Merge tag 's390-5.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux-2.6-microblaze.git] / arch / arm64 / kernel / machine_kexec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec for arm64
4  *
5  * Copyright (C) Linaro.
6  * Copyright (C) Huawei Futurewei Technologies.
7  */
8
9 #include <linux/interrupt.h>
10 #include <linux/irq.h>
11 #include <linux/kernel.h>
12 #include <linux/kexec.h>
13 #include <linux/page-flags.h>
14 #include <linux/set_memory.h>
15 #include <linux/smp.h>
16
17 #include <asm/cacheflush.h>
18 #include <asm/cpu_ops.h>
19 #include <asm/daifflags.h>
20 #include <asm/memory.h>
21 #include <asm/mmu.h>
22 #include <asm/mmu_context.h>
23 #include <asm/page.h>
24
25 #include "cpu-reset.h"
26
27 /* Global variables for the arm64_relocate_new_kernel routine. */
28 extern const unsigned char arm64_relocate_new_kernel[];
29 extern const unsigned long arm64_relocate_new_kernel_size;
30
31 /**
32  * kexec_image_info - For debugging output.
33  */
34 #define kexec_image_info(_i) _kexec_image_info(__func__, __LINE__, _i)
35 static void _kexec_image_info(const char *func, int line,
36         const struct kimage *kimage)
37 {
38         unsigned long i;
39
40         pr_debug("%s:%d:\n", func, line);
41         pr_debug("  kexec kimage info:\n");
42         pr_debug("    type:        %d\n", kimage->type);
43         pr_debug("    start:       %lx\n", kimage->start);
44         pr_debug("    head:        %lx\n", kimage->head);
45         pr_debug("    nr_segments: %lu\n", kimage->nr_segments);
46         pr_debug("    kern_reloc: %pa\n", &kimage->arch.kern_reloc);
47
48         for (i = 0; i < kimage->nr_segments; i++) {
49                 pr_debug("      segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
50                         i,
51                         kimage->segment[i].mem,
52                         kimage->segment[i].mem + kimage->segment[i].memsz,
53                         kimage->segment[i].memsz,
54                         kimage->segment[i].memsz /  PAGE_SIZE);
55         }
56 }
57
58 void machine_kexec_cleanup(struct kimage *kimage)
59 {
60         /* Empty routine needed to avoid build errors. */
61 }
62
63 int machine_kexec_post_load(struct kimage *kimage)
64 {
65         void *reloc_code = page_to_virt(kimage->control_code_page);
66
67         memcpy(reloc_code, arm64_relocate_new_kernel,
68                arm64_relocate_new_kernel_size);
69         kimage->arch.kern_reloc = __pa(reloc_code);
70         kexec_image_info(kimage);
71
72         /*
73          * For execution with the MMU off, reloc_code needs to be cleaned to the
74          * PoC and invalidated from the I-cache.
75          */
76         dcache_clean_inval_poc((unsigned long)reloc_code,
77                             (unsigned long)reloc_code +
78                                     arm64_relocate_new_kernel_size);
79         icache_inval_pou((uintptr_t)reloc_code,
80                                 (uintptr_t)reloc_code +
81                                         arm64_relocate_new_kernel_size);
82
83         return 0;
84 }
85
86 /**
87  * machine_kexec_prepare - Prepare for a kexec reboot.
88  *
89  * Called from the core kexec code when a kernel image is loaded.
90  * Forbid loading a kexec kernel if we have no way of hotplugging cpus or cpus
91  * are stuck in the kernel. This avoids a panic once we hit machine_kexec().
92  */
93 int machine_kexec_prepare(struct kimage *kimage)
94 {
95         if (kimage->type != KEXEC_TYPE_CRASH && cpus_are_stuck_in_kernel()) {
96                 pr_err("Can't kexec: CPUs are stuck in the kernel.\n");
97                 return -EBUSY;
98         }
99
100         return 0;
101 }
102
103 /**
104  * kexec_list_flush - Helper to flush the kimage list and source pages to PoC.
105  */
106 static void kexec_list_flush(struct kimage *kimage)
107 {
108         kimage_entry_t *entry;
109
110         for (entry = &kimage->head; ; entry++) {
111                 unsigned int flag;
112                 unsigned long addr;
113
114                 /* flush the list entries. */
115                 dcache_clean_inval_poc((unsigned long)entry,
116                                     (unsigned long)entry +
117                                             sizeof(kimage_entry_t));
118
119                 flag = *entry & IND_FLAGS;
120                 if (flag == IND_DONE)
121                         break;
122
123                 addr = (unsigned long)phys_to_virt(*entry & PAGE_MASK);
124
125                 switch (flag) {
126                 case IND_INDIRECTION:
127                         /* Set entry point just before the new list page. */
128                         entry = (kimage_entry_t *)addr - 1;
129                         break;
130                 case IND_SOURCE:
131                         /* flush the source pages. */
132                         dcache_clean_inval_poc(addr, addr + PAGE_SIZE);
133                         break;
134                 case IND_DESTINATION:
135                         break;
136                 default:
137                         BUG();
138                 }
139         }
140 }
141
142 /**
143  * kexec_segment_flush - Helper to flush the kimage segments to PoC.
144  */
145 static void kexec_segment_flush(const struct kimage *kimage)
146 {
147         unsigned long i;
148
149         pr_debug("%s:\n", __func__);
150
151         for (i = 0; i < kimage->nr_segments; i++) {
152                 pr_debug("  segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
153                         i,
154                         kimage->segment[i].mem,
155                         kimage->segment[i].mem + kimage->segment[i].memsz,
156                         kimage->segment[i].memsz,
157                         kimage->segment[i].memsz /  PAGE_SIZE);
158
159                 dcache_clean_inval_poc(
160                         (unsigned long)phys_to_virt(kimage->segment[i].mem),
161                         (unsigned long)phys_to_virt(kimage->segment[i].mem) +
162                                 kimage->segment[i].memsz);
163         }
164 }
165
166 /**
167  * machine_kexec - Do the kexec reboot.
168  *
169  * Called from the core kexec code for a sys_reboot with LINUX_REBOOT_CMD_KEXEC.
170  */
171 void machine_kexec(struct kimage *kimage)
172 {
173         bool in_kexec_crash = (kimage == kexec_crash_image);
174         bool stuck_cpus = cpus_are_stuck_in_kernel();
175
176         /*
177          * New cpus may have become stuck_in_kernel after we loaded the image.
178          */
179         BUG_ON(!in_kexec_crash && (stuck_cpus || (num_online_cpus() > 1)));
180         WARN(in_kexec_crash && (stuck_cpus || smp_crash_stop_failed()),
181                 "Some CPUs may be stale, kdump will be unreliable.\n");
182
183         /* Flush the kimage list and its buffers. */
184         kexec_list_flush(kimage);
185
186         /* Flush the new image if already in place. */
187         if ((kimage != kexec_crash_image) && (kimage->head & IND_DONE))
188                 kexec_segment_flush(kimage);
189
190         pr_info("Bye!\n");
191
192         local_daif_mask();
193
194         /*
195          * cpu_soft_restart will shutdown the MMU, disable data caches, then
196          * transfer control to the kern_reloc which contains a copy of
197          * the arm64_relocate_new_kernel routine.  arm64_relocate_new_kernel
198          * uses physical addressing to relocate the new image to its final
199          * position and transfers control to the image entry point when the
200          * relocation is complete.
201          * In kexec case, kimage->start points to purgatory assuming that
202          * kernel entry and dtb address are embedded in purgatory by
203          * userspace (kexec-tools).
204          * In kexec_file case, the kernel starts directly without purgatory.
205          */
206         cpu_soft_restart(kimage->arch.kern_reloc, kimage->head, kimage->start,
207                          kimage->arch.dtb_mem);
208
209         BUG(); /* Should never get here. */
210 }
211
212 static void machine_kexec_mask_interrupts(void)
213 {
214         unsigned int i;
215         struct irq_desc *desc;
216
217         for_each_irq_desc(i, desc) {
218                 struct irq_chip *chip;
219                 int ret;
220
221                 chip = irq_desc_get_chip(desc);
222                 if (!chip)
223                         continue;
224
225                 /*
226                  * First try to remove the active state. If this
227                  * fails, try to EOI the interrupt.
228                  */
229                 ret = irq_set_irqchip_state(i, IRQCHIP_STATE_ACTIVE, false);
230
231                 if (ret && irqd_irq_inprogress(&desc->irq_data) &&
232                     chip->irq_eoi)
233                         chip->irq_eoi(&desc->irq_data);
234
235                 if (chip->irq_mask)
236                         chip->irq_mask(&desc->irq_data);
237
238                 if (chip->irq_disable && !irqd_irq_disabled(&desc->irq_data))
239                         chip->irq_disable(&desc->irq_data);
240         }
241 }
242
243 /**
244  * machine_crash_shutdown - shutdown non-crashing cpus and save registers
245  */
246 void machine_crash_shutdown(struct pt_regs *regs)
247 {
248         local_irq_disable();
249
250         /* shutdown non-crashing cpus */
251         crash_smp_send_stop();
252
253         /* for crashing cpu */
254         crash_save_cpu(regs, smp_processor_id());
255         machine_kexec_mask_interrupts();
256
257         pr_info("Starting crashdump kernel...\n");
258 }
259
260 void arch_kexec_protect_crashkres(void)
261 {
262         int i;
263
264         kexec_segment_flush(kexec_crash_image);
265
266         for (i = 0; i < kexec_crash_image->nr_segments; i++)
267                 set_memory_valid(
268                         __phys_to_virt(kexec_crash_image->segment[i].mem),
269                         kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 0);
270 }
271
272 void arch_kexec_unprotect_crashkres(void)
273 {
274         int i;
275
276         for (i = 0; i < kexec_crash_image->nr_segments; i++)
277                 set_memory_valid(
278                         __phys_to_virt(kexec_crash_image->segment[i].mem),
279                         kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 1);
280 }
281
282 #ifdef CONFIG_HIBERNATION
283 /*
284  * To preserve the crash dump kernel image, the relevant memory segments
285  * should be mapped again around the hibernation.
286  */
287 void crash_prepare_suspend(void)
288 {
289         if (kexec_crash_image)
290                 arch_kexec_unprotect_crashkres();
291 }
292
293 void crash_post_resume(void)
294 {
295         if (kexec_crash_image)
296                 arch_kexec_protect_crashkres();
297 }
298
299 /*
300  * crash_is_nosave
301  *
302  * Return true only if a page is part of reserved memory for crash dump kernel,
303  * but does not hold any data of loaded kernel image.
304  *
305  * Note that all the pages in crash dump kernel memory have been initially
306  * marked as Reserved as memory was allocated via memblock_reserve().
307  *
308  * In hibernation, the pages which are Reserved and yet "nosave" are excluded
309  * from the hibernation iamge. crash_is_nosave() does thich check for crash
310  * dump kernel and will reduce the total size of hibernation image.
311  */
312
313 bool crash_is_nosave(unsigned long pfn)
314 {
315         int i;
316         phys_addr_t addr;
317
318         if (!crashk_res.end)
319                 return false;
320
321         /* in reserved memory? */
322         addr = __pfn_to_phys(pfn);
323         if ((addr < crashk_res.start) || (crashk_res.end < addr))
324                 return false;
325
326         if (!kexec_crash_image)
327                 return true;
328
329         /* not part of loaded kernel image? */
330         for (i = 0; i < kexec_crash_image->nr_segments; i++)
331                 if (addr >= kexec_crash_image->segment[i].mem &&
332                                 addr < (kexec_crash_image->segment[i].mem +
333                                         kexec_crash_image->segment[i].memsz))
334                         return false;
335
336         return true;
337 }
338
339 void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
340 {
341         unsigned long addr;
342         struct page *page;
343
344         for (addr = begin; addr < end; addr += PAGE_SIZE) {
345                 page = phys_to_page(addr);
346                 free_reserved_page(page);
347         }
348 }
349 #endif /* CONFIG_HIBERNATION */