clk: uniphier: Fix fixed-rate initialization
[linux-2.6-microblaze.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kmemleak.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/irqbypass.h>
23 #include <linux/sched/stat.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
26
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
29
30 #include <linux/uaccess.h>
31 #include <asm/ptrace.h>
32 #include <asm/mman.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpufeature.h>
36 #include <asm/virt.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
42
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
46
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55
56 /* The VMID used in the VTTBR */
57 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58 static u32 kvm_next_vmid;
59 static DEFINE_SPINLOCK(kvm_vmid_lock);
60
61 static bool vgic_present;
62
63 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
65
66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
69 }
70
71 int kvm_arch_hardware_setup(void *opaque)
72 {
73         return 0;
74 }
75
76 int kvm_arch_check_processor_compat(void *opaque)
77 {
78         return 0;
79 }
80
81 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
82                             struct kvm_enable_cap *cap)
83 {
84         int r;
85
86         if (cap->flags)
87                 return -EINVAL;
88
89         switch (cap->cap) {
90         case KVM_CAP_ARM_NISV_TO_USER:
91                 r = 0;
92                 kvm->arch.return_nisv_io_abort_to_user = true;
93                 break;
94         case KVM_CAP_ARM_MTE:
95                 mutex_lock(&kvm->lock);
96                 if (!system_supports_mte() || kvm->created_vcpus) {
97                         r = -EINVAL;
98                 } else {
99                         r = 0;
100                         kvm->arch.mte_enabled = true;
101                 }
102                 mutex_unlock(&kvm->lock);
103                 break;
104         default:
105                 r = -EINVAL;
106                 break;
107         }
108
109         return r;
110 }
111
112 static int kvm_arm_default_max_vcpus(void)
113 {
114         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
115 }
116
117 static void set_default_spectre(struct kvm *kvm)
118 {
119         /*
120          * The default is to expose CSV2 == 1 if the HW isn't affected.
121          * Although this is a per-CPU feature, we make it global because
122          * asymmetric systems are just a nuisance.
123          *
124          * Userspace can override this as long as it doesn't promise
125          * the impossible.
126          */
127         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
128                 kvm->arch.pfr0_csv2 = 1;
129         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
130                 kvm->arch.pfr0_csv3 = 1;
131 }
132
133 /**
134  * kvm_arch_init_vm - initializes a VM data structure
135  * @kvm:        pointer to the KVM struct
136  */
137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
138 {
139         int ret;
140
141         ret = kvm_arm_setup_stage2(kvm, type);
142         if (ret)
143                 return ret;
144
145         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146         if (ret)
147                 return ret;
148
149         ret = kvm_share_hyp(kvm, kvm + 1);
150         if (ret)
151                 goto out_free_stage2_pgd;
152
153         kvm_vgic_early_init(kvm);
154
155         /* The maximum number of VCPUs is limited by the host's GIC model */
156         kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157
158         set_default_spectre(kvm);
159
160         return ret;
161 out_free_stage2_pgd:
162         kvm_free_stage2_pgd(&kvm->arch.mmu);
163         return ret;
164 }
165
166 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168         return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173  * kvm_arch_destroy_vm - destroy the VM data structure
174  * @kvm:        pointer to the KVM struct
175  */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178         bitmap_free(kvm->arch.pmu_filter);
179
180         kvm_vgic_destroy(kvm);
181
182         kvm_destroy_vcpus(kvm);
183
184         kvm_unshare_hyp(kvm, kvm + 1);
185 }
186
187 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
188 {
189         int r;
190         switch (ext) {
191         case KVM_CAP_IRQCHIP:
192                 r = vgic_present;
193                 break;
194         case KVM_CAP_IOEVENTFD:
195         case KVM_CAP_DEVICE_CTRL:
196         case KVM_CAP_USER_MEMORY:
197         case KVM_CAP_SYNC_MMU:
198         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
199         case KVM_CAP_ONE_REG:
200         case KVM_CAP_ARM_PSCI:
201         case KVM_CAP_ARM_PSCI_0_2:
202         case KVM_CAP_READONLY_MEM:
203         case KVM_CAP_MP_STATE:
204         case KVM_CAP_IMMEDIATE_EXIT:
205         case KVM_CAP_VCPU_EVENTS:
206         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
207         case KVM_CAP_ARM_NISV_TO_USER:
208         case KVM_CAP_ARM_INJECT_EXT_DABT:
209         case KVM_CAP_SET_GUEST_DEBUG:
210         case KVM_CAP_VCPU_ATTRIBUTES:
211         case KVM_CAP_PTP_KVM:
212                 r = 1;
213                 break;
214         case KVM_CAP_SET_GUEST_DEBUG2:
215                 return KVM_GUESTDBG_VALID_MASK;
216         case KVM_CAP_ARM_SET_DEVICE_ADDR:
217                 r = 1;
218                 break;
219         case KVM_CAP_NR_VCPUS:
220                 /*
221                  * ARM64 treats KVM_CAP_NR_CPUS differently from all other
222                  * architectures, as it does not always bound it to
223                  * KVM_CAP_MAX_VCPUS. It should not matter much because
224                  * this is just an advisory value.
225                  */
226                 r = min_t(unsigned int, num_online_cpus(),
227                           kvm_arm_default_max_vcpus());
228                 break;
229         case KVM_CAP_MAX_VCPUS:
230         case KVM_CAP_MAX_VCPU_ID:
231                 if (kvm)
232                         r = kvm->arch.max_vcpus;
233                 else
234                         r = kvm_arm_default_max_vcpus();
235                 break;
236         case KVM_CAP_MSI_DEVID:
237                 if (!kvm)
238                         r = -EINVAL;
239                 else
240                         r = kvm->arch.vgic.msis_require_devid;
241                 break;
242         case KVM_CAP_ARM_USER_IRQ:
243                 /*
244                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
245                  * (bump this number if adding more devices)
246                  */
247                 r = 1;
248                 break;
249         case KVM_CAP_ARM_MTE:
250                 r = system_supports_mte();
251                 break;
252         case KVM_CAP_STEAL_TIME:
253                 r = kvm_arm_pvtime_supported();
254                 break;
255         case KVM_CAP_ARM_EL1_32BIT:
256                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
257                 break;
258         case KVM_CAP_GUEST_DEBUG_HW_BPS:
259                 r = get_num_brps();
260                 break;
261         case KVM_CAP_GUEST_DEBUG_HW_WPS:
262                 r = get_num_wrps();
263                 break;
264         case KVM_CAP_ARM_PMU_V3:
265                 r = kvm_arm_support_pmu_v3();
266                 break;
267         case KVM_CAP_ARM_INJECT_SERROR_ESR:
268                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
269                 break;
270         case KVM_CAP_ARM_VM_IPA_SIZE:
271                 r = get_kvm_ipa_limit();
272                 break;
273         case KVM_CAP_ARM_SVE:
274                 r = system_supports_sve();
275                 break;
276         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
277         case KVM_CAP_ARM_PTRAUTH_GENERIC:
278                 r = system_has_full_ptr_auth();
279                 break;
280         default:
281                 r = 0;
282         }
283
284         return r;
285 }
286
287 long kvm_arch_dev_ioctl(struct file *filp,
288                         unsigned int ioctl, unsigned long arg)
289 {
290         return -EINVAL;
291 }
292
293 struct kvm *kvm_arch_alloc_vm(void)
294 {
295         size_t sz = sizeof(struct kvm);
296
297         if (!has_vhe())
298                 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
299
300         return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
301 }
302
303 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
304 {
305         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
306                 return -EBUSY;
307
308         if (id >= kvm->arch.max_vcpus)
309                 return -EINVAL;
310
311         return 0;
312 }
313
314 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
315 {
316         int err;
317
318         /* Force users to call KVM_ARM_VCPU_INIT */
319         vcpu->arch.target = -1;
320         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
321
322         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
323
324         /* Set up the timer */
325         kvm_timer_vcpu_init(vcpu);
326
327         kvm_pmu_vcpu_init(vcpu);
328
329         kvm_arm_reset_debug_ptr(vcpu);
330
331         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
332
333         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
334
335         err = kvm_vgic_vcpu_init(vcpu);
336         if (err)
337                 return err;
338
339         return kvm_share_hyp(vcpu, vcpu + 1);
340 }
341
342 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
343 {
344 }
345
346 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
347 {
348         if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
349                 static_branch_dec(&userspace_irqchip_in_use);
350
351         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
352         kvm_timer_vcpu_terminate(vcpu);
353         kvm_pmu_vcpu_destroy(vcpu);
354
355         kvm_arm_vcpu_destroy(vcpu);
356 }
357
358 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
359 {
360         return kvm_timer_is_pending(vcpu);
361 }
362
363 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
364 {
365
366 }
367
368 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
369 {
370
371 }
372
373 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
374 {
375         struct kvm_s2_mmu *mmu;
376         int *last_ran;
377
378         mmu = vcpu->arch.hw_mmu;
379         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
380
381         /*
382          * We guarantee that both TLBs and I-cache are private to each
383          * vcpu. If detecting that a vcpu from the same VM has
384          * previously run on the same physical CPU, call into the
385          * hypervisor code to nuke the relevant contexts.
386          *
387          * We might get preempted before the vCPU actually runs, but
388          * over-invalidation doesn't affect correctness.
389          */
390         if (*last_ran != vcpu->vcpu_id) {
391                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
392                 *last_ran = vcpu->vcpu_id;
393         }
394
395         vcpu->cpu = cpu;
396
397         kvm_vgic_load(vcpu);
398         kvm_timer_vcpu_load(vcpu);
399         if (has_vhe())
400                 kvm_vcpu_load_sysregs_vhe(vcpu);
401         kvm_arch_vcpu_load_fp(vcpu);
402         kvm_vcpu_pmu_restore_guest(vcpu);
403         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
404                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
405
406         if (single_task_running())
407                 vcpu_clear_wfx_traps(vcpu);
408         else
409                 vcpu_set_wfx_traps(vcpu);
410
411         if (vcpu_has_ptrauth(vcpu))
412                 vcpu_ptrauth_disable(vcpu);
413         kvm_arch_vcpu_load_debug_state_flags(vcpu);
414 }
415
416 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
417 {
418         kvm_arch_vcpu_put_debug_state_flags(vcpu);
419         kvm_arch_vcpu_put_fp(vcpu);
420         if (has_vhe())
421                 kvm_vcpu_put_sysregs_vhe(vcpu);
422         kvm_timer_vcpu_put(vcpu);
423         kvm_vgic_put(vcpu);
424         kvm_vcpu_pmu_restore_host(vcpu);
425
426         vcpu->cpu = -1;
427 }
428
429 static void vcpu_power_off(struct kvm_vcpu *vcpu)
430 {
431         vcpu->arch.power_off = true;
432         kvm_make_request(KVM_REQ_SLEEP, vcpu);
433         kvm_vcpu_kick(vcpu);
434 }
435
436 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
437                                     struct kvm_mp_state *mp_state)
438 {
439         if (vcpu->arch.power_off)
440                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
441         else
442                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
443
444         return 0;
445 }
446
447 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
448                                     struct kvm_mp_state *mp_state)
449 {
450         int ret = 0;
451
452         switch (mp_state->mp_state) {
453         case KVM_MP_STATE_RUNNABLE:
454                 vcpu->arch.power_off = false;
455                 break;
456         case KVM_MP_STATE_STOPPED:
457                 vcpu_power_off(vcpu);
458                 break;
459         default:
460                 ret = -EINVAL;
461         }
462
463         return ret;
464 }
465
466 /**
467  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
468  * @v:          The VCPU pointer
469  *
470  * If the guest CPU is not waiting for interrupts or an interrupt line is
471  * asserted, the CPU is by definition runnable.
472  */
473 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
474 {
475         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
476         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
477                 && !v->arch.power_off && !v->arch.pause);
478 }
479
480 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
481 {
482         return vcpu_mode_priv(vcpu);
483 }
484
485 #ifdef CONFIG_GUEST_PERF_EVENTS
486 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
487 {
488         return *vcpu_pc(vcpu);
489 }
490 #endif
491
492 /* Just ensure a guest exit from a particular CPU */
493 static void exit_vm_noop(void *info)
494 {
495 }
496
497 void force_vm_exit(const cpumask_t *mask)
498 {
499         preempt_disable();
500         smp_call_function_many(mask, exit_vm_noop, NULL, true);
501         preempt_enable();
502 }
503
504 /**
505  * need_new_vmid_gen - check that the VMID is still valid
506  * @vmid: The VMID to check
507  *
508  * return true if there is a new generation of VMIDs being used
509  *
510  * The hardware supports a limited set of values with the value zero reserved
511  * for the host, so we check if an assigned value belongs to a previous
512  * generation, which requires us to assign a new value. If we're the first to
513  * use a VMID for the new generation, we must flush necessary caches and TLBs
514  * on all CPUs.
515  */
516 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
517 {
518         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
519         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
520         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
521 }
522
523 /**
524  * update_vmid - Update the vmid with a valid VMID for the current generation
525  * @vmid: The stage-2 VMID information struct
526  */
527 static void update_vmid(struct kvm_vmid *vmid)
528 {
529         if (!need_new_vmid_gen(vmid))
530                 return;
531
532         spin_lock(&kvm_vmid_lock);
533
534         /*
535          * We need to re-check the vmid_gen here to ensure that if another vcpu
536          * already allocated a valid vmid for this vm, then this vcpu should
537          * use the same vmid.
538          */
539         if (!need_new_vmid_gen(vmid)) {
540                 spin_unlock(&kvm_vmid_lock);
541                 return;
542         }
543
544         /* First user of a new VMID generation? */
545         if (unlikely(kvm_next_vmid == 0)) {
546                 atomic64_inc(&kvm_vmid_gen);
547                 kvm_next_vmid = 1;
548
549                 /*
550                  * On SMP we know no other CPUs can use this CPU's or each
551                  * other's VMID after force_vm_exit returns since the
552                  * kvm_vmid_lock blocks them from reentry to the guest.
553                  */
554                 force_vm_exit(cpu_all_mask);
555                 /*
556                  * Now broadcast TLB + ICACHE invalidation over the inner
557                  * shareable domain to make sure all data structures are
558                  * clean.
559                  */
560                 kvm_call_hyp(__kvm_flush_vm_context);
561         }
562
563         WRITE_ONCE(vmid->vmid, kvm_next_vmid);
564         kvm_next_vmid++;
565         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
566
567         smp_wmb();
568         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
569
570         spin_unlock(&kvm_vmid_lock);
571 }
572
573 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
574 {
575         return vcpu->arch.target >= 0;
576 }
577
578 /*
579  * Handle both the initialisation that is being done when the vcpu is
580  * run for the first time, as well as the updates that must be
581  * performed each time we get a new thread dealing with this vcpu.
582  */
583 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
584 {
585         struct kvm *kvm = vcpu->kvm;
586         int ret;
587
588         if (!kvm_vcpu_initialized(vcpu))
589                 return -ENOEXEC;
590
591         if (!kvm_arm_vcpu_is_finalized(vcpu))
592                 return -EPERM;
593
594         ret = kvm_arch_vcpu_run_map_fp(vcpu);
595         if (ret)
596                 return ret;
597
598         if (likely(vcpu_has_run_once(vcpu)))
599                 return 0;
600
601         kvm_arm_vcpu_init_debug(vcpu);
602
603         if (likely(irqchip_in_kernel(kvm))) {
604                 /*
605                  * Map the VGIC hardware resources before running a vcpu the
606                  * first time on this VM.
607                  */
608                 ret = kvm_vgic_map_resources(kvm);
609                 if (ret)
610                         return ret;
611         }
612
613         ret = kvm_timer_enable(vcpu);
614         if (ret)
615                 return ret;
616
617         ret = kvm_arm_pmu_v3_enable(vcpu);
618         if (ret)
619                 return ret;
620
621         if (!irqchip_in_kernel(kvm)) {
622                 /*
623                  * Tell the rest of the code that there are userspace irqchip
624                  * VMs in the wild.
625                  */
626                 static_branch_inc(&userspace_irqchip_in_use);
627         }
628
629         /*
630          * Initialize traps for protected VMs.
631          * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
632          * the code is in place for first run initialization at EL2.
633          */
634         if (kvm_vm_is_protected(kvm))
635                 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
636
637         return ret;
638 }
639
640 bool kvm_arch_intc_initialized(struct kvm *kvm)
641 {
642         return vgic_initialized(kvm);
643 }
644
645 void kvm_arm_halt_guest(struct kvm *kvm)
646 {
647         unsigned long i;
648         struct kvm_vcpu *vcpu;
649
650         kvm_for_each_vcpu(i, vcpu, kvm)
651                 vcpu->arch.pause = true;
652         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
653 }
654
655 void kvm_arm_resume_guest(struct kvm *kvm)
656 {
657         unsigned long i;
658         struct kvm_vcpu *vcpu;
659
660         kvm_for_each_vcpu(i, vcpu, kvm) {
661                 vcpu->arch.pause = false;
662                 __kvm_vcpu_wake_up(vcpu);
663         }
664 }
665
666 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
667 {
668         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
669
670         rcuwait_wait_event(wait,
671                            (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
672                            TASK_INTERRUPTIBLE);
673
674         if (vcpu->arch.power_off || vcpu->arch.pause) {
675                 /* Awaken to handle a signal, request we sleep again later. */
676                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
677         }
678
679         /*
680          * Make sure we will observe a potential reset request if we've
681          * observed a change to the power state. Pairs with the smp_wmb() in
682          * kvm_psci_vcpu_on().
683          */
684         smp_rmb();
685 }
686
687 /**
688  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
689  * @vcpu:       The VCPU pointer
690  *
691  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
692  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
693  * on when a wake event arrives, e.g. there may already be a pending wake event.
694  */
695 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
696 {
697         /*
698          * Sync back the state of the GIC CPU interface so that we have
699          * the latest PMR and group enables. This ensures that
700          * kvm_arch_vcpu_runnable has up-to-date data to decide whether
701          * we have pending interrupts, e.g. when determining if the
702          * vCPU should block.
703          *
704          * For the same reason, we want to tell GICv4 that we need
705          * doorbells to be signalled, should an interrupt become pending.
706          */
707         preempt_disable();
708         kvm_vgic_vmcr_sync(vcpu);
709         vgic_v4_put(vcpu, true);
710         preempt_enable();
711
712         kvm_vcpu_halt(vcpu);
713         kvm_clear_request(KVM_REQ_UNHALT, vcpu);
714
715         preempt_disable();
716         vgic_v4_load(vcpu);
717         preempt_enable();
718 }
719
720 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
721 {
722         if (kvm_request_pending(vcpu)) {
723                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
724                         vcpu_req_sleep(vcpu);
725
726                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
727                         kvm_reset_vcpu(vcpu);
728
729                 /*
730                  * Clear IRQ_PENDING requests that were made to guarantee
731                  * that a VCPU sees new virtual interrupts.
732                  */
733                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
734
735                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
736                         kvm_update_stolen_time(vcpu);
737
738                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
739                         /* The distributor enable bits were changed */
740                         preempt_disable();
741                         vgic_v4_put(vcpu, false);
742                         vgic_v4_load(vcpu);
743                         preempt_enable();
744                 }
745
746                 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
747                         kvm_pmu_handle_pmcr(vcpu,
748                                             __vcpu_sys_reg(vcpu, PMCR_EL0));
749         }
750 }
751
752 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
753 {
754         if (likely(!vcpu_mode_is_32bit(vcpu)))
755                 return false;
756
757         return !system_supports_32bit_el0() ||
758                 static_branch_unlikely(&arm64_mismatched_32bit_el0);
759 }
760
761 /**
762  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
763  * @vcpu:       The VCPU pointer
764  * @ret:        Pointer to write optional return code
765  *
766  * Returns: true if the VCPU needs to return to a preemptible + interruptible
767  *          and skip guest entry.
768  *
769  * This function disambiguates between two different types of exits: exits to a
770  * preemptible + interruptible kernel context and exits to userspace. For an
771  * exit to userspace, this function will write the return code to ret and return
772  * true. For an exit to preemptible + interruptible kernel context (i.e. check
773  * for pending work and re-enter), return true without writing to ret.
774  */
775 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
776 {
777         struct kvm_run *run = vcpu->run;
778
779         /*
780          * If we're using a userspace irqchip, then check if we need
781          * to tell a userspace irqchip about timer or PMU level
782          * changes and if so, exit to userspace (the actual level
783          * state gets updated in kvm_timer_update_run and
784          * kvm_pmu_update_run below).
785          */
786         if (static_branch_unlikely(&userspace_irqchip_in_use)) {
787                 if (kvm_timer_should_notify_user(vcpu) ||
788                     kvm_pmu_should_notify_user(vcpu)) {
789                         *ret = -EINTR;
790                         run->exit_reason = KVM_EXIT_INTR;
791                         return true;
792                 }
793         }
794
795         return kvm_request_pending(vcpu) ||
796                         need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
797                         xfer_to_guest_mode_work_pending();
798 }
799
800 /**
801  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
802  * @vcpu:       The VCPU pointer
803  *
804  * This function is called through the VCPU_RUN ioctl called from user space. It
805  * will execute VM code in a loop until the time slice for the process is used
806  * or some emulation is needed from user space in which case the function will
807  * return with return value 0 and with the kvm_run structure filled in with the
808  * required data for the requested emulation.
809  */
810 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
811 {
812         struct kvm_run *run = vcpu->run;
813         int ret;
814
815         if (run->exit_reason == KVM_EXIT_MMIO) {
816                 ret = kvm_handle_mmio_return(vcpu);
817                 if (ret)
818                         return ret;
819         }
820
821         vcpu_load(vcpu);
822
823         if (run->immediate_exit) {
824                 ret = -EINTR;
825                 goto out;
826         }
827
828         kvm_sigset_activate(vcpu);
829
830         ret = 1;
831         run->exit_reason = KVM_EXIT_UNKNOWN;
832         while (ret > 0) {
833                 /*
834                  * Check conditions before entering the guest
835                  */
836                 ret = xfer_to_guest_mode_handle_work(vcpu);
837                 if (!ret)
838                         ret = 1;
839
840                 update_vmid(&vcpu->arch.hw_mmu->vmid);
841
842                 check_vcpu_requests(vcpu);
843
844                 /*
845                  * Preparing the interrupts to be injected also
846                  * involves poking the GIC, which must be done in a
847                  * non-preemptible context.
848                  */
849                 preempt_disable();
850
851                 kvm_pmu_flush_hwstate(vcpu);
852
853                 local_irq_disable();
854
855                 kvm_vgic_flush_hwstate(vcpu);
856
857                 /*
858                  * Ensure we set mode to IN_GUEST_MODE after we disable
859                  * interrupts and before the final VCPU requests check.
860                  * See the comment in kvm_vcpu_exiting_guest_mode() and
861                  * Documentation/virt/kvm/vcpu-requests.rst
862                  */
863                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
864
865                 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
866                         vcpu->mode = OUTSIDE_GUEST_MODE;
867                         isb(); /* Ensure work in x_flush_hwstate is committed */
868                         kvm_pmu_sync_hwstate(vcpu);
869                         if (static_branch_unlikely(&userspace_irqchip_in_use))
870                                 kvm_timer_sync_user(vcpu);
871                         kvm_vgic_sync_hwstate(vcpu);
872                         local_irq_enable();
873                         preempt_enable();
874                         continue;
875                 }
876
877                 kvm_arm_setup_debug(vcpu);
878                 kvm_arch_vcpu_ctxflush_fp(vcpu);
879
880                 /**************************************************************
881                  * Enter the guest
882                  */
883                 trace_kvm_entry(*vcpu_pc(vcpu));
884                 guest_enter_irqoff();
885
886                 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
887
888                 vcpu->mode = OUTSIDE_GUEST_MODE;
889                 vcpu->stat.exits++;
890                 /*
891                  * Back from guest
892                  *************************************************************/
893
894                 kvm_arm_clear_debug(vcpu);
895
896                 /*
897                  * We must sync the PMU state before the vgic state so
898                  * that the vgic can properly sample the updated state of the
899                  * interrupt line.
900                  */
901                 kvm_pmu_sync_hwstate(vcpu);
902
903                 /*
904                  * Sync the vgic state before syncing the timer state because
905                  * the timer code needs to know if the virtual timer
906                  * interrupts are active.
907                  */
908                 kvm_vgic_sync_hwstate(vcpu);
909
910                 /*
911                  * Sync the timer hardware state before enabling interrupts as
912                  * we don't want vtimer interrupts to race with syncing the
913                  * timer virtual interrupt state.
914                  */
915                 if (static_branch_unlikely(&userspace_irqchip_in_use))
916                         kvm_timer_sync_user(vcpu);
917
918                 kvm_arch_vcpu_ctxsync_fp(vcpu);
919
920                 /*
921                  * We may have taken a host interrupt in HYP mode (ie
922                  * while executing the guest). This interrupt is still
923                  * pending, as we haven't serviced it yet!
924                  *
925                  * We're now back in SVC mode, with interrupts
926                  * disabled.  Enabling the interrupts now will have
927                  * the effect of taking the interrupt again, in SVC
928                  * mode this time.
929                  */
930                 local_irq_enable();
931
932                 /*
933                  * We do local_irq_enable() before calling guest_exit() so
934                  * that if a timer interrupt hits while running the guest we
935                  * account that tick as being spent in the guest.  We enable
936                  * preemption after calling guest_exit() so that if we get
937                  * preempted we make sure ticks after that is not counted as
938                  * guest time.
939                  */
940                 guest_exit();
941                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
942
943                 /* Exit types that need handling before we can be preempted */
944                 handle_exit_early(vcpu, ret);
945
946                 preempt_enable();
947
948                 /*
949                  * The ARMv8 architecture doesn't give the hypervisor
950                  * a mechanism to prevent a guest from dropping to AArch32 EL0
951                  * if implemented by the CPU. If we spot the guest in such
952                  * state and that we decided it wasn't supposed to do so (like
953                  * with the asymmetric AArch32 case), return to userspace with
954                  * a fatal error.
955                  */
956                 if (vcpu_mode_is_bad_32bit(vcpu)) {
957                         /*
958                          * As we have caught the guest red-handed, decide that
959                          * it isn't fit for purpose anymore by making the vcpu
960                          * invalid. The VMM can try and fix it by issuing  a
961                          * KVM_ARM_VCPU_INIT if it really wants to.
962                          */
963                         vcpu->arch.target = -1;
964                         ret = ARM_EXCEPTION_IL;
965                 }
966
967                 ret = handle_exit(vcpu, ret);
968         }
969
970         /* Tell userspace about in-kernel device output levels */
971         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
972                 kvm_timer_update_run(vcpu);
973                 kvm_pmu_update_run(vcpu);
974         }
975
976         kvm_sigset_deactivate(vcpu);
977
978 out:
979         /*
980          * In the unlikely event that we are returning to userspace
981          * with pending exceptions or PC adjustment, commit these
982          * adjustments in order to give userspace a consistent view of
983          * the vcpu state. Note that this relies on __kvm_adjust_pc()
984          * being preempt-safe on VHE.
985          */
986         if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
987                                          KVM_ARM64_INCREMENT_PC)))
988                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
989
990         vcpu_put(vcpu);
991         return ret;
992 }
993
994 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
995 {
996         int bit_index;
997         bool set;
998         unsigned long *hcr;
999
1000         if (number == KVM_ARM_IRQ_CPU_IRQ)
1001                 bit_index = __ffs(HCR_VI);
1002         else /* KVM_ARM_IRQ_CPU_FIQ */
1003                 bit_index = __ffs(HCR_VF);
1004
1005         hcr = vcpu_hcr(vcpu);
1006         if (level)
1007                 set = test_and_set_bit(bit_index, hcr);
1008         else
1009                 set = test_and_clear_bit(bit_index, hcr);
1010
1011         /*
1012          * If we didn't change anything, no need to wake up or kick other CPUs
1013          */
1014         if (set == level)
1015                 return 0;
1016
1017         /*
1018          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1019          * trigger a world-switch round on the running physical CPU to set the
1020          * virtual IRQ/FIQ fields in the HCR appropriately.
1021          */
1022         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1023         kvm_vcpu_kick(vcpu);
1024
1025         return 0;
1026 }
1027
1028 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1029                           bool line_status)
1030 {
1031         u32 irq = irq_level->irq;
1032         unsigned int irq_type, vcpu_idx, irq_num;
1033         int nrcpus = atomic_read(&kvm->online_vcpus);
1034         struct kvm_vcpu *vcpu = NULL;
1035         bool level = irq_level->level;
1036
1037         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1038         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1039         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1040         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1041
1042         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1043
1044         switch (irq_type) {
1045         case KVM_ARM_IRQ_TYPE_CPU:
1046                 if (irqchip_in_kernel(kvm))
1047                         return -ENXIO;
1048
1049                 if (vcpu_idx >= nrcpus)
1050                         return -EINVAL;
1051
1052                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1053                 if (!vcpu)
1054                         return -EINVAL;
1055
1056                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1057                         return -EINVAL;
1058
1059                 return vcpu_interrupt_line(vcpu, irq_num, level);
1060         case KVM_ARM_IRQ_TYPE_PPI:
1061                 if (!irqchip_in_kernel(kvm))
1062                         return -ENXIO;
1063
1064                 if (vcpu_idx >= nrcpus)
1065                         return -EINVAL;
1066
1067                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1068                 if (!vcpu)
1069                         return -EINVAL;
1070
1071                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1072                         return -EINVAL;
1073
1074                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1075         case KVM_ARM_IRQ_TYPE_SPI:
1076                 if (!irqchip_in_kernel(kvm))
1077                         return -ENXIO;
1078
1079                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1080                         return -EINVAL;
1081
1082                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1083         }
1084
1085         return -EINVAL;
1086 }
1087
1088 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1089                                const struct kvm_vcpu_init *init)
1090 {
1091         unsigned int i, ret;
1092         u32 phys_target = kvm_target_cpu();
1093
1094         if (init->target != phys_target)
1095                 return -EINVAL;
1096
1097         /*
1098          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1099          * use the same target.
1100          */
1101         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1102                 return -EINVAL;
1103
1104         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1105         for (i = 0; i < sizeof(init->features) * 8; i++) {
1106                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1107
1108                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1109                         return -ENOENT;
1110
1111                 /*
1112                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1113                  * use the same feature set.
1114                  */
1115                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1116                     test_bit(i, vcpu->arch.features) != set)
1117                         return -EINVAL;
1118
1119                 if (set)
1120                         set_bit(i, vcpu->arch.features);
1121         }
1122
1123         vcpu->arch.target = phys_target;
1124
1125         /* Now we know what it is, we can reset it. */
1126         ret = kvm_reset_vcpu(vcpu);
1127         if (ret) {
1128                 vcpu->arch.target = -1;
1129                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1130         }
1131
1132         return ret;
1133 }
1134
1135 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1136                                          struct kvm_vcpu_init *init)
1137 {
1138         int ret;
1139
1140         ret = kvm_vcpu_set_target(vcpu, init);
1141         if (ret)
1142                 return ret;
1143
1144         /*
1145          * Ensure a rebooted VM will fault in RAM pages and detect if the
1146          * guest MMU is turned off and flush the caches as needed.
1147          *
1148          * S2FWB enforces all memory accesses to RAM being cacheable,
1149          * ensuring that the data side is always coherent. We still
1150          * need to invalidate the I-cache though, as FWB does *not*
1151          * imply CTR_EL0.DIC.
1152          */
1153         if (vcpu_has_run_once(vcpu)) {
1154                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1155                         stage2_unmap_vm(vcpu->kvm);
1156                 else
1157                         icache_inval_all_pou();
1158         }
1159
1160         vcpu_reset_hcr(vcpu);
1161         vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1162
1163         /*
1164          * Handle the "start in power-off" case.
1165          */
1166         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1167                 vcpu_power_off(vcpu);
1168         else
1169                 vcpu->arch.power_off = false;
1170
1171         return 0;
1172 }
1173
1174 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1175                                  struct kvm_device_attr *attr)
1176 {
1177         int ret = -ENXIO;
1178
1179         switch (attr->group) {
1180         default:
1181                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1182                 break;
1183         }
1184
1185         return ret;
1186 }
1187
1188 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1189                                  struct kvm_device_attr *attr)
1190 {
1191         int ret = -ENXIO;
1192
1193         switch (attr->group) {
1194         default:
1195                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1196                 break;
1197         }
1198
1199         return ret;
1200 }
1201
1202 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1203                                  struct kvm_device_attr *attr)
1204 {
1205         int ret = -ENXIO;
1206
1207         switch (attr->group) {
1208         default:
1209                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1210                 break;
1211         }
1212
1213         return ret;
1214 }
1215
1216 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1217                                    struct kvm_vcpu_events *events)
1218 {
1219         memset(events, 0, sizeof(*events));
1220
1221         return __kvm_arm_vcpu_get_events(vcpu, events);
1222 }
1223
1224 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1225                                    struct kvm_vcpu_events *events)
1226 {
1227         int i;
1228
1229         /* check whether the reserved field is zero */
1230         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1231                 if (events->reserved[i])
1232                         return -EINVAL;
1233
1234         /* check whether the pad field is zero */
1235         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1236                 if (events->exception.pad[i])
1237                         return -EINVAL;
1238
1239         return __kvm_arm_vcpu_set_events(vcpu, events);
1240 }
1241
1242 long kvm_arch_vcpu_ioctl(struct file *filp,
1243                          unsigned int ioctl, unsigned long arg)
1244 {
1245         struct kvm_vcpu *vcpu = filp->private_data;
1246         void __user *argp = (void __user *)arg;
1247         struct kvm_device_attr attr;
1248         long r;
1249
1250         switch (ioctl) {
1251         case KVM_ARM_VCPU_INIT: {
1252                 struct kvm_vcpu_init init;
1253
1254                 r = -EFAULT;
1255                 if (copy_from_user(&init, argp, sizeof(init)))
1256                         break;
1257
1258                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1259                 break;
1260         }
1261         case KVM_SET_ONE_REG:
1262         case KVM_GET_ONE_REG: {
1263                 struct kvm_one_reg reg;
1264
1265                 r = -ENOEXEC;
1266                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1267                         break;
1268
1269                 r = -EFAULT;
1270                 if (copy_from_user(&reg, argp, sizeof(reg)))
1271                         break;
1272
1273                 /*
1274                  * We could owe a reset due to PSCI. Handle the pending reset
1275                  * here to ensure userspace register accesses are ordered after
1276                  * the reset.
1277                  */
1278                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1279                         kvm_reset_vcpu(vcpu);
1280
1281                 if (ioctl == KVM_SET_ONE_REG)
1282                         r = kvm_arm_set_reg(vcpu, &reg);
1283                 else
1284                         r = kvm_arm_get_reg(vcpu, &reg);
1285                 break;
1286         }
1287         case KVM_GET_REG_LIST: {
1288                 struct kvm_reg_list __user *user_list = argp;
1289                 struct kvm_reg_list reg_list;
1290                 unsigned n;
1291
1292                 r = -ENOEXEC;
1293                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1294                         break;
1295
1296                 r = -EPERM;
1297                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1298                         break;
1299
1300                 r = -EFAULT;
1301                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1302                         break;
1303                 n = reg_list.n;
1304                 reg_list.n = kvm_arm_num_regs(vcpu);
1305                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1306                         break;
1307                 r = -E2BIG;
1308                 if (n < reg_list.n)
1309                         break;
1310                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1311                 break;
1312         }
1313         case KVM_SET_DEVICE_ATTR: {
1314                 r = -EFAULT;
1315                 if (copy_from_user(&attr, argp, sizeof(attr)))
1316                         break;
1317                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1318                 break;
1319         }
1320         case KVM_GET_DEVICE_ATTR: {
1321                 r = -EFAULT;
1322                 if (copy_from_user(&attr, argp, sizeof(attr)))
1323                         break;
1324                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1325                 break;
1326         }
1327         case KVM_HAS_DEVICE_ATTR: {
1328                 r = -EFAULT;
1329                 if (copy_from_user(&attr, argp, sizeof(attr)))
1330                         break;
1331                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1332                 break;
1333         }
1334         case KVM_GET_VCPU_EVENTS: {
1335                 struct kvm_vcpu_events events;
1336
1337                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1338                         return -EINVAL;
1339
1340                 if (copy_to_user(argp, &events, sizeof(events)))
1341                         return -EFAULT;
1342
1343                 return 0;
1344         }
1345         case KVM_SET_VCPU_EVENTS: {
1346                 struct kvm_vcpu_events events;
1347
1348                 if (copy_from_user(&events, argp, sizeof(events)))
1349                         return -EFAULT;
1350
1351                 return kvm_arm_vcpu_set_events(vcpu, &events);
1352         }
1353         case KVM_ARM_VCPU_FINALIZE: {
1354                 int what;
1355
1356                 if (!kvm_vcpu_initialized(vcpu))
1357                         return -ENOEXEC;
1358
1359                 if (get_user(what, (const int __user *)argp))
1360                         return -EFAULT;
1361
1362                 return kvm_arm_vcpu_finalize(vcpu, what);
1363         }
1364         default:
1365                 r = -EINVAL;
1366         }
1367
1368         return r;
1369 }
1370
1371 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1372 {
1373
1374 }
1375
1376 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1377                                         const struct kvm_memory_slot *memslot)
1378 {
1379         kvm_flush_remote_tlbs(kvm);
1380 }
1381
1382 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1383                                         struct kvm_arm_device_addr *dev_addr)
1384 {
1385         unsigned long dev_id, type;
1386
1387         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1388                 KVM_ARM_DEVICE_ID_SHIFT;
1389         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1390                 KVM_ARM_DEVICE_TYPE_SHIFT;
1391
1392         switch (dev_id) {
1393         case KVM_ARM_DEVICE_VGIC_V2:
1394                 if (!vgic_present)
1395                         return -ENXIO;
1396                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1397         default:
1398                 return -ENODEV;
1399         }
1400 }
1401
1402 long kvm_arch_vm_ioctl(struct file *filp,
1403                        unsigned int ioctl, unsigned long arg)
1404 {
1405         struct kvm *kvm = filp->private_data;
1406         void __user *argp = (void __user *)arg;
1407
1408         switch (ioctl) {
1409         case KVM_CREATE_IRQCHIP: {
1410                 int ret;
1411                 if (!vgic_present)
1412                         return -ENXIO;
1413                 mutex_lock(&kvm->lock);
1414                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1415                 mutex_unlock(&kvm->lock);
1416                 return ret;
1417         }
1418         case KVM_ARM_SET_DEVICE_ADDR: {
1419                 struct kvm_arm_device_addr dev_addr;
1420
1421                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1422                         return -EFAULT;
1423                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1424         }
1425         case KVM_ARM_PREFERRED_TARGET: {
1426                 struct kvm_vcpu_init init;
1427
1428                 kvm_vcpu_preferred_target(&init);
1429
1430                 if (copy_to_user(argp, &init, sizeof(init)))
1431                         return -EFAULT;
1432
1433                 return 0;
1434         }
1435         case KVM_ARM_MTE_COPY_TAGS: {
1436                 struct kvm_arm_copy_mte_tags copy_tags;
1437
1438                 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1439                         return -EFAULT;
1440                 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1441         }
1442         default:
1443                 return -EINVAL;
1444         }
1445 }
1446
1447 static unsigned long nvhe_percpu_size(void)
1448 {
1449         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1450                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1451 }
1452
1453 static unsigned long nvhe_percpu_order(void)
1454 {
1455         unsigned long size = nvhe_percpu_size();
1456
1457         return size ? get_order(size) : 0;
1458 }
1459
1460 /* A lookup table holding the hypervisor VA for each vector slot */
1461 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1462
1463 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1464 {
1465         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1466 }
1467
1468 static int kvm_init_vector_slots(void)
1469 {
1470         int err;
1471         void *base;
1472
1473         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1474         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1475
1476         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1477         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1478
1479         if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1480                 return 0;
1481
1482         if (!has_vhe()) {
1483                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1484                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1485                 if (err)
1486                         return err;
1487         }
1488
1489         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1490         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1491         return 0;
1492 }
1493
1494 static void cpu_prepare_hyp_mode(int cpu)
1495 {
1496         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1497         unsigned long tcr;
1498
1499         /*
1500          * Calculate the raw per-cpu offset without a translation from the
1501          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1502          * so that we can use adr_l to access per-cpu variables in EL2.
1503          * Also drop the KASAN tag which gets in the way...
1504          */
1505         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1506                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1507
1508         params->mair_el2 = read_sysreg(mair_el1);
1509
1510         /*
1511          * The ID map may be configured to use an extended virtual address
1512          * range. This is only the case if system RAM is out of range for the
1513          * currently configured page size and VA_BITS, in which case we will
1514          * also need the extended virtual range for the HYP ID map, or we won't
1515          * be able to enable the EL2 MMU.
1516          *
1517          * However, at EL2, there is only one TTBR register, and we can't switch
1518          * between translation tables *and* update TCR_EL2.T0SZ at the same
1519          * time. Bottom line: we need to use the extended range with *both* our
1520          * translation tables.
1521          *
1522          * So use the same T0SZ value we use for the ID map.
1523          */
1524         tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1525         tcr &= ~TCR_T0SZ_MASK;
1526         tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1527         params->tcr_el2 = tcr;
1528
1529         params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1530         params->pgd_pa = kvm_mmu_get_httbr();
1531         if (is_protected_kvm_enabled())
1532                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1533         else
1534                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1535         params->vttbr = params->vtcr = 0;
1536
1537         /*
1538          * Flush the init params from the data cache because the struct will
1539          * be read while the MMU is off.
1540          */
1541         kvm_flush_dcache_to_poc(params, sizeof(*params));
1542 }
1543
1544 static void hyp_install_host_vector(void)
1545 {
1546         struct kvm_nvhe_init_params *params;
1547         struct arm_smccc_res res;
1548
1549         /* Switch from the HYP stub to our own HYP init vector */
1550         __hyp_set_vectors(kvm_get_idmap_vector());
1551
1552         /*
1553          * Call initialization code, and switch to the full blown HYP code.
1554          * If the cpucaps haven't been finalized yet, something has gone very
1555          * wrong, and hyp will crash and burn when it uses any
1556          * cpus_have_const_cap() wrapper.
1557          */
1558         BUG_ON(!system_capabilities_finalized());
1559         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1560         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1561         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1562 }
1563
1564 static void cpu_init_hyp_mode(void)
1565 {
1566         hyp_install_host_vector();
1567
1568         /*
1569          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1570          * at EL2.
1571          */
1572         if (this_cpu_has_cap(ARM64_SSBS) &&
1573             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1574                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1575         }
1576 }
1577
1578 static void cpu_hyp_reset(void)
1579 {
1580         if (!is_kernel_in_hyp_mode())
1581                 __hyp_reset_vectors();
1582 }
1583
1584 /*
1585  * EL2 vectors can be mapped and rerouted in a number of ways,
1586  * depending on the kernel configuration and CPU present:
1587  *
1588  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1589  *   placed in one of the vector slots, which is executed before jumping
1590  *   to the real vectors.
1591  *
1592  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1593  *   containing the hardening sequence is mapped next to the idmap page,
1594  *   and executed before jumping to the real vectors.
1595  *
1596  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1597  *   empty slot is selected, mapped next to the idmap page, and
1598  *   executed before jumping to the real vectors.
1599  *
1600  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1601  * VHE, as we don't have hypervisor-specific mappings. If the system
1602  * is VHE and yet selects this capability, it will be ignored.
1603  */
1604 static void cpu_set_hyp_vector(void)
1605 {
1606         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1607         void *vector = hyp_spectre_vector_selector[data->slot];
1608
1609         if (!is_protected_kvm_enabled())
1610                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1611         else
1612                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1613 }
1614
1615 static void cpu_hyp_init_context(void)
1616 {
1617         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1618
1619         if (!is_kernel_in_hyp_mode())
1620                 cpu_init_hyp_mode();
1621 }
1622
1623 static void cpu_hyp_init_features(void)
1624 {
1625         cpu_set_hyp_vector();
1626         kvm_arm_init_debug();
1627
1628         if (is_kernel_in_hyp_mode())
1629                 kvm_timer_init_vhe();
1630
1631         if (vgic_present)
1632                 kvm_vgic_init_cpu_hardware();
1633 }
1634
1635 static void cpu_hyp_reinit(void)
1636 {
1637         cpu_hyp_reset();
1638         cpu_hyp_init_context();
1639         cpu_hyp_init_features();
1640 }
1641
1642 static void _kvm_arch_hardware_enable(void *discard)
1643 {
1644         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1645                 cpu_hyp_reinit();
1646                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1647         }
1648 }
1649
1650 int kvm_arch_hardware_enable(void)
1651 {
1652         _kvm_arch_hardware_enable(NULL);
1653         return 0;
1654 }
1655
1656 static void _kvm_arch_hardware_disable(void *discard)
1657 {
1658         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1659                 cpu_hyp_reset();
1660                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1661         }
1662 }
1663
1664 void kvm_arch_hardware_disable(void)
1665 {
1666         if (!is_protected_kvm_enabled())
1667                 _kvm_arch_hardware_disable(NULL);
1668 }
1669
1670 #ifdef CONFIG_CPU_PM
1671 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1672                                     unsigned long cmd,
1673                                     void *v)
1674 {
1675         /*
1676          * kvm_arm_hardware_enabled is left with its old value over
1677          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1678          * re-enable hyp.
1679          */
1680         switch (cmd) {
1681         case CPU_PM_ENTER:
1682                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1683                         /*
1684                          * don't update kvm_arm_hardware_enabled here
1685                          * so that the hardware will be re-enabled
1686                          * when we resume. See below.
1687                          */
1688                         cpu_hyp_reset();
1689
1690                 return NOTIFY_OK;
1691         case CPU_PM_ENTER_FAILED:
1692         case CPU_PM_EXIT:
1693                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1694                         /* The hardware was enabled before suspend. */
1695                         cpu_hyp_reinit();
1696
1697                 return NOTIFY_OK;
1698
1699         default:
1700                 return NOTIFY_DONE;
1701         }
1702 }
1703
1704 static struct notifier_block hyp_init_cpu_pm_nb = {
1705         .notifier_call = hyp_init_cpu_pm_notifier,
1706 };
1707
1708 static void hyp_cpu_pm_init(void)
1709 {
1710         if (!is_protected_kvm_enabled())
1711                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1712 }
1713 static void hyp_cpu_pm_exit(void)
1714 {
1715         if (!is_protected_kvm_enabled())
1716                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1717 }
1718 #else
1719 static inline void hyp_cpu_pm_init(void)
1720 {
1721 }
1722 static inline void hyp_cpu_pm_exit(void)
1723 {
1724 }
1725 #endif
1726
1727 static void init_cpu_logical_map(void)
1728 {
1729         unsigned int cpu;
1730
1731         /*
1732          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1733          * Only copy the set of online CPUs whose features have been chacked
1734          * against the finalized system capabilities. The hypervisor will not
1735          * allow any other CPUs from the `possible` set to boot.
1736          */
1737         for_each_online_cpu(cpu)
1738                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1739 }
1740
1741 #define init_psci_0_1_impl_state(config, what)  \
1742         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1743
1744 static bool init_psci_relay(void)
1745 {
1746         /*
1747          * If PSCI has not been initialized, protected KVM cannot install
1748          * itself on newly booted CPUs.
1749          */
1750         if (!psci_ops.get_version) {
1751                 kvm_err("Cannot initialize protected mode without PSCI\n");
1752                 return false;
1753         }
1754
1755         kvm_host_psci_config.version = psci_ops.get_version();
1756
1757         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1758                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1759                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1760                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1761                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1762                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1763         }
1764         return true;
1765 }
1766
1767 static int init_subsystems(void)
1768 {
1769         int err = 0;
1770
1771         /*
1772          * Enable hardware so that subsystem initialisation can access EL2.
1773          */
1774         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1775
1776         /*
1777          * Register CPU lower-power notifier
1778          */
1779         hyp_cpu_pm_init();
1780
1781         /*
1782          * Init HYP view of VGIC
1783          */
1784         err = kvm_vgic_hyp_init();
1785         switch (err) {
1786         case 0:
1787                 vgic_present = true;
1788                 break;
1789         case -ENODEV:
1790         case -ENXIO:
1791                 vgic_present = false;
1792                 err = 0;
1793                 break;
1794         default:
1795                 goto out;
1796         }
1797
1798         /*
1799          * Init HYP architected timer support
1800          */
1801         err = kvm_timer_hyp_init(vgic_present);
1802         if (err)
1803                 goto out;
1804
1805         kvm_register_perf_callbacks(NULL);
1806
1807         kvm_sys_reg_table_init();
1808
1809 out:
1810         if (err || !is_protected_kvm_enabled())
1811                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1812
1813         return err;
1814 }
1815
1816 static void teardown_hyp_mode(void)
1817 {
1818         int cpu;
1819
1820         free_hyp_pgds();
1821         for_each_possible_cpu(cpu) {
1822                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1823                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1824         }
1825 }
1826
1827 static int do_pkvm_init(u32 hyp_va_bits)
1828 {
1829         void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1830         int ret;
1831
1832         preempt_disable();
1833         cpu_hyp_init_context();
1834         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1835                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1836                                 hyp_va_bits);
1837         cpu_hyp_init_features();
1838
1839         /*
1840          * The stub hypercalls are now disabled, so set our local flag to
1841          * prevent a later re-init attempt in kvm_arch_hardware_enable().
1842          */
1843         __this_cpu_write(kvm_arm_hardware_enabled, 1);
1844         preempt_enable();
1845
1846         return ret;
1847 }
1848
1849 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1850 {
1851         void *addr = phys_to_virt(hyp_mem_base);
1852         int ret;
1853
1854         kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1855         kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1856         kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
1857         kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1858         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1859         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1860         kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1861
1862         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1863         if (ret)
1864                 return ret;
1865
1866         ret = do_pkvm_init(hyp_va_bits);
1867         if (ret)
1868                 return ret;
1869
1870         free_hyp_pgds();
1871
1872         return 0;
1873 }
1874
1875 /**
1876  * Inits Hyp-mode on all online CPUs
1877  */
1878 static int init_hyp_mode(void)
1879 {
1880         u32 hyp_va_bits;
1881         int cpu;
1882         int err = -ENOMEM;
1883
1884         /*
1885          * The protected Hyp-mode cannot be initialized if the memory pool
1886          * allocation has failed.
1887          */
1888         if (is_protected_kvm_enabled() && !hyp_mem_base)
1889                 goto out_err;
1890
1891         /*
1892          * Allocate Hyp PGD and setup Hyp identity mapping
1893          */
1894         err = kvm_mmu_init(&hyp_va_bits);
1895         if (err)
1896                 goto out_err;
1897
1898         /*
1899          * Allocate stack pages for Hypervisor-mode
1900          */
1901         for_each_possible_cpu(cpu) {
1902                 unsigned long stack_page;
1903
1904                 stack_page = __get_free_page(GFP_KERNEL);
1905                 if (!stack_page) {
1906                         err = -ENOMEM;
1907                         goto out_err;
1908                 }
1909
1910                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1911         }
1912
1913         /*
1914          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1915          */
1916         for_each_possible_cpu(cpu) {
1917                 struct page *page;
1918                 void *page_addr;
1919
1920                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1921                 if (!page) {
1922                         err = -ENOMEM;
1923                         goto out_err;
1924                 }
1925
1926                 page_addr = page_address(page);
1927                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1928                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1929         }
1930
1931         /*
1932          * Map the Hyp-code called directly from the host
1933          */
1934         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1935                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1936         if (err) {
1937                 kvm_err("Cannot map world-switch code\n");
1938                 goto out_err;
1939         }
1940
1941         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1942                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1943         if (err) {
1944                 kvm_err("Cannot map .hyp.rodata section\n");
1945                 goto out_err;
1946         }
1947
1948         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1949                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1950         if (err) {
1951                 kvm_err("Cannot map rodata section\n");
1952                 goto out_err;
1953         }
1954
1955         /*
1956          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1957          * section thanks to an assertion in the linker script. Map it RW and
1958          * the rest of .bss RO.
1959          */
1960         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1961                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1962         if (err) {
1963                 kvm_err("Cannot map hyp bss section: %d\n", err);
1964                 goto out_err;
1965         }
1966
1967         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1968                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1969         if (err) {
1970                 kvm_err("Cannot map bss section\n");
1971                 goto out_err;
1972         }
1973
1974         /*
1975          * Map the Hyp stack pages
1976          */
1977         for_each_possible_cpu(cpu) {
1978                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1979                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1980                                           PAGE_HYP);
1981
1982                 if (err) {
1983                         kvm_err("Cannot map hyp stack\n");
1984                         goto out_err;
1985                 }
1986         }
1987
1988         for_each_possible_cpu(cpu) {
1989                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1990                 char *percpu_end = percpu_begin + nvhe_percpu_size();
1991
1992                 /* Map Hyp percpu pages */
1993                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1994                 if (err) {
1995                         kvm_err("Cannot map hyp percpu region\n");
1996                         goto out_err;
1997                 }
1998
1999                 /* Prepare the CPU initialization parameters */
2000                 cpu_prepare_hyp_mode(cpu);
2001         }
2002
2003         if (is_protected_kvm_enabled()) {
2004                 init_cpu_logical_map();
2005
2006                 if (!init_psci_relay()) {
2007                         err = -ENODEV;
2008                         goto out_err;
2009                 }
2010         }
2011
2012         if (is_protected_kvm_enabled()) {
2013                 err = kvm_hyp_init_protection(hyp_va_bits);
2014                 if (err) {
2015                         kvm_err("Failed to init hyp memory protection\n");
2016                         goto out_err;
2017                 }
2018         }
2019
2020         return 0;
2021
2022 out_err:
2023         teardown_hyp_mode();
2024         kvm_err("error initializing Hyp mode: %d\n", err);
2025         return err;
2026 }
2027
2028 static void _kvm_host_prot_finalize(void *arg)
2029 {
2030         int *err = arg;
2031
2032         if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
2033                 WRITE_ONCE(*err, -EINVAL);
2034 }
2035
2036 static int pkvm_drop_host_privileges(void)
2037 {
2038         int ret = 0;
2039
2040         /*
2041          * Flip the static key upfront as that may no longer be possible
2042          * once the host stage 2 is installed.
2043          */
2044         static_branch_enable(&kvm_protected_mode_initialized);
2045         on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
2046         return ret;
2047 }
2048
2049 static int finalize_hyp_mode(void)
2050 {
2051         if (!is_protected_kvm_enabled())
2052                 return 0;
2053
2054         /*
2055          * Exclude HYP BSS from kmemleak so that it doesn't get peeked
2056          * at, which would end badly once the section is inaccessible.
2057          * None of other sections should ever be introspected.
2058          */
2059         kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2060         return pkvm_drop_host_privileges();
2061 }
2062
2063 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2064 {
2065         struct kvm_vcpu *vcpu;
2066         unsigned long i;
2067
2068         mpidr &= MPIDR_HWID_BITMASK;
2069         kvm_for_each_vcpu(i, vcpu, kvm) {
2070                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2071                         return vcpu;
2072         }
2073         return NULL;
2074 }
2075
2076 bool kvm_arch_has_irq_bypass(void)
2077 {
2078         return true;
2079 }
2080
2081 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2082                                       struct irq_bypass_producer *prod)
2083 {
2084         struct kvm_kernel_irqfd *irqfd =
2085                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2086
2087         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2088                                           &irqfd->irq_entry);
2089 }
2090 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2091                                       struct irq_bypass_producer *prod)
2092 {
2093         struct kvm_kernel_irqfd *irqfd =
2094                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2095
2096         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2097                                      &irqfd->irq_entry);
2098 }
2099
2100 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2101 {
2102         struct kvm_kernel_irqfd *irqfd =
2103                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2104
2105         kvm_arm_halt_guest(irqfd->kvm);
2106 }
2107
2108 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2109 {
2110         struct kvm_kernel_irqfd *irqfd =
2111                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2112
2113         kvm_arm_resume_guest(irqfd->kvm);
2114 }
2115
2116 /**
2117  * Initialize Hyp-mode and memory mappings on all CPUs.
2118  */
2119 int kvm_arch_init(void *opaque)
2120 {
2121         int err;
2122         bool in_hyp_mode;
2123
2124         if (!is_hyp_mode_available()) {
2125                 kvm_info("HYP mode not available\n");
2126                 return -ENODEV;
2127         }
2128
2129         if (kvm_get_mode() == KVM_MODE_NONE) {
2130                 kvm_info("KVM disabled from command line\n");
2131                 return -ENODEV;
2132         }
2133
2134         in_hyp_mode = is_kernel_in_hyp_mode();
2135
2136         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2137             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2138                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2139                          "Only trusted guests should be used on this system.\n");
2140
2141         err = kvm_set_ipa_limit();
2142         if (err)
2143                 return err;
2144
2145         err = kvm_arm_init_sve();
2146         if (err)
2147                 return err;
2148
2149         if (!in_hyp_mode) {
2150                 err = init_hyp_mode();
2151                 if (err)
2152                         goto out_err;
2153         }
2154
2155         err = kvm_init_vector_slots();
2156         if (err) {
2157                 kvm_err("Cannot initialise vector slots\n");
2158                 goto out_err;
2159         }
2160
2161         err = init_subsystems();
2162         if (err)
2163                 goto out_hyp;
2164
2165         if (!in_hyp_mode) {
2166                 err = finalize_hyp_mode();
2167                 if (err) {
2168                         kvm_err("Failed to finalize Hyp protection\n");
2169                         goto out_hyp;
2170                 }
2171         }
2172
2173         if (is_protected_kvm_enabled()) {
2174                 kvm_info("Protected nVHE mode initialized successfully\n");
2175         } else if (in_hyp_mode) {
2176                 kvm_info("VHE mode initialized successfully\n");
2177         } else {
2178                 kvm_info("Hyp mode initialized successfully\n");
2179         }
2180
2181         return 0;
2182
2183 out_hyp:
2184         hyp_cpu_pm_exit();
2185         if (!in_hyp_mode)
2186                 teardown_hyp_mode();
2187 out_err:
2188         return err;
2189 }
2190
2191 /* NOP: Compiling as a module not supported */
2192 void kvm_arch_exit(void)
2193 {
2194         kvm_unregister_perf_callbacks();
2195 }
2196
2197 static int __init early_kvm_mode_cfg(char *arg)
2198 {
2199         if (!arg)
2200                 return -EINVAL;
2201
2202         if (strcmp(arg, "protected") == 0) {
2203                 kvm_mode = KVM_MODE_PROTECTED;
2204                 return 0;
2205         }
2206
2207         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2208                 kvm_mode = KVM_MODE_DEFAULT;
2209                 return 0;
2210         }
2211
2212         if (strcmp(arg, "none") == 0) {
2213                 kvm_mode = KVM_MODE_NONE;
2214                 return 0;
2215         }
2216
2217         return -EINVAL;
2218 }
2219 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2220
2221 enum kvm_mode kvm_get_mode(void)
2222 {
2223         return kvm_mode;
2224 }
2225
2226 static int arm_init(void)
2227 {
2228         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2229         return rc;
2230 }
2231
2232 module_init(arm_init);