Merge tag 'for-5.15/block-2021-08-30' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / arch / arm64 / crypto / crct10dif-ce-core.S
1 //
2 // Accelerated CRC-T10DIF using arm64 NEON and Crypto Extensions instructions
3 //
4 // Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
5 // Copyright (C) 2019 Google LLC <ebiggers@google.com>
6 //
7 // This program is free software; you can redistribute it and/or modify
8 // it under the terms of the GNU General Public License version 2 as
9 // published by the Free Software Foundation.
10 //
11
12 // Derived from the x86 version:
13 //
14 // Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
15 //
16 // Copyright (c) 2013, Intel Corporation
17 //
18 // Authors:
19 //     Erdinc Ozturk <erdinc.ozturk@intel.com>
20 //     Vinodh Gopal <vinodh.gopal@intel.com>
21 //     James Guilford <james.guilford@intel.com>
22 //     Tim Chen <tim.c.chen@linux.intel.com>
23 //
24 // This software is available to you under a choice of one of two
25 // licenses.  You may choose to be licensed under the terms of the GNU
26 // General Public License (GPL) Version 2, available from the file
27 // COPYING in the main directory of this source tree, or the
28 // OpenIB.org BSD license below:
29 //
30 // Redistribution and use in source and binary forms, with or without
31 // modification, are permitted provided that the following conditions are
32 // met:
33 //
34 // * Redistributions of source code must retain the above copyright
35 //   notice, this list of conditions and the following disclaimer.
36 //
37 // * Redistributions in binary form must reproduce the above copyright
38 //   notice, this list of conditions and the following disclaimer in the
39 //   documentation and/or other materials provided with the
40 //   distribution.
41 //
42 // * Neither the name of the Intel Corporation nor the names of its
43 //   contributors may be used to endorse or promote products derived from
44 //   this software without specific prior written permission.
45 //
46 //
47 // THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
48 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
50 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
51 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
52 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
54 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
55 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
56 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
57 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58 //
59 //       Reference paper titled "Fast CRC Computation for Generic
60 //      Polynomials Using PCLMULQDQ Instruction"
61 //       URL: http://www.intel.com/content/dam/www/public/us/en/documents
62 //  /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
63 //
64
65 #include <linux/linkage.h>
66 #include <asm/assembler.h>
67
68         .text
69         .arch           armv8-a+crypto
70
71         init_crc        .req    w0
72         buf             .req    x1
73         len             .req    x2
74         fold_consts_ptr .req    x3
75
76         fold_consts     .req    v10
77
78         ad              .req    v14
79
80         k00_16          .req    v15
81         k32_48          .req    v16
82
83         t3              .req    v17
84         t4              .req    v18
85         t5              .req    v19
86         t6              .req    v20
87         t7              .req    v21
88         t8              .req    v22
89         t9              .req    v23
90
91         perm1           .req    v24
92         perm2           .req    v25
93         perm3           .req    v26
94         perm4           .req    v27
95
96         bd1             .req    v28
97         bd2             .req    v29
98         bd3             .req    v30
99         bd4             .req    v31
100
101         .macro          __pmull_init_p64
102         .endm
103
104         .macro          __pmull_pre_p64, bd
105         .endm
106
107         .macro          __pmull_init_p8
108         // k00_16 := 0x0000000000000000_000000000000ffff
109         // k32_48 := 0x00000000ffffffff_0000ffffffffffff
110         movi            k32_48.2d, #0xffffffff
111         mov             k32_48.h[2], k32_48.h[0]
112         ushr            k00_16.2d, k32_48.2d, #32
113
114         // prepare the permutation vectors
115         mov_q           x5, 0x080f0e0d0c0b0a09
116         movi            perm4.8b, #8
117         dup             perm1.2d, x5
118         eor             perm1.16b, perm1.16b, perm4.16b
119         ushr            perm2.2d, perm1.2d, #8
120         ushr            perm3.2d, perm1.2d, #16
121         ushr            perm4.2d, perm1.2d, #24
122         sli             perm2.2d, perm1.2d, #56
123         sli             perm3.2d, perm1.2d, #48
124         sli             perm4.2d, perm1.2d, #40
125         .endm
126
127         .macro          __pmull_pre_p8, bd
128         tbl             bd1.16b, {\bd\().16b}, perm1.16b
129         tbl             bd2.16b, {\bd\().16b}, perm2.16b
130         tbl             bd3.16b, {\bd\().16b}, perm3.16b
131         tbl             bd4.16b, {\bd\().16b}, perm4.16b
132         .endm
133
134 SYM_FUNC_START_LOCAL(__pmull_p8_core)
135 .L__pmull_p8_core:
136         ext             t4.8b, ad.8b, ad.8b, #1                 // A1
137         ext             t5.8b, ad.8b, ad.8b, #2                 // A2
138         ext             t6.8b, ad.8b, ad.8b, #3                 // A3
139
140         pmull           t4.8h, t4.8b, fold_consts.8b            // F = A1*B
141         pmull           t8.8h, ad.8b, bd1.8b                    // E = A*B1
142         pmull           t5.8h, t5.8b, fold_consts.8b            // H = A2*B
143         pmull           t7.8h, ad.8b, bd2.8b                    // G = A*B2
144         pmull           t6.8h, t6.8b, fold_consts.8b            // J = A3*B
145         pmull           t9.8h, ad.8b, bd3.8b                    // I = A*B3
146         pmull           t3.8h, ad.8b, bd4.8b                    // K = A*B4
147         b               0f
148
149 .L__pmull_p8_core2:
150         tbl             t4.16b, {ad.16b}, perm1.16b             // A1
151         tbl             t5.16b, {ad.16b}, perm2.16b             // A2
152         tbl             t6.16b, {ad.16b}, perm3.16b             // A3
153
154         pmull2          t4.8h, t4.16b, fold_consts.16b          // F = A1*B
155         pmull2          t8.8h, ad.16b, bd1.16b                  // E = A*B1
156         pmull2          t5.8h, t5.16b, fold_consts.16b          // H = A2*B
157         pmull2          t7.8h, ad.16b, bd2.16b                  // G = A*B2
158         pmull2          t6.8h, t6.16b, fold_consts.16b          // J = A3*B
159         pmull2          t9.8h, ad.16b, bd3.16b                  // I = A*B3
160         pmull2          t3.8h, ad.16b, bd4.16b                  // K = A*B4
161
162 0:      eor             t4.16b, t4.16b, t8.16b                  // L = E + F
163         eor             t5.16b, t5.16b, t7.16b                  // M = G + H
164         eor             t6.16b, t6.16b, t9.16b                  // N = I + J
165
166         uzp1            t8.2d, t4.2d, t5.2d
167         uzp2            t4.2d, t4.2d, t5.2d
168         uzp1            t7.2d, t6.2d, t3.2d
169         uzp2            t6.2d, t6.2d, t3.2d
170
171         // t4 = (L) (P0 + P1) << 8
172         // t5 = (M) (P2 + P3) << 16
173         eor             t8.16b, t8.16b, t4.16b
174         and             t4.16b, t4.16b, k32_48.16b
175
176         // t6 = (N) (P4 + P5) << 24
177         // t7 = (K) (P6 + P7) << 32
178         eor             t7.16b, t7.16b, t6.16b
179         and             t6.16b, t6.16b, k00_16.16b
180
181         eor             t8.16b, t8.16b, t4.16b
182         eor             t7.16b, t7.16b, t6.16b
183
184         zip2            t5.2d, t8.2d, t4.2d
185         zip1            t4.2d, t8.2d, t4.2d
186         zip2            t3.2d, t7.2d, t6.2d
187         zip1            t6.2d, t7.2d, t6.2d
188
189         ext             t4.16b, t4.16b, t4.16b, #15
190         ext             t5.16b, t5.16b, t5.16b, #14
191         ext             t6.16b, t6.16b, t6.16b, #13
192         ext             t3.16b, t3.16b, t3.16b, #12
193
194         eor             t4.16b, t4.16b, t5.16b
195         eor             t6.16b, t6.16b, t3.16b
196         ret
197 SYM_FUNC_END(__pmull_p8_core)
198
199         .macro          __pmull_p8, rq, ad, bd, i
200         .ifnc           \bd, fold_consts
201         .err
202         .endif
203         mov             ad.16b, \ad\().16b
204         .ifb            \i
205         pmull           \rq\().8h, \ad\().8b, \bd\().8b         // D = A*B
206         .else
207         pmull2          \rq\().8h, \ad\().16b, \bd\().16b       // D = A*B
208         .endif
209
210         bl              .L__pmull_p8_core\i
211
212         eor             \rq\().16b, \rq\().16b, t4.16b
213         eor             \rq\().16b, \rq\().16b, t6.16b
214         .endm
215
216         // Fold reg1, reg2 into the next 32 data bytes, storing the result back
217         // into reg1, reg2.
218         .macro          fold_32_bytes, p, reg1, reg2
219         ldp             q11, q12, [buf], #0x20
220
221         __pmull_\p      v8, \reg1, fold_consts, 2
222         __pmull_\p      \reg1, \reg1, fold_consts
223
224 CPU_LE( rev64           v11.16b, v11.16b                )
225 CPU_LE( rev64           v12.16b, v12.16b                )
226
227         __pmull_\p      v9, \reg2, fold_consts, 2
228         __pmull_\p      \reg2, \reg2, fold_consts
229
230 CPU_LE( ext             v11.16b, v11.16b, v11.16b, #8   )
231 CPU_LE( ext             v12.16b, v12.16b, v12.16b, #8   )
232
233         eor             \reg1\().16b, \reg1\().16b, v8.16b
234         eor             \reg2\().16b, \reg2\().16b, v9.16b
235         eor             \reg1\().16b, \reg1\().16b, v11.16b
236         eor             \reg2\().16b, \reg2\().16b, v12.16b
237         .endm
238
239         // Fold src_reg into dst_reg, optionally loading the next fold constants
240         .macro          fold_16_bytes, p, src_reg, dst_reg, load_next_consts
241         __pmull_\p      v8, \src_reg, fold_consts
242         __pmull_\p      \src_reg, \src_reg, fold_consts, 2
243         .ifnb           \load_next_consts
244         ld1             {fold_consts.2d}, [fold_consts_ptr], #16
245         __pmull_pre_\p  fold_consts
246         .endif
247         eor             \dst_reg\().16b, \dst_reg\().16b, v8.16b
248         eor             \dst_reg\().16b, \dst_reg\().16b, \src_reg\().16b
249         .endm
250
251         .macro          __pmull_p64, rd, rn, rm, n
252         .ifb            \n
253         pmull           \rd\().1q, \rn\().1d, \rm\().1d
254         .else
255         pmull2          \rd\().1q, \rn\().2d, \rm\().2d
256         .endif
257         .endm
258
259         .macro          crc_t10dif_pmull, p
260         __pmull_init_\p
261
262         // For sizes less than 256 bytes, we can't fold 128 bytes at a time.
263         cmp             len, #256
264         b.lt            .Lless_than_256_bytes_\@
265
266         adr_l           fold_consts_ptr, .Lfold_across_128_bytes_consts
267
268         // Load the first 128 data bytes.  Byte swapping is necessary to make
269         // the bit order match the polynomial coefficient order.
270         ldp             q0, q1, [buf]
271         ldp             q2, q3, [buf, #0x20]
272         ldp             q4, q5, [buf, #0x40]
273         ldp             q6, q7, [buf, #0x60]
274         add             buf, buf, #0x80
275 CPU_LE( rev64           v0.16b, v0.16b                  )
276 CPU_LE( rev64           v1.16b, v1.16b                  )
277 CPU_LE( rev64           v2.16b, v2.16b                  )
278 CPU_LE( rev64           v3.16b, v3.16b                  )
279 CPU_LE( rev64           v4.16b, v4.16b                  )
280 CPU_LE( rev64           v5.16b, v5.16b                  )
281 CPU_LE( rev64           v6.16b, v6.16b                  )
282 CPU_LE( rev64           v7.16b, v7.16b                  )
283 CPU_LE( ext             v0.16b, v0.16b, v0.16b, #8      )
284 CPU_LE( ext             v1.16b, v1.16b, v1.16b, #8      )
285 CPU_LE( ext             v2.16b, v2.16b, v2.16b, #8      )
286 CPU_LE( ext             v3.16b, v3.16b, v3.16b, #8      )
287 CPU_LE( ext             v4.16b, v4.16b, v4.16b, #8      )
288 CPU_LE( ext             v5.16b, v5.16b, v5.16b, #8      )
289 CPU_LE( ext             v6.16b, v6.16b, v6.16b, #8      )
290 CPU_LE( ext             v7.16b, v7.16b, v7.16b, #8      )
291
292         // XOR the first 16 data *bits* with the initial CRC value.
293         movi            v8.16b, #0
294         mov             v8.h[7], init_crc
295         eor             v0.16b, v0.16b, v8.16b
296
297         // Load the constants for folding across 128 bytes.
298         ld1             {fold_consts.2d}, [fold_consts_ptr]
299         __pmull_pre_\p  fold_consts
300
301         // Subtract 128 for the 128 data bytes just consumed.  Subtract another
302         // 128 to simplify the termination condition of the following loop.
303         sub             len, len, #256
304
305         // While >= 128 data bytes remain (not counting v0-v7), fold the 128
306         // bytes v0-v7 into them, storing the result back into v0-v7.
307 .Lfold_128_bytes_loop_\@:
308         fold_32_bytes   \p, v0, v1
309         fold_32_bytes   \p, v2, v3
310         fold_32_bytes   \p, v4, v5
311         fold_32_bytes   \p, v6, v7
312
313         subs            len, len, #128
314         b.ge            .Lfold_128_bytes_loop_\@
315
316         // Now fold the 112 bytes in v0-v6 into the 16 bytes in v7.
317
318         // Fold across 64 bytes.
319         add             fold_consts_ptr, fold_consts_ptr, #16
320         ld1             {fold_consts.2d}, [fold_consts_ptr], #16
321         __pmull_pre_\p  fold_consts
322         fold_16_bytes   \p, v0, v4
323         fold_16_bytes   \p, v1, v5
324         fold_16_bytes   \p, v2, v6
325         fold_16_bytes   \p, v3, v7, 1
326         // Fold across 32 bytes.
327         fold_16_bytes   \p, v4, v6
328         fold_16_bytes   \p, v5, v7, 1
329         // Fold across 16 bytes.
330         fold_16_bytes   \p, v6, v7
331
332         // Add 128 to get the correct number of data bytes remaining in 0...127
333         // (not counting v7), following the previous extra subtraction by 128.
334         // Then subtract 16 to simplify the termination condition of the
335         // following loop.
336         adds            len, len, #(128-16)
337
338         // While >= 16 data bytes remain (not counting v7), fold the 16 bytes v7
339         // into them, storing the result back into v7.
340         b.lt            .Lfold_16_bytes_loop_done_\@
341 .Lfold_16_bytes_loop_\@:
342         __pmull_\p      v8, v7, fold_consts
343         __pmull_\p      v7, v7, fold_consts, 2
344         eor             v7.16b, v7.16b, v8.16b
345         ldr             q0, [buf], #16
346 CPU_LE( rev64           v0.16b, v0.16b                  )
347 CPU_LE( ext             v0.16b, v0.16b, v0.16b, #8      )
348         eor             v7.16b, v7.16b, v0.16b
349         subs            len, len, #16
350         b.ge            .Lfold_16_bytes_loop_\@
351
352 .Lfold_16_bytes_loop_done_\@:
353         // Add 16 to get the correct number of data bytes remaining in 0...15
354         // (not counting v7), following the previous extra subtraction by 16.
355         adds            len, len, #16
356         b.eq            .Lreduce_final_16_bytes_\@
357
358 .Lhandle_partial_segment_\@:
359         // Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
360         // 16 bytes are in v7 and the rest are the remaining data in 'buf'.  To
361         // do this without needing a fold constant for each possible 'len',
362         // redivide the bytes into a first chunk of 'len' bytes and a second
363         // chunk of 16 bytes, then fold the first chunk into the second.
364
365         // v0 = last 16 original data bytes
366         add             buf, buf, len
367         ldr             q0, [buf, #-16]
368 CPU_LE( rev64           v0.16b, v0.16b                  )
369 CPU_LE( ext             v0.16b, v0.16b, v0.16b, #8      )
370
371         // v1 = high order part of second chunk: v7 left-shifted by 'len' bytes.
372         adr_l           x4, .Lbyteshift_table + 16
373         sub             x4, x4, len
374         ld1             {v2.16b}, [x4]
375         tbl             v1.16b, {v7.16b}, v2.16b
376
377         // v3 = first chunk: v7 right-shifted by '16-len' bytes.
378         movi            v3.16b, #0x80
379         eor             v2.16b, v2.16b, v3.16b
380         tbl             v3.16b, {v7.16b}, v2.16b
381
382         // Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
383         sshr            v2.16b, v2.16b, #7
384
385         // v2 = second chunk: 'len' bytes from v0 (low-order bytes),
386         // then '16-len' bytes from v1 (high-order bytes).
387         bsl             v2.16b, v1.16b, v0.16b
388
389         // Fold the first chunk into the second chunk, storing the result in v7.
390         __pmull_\p      v0, v3, fold_consts
391         __pmull_\p      v7, v3, fold_consts, 2
392         eor             v7.16b, v7.16b, v0.16b
393         eor             v7.16b, v7.16b, v2.16b
394
395 .Lreduce_final_16_bytes_\@:
396         // Reduce the 128-bit value M(x), stored in v7, to the final 16-bit CRC.
397
398         movi            v2.16b, #0              // init zero register
399
400         // Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
401         ld1             {fold_consts.2d}, [fold_consts_ptr], #16
402         __pmull_pre_\p  fold_consts
403
404         // Fold the high 64 bits into the low 64 bits, while also multiplying by
405         // x^64.  This produces a 128-bit value congruent to x^64 * M(x) and
406         // whose low 48 bits are 0.
407         ext             v0.16b, v2.16b, v7.16b, #8
408         __pmull_\p      v7, v7, fold_consts, 2  // high bits * x^48 * (x^80 mod G(x))
409         eor             v0.16b, v0.16b, v7.16b  // + low bits * x^64
410
411         // Fold the high 32 bits into the low 96 bits.  This produces a 96-bit
412         // value congruent to x^64 * M(x) and whose low 48 bits are 0.
413         ext             v1.16b, v0.16b, v2.16b, #12     // extract high 32 bits
414         mov             v0.s[3], v2.s[0]        // zero high 32 bits
415         __pmull_\p      v1, v1, fold_consts     // high 32 bits * x^48 * (x^48 mod G(x))
416         eor             v0.16b, v0.16b, v1.16b  // + low bits
417
418         // Load G(x) and floor(x^48 / G(x)).
419         ld1             {fold_consts.2d}, [fold_consts_ptr]
420         __pmull_pre_\p  fold_consts
421
422         // Use Barrett reduction to compute the final CRC value.
423         __pmull_\p      v1, v0, fold_consts, 2  // high 32 bits * floor(x^48 / G(x))
424         ushr            v1.2d, v1.2d, #32       // /= x^32
425         __pmull_\p      v1, v1, fold_consts     // *= G(x)
426         ushr            v0.2d, v0.2d, #48
427         eor             v0.16b, v0.16b, v1.16b  // + low 16 nonzero bits
428         // Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of v0.
429
430         umov            w0, v0.h[0]
431         .ifc            \p, p8
432         ldp             x29, x30, [sp], #16
433         .endif
434         ret
435
436 .Lless_than_256_bytes_\@:
437         // Checksumming a buffer of length 16...255 bytes
438
439         adr_l           fold_consts_ptr, .Lfold_across_16_bytes_consts
440
441         // Load the first 16 data bytes.
442         ldr             q7, [buf], #0x10
443 CPU_LE( rev64           v7.16b, v7.16b                  )
444 CPU_LE( ext             v7.16b, v7.16b, v7.16b, #8      )
445
446         // XOR the first 16 data *bits* with the initial CRC value.
447         movi            v0.16b, #0
448         mov             v0.h[7], init_crc
449         eor             v7.16b, v7.16b, v0.16b
450
451         // Load the fold-across-16-bytes constants.
452         ld1             {fold_consts.2d}, [fold_consts_ptr], #16
453         __pmull_pre_\p  fold_consts
454
455         cmp             len, #16
456         b.eq            .Lreduce_final_16_bytes_\@      // len == 16
457         subs            len, len, #32
458         b.ge            .Lfold_16_bytes_loop_\@         // 32 <= len <= 255
459         add             len, len, #16
460         b               .Lhandle_partial_segment_\@     // 17 <= len <= 31
461         .endm
462
463 //
464 // u16 crc_t10dif_pmull_p8(u16 init_crc, const u8 *buf, size_t len);
465 //
466 // Assumes len >= 16.
467 //
468 SYM_FUNC_START(crc_t10dif_pmull_p8)
469         stp             x29, x30, [sp, #-16]!
470         mov             x29, sp
471         crc_t10dif_pmull p8
472 SYM_FUNC_END(crc_t10dif_pmull_p8)
473
474         .align          5
475 //
476 // u16 crc_t10dif_pmull_p64(u16 init_crc, const u8 *buf, size_t len);
477 //
478 // Assumes len >= 16.
479 //
480 SYM_FUNC_START(crc_t10dif_pmull_p64)
481         crc_t10dif_pmull        p64
482 SYM_FUNC_END(crc_t10dif_pmull_p64)
483
484         .section        ".rodata", "a"
485         .align          4
486
487 // Fold constants precomputed from the polynomial 0x18bb7
488 // G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
489 .Lfold_across_128_bytes_consts:
490         .quad           0x0000000000006123      // x^(8*128)    mod G(x)
491         .quad           0x0000000000002295      // x^(8*128+64) mod G(x)
492 // .Lfold_across_64_bytes_consts:
493         .quad           0x0000000000001069      // x^(4*128)    mod G(x)
494         .quad           0x000000000000dd31      // x^(4*128+64) mod G(x)
495 // .Lfold_across_32_bytes_consts:
496         .quad           0x000000000000857d      // x^(2*128)    mod G(x)
497         .quad           0x0000000000007acc      // x^(2*128+64) mod G(x)
498 .Lfold_across_16_bytes_consts:
499         .quad           0x000000000000a010      // x^(1*128)    mod G(x)
500         .quad           0x0000000000001faa      // x^(1*128+64) mod G(x)
501 // .Lfinal_fold_consts:
502         .quad           0x1368000000000000      // x^48 * (x^48 mod G(x))
503         .quad           0x2d56000000000000      // x^48 * (x^80 mod G(x))
504 // .Lbarrett_reduction_consts:
505         .quad           0x0000000000018bb7      // G(x)
506         .quad           0x00000001f65a57f8      // floor(x^48 / G(x))
507
508 // For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
509 // len] is the index vector to shift left by 'len' bytes, and is also {0x80,
510 // ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
511 .Lbyteshift_table:
512         .byte            0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
513         .byte           0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
514         .byte            0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7
515         .byte            0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe , 0x0