or each
564                  * other's VMID after force_vm_exit returns since the
565                  * kvm_vmid_lock blocks them from reentry to the guest.
566                  */
567                 force_vm_exit(cpu_all_mask);
568                 /*
569                  * Now broadcast TLB + ICACHE invalidation over the inner
570                  * shareable domain to make sure all data structures are
571                  * clean.
572                  */
573                 kvm_call_hyp(__kvm_flush_vm_context);
574         }
575
576         WRITE_ONCE(vmid->vmid, kvm_next_vmid);
577         kvm_next_vmid++;
578         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
579
580         smp_wmb();
581         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
582
583         spin_unlock(&kvm_vmid_lock);
584 }
585
586 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
587 {
588         struct kvm *kvm = vcpu->kvm;
589         int ret = 0;
590
591         if (likely(vcpu->arch.has_run_once))
592                 return 0;
593
594         if (!kvm_arm_vcpu_is_finalized(vcpu))
595                 return -EPERM;
596
597         vcpu->arch.has_run_once = true;
598
599         kvm_arm_vcpu_init_debug(vcpu);
600
601         if (likely(irqchip_in_kernel(kvm))) {
602                 /*
603                  * Map the VGIC hardware resources before running a vcpu the
604                  * first time on this VM.
605                  */
606                 ret = kvm_vgic_map_resources(kvm);
607                 if (ret)
608                         return ret;
609         } else {
610                 /*
611                  * Tell the rest of the code that there are userspace irqchip
612                  * VMs in the wild.
613                  */
614                 static_branch_inc(&userspace_irqchip_in_use);
615         }
616
617         ret = kvm_timer_enable(vcpu);
618         if (ret)
619                 return ret;
620
621         ret = kvm_arm_pmu_v3_enable(vcpu);
622
623         return ret;
624 }
625
626 bool kvm_arch_intc_initialized(struct kvm *kvm)
627 {
628         return vgic_initialized(kvm);
629 }
630
631 void kvm_arm_halt_guest(struct kvm *kvm)
632 {
633         int i;
634         struct kvm_vcpu *vcpu;
635
636         kvm_for_each_vcpu(i, vcpu, kvm)
637                 vcpu->arch.pause = true;
638         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
639 }
640
641 void kvm_arm_resume_guest(struct kvm *kvm)
642 {
643         int i;
644         struct kvm_vcpu *vcpu;
645
646         kvm_for_each_vcpu(i, vcpu, kvm) {
647                 vcpu->arch.pause = false;
648                 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
649         }
650 }
651
652 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
653 {
654         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
655
656         rcuwait_wait_event(wait,
657                            (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
658                            TASK_INTERRUPTIBLE);
659
660         if (vcpu->arch.power_off || vcpu->arch.pause) {
661                 /* Awaken to handle a signal, request we sleep again later. */
662                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
663         }
664
665         /*
666          * Make sure we will observe a potential reset request if we've
667          * observed a change to the power state. Pairs with the smp_wmb() in
668          * kvm_psci_vcpu_on().
669          */
670         smp_rmb();
671 }
672
673 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
674 {
675         return vcpu->arch.target >= 0;
676 }
677
678 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
679 {
680         if (kvm_request_pending(vcpu)) {
681                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
682                         vcpu_req_sleep(vcpu);
683
684                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
685                         kvm_reset_vcpu(vcpu);
686
687                 /*
688                  * Clear IRQ_PENDING requests that were made to guarantee
689                  * that a VCPU sees new virtual interrupts.
690                  */
691                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
692
693                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
694                         kvm_update_stolen_time(vcpu);
695
696                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
697                         /* The distributor enable bits were changed */
698                         preempt_disable();
699                         vgic_v4_put(vcpu, false);
700                         vgic_v4_load(vcpu);
701                         preempt_enable();
702                 }
703
704                 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
705                         kvm_pmu_handle_pmcr(vcpu,
706                                             __vcpu_sys_reg(vcpu, PMCR_EL0));
707         }
708 }
709
710 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
711 {
712         if (likely(!vcpu_mode_is_32bit(vcpu)))
713                 return false;
714
715         return !system_supports_32bit_el0() ||
716                 static_branch_unlikely(&arm64_mismatched_32bit_el0);
717 }
718
719 /**
720  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
721  * @vcpu:       The VCPU pointer
722  * @ret:        Pointer to write optional return code
723  *
724  * Returns: true if the VCPU needs to return to a preemptible + interruptible
725  *          and skip guest entry.
726  *
727  * This function disambiguates between two different types of exits: exits to a
728  * preemptible + interruptible kernel context and exits to userspace. For an
729  * exit to userspace, this function will write the return code to ret and return
730  * true. For an exit to preemptible + interruptible kernel context (i.e. check
731  * for pending work and re-enter), return true without writing to ret.
732  */
733 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
734 {
735         struct kvm_run *run = vcpu->run;
736
737         /*
738          * If we're using a userspace irqchip, then check if we need
739          * to tell a userspace irqchip about timer or PMU level
740          * changes and if so, exit to userspace (the actual level
741          * state gets updated in kvm_timer_update_run and
742          * kvm_pmu_update_run below).
743          */
744         if (static_branch_unlikely(&userspace_irqchip_in_use)) {
745                 if (kvm_timer_should_notify_user(vcpu) ||
746                     kvm_pmu_should_notify_user(vcpu)) {
747                         *ret = -EINTR;
748                         run->exit_reason = KVM_EXIT_INTR;
749                         return true;
750                 }
751         }
752
753         return kvm_request_pending(vcpu) ||
754                         need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
755                         xfer_to_guest_mode_work_pending();
756 }
757
758 /**
759  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
760  * @vcpu:       The VCPU pointer
761  *
762  * This function is called through the VCPU_RUN ioctl called from user space. It
763  * will execute VM code in a loop until the time slice for the process is used
764  * or some emulation is needed from user space in which case the function will
765  * return with return value 0 and with the kvm_run structure filled in with the
766  * required data for the requested emulation.
767  */
768 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
769 {
770         struct kvm_run *run = vcpu->run;
771         int ret;
772
773         if (unlikely(!kvm_vcpu_initialized(vcpu)))
774                 return -ENOEXEC;
775
776         ret = kvm_vcpu_first_run_init(vcpu);
777         if (ret)
778                 return ret;
779
780         if (run->exit_reason == KVM_EXIT_MMIO) {
781                 ret = kvm_handle_mmio_return(vcpu);
782                 if (ret)
783                         return ret;
784         }
785
786         vcpu_load(vcpu);
787
788         if (run->immediate_exit) {
789                 ret = -EINTR;
790                 goto out;
791         }
792
793         kvm_sigset_activate(vcpu);
794
795         ret = 1;
796         run->exit_reason = KVM_EXIT_UNKNOWN;
797         while (ret > 0) {
798                 /*
799                  * Check conditions before entering the guest
800                  */
801                 ret = xfer_to_guest_mode_handle_work(vcpu);
802                 if (!ret)
803                         ret = 1;
804
805                 update_vmid(&vcpu->arch.hw_mmu->vmid);
806
807                 check_vcpu_requests(vcpu);
808
809                 /*
810                  * Preparing the interrupts to be injected also
811                  * involves poking the GIC, which must be done in a
812                  * non-preemptible context.
813                  */
814                 preempt_disable();
815
816                 kvm_pmu_flush_hwstate(vcpu);
817
818                 local_irq_disable();
819
820                 kvm_vgic_flush_hwstate(vcpu);
821
822                 /*
823                  * Ensure we set mode to IN_GUEST_MODE after we disable
824                  * interrupts and before the final VCPU requests check.
825                  * See the comment in kvm_vcpu_exiting_guest_mode() and
826                  * Documentation/virt/kvm/vcpu-requests.rst
827                  */
828                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
829
830                 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
831                         vcpu->mode = OUTSIDE_GUEST_MODE;
832                         isb(); /* Ensure work in x_flush_hwstate is committed */
833                         kvm_pmu_sync_hwstate(vcpu);
834                         if (static_branch_unlikely(&userspace_irqchip_in_use))
835                                 kvm_timer_sync_user(vcpu);
836                         kvm_vgic_sync_hwstate(vcpu);
837                         local_irq_enable();
838                         preempt_enable();
839                         continue;
840                 }
841
842                 kvm_arm_setup_debug(vcpu);
843
844                 /**************************************************************
845                  * Enter the guest
846                  */
847                 trace_kvm_entry(*vcpu_pc(vcpu));
848                 guest_enter_irqoff();
849
850                 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
851
852                 vcpu->mode = OUTSIDE_GUEST_MODE;
853                 vcpu->stat.exits++;
854                 /*
855                  * Back from guest
856                  *************************************************************/
857
858                 kvm_arm_clear_debug(vcpu);
859
860                 /*
861                  * We must sync the PMU state before the vgic state so
862                  * that the vgic can properly sample the updated state of the
863                  * interrupt line.
864                  */
865                 kvm_pmu_sync_hwstate(vcpu);
866
867                 /*
868                  * Sync the vgic state before syncing the timer state because
869                  * the timer code needs to know if the virtual timer
870                  * interrupts are active.
871                  */
872                 kvm_vgic_sync_hwstate(vcpu);
873
874                 /*
875                  * Sync the timer hardware state before enabling interrupts as
876                  * we don't want vtimer interrupts to race with syncing the
877                  * timer virtual interrupt state.
878                  */
879                 if (static_branch_unlikely(&userspace_irqchip_in_use))
880                         kvm_timer_sync_user(vcpu);
881
882                 kvm_arch_vcpu_ctxsync_fp(vcpu);
883
884                 /*
885                  * We may have taken a host interrupt in HYP mode (ie
886                  * while executing the guest). This interrupt is still
887                  * pending, as we haven't serviced it yet!
888                  *
889                  * We're now back in SVC mode, with interrupts
890                  * disabled.  Enabling the interrupts now will have
891                  * the effect of taking the interrupt again, in SVC
892                  * mode this time.
893                  */
894                 local_irq_enable();
895
896                 /*
897                  * We do local_irq_enable() before calling guest_exit() so
898                  * that if a timer interrupt hits while running the guest we
899                  * account that tick as being spent in the guest.  We enable
900                  * preemption after calling guest_exit() so that if we get
901                  * preempted we make sure ticks after that is not counted as
902                  * guest time.
903                  */
904                 guest_exit();
905                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
906
907                 /* Exit types that need handling before we can be preempted */
908                 handle_exit_early(vcpu, ret);
909
910                 preempt_enable();
911
912                 /*
913                  * The ARMv8 architecture doesn't give the hypervisor
914                  * a mechanism to prevent a guest from dropping to AArch32 EL0
915                  * if implemented by the CPU. If we spot the guest in such
916                  * state and that we decided it wasn't supposed to do so (like
917                  * with the asymmetric AArch32 case), return to userspace with
918                  * a fatal error.
919                  */
920                 if (vcpu_mode_is_bad_32bit(vcpu)) {
921                         /*
922                          * As we have caught the guest red-handed, decide that
923                          * it isn't fit for purpose anymore by making the vcpu
924                          * invalid. The VMM can try and fix it by issuing  a
925                          * KVM_ARM_VCPU_INIT if it really wants to.
926                          */
927                         vcpu->arch.target = -1;
928                         ret = ARM_EXCEPTION_IL;
929                 }
930
931                 ret = handle_exit(vcpu, ret);
932         }
933
934         /* Tell userspace about in-kernel device output levels */
935         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
936                 kvm_timer_update_run(vcpu);
937                 kvm_pmu_update_run(vcpu);
938         }
939
940         kvm_sigset_deactivate(vcpu);
941
942 out:
943         /*
944          * In the unlikely event that we are returning to userspace
945          * with pending exceptions or PC adjustment, commit these
946          * adjustments in order to give userspace a consistent view of
947          * the vcpu state. Note that this relies on __kvm_adjust_pc()
948          * being preempt-safe on VHE.
949          */
950         if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
951                                          KVM_ARM64_INCREMENT_PC)))
952                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
953
954         vcpu_put(vcpu);
955         return ret;
956 }
957
958 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
959 {
960         int bit_index;
961         bool set;
962         unsigned long *hcr;
963
964         if (number == KVM_ARM_IRQ_CPU_IRQ)
965                 bit_index = __ffs(HCR_VI);
966         else /* KVM_ARM_IRQ_CPU_FIQ */
967                 bit_index = __ffs(HCR_VF);
968
969         hcr = vcpu_hcr(vcpu);
970         if (level)
971                 set = test_and_set_bit(bit_index, hcr);
972         else
973                 set = test_and_clear_bit(bit_index, hcr);
974
975         /*
976          * If we didn't change anything, no need to wake up or kick other CPUs
977          */
978         if (set == level)
979                 return 0;
980
981         /*
982          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
983          * trigger a world-switch round on the running physical CPU to set the
984          * virtual IRQ/FIQ fields in the HCR appropriately.
985          */
986         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
987         kvm_vcpu_kick(vcpu);
988
989         return 0;
990 }
991
992 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
993                           bool line_status)
994 {
995         u32 irq = irq_level->irq;
996         unsigned int irq_type, vcpu_idx, irq_num;
997         int nrcpus = atomic_read(&kvm->online_vcpus);
998         struct kvm_vcpu *vcpu = NULL;
999         bool level = irq_level->level;
1000
1001         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1002         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1003         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1004         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1005
1006         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1007
1008         switch (irq_type) {
1009         case KVM_ARM_IRQ_TYPE_CPU:
1010                 if (irqchip_in_kernel(kvm))
1011                         return -ENXIO;
1012
1013                 if (vcpu_idx >= nrcpus)
1014                         return -EINVAL;
1015
1016                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1017                 if (!vcpu)
1018                         return -EINVAL;
1019
1020                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1021                         return -EINVAL;
1022
1023                 return vcpu_interrupt_line(vcpu, irq_num, level);
1024         case KVM_ARM_IRQ_TYPE_PPI:
1025                 if (!irqchip_in_kernel(kvm))
1026                         return -ENXIO;
1027
1028                 if (vcpu_idx >= nrcpus)
1029                         return -EINVAL;
1030
1031                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1032                 if (!vcpu)
1033                         return -EINVAL;
1034
1035                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1036                         return -EINVAL;
1037
1038                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1039         case KVM_ARM_IRQ_TYPE_SPI:
1040                 if (!irqchip_in_kernel(kvm))
1041                         return -ENXIO;
1042
1043                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1044                         return -EINVAL;
1045
1046                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1047         }
1048
1049         return -EINVAL;
1050 }
1051
1052 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1053                                const struct kvm_vcpu_init *init)
1054 {
1055         unsigned int i, ret;
1056         u32 phys_target = kvm_target_cpu();
1057
1058         if (init->target != phys_target)
1059                 return -EINVAL;
1060
1061         /*
1062          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1063          * use the same target.
1064          */
1065         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1066                 return -EINVAL;
1067
1068         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1069         for (i = 0; i < sizeof(init->features) * 8; i++) {
1070                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1071
1072                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1073                         return -ENOENT;
1074
1075                 /*
1076                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1077                  * use the same feature set.
1078                  */
1079                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1080                     test_bit(i, vcpu->arch.features) != set)
1081                         return -EINVAL;
1082
1083                 if (set)
1084                         set_bit(i, vcpu->arch.features);
1085         }
1086
1087         vcpu->arch.target = phys_target;
1088
1089         /* Now we know what it is, we can reset it. */
1090         ret = kvm_reset_vcpu(vcpu);
1091         if (ret) {
1092                 vcpu->arch.target = -1;
1093                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1094         }
1095
1096         return ret;
1097 }
1098
1099 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1100                                          struct kvm_vcpu_init *init)
1101 {
1102         int ret;
1103
1104         ret = kvm_vcpu_set_target(vcpu, init);
1105         if (ret)
1106                 return ret;
1107
1108         /*
1109          * Ensure a rebooted VM will fault in RAM pages and detect if the
1110          * guest MMU is turned off and flush the caches as needed.
1111          *
1112          * S2FWB enforces all memory accesses to RAM being cacheable,
1113          * ensuring that the data side is always coherent. We still
1114          * need to invalidate the I-cache though, as FWB does *not*
1115          * imply CTR_EL0.DIC.
1116          */
1117         if (vcpu->arch.has_run_once) {
1118                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1119                         stage2_unmap_vm(vcpu->kvm);
1120                 else
1121                         icache_inval_all_pou();
1122         }
1123
1124         vcpu_reset_hcr(vcpu);
1125         vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1126
1127         /*
1128          * Handle the "start in power-off" case.
1129          */
1130         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1131                 vcpu_power_off(vcpu);
1132         else
1133                 vcpu->arch.power_off = false;
1134
1135         return 0;
1136 }
1137
1138 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1139                                  struct kvm_device_attr *attr)
1140 {
1141         int ret = -ENXIO;
1142
1143         switch (attr->group) {
1144         default:
1145                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1146                 break;
1147         }
1148
1149         return ret;
1150 }
1151
1152 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1153                                  struct kvm_device_attr *attr)
1154 {
1155         int ret = -ENXIO;
1156
1157         switch (attr->group) {
1158         default:
1159                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1160                 break;
1161         }
1162
1163         return ret;
1164 }
1165
1166 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1167                                  struct kvm_device_attr *attr)
1168 {
1169         int ret = -ENXIO;
1170
1171         switch (attr->group) {
1172         default:
1173                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1174                 break;
1175         }
1176
1177         return ret;
1178 }
1179
1180 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1181                                    struct kvm_vcpu_events *events)
1182 {
1183         memset(events, 0, sizeof(*events));
1184
1185         return __kvm_arm_vcpu_get_events(vcpu, events);
1186 }
1187
1188 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1189                                    struct kvm_vcpu_events *events)
1190 {
1191         int i;
1192
1193         /* check whether the reserved field is zero */
1194         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1195                 if (events->reserved[i])
1196                         return -EINVAL;
1197
1198         /* check whether the pad field is zero */
1199         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1200                 if (events->exception.pad[i])
1201                         return -EINVAL;
1202
1203         return __kvm_arm_vcpu_set_events(vcpu, events);
1204 }
1205
1206 long kvm_arch_vcpu_ioctl(struct file *filp,
1207                          unsigned int ioctl, unsigned long arg)
1208 {
1209         struct kvm_vcpu *vcpu = filp->private_data;
1210         void __user *argp = (void __user *)arg;
1211         struct kvm_device_attr attr;
1212         long r;
1213
1214         switch (ioctl) {
1215         case KVM_ARM_VCPU_INIT: {
1216                 struct kvm_vcpu_init init;
1217
1218                 r = -EFAULT;
1219                 if (copy_from_user(&init, argp, sizeof(init)))
1220                         break;
1221
1222                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1223                 break;
1224         }
1225         case KVM_SET_ONE_REG:
1226         case KVM_GET_ONE_REG: {
1227                 struct kvm_one_reg reg;
1228
1229                 r = -ENOEXEC;
1230                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1231                         break;
1232
1233                 r = -EFAULT;
1234                 if (copy_from_user(&reg, argp, sizeof(reg)))
1235                         break;
1236
1237                 /*
1238                  * We could owe a reset due to PSCI. Handle the pending reset
1239                  * here to ensure userspace register accesses are ordered after
1240                  * the reset.
1241                  */
1242                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1243                         kvm_reset_vcpu(vcpu);
1244
1245                 if (ioctl == KVM_SET_ONE_REG)
1246                         r = kvm_arm_set_reg(vcpu, &reg);
1247                 else
1248                         r = kvm_arm_get_reg(vcpu, &reg);
1249                 break;
1250         }
1251         case KVM_GET_REG_LIST: {
1252                 struct kvm_reg_list __user *user_list = argp;
1253                 struct kvm_reg_list reg_list;
1254                 unsigned n;
1255
1256                 r = -ENOEXEC;
1257                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1258                         break;
1259
1260                 r = -EPERM;
1261                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1262                         break;
1263
1264                 r = -EFAULT;
1265                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1266                         break;
1267                 n = reg_list.n;
1268                 reg_list.n = kvm_arm_num_regs(vcpu);
1269                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1270                         break;
1271                 r = -E2BIG;
1272                 if (n < reg_list.n)
1273                         break;
1274                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1275                 break;
1276         }
1277         case KVM_SET_DEVICE_ATTR: {
1278                 r = -EFAULT;
1279                 if (copy_from_user(&attr, argp, sizeof(attr)))
1280                         break;
1281                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1282                 break;
1283         }
1284         case KVM_GET_DEVICE_ATTR: {
1285                 r = -EFAULT;
1286                 if (copy_from_user(&attr, argp, sizeof(attr)))
1287                         break;
1288                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1289                 break;
1290         }
1291         case KVM_HAS_DEVICE_ATTR: {
1292                 r = -EFAULT;
1293                 if (copy_from_user(&attr, argp, sizeof(attr)))
1294                         break;
1295                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1296                 break;
1297         }
1298         case KVM_GET_VCPU_EVENTS: {
1299                 struct kvm_vcpu_events events;
1300
1301                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1302                         return -EINVAL;
1303
1304                 if (copy_to_user(argp, &events, sizeof(events)))
1305                         return -EFAULT;
1306
1307                 return 0;
1308         }
1309         case KVM_SET_VCPU_EVENTS: {
1310                 struct kvm_vcpu_events events;
1311
1312                 if (copy_from_user(&events, argp, sizeof(events)))
1313                         return -EFAULT;
1314
1315                 return kvm_arm_vcpu_set_events(vcpu, &events);
1316         }
1317         case KVM_ARM_VCPU_FINALIZE: {
1318                 int what;
1319
1320                 if (!kvm_vcpu_initialized(vcpu))
1321                         return -ENOEXEC;
1322
1323                 if (get_user(what, (const int __user *)argp))
1324                         return -EFAULT;
1325
1326                 return kvm_arm_vcpu_finalize(vcpu, what);
1327         }
1328         default:
1329                 r = -EINVAL;
1330         }
1331
1332         return r;
1333 }
1334
1335 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1336 {
1337
1338 }
1339
1340 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1341                                         const struct kvm_memory_slot *memslot)
1342 {
1343         kvm_flush_remote_tlbs(kvm);
1344 }
1345
1346 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1347                                         struct kvm_arm_device_addr *dev_addr)
1348 {
1349         unsigned long dev_id, type;
1350
1351         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1352                 KVM_ARM_DEVICE_ID_SHIFT;
1353         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1354                 KVM_ARM_DEVICE_TYPE_SHIFT;
1355
1356         switch (dev_id) {
1357         case KVM_ARM_DEVICE_VGIC_V2:
1358                 if (!vgic_present)
1359                         return -ENXIO;
1360                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1361         default:
1362                 return -ENODEV;
1363         }
1364 }
1365
1366 long kvm_arch_vm_ioctl(struct file *filp,
1367                        unsigned int ioctl, unsigned long arg)
1368 {
1369         struct kvm *kvm = filp->private_data;
1370         void __user *argp = (void __user *)arg;
1371
1372         switch (ioctl) {
1373         case KVM_CREATE_IRQCHIP: {
1374                 int ret;
1375                 if (!vgic_present)
1376                         return -ENXIO;
1377                 mutex_lock(&kvm->lock);
1378                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1379                 mutex_unlock(&kvm->lock);
1380                 return ret;
1381         }
1382         case KVM_ARM_SET_DEVICE_ADDR: {
1383                 struct kvm_arm_device_addr dev_addr;
1384
1385                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1386                         return -EFAULT;
1387                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1388         }
1389         case KVM_ARM_PREFERRED_TARGET: {
1390                 int err;
1391                 struct kvm_vcpu_init init;
1392
1393                 err = kvm_vcpu_preferred_target(&init);
1394                 if (err)
1395                         return err;
1396
1397                 if (copy_to_user(argp, &init, sizeof(init)))
1398                         return -EFAULT;
1399
1400                 return 0;
1401         }
1402         case KVM_ARM_MTE_COPY_TAGS: {
1403                 struct kvm_arm_copy_mte_tags copy_tags;
1404
1405                 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1406                         return -EFAULT;
1407                 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1408         }
1409         default:
1410                 return -EINVAL;
1411         }
1412 }
1413
1414 static unsigned long nvhe_percpu_size(void)
1415 {
1416         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1417                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1418 }
1419
1420 static unsigned long nvhe_percpu_order(void)
1421 {
1422         unsigned long size = nvhe_percpu_size();
1423
1424         return size ? get_order(size) : 0;
1425 }
1426
1427 /* A lookup table holding the hypervisor VA for each vector slot */
1428 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1429
1430 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1431 {
1432         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1433 }
1434
1435 static int kvm_init_vector_slots(void)
1436 {
1437         int err;
1438         void *base;
1439
1440         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1441         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1442
1443         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1444         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1445
1446         if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1447                 return 0;
1448
1449         if (!has_vhe()) {
1450                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1451                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1452                 if (err)
1453                         return err;
1454         }
1455
1456         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1457         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1458         return 0;
1459 }
1460
1461 static void cpu_prepare_hyp_mode(int cpu)
1462 {
1463         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1464         unsigned long tcr;
1465
1466         /*
1467          * Calculate the raw per-cpu offset without a translation from the
1468          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1469          * so that we can use adr_l to access per-cpu variables in EL2.
1470          * Also drop the KASAN tag which gets in the way...
1471          */
1472         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1473                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1474
1475         params->mair_el2 = read_sysreg(mair_el1);
1476
1477         /*
1478          * The ID map may be configured to use an extended virtual address
1479          * range. This is only the case if system RAM is out of range for the
1480          * currently configured page size and VA_BITS, in which case we will
1481          * also need the extended virtual range for the HYP ID map, or we won't
1482          * be able to enable the EL2 MMU.
1483          *
1484          * However, at EL2, there is only one TTBR register, and we can't switch
1485          * between translation tables *and* update TCR_EL2.T0SZ at the same
1486          * time. Bottom line: we need to use the extended range with *both* our
1487          * translation tables.
1488          *
1489          * So use the same T0SZ value we use for the ID map.
1490          */
1491         tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1492         tcr &= ~TCR_T0SZ_MASK;
1493         tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1494         params->tcr_el2 = tcr;
1495
1496         params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1497         params->pgd_pa = kvm_mmu_get_httbr();
1498         if (is_protected_kvm_enabled())
1499                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1500         else
1501                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1502         params->vttbr = params->vtcr = 0;
1503
1504         /*
1505          * Flush the init params from the data cache because the struct will
1506          * be read while the MMU is off.
1507          */
1508         kvm_flush_dcache_to_poc(params, sizeof(*params));
1509 }
1510
1511 static void hyp_install_host_vector(void)
1512 {
1513         struct kvm_nvhe_init_params *params;
1514         struct arm_smccc_res res;
1515
1516         /* Switch from the HYP stub to our own HYP init vector */
1517         __hyp_set_vectors(kvm_get_idmap_vector());
1518
1519         /*
1520          * Call initialization code, and switch to the full blown HYP code.
1521          * If the cpucaps haven't been finalized yet, something has gone very
1522          * wrong, and hyp will crash and burn when it uses any
1523          * cpus_have_const_cap() wrapper.
1524          */
1525         BUG_ON(!system_capabilities_finalized());
1526         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1527         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1528         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1529 }
1530
1531 static void cpu_init_hyp_mode(void)
1532 {
1533         hyp_install_host_vector();
1534
1535         /*
1536          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1537          * at EL2.
1538          */
1539         if (this_cpu_has_cap(ARM64_SSBS) &&
1540             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1541                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1542         }
1543 }
1544
1545 static void cpu_hyp_reset(void)
1546 {
1547         if (!is_kernel_in_hyp_mode())
1548                 __hyp_reset_vectors();
1549 }
1550
1551 /*
1552  * EL2 vectors can be mapped and rerouted in a number of ways,
1553  * depending on the kernel configuration and CPU present:
1554  *
1555  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1556  *   placed in one of the vector slots, which is executed before jumping
1557  *   to the real vectors.
1558  *
1559  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1560  *   containing the hardening sequence is mapped next to the idmap page,
1561  *   and executed before jumping to the real vectors.
1562  *
1563  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1564  *   empty slot is selected, mapped next to the idmap page, and
1565  *   executed before jumping to the real vectors.
1566  *
1567  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1568  * VHE, as we don't have hypervisor-specific mappings. If the system
1569  * is VHE and yet selects this capability, it will be ignored.
1570  */
1571 static void cpu_set_hyp_vector(void)
1572 {
1573         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1574         void *vector = hyp_spectre_vector_selector[data->slot];
1575
1576         if (!is_protected_kvm_enabled())
1577                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1578         else
1579                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1580 }
1581
1582 static void cpu_hyp_reinit(void)
1583 {
1584         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1585
1586         cpu_hyp_reset();
1587
1588         if (is_kernel_in_hyp_mode())
1589                 kvm_timer_init_vhe();
1590         else
1591                 cpu_init_hyp_mode();
1592
1593         cpu_set_hyp_vector();
1594
1595         kvm_arm_init_debug();
1596
1597         if (vgic_present)
1598                 kvm_vgic_init_cpu_hardware();
1599 }
1600
1601 static void _kvm_arch_hardware_enable(void *discard)
1602 {
1603         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1604                 cpu_hyp_reinit();
1605                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1606         }
1607 }
1608
1609 int kvm_arch_hardware_enable(void)
1610 {
1611         _kvm_arch_hardware_enable(NULL);
1612         return 0;
1613 }
1614
1615 static void _kvm_arch_hardware_disable(void *discard)
1616 {
1617         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1618                 cpu_hyp_reset();
1619                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1620         }
1621 }
1622
1623 void kvm_arch_hardware_disable(void)
1624 {
1625         if (!is_protected_kvm_enabled())
1626                 _kvm_arch_hardware_disable(NULL);
1627 }
1628
1629 #ifdef CONFIG_CPU_PM
1630 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1631                                     unsigned long cmd,
1632                                     void *v)
1633 {
1634         /*
1635          * kvm_arm_hardware_enabled is left with its old value over
1636          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1637          * re-enable hyp.
1638          */
1639         switch (cmd) {
1640         case CPU_PM_ENTER:
1641                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1642                         /*
1643                          * don't update kvm_arm_hardware_enabled here
1644                          * so that the hardware will be re-enabled
1645                          * when we resume. See below.
1646                          */
1647                         cpu_hyp_reset();
1648
1649                 return NOTIFY_OK;
1650         case CPU_PM_ENTER_FAILED:
1651         case CPU_PM_EXIT:
1652                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1653                         /* The hardware was enabled before suspend. */
1654                         cpu_hyp_reinit();
1655
1656                 return NOTIFY_OK;
1657
1658         default:
1659                 return NOTIFY_DONE;
1660         }
1661 }
1662
1663 static struct notifier_block hyp_init_cpu_pm_nb = {
1664         .notifier_call = hyp_init_cpu_pm_notifier,
1665 };
1666
1667 static void hyp_cpu_pm_init(void)
1668 {
1669         if (!is_protected_kvm_enabled())
1670                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1671 }
1672 static void hyp_cpu_pm_exit(void)
1673 {
1674         if (!is_protected_kvm_enabled())
1675                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1676 }
1677 #else
1678 static inline void hyp_cpu_pm_init(void)
1679 {
1680 }
1681 static inline void hyp_cpu_pm_exit(void)
1682 {
1683 }
1684 #endif
1685
1686 static void init_cpu_logical_map(void)
1687 {
1688         unsigned int cpu;
1689
1690         /*
1691          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1692          * Only copy the set of online CPUs whose features have been chacked
1693          * against the finalized system capabilities. The hypervisor will not
1694          * allow any other CPUs from the `possible` set to boot.
1695          */
1696         for_each_online_cpu(cpu)
1697                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1698 }
1699
1700 #define init_psci_0_1_impl_state(config, what)  \
1701         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1702
1703 static bool init_psci_relay(void)
1704 {
1705         /*
1706          * If PSCI has not been initialized, protected KVM cannot install
1707          * itself on newly booted CPUs.
1708          */
1709         if (!psci_ops.get_version) {
1710                 kvm_err("Cannot initialize protected mode without PSCI\n");
1711                 return false;
1712         }
1713
1714         kvm_host_psci_config.version = psci_ops.get_version();
1715
1716         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1717                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1718                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1719                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1720                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1721                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1722         }
1723         return true;
1724 }
1725
1726 static int init_subsystems(void)
1727 {
1728         int err = 0;
1729
1730         /*
1731          * Enable hardware so that subsystem initialisation can access EL2.
1732          */
1733         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1734
1735         /*
1736          * Register CPU lower-power notifier
1737          */
1738         hyp_cpu_pm_init();
1739
1740         /*
1741          * Init HYP view of VGIC
1742          */
1743         err = kvm_vgic_hyp_init();
1744         switch (err) {
1745         case 0:
1746                 vgic_present = true;
1747                 break;
1748         case -ENODEV:
1749         case -ENXIO:
1750                 vgic_present = false;
1751                 err = 0;
1752                 break;
1753         default:
1754                 goto out;
1755         }
1756
1757         /*
1758          * Init HYP architected timer support
1759          */
1760         err = kvm_timer_hyp_init(vgic_present);
1761         if (err)
1762                 goto out;
1763
1764         kvm_perf_init();
1765         kvm_sys_reg_table_init();
1766
1767 out:
1768         if (err || !is_protected_kvm_enabled())
1769                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1770
1771         return err;
1772 }
1773
1774 static void teardown_hyp_mode(void)
1775 {
1776         int cpu;
1777
1778         free_hyp_pgds();
1779         for_each_possible_cpu(cpu) {
1780                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1781                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1782         }
1783 }
1784
1785 static int do_pkvm_init(u32 hyp_va_bits)
1786 {
1787         void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1788         int ret;
1789
1790         preempt_disable();
1791         hyp_install_host_vector();
1792         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1793                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1794                                 hyp_va_bits);
1795         preempt_enable();
1796
1797         return ret;
1798 }
1799
1800 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1801 {
1802         void *addr = phys_to_virt(hyp_mem_base);
1803         int ret;
1804
1805         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1806         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1807
1808         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1809         if (ret)
1810                 return ret;
1811
1812         ret = do_pkvm_init(hyp_va_bits);
1813         if (ret)
1814                 return ret;
1815
1816         free_hyp_pgds();
1817
1818         return 0;
1819 }
1820
1821 /**
1822  * Inits Hyp-mode on all online CPUs
1823  */
1824 static int init_hyp_mode(void)
1825 {
1826         u32 hyp_va_bits;
1827         int cpu;
1828         int err = -ENOMEM;
1829
1830         /*
1831          * The protected Hyp-mode cannot be initialized if the memory pool
1832          * allocation has failed.
1833          */
1834         if (is_protected_kvm_enabled() && !hyp_mem_base)
1835                 goto out_err;
1836
1837         /*
1838          * Allocate Hyp PGD and setup Hyp identity mapping
1839          */
1840         err = kvm_mmu_init(&hyp_va_bits);
1841         if (err)
1842                 goto out_err;
1843
1844         /*
1845          * Allocate stack pages for Hypervisor-mode
1846          */
1847         for_each_possible_cpu(cpu) {
1848                 unsigned long stack_page;
1849
1850                 stack_page = __get_free_page(GFP_KERNEL);
1851                 if (!stack_page) {
1852                         err = -ENOMEM;
1853                         goto out_err;
1854                 }
1855
1856                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1857         }
1858
1859         /*
1860          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1861          */
1862         for_each_possible_cpu(cpu) {
1863                 struct page *page;
1864                 void *page_addr;
1865
1866                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1867                 if (!page) {
1868                         err = -ENOMEM;
1869                         goto out_err;
1870                 }
1871
1872                 page_addr = page_address(page);
1873                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1874                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1875         }
1876
1877         /*
1878          * Map the Hyp-code called directly from the host
1879          */
1880         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1881                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1882         if (err) {
1883                 kvm_err("Cannot map world-switch code\n");
1884                 goto out_err;
1885         }
1886
1887         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1888                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1889         if (err) {
1890                 kvm_err("Cannot map .hyp.rodata section\n");
1891                 goto out_err;
1892         }
1893
1894         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1895                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1896         if (err) {
1897                 kvm_err("Cannot map rodata section\n");
1898                 goto out_err;
1899         }
1900
1901         /*
1902          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1903          * section thanks to an assertion in the linker script. Map it RW and
1904          * the rest of .bss RO.
1905          */
1906         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1907                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1908         if (err) {
1909                 kvm_err("Cannot map hyp bss section: %d\n", err);
1910                 goto out_err;
1911         }
1912
1913         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1914                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1915         if (err) {
1916                 kvm_err("Cannot map bss section\n");
1917                 goto out_err;
1918         }
1919
1920         /*
1921          * Map the Hyp stack pages
1922          */
1923         for_each_possible_cpu(cpu) {
1924                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1925                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1926                                           PAGE_HYP);
1927
1928                 if (err) {
1929                         kvm_err("Cannot map hyp stack\n");
1930                         goto out_err;
1931                 }
1932         }
1933
1934         for_each_possible_cpu(cpu) {
1935                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1936                 char *percpu_end = percpu_begin + nvhe_percpu_size();
1937
1938                 /* Map Hyp percpu pages */
1939                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1940                 if (err) {
1941                         kvm_err("Cannot map hyp percpu region\n");
1942                         goto out_err;
1943                 }
1944
1945                 /* Prepare the CPU initialization parameters */
1946                 cpu_prepare_hyp_mode(cpu);
1947         }
1948
1949         if (is_protected_kvm_enabled()) {
1950                 init_cpu_logical_map();
1951
1952                 if (!init_psci_relay()) {
1953                         err = -ENODEV;
1954                         goto out_err;
1955                 }
1956         }
1957
1958         if (is_protected_kvm_enabled()) {
1959                 err = kvm_hyp_init_protection(hyp_va_bits);
1960                 if (err) {
1961                         kvm_err("Failed to init hyp memory protection\n");
1962                         goto out_err;
1963                 }
1964         }
1965
1966         return 0;
1967
1968 out_err:
1969         teardown_hyp_mode();
1970         kvm_err("error initializing Hyp mode: %d\n", err);
1971         return err;
1972 }
1973
1974 static void _kvm_host_prot_finalize(void *discard)
1975 {
1976         WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
1977 }
1978
1979 static int finalize_hyp_mode(void)
1980 {
1981         if (!is_protected_kvm_enabled())
1982                 return 0;
1983
1984         /*
1985          * Exclude HYP BSS from kmemleak so that it doesn't get peeked
1986          * at, which would end badly once the section is inaccessible.
1987          * None of other sections should ever be introspected.
1988          */
1989         kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
1990
1991         /*
1992          * Flip the static key upfront as that may no longer be possible
1993          * once the host stage 2 is installed.
1994          */
1995         static_branch_enable(&kvm_protected_mode_initialized);
1996         on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
1997
1998         return 0;
1999 }
2000
2001 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2002 {
2003         struct kvm_vcpu *vcpu;
2004         int i;
2005
2006         mpidr &= MPIDR_HWID_BITMASK;
2007         kvm_for_each_vcpu(i, vcpu, kvm) {
2008                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2009                         return vcpu;
2010         }
2011         return NULL;
2012 }
2013
2014 bool kvm_arch_has_irq_bypass(void)
2015 {
2016         return true;
2017 }
2018
2019 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2020                                       struct irq_bypass_producer *prod)
2021 {
2022         struct kvm_kernel_irqfd *irqfd =
2023                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2024
2025         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2026                                           &irqfd->irq_entry);
2027 }
2028 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2029                                       struct irq_bypass_producer *prod)
2030 {
2031         struct kvm_kernel_irqfd *irqfd =
2032                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2033
2034         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2035                                      &irqfd->irq_entry);
2036 }
2037
2038 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2039 {
2040         struct kvm_kernel_irqfd *irqfd =
2041                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2042
2043         kvm_arm_halt_guest(irqfd->kvm);
2044 }
2045
2046 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2047 {
2048         struct kvm_kernel_irqfd *irqfd =
2049                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2050
2051         kvm_arm_resume_guest(irqfd->kvm);
2052 }
2053
2054 /**
2055  * Initialize Hyp-mode and memory mappings on all CPUs.
2056  */
2057 int kvm_arch_init(void *opaque)
2058 {
2059         int err;
2060         bool in_hyp_mode;
2061
2062         if (!is_hyp_mode_available()) {
2063                 kvm_info("HYP mode not available\n");
2064                 return -ENODEV;
2065         }
2066
2067         in_hyp_mode = is_kernel_in_hyp_mode();
2068
2069         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2070             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2071                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2072                          "Only trusted guests should be used on this system.\n");
2073
2074         err = kvm_set_ipa_limit();
2075         if (err)
2076                 return err;
2077
2078         err = kvm_arm_init_sve();
2079         if (err)
2080                 return err;
2081
2082         if (!in_hyp_mode) {
2083                 err = init_hyp_mode();
2084                 if (err)
2085                         goto out_err;
2086         }
2087
2088         err = kvm_init_vector_slots();
2089         if (err) {
2090                 kvm_err("Cannot initialise vector slots\n");
2091                 goto out_err;
2092         }
2093
2094         err = init_subsystems();
2095         if (err)
2096                 goto out_hyp;
2097
2098         if (!in_hyp_mode) {
2099                 err = finalize_hyp_mode();
2100                 if (err) {
2101                         kvm_err("Failed to finalize Hyp protection\n");
2102                         goto out_hyp;
2103                 }
2104         }
2105
2106         if (is_protected_kvm_enabled()) {
2107                 kvm_info("Protected nVHE mode initialized successfully\n");
2108         } else if (in_hyp_mode) {
2109                 kvm_info("VHE mode initialized successfully\n");
2110         } else {
2111                 kvm_info("Hyp mode initialized successfully\n");
2112         }
2113
2114         return 0;
2115
2116 out_hyp:
2117         hyp_cpu_pm_exit();
2118         if (!in_hyp_mode)
2119                 teardown_hyp_mode();
2120 out_err:
2121         return err;
2122 }
2123
2124 /* NOP: Compiling as a module not supported */
2125 void kvm_arch_exit(void)
2126 {
2127         kvm_perf_teardown();
2128 }
2129
2130 static int __init early_kvm_mode_cfg(char *arg)
2131 {
2132         if (!arg)
2133                 return -EINVAL;
2134
2135         if (strcmp(arg, "protected") == 0) {
2136                 kvm_mode = KVM_MODE_PROTECTED;
2137                 return 0;
2138         }
2139
2140         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
2141                 return 0;
2142
2143         return -EINVAL;
2144 }
2145 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2146
2147 enum kvm_mode kvm_get_mode(void)
2148 {
2149         return kvm_mode;
2150 }
2151
2152 static int arm_init(void)
2153 {
2154         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2155         return rc;
2156 }
2157
2158 module_init(arm_init);