Merge tag 'v5.3-rc1' into regulator-5.3
[linux-2.6-microblaze.git] / arch / arm / vfp / vfpmodule.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/vfp/vfpmodule.c
4  *
5  *  Copyright (C) 2004 ARM Limited.
6  *  Written by Deep Blue Solutions Limited.
7  */
8 #include <linux/types.h>
9 #include <linux/cpu.h>
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/kernel.h>
13 #include <linux/notifier.h>
14 #include <linux/signal.h>
15 #include <linux/sched/signal.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/uaccess.h>
19 #include <linux/user.h>
20 #include <linux/export.h>
21
22 #include <asm/cp15.h>
23 #include <asm/cputype.h>
24 #include <asm/system_info.h>
25 #include <asm/thread_notify.h>
26 #include <asm/vfp.h>
27
28 #include "vfpinstr.h"
29 #include "vfp.h"
30
31 /*
32  * Our undef handlers (in entry.S)
33  */
34 asmlinkage void vfp_testing_entry(void);
35 asmlinkage void vfp_support_entry(void);
36 asmlinkage void vfp_null_entry(void);
37
38 asmlinkage void (*vfp_vector)(void) = vfp_null_entry;
39
40 /*
41  * Dual-use variable.
42  * Used in startup: set to non-zero if VFP checks fail
43  * After startup, holds VFP architecture
44  */
45 unsigned int VFP_arch;
46
47 /*
48  * The pointer to the vfpstate structure of the thread which currently
49  * owns the context held in the VFP hardware, or NULL if the hardware
50  * context is invalid.
51  *
52  * For UP, this is sufficient to tell which thread owns the VFP context.
53  * However, for SMP, we also need to check the CPU number stored in the
54  * saved state too to catch migrations.
55  */
56 union vfp_state *vfp_current_hw_state[NR_CPUS];
57
58 /*
59  * Is 'thread's most up to date state stored in this CPUs hardware?
60  * Must be called from non-preemptible context.
61  */
62 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
63 {
64 #ifdef CONFIG_SMP
65         if (thread->vfpstate.hard.cpu != cpu)
66                 return false;
67 #endif
68         return vfp_current_hw_state[cpu] == &thread->vfpstate;
69 }
70
71 /*
72  * Force a reload of the VFP context from the thread structure.  We do
73  * this by ensuring that access to the VFP hardware is disabled, and
74  * clear vfp_current_hw_state.  Must be called from non-preemptible context.
75  */
76 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
77 {
78         if (vfp_state_in_hw(cpu, thread)) {
79                 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
80                 vfp_current_hw_state[cpu] = NULL;
81         }
82 #ifdef CONFIG_SMP
83         thread->vfpstate.hard.cpu = NR_CPUS;
84 #endif
85 }
86
87 /*
88  * Per-thread VFP initialization.
89  */
90 static void vfp_thread_flush(struct thread_info *thread)
91 {
92         union vfp_state *vfp = &thread->vfpstate;
93         unsigned int cpu;
94
95         /*
96          * Disable VFP to ensure we initialize it first.  We must ensure
97          * that the modification of vfp_current_hw_state[] and hardware
98          * disable are done for the same CPU and without preemption.
99          *
100          * Do this first to ensure that preemption won't overwrite our
101          * state saving should access to the VFP be enabled at this point.
102          */
103         cpu = get_cpu();
104         if (vfp_current_hw_state[cpu] == vfp)
105                 vfp_current_hw_state[cpu] = NULL;
106         fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
107         put_cpu();
108
109         memset(vfp, 0, sizeof(union vfp_state));
110
111         vfp->hard.fpexc = FPEXC_EN;
112         vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
113 #ifdef CONFIG_SMP
114         vfp->hard.cpu = NR_CPUS;
115 #endif
116 }
117
118 static void vfp_thread_exit(struct thread_info *thread)
119 {
120         /* release case: Per-thread VFP cleanup. */
121         union vfp_state *vfp = &thread->vfpstate;
122         unsigned int cpu = get_cpu();
123
124         if (vfp_current_hw_state[cpu] == vfp)
125                 vfp_current_hw_state[cpu] = NULL;
126         put_cpu();
127 }
128
129 static void vfp_thread_copy(struct thread_info *thread)
130 {
131         struct thread_info *parent = current_thread_info();
132
133         vfp_sync_hwstate(parent);
134         thread->vfpstate = parent->vfpstate;
135 #ifdef CONFIG_SMP
136         thread->vfpstate.hard.cpu = NR_CPUS;
137 #endif
138 }
139
140 /*
141  * When this function is called with the following 'cmd's, the following
142  * is true while this function is being run:
143  *  THREAD_NOFTIFY_SWTICH:
144  *   - the previously running thread will not be scheduled onto another CPU.
145  *   - the next thread to be run (v) will not be running on another CPU.
146  *   - thread->cpu is the local CPU number
147  *   - not preemptible as we're called in the middle of a thread switch
148  *  THREAD_NOTIFY_FLUSH:
149  *   - the thread (v) will be running on the local CPU, so
150  *      v === current_thread_info()
151  *   - thread->cpu is the local CPU number at the time it is accessed,
152  *      but may change at any time.
153  *   - we could be preempted if tree preempt rcu is enabled, so
154  *      it is unsafe to use thread->cpu.
155  *  THREAD_NOTIFY_EXIT
156  *   - we could be preempted if tree preempt rcu is enabled, so
157  *      it is unsafe to use thread->cpu.
158  */
159 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
160 {
161         struct thread_info *thread = v;
162         u32 fpexc;
163 #ifdef CONFIG_SMP
164         unsigned int cpu;
165 #endif
166
167         switch (cmd) {
168         case THREAD_NOTIFY_SWITCH:
169                 fpexc = fmrx(FPEXC);
170
171 #ifdef CONFIG_SMP
172                 cpu = thread->cpu;
173
174                 /*
175                  * On SMP, if VFP is enabled, save the old state in
176                  * case the thread migrates to a different CPU. The
177                  * restoring is done lazily.
178                  */
179                 if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
180                         vfp_save_state(vfp_current_hw_state[cpu], fpexc);
181 #endif
182
183                 /*
184                  * Always disable VFP so we can lazily save/restore the
185                  * old state.
186                  */
187                 fmxr(FPEXC, fpexc & ~FPEXC_EN);
188                 break;
189
190         case THREAD_NOTIFY_FLUSH:
191                 vfp_thread_flush(thread);
192                 break;
193
194         case THREAD_NOTIFY_EXIT:
195                 vfp_thread_exit(thread);
196                 break;
197
198         case THREAD_NOTIFY_COPY:
199                 vfp_thread_copy(thread);
200                 break;
201         }
202
203         return NOTIFY_DONE;
204 }
205
206 static struct notifier_block vfp_notifier_block = {
207         .notifier_call  = vfp_notifier,
208 };
209
210 /*
211  * Raise a SIGFPE for the current process.
212  * sicode describes the signal being raised.
213  */
214 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
215 {
216         /*
217          * This is the same as NWFPE, because it's not clear what
218          * this is used for
219          */
220         current->thread.error_code = 0;
221         current->thread.trap_no = 6;
222
223         send_sig_fault(SIGFPE, sicode,
224                        (void __user *)(instruction_pointer(regs) - 4),
225                        current);
226 }
227
228 static void vfp_panic(char *reason, u32 inst)
229 {
230         int i;
231
232         pr_err("VFP: Error: %s\n", reason);
233         pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
234                 fmrx(FPEXC), fmrx(FPSCR), inst);
235         for (i = 0; i < 32; i += 2)
236                 pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
237                        i, vfp_get_float(i), i+1, vfp_get_float(i+1));
238 }
239
240 /*
241  * Process bitmask of exception conditions.
242  */
243 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
244 {
245         int si_code = 0;
246
247         pr_debug("VFP: raising exceptions %08x\n", exceptions);
248
249         if (exceptions == VFP_EXCEPTION_ERROR) {
250                 vfp_panic("unhandled bounce", inst);
251                 vfp_raise_sigfpe(FPE_FLTINV, regs);
252                 return;
253         }
254
255         /*
256          * If any of the status flags are set, update the FPSCR.
257          * Comparison instructions always return at least one of
258          * these flags set.
259          */
260         if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
261                 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
262
263         fpscr |= exceptions;
264
265         fmxr(FPSCR, fpscr);
266
267 #define RAISE(stat,en,sig)                              \
268         if (exceptions & stat && fpscr & en)            \
269                 si_code = sig;
270
271         /*
272          * These are arranged in priority order, least to highest.
273          */
274         RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
275         RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
276         RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
277         RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
278         RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
279
280         if (si_code)
281                 vfp_raise_sigfpe(si_code, regs);
282 }
283
284 /*
285  * Emulate a VFP instruction.
286  */
287 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
288 {
289         u32 exceptions = VFP_EXCEPTION_ERROR;
290
291         pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
292
293         if (INST_CPRTDO(inst)) {
294                 if (!INST_CPRT(inst)) {
295                         /*
296                          * CPDO
297                          */
298                         if (vfp_single(inst)) {
299                                 exceptions = vfp_single_cpdo(inst, fpscr);
300                         } else {
301                                 exceptions = vfp_double_cpdo(inst, fpscr);
302                         }
303                 } else {
304                         /*
305                          * A CPRT instruction can not appear in FPINST2, nor
306                          * can it cause an exception.  Therefore, we do not
307                          * have to emulate it.
308                          */
309                 }
310         } else {
311                 /*
312                  * A CPDT instruction can not appear in FPINST2, nor can
313                  * it cause an exception.  Therefore, we do not have to
314                  * emulate it.
315                  */
316         }
317         return exceptions & ~VFP_NAN_FLAG;
318 }
319
320 /*
321  * Package up a bounce condition.
322  */
323 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
324 {
325         u32 fpscr, orig_fpscr, fpsid, exceptions;
326
327         pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
328
329         /*
330          * At this point, FPEXC can have the following configuration:
331          *
332          *  EX DEX IXE
333          *  0   1   x   - synchronous exception
334          *  1   x   0   - asynchronous exception
335          *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
336          *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
337          *                implementation), undefined otherwise
338          *
339          * Clear various bits and enable access to the VFP so we can
340          * handle the bounce.
341          */
342         fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
343
344         fpsid = fmrx(FPSID);
345         orig_fpscr = fpscr = fmrx(FPSCR);
346
347         /*
348          * Check for the special VFP subarch 1 and FPSCR.IXE bit case
349          */
350         if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
351             && (fpscr & FPSCR_IXE)) {
352                 /*
353                  * Synchronous exception, emulate the trigger instruction
354                  */
355                 goto emulate;
356         }
357
358         if (fpexc & FPEXC_EX) {
359 #ifndef CONFIG_CPU_FEROCEON
360                 /*
361                  * Asynchronous exception. The instruction is read from FPINST
362                  * and the interrupted instruction has to be restarted.
363                  */
364                 trigger = fmrx(FPINST);
365                 regs->ARM_pc -= 4;
366 #endif
367         } else if (!(fpexc & FPEXC_DEX)) {
368                 /*
369                  * Illegal combination of bits. It can be caused by an
370                  * unallocated VFP instruction but with FPSCR.IXE set and not
371                  * on VFP subarch 1.
372                  */
373                  vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
374                 goto exit;
375         }
376
377         /*
378          * Modify fpscr to indicate the number of iterations remaining.
379          * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
380          * whether FPEXC.VECITR or FPSCR.LEN is used.
381          */
382         if (fpexc & (FPEXC_EX | FPEXC_VV)) {
383                 u32 len;
384
385                 len = fpexc + (1 << FPEXC_LENGTH_BIT);
386
387                 fpscr &= ~FPSCR_LENGTH_MASK;
388                 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
389         }
390
391         /*
392          * Handle the first FP instruction.  We used to take note of the
393          * FPEXC bounce reason, but this appears to be unreliable.
394          * Emulate the bounced instruction instead.
395          */
396         exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
397         if (exceptions)
398                 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
399
400         /*
401          * If there isn't a second FP instruction, exit now. Note that
402          * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
403          */
404         if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
405                 goto exit;
406
407         /*
408          * The barrier() here prevents fpinst2 being read
409          * before the condition above.
410          */
411         barrier();
412         trigger = fmrx(FPINST2);
413
414  emulate:
415         exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
416         if (exceptions)
417                 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
418  exit:
419         preempt_enable();
420 }
421
422 static void vfp_enable(void *unused)
423 {
424         u32 access;
425
426         BUG_ON(preemptible());
427         access = get_copro_access();
428
429         /*
430          * Enable full access to VFP (cp10 and cp11)
431          */
432         set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
433 }
434
435 /* Called by platforms on which we want to disable VFP because it may not be
436  * present on all CPUs within a SMP complex. Needs to be called prior to
437  * vfp_init().
438  */
439 void vfp_disable(void)
440 {
441         if (VFP_arch) {
442                 pr_debug("%s: should be called prior to vfp_init\n", __func__);
443                 return;
444         }
445         VFP_arch = 1;
446 }
447
448 #ifdef CONFIG_CPU_PM
449 static int vfp_pm_suspend(void)
450 {
451         struct thread_info *ti = current_thread_info();
452         u32 fpexc = fmrx(FPEXC);
453
454         /* if vfp is on, then save state for resumption */
455         if (fpexc & FPEXC_EN) {
456                 pr_debug("%s: saving vfp state\n", __func__);
457                 vfp_save_state(&ti->vfpstate, fpexc);
458
459                 /* disable, just in case */
460                 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
461         } else if (vfp_current_hw_state[ti->cpu]) {
462 #ifndef CONFIG_SMP
463                 fmxr(FPEXC, fpexc | FPEXC_EN);
464                 vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
465                 fmxr(FPEXC, fpexc);
466 #endif
467         }
468
469         /* clear any information we had about last context state */
470         vfp_current_hw_state[ti->cpu] = NULL;
471
472         return 0;
473 }
474
475 static void vfp_pm_resume(void)
476 {
477         /* ensure we have access to the vfp */
478         vfp_enable(NULL);
479
480         /* and disable it to ensure the next usage restores the state */
481         fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
482 }
483
484 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
485         void *v)
486 {
487         switch (cmd) {
488         case CPU_PM_ENTER:
489                 vfp_pm_suspend();
490                 break;
491         case CPU_PM_ENTER_FAILED:
492         case CPU_PM_EXIT:
493                 vfp_pm_resume();
494                 break;
495         }
496         return NOTIFY_OK;
497 }
498
499 static struct notifier_block vfp_cpu_pm_notifier_block = {
500         .notifier_call = vfp_cpu_pm_notifier,
501 };
502
503 static void vfp_pm_init(void)
504 {
505         cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
506 }
507
508 #else
509 static inline void vfp_pm_init(void) { }
510 #endif /* CONFIG_CPU_PM */
511
512 /*
513  * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
514  * with the hardware state.
515  */
516 void vfp_sync_hwstate(struct thread_info *thread)
517 {
518         unsigned int cpu = get_cpu();
519
520         if (vfp_state_in_hw(cpu, thread)) {
521                 u32 fpexc = fmrx(FPEXC);
522
523                 /*
524                  * Save the last VFP state on this CPU.
525                  */
526                 fmxr(FPEXC, fpexc | FPEXC_EN);
527                 vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
528                 fmxr(FPEXC, fpexc);
529         }
530
531         put_cpu();
532 }
533
534 /* Ensure that the thread reloads the hardware VFP state on the next use. */
535 void vfp_flush_hwstate(struct thread_info *thread)
536 {
537         unsigned int cpu = get_cpu();
538
539         vfp_force_reload(cpu, thread);
540
541         put_cpu();
542 }
543
544 /*
545  * Save the current VFP state into the provided structures and prepare
546  * for entry into a new function (signal handler).
547  */
548 int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
549                                     struct user_vfp_exc *ufp_exc)
550 {
551         struct thread_info *thread = current_thread_info();
552         struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
553
554         /* Ensure that the saved hwstate is up-to-date. */
555         vfp_sync_hwstate(thread);
556
557         /*
558          * Copy the floating point registers. There can be unused
559          * registers see asm/hwcap.h for details.
560          */
561         memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
562
563         /*
564          * Copy the status and control register.
565          */
566         ufp->fpscr = hwstate->fpscr;
567
568         /*
569          * Copy the exception registers.
570          */
571         ufp_exc->fpexc = hwstate->fpexc;
572         ufp_exc->fpinst = hwstate->fpinst;
573         ufp_exc->fpinst2 = hwstate->fpinst2;
574
575         /* Ensure that VFP is disabled. */
576         vfp_flush_hwstate(thread);
577
578         /*
579          * As per the PCS, clear the length and stride bits for function
580          * entry.
581          */
582         hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
583         return 0;
584 }
585
586 /* Sanitise and restore the current VFP state from the provided structures. */
587 int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
588 {
589         struct thread_info *thread = current_thread_info();
590         struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
591         unsigned long fpexc;
592
593         /* Disable VFP to avoid corrupting the new thread state. */
594         vfp_flush_hwstate(thread);
595
596         /*
597          * Copy the floating point registers. There can be unused
598          * registers see asm/hwcap.h for details.
599          */
600         memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
601         /*
602          * Copy the status and control register.
603          */
604         hwstate->fpscr = ufp->fpscr;
605
606         /*
607          * Sanitise and restore the exception registers.
608          */
609         fpexc = ufp_exc->fpexc;
610
611         /* Ensure the VFP is enabled. */
612         fpexc |= FPEXC_EN;
613
614         /* Ensure FPINST2 is invalid and the exception flag is cleared. */
615         fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
616         hwstate->fpexc = fpexc;
617
618         hwstate->fpinst = ufp_exc->fpinst;
619         hwstate->fpinst2 = ufp_exc->fpinst2;
620
621         return 0;
622 }
623
624 /*
625  * VFP hardware can lose all context when a CPU goes offline.
626  * As we will be running in SMP mode with CPU hotplug, we will save the
627  * hardware state at every thread switch.  We clear our held state when
628  * a CPU has been killed, indicating that the VFP hardware doesn't contain
629  * a threads VFP state.  When a CPU starts up, we re-enable access to the
630  * VFP hardware. The callbacks below are called on the CPU which
631  * is being offlined/onlined.
632  */
633 static int vfp_dying_cpu(unsigned int cpu)
634 {
635         vfp_current_hw_state[cpu] = NULL;
636         return 0;
637 }
638
639 static int vfp_starting_cpu(unsigned int unused)
640 {
641         vfp_enable(NULL);
642         return 0;
643 }
644
645 void vfp_kmode_exception(void)
646 {
647         /*
648          * If we reach this point, a floating point exception has been raised
649          * while running in kernel mode. If the NEON/VFP unit was enabled at the
650          * time, it means a VFP instruction has been issued that requires
651          * software assistance to complete, something which is not currently
652          * supported in kernel mode.
653          * If the NEON/VFP unit was disabled, and the location pointed to below
654          * is properly preceded by a call to kernel_neon_begin(), something has
655          * caused the task to be scheduled out and back in again. In this case,
656          * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
657          * be helpful in localizing the problem.
658          */
659         if (fmrx(FPEXC) & FPEXC_EN)
660                 pr_crit("BUG: unsupported FP instruction in kernel mode\n");
661         else
662                 pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
663 }
664
665 #ifdef CONFIG_KERNEL_MODE_NEON
666
667 /*
668  * Kernel-side NEON support functions
669  */
670 void kernel_neon_begin(void)
671 {
672         struct thread_info *thread = current_thread_info();
673         unsigned int cpu;
674         u32 fpexc;
675
676         /*
677          * Kernel mode NEON is only allowed outside of interrupt context
678          * with preemption disabled. This will make sure that the kernel
679          * mode NEON register contents never need to be preserved.
680          */
681         BUG_ON(in_interrupt());
682         cpu = get_cpu();
683
684         fpexc = fmrx(FPEXC) | FPEXC_EN;
685         fmxr(FPEXC, fpexc);
686
687         /*
688          * Save the userland NEON/VFP state. Under UP,
689          * the owner could be a task other than 'current'
690          */
691         if (vfp_state_in_hw(cpu, thread))
692                 vfp_save_state(&thread->vfpstate, fpexc);
693 #ifndef CONFIG_SMP
694         else if (vfp_current_hw_state[cpu] != NULL)
695                 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
696 #endif
697         vfp_current_hw_state[cpu] = NULL;
698 }
699 EXPORT_SYMBOL(kernel_neon_begin);
700
701 void kernel_neon_end(void)
702 {
703         /* Disable the NEON/VFP unit. */
704         fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
705         put_cpu();
706 }
707 EXPORT_SYMBOL(kernel_neon_end);
708
709 #endif /* CONFIG_KERNEL_MODE_NEON */
710
711 /*
712  * VFP support code initialisation.
713  */
714 static int __init vfp_init(void)
715 {
716         unsigned int vfpsid;
717         unsigned int cpu_arch = cpu_architecture();
718
719         /*
720          * Enable the access to the VFP on all online CPUs so the
721          * following test on FPSID will succeed.
722          */
723         if (cpu_arch >= CPU_ARCH_ARMv6)
724                 on_each_cpu(vfp_enable, NULL, 1);
725
726         /*
727          * First check that there is a VFP that we can use.
728          * The handler is already setup to just log calls, so
729          * we just need to read the VFPSID register.
730          */
731         vfp_vector = vfp_testing_entry;
732         barrier();
733         vfpsid = fmrx(FPSID);
734         barrier();
735         vfp_vector = vfp_null_entry;
736
737         pr_info("VFP support v0.3: ");
738         if (VFP_arch) {
739                 pr_cont("not present\n");
740                 return 0;
741         /* Extract the architecture on CPUID scheme */
742         } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
743                 VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
744                 VFP_arch >>= FPSID_ARCH_BIT;
745                 /*
746                  * Check for the presence of the Advanced SIMD
747                  * load/store instructions, integer and single
748                  * precision floating point operations. Only check
749                  * for NEON if the hardware has the MVFR registers.
750                  */
751                 if (IS_ENABLED(CONFIG_NEON) &&
752                    (fmrx(MVFR1) & 0x000fff00) == 0x00011100)
753                         elf_hwcap |= HWCAP_NEON;
754
755                 if (IS_ENABLED(CONFIG_VFPv3)) {
756                         u32 mvfr0 = fmrx(MVFR0);
757                         if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
758                             ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
759                                 elf_hwcap |= HWCAP_VFPv3;
760                                 /*
761                                  * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
762                                  * this configuration only have 16 x 64bit
763                                  * registers.
764                                  */
765                                 if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
766                                         /* also v4-D16 */
767                                         elf_hwcap |= HWCAP_VFPv3D16;
768                                 else
769                                         elf_hwcap |= HWCAP_VFPD32;
770                         }
771
772                         if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
773                                 elf_hwcap |= HWCAP_VFPv4;
774                 }
775         /* Extract the architecture version on pre-cpuid scheme */
776         } else {
777                 if (vfpsid & FPSID_NODOUBLE) {
778                         pr_cont("no double precision support\n");
779                         return 0;
780                 }
781
782                 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
783         }
784
785         cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
786                                   "arm/vfp:starting", vfp_starting_cpu,
787                                   vfp_dying_cpu);
788
789         vfp_vector = vfp_support_entry;
790
791         thread_register_notifier(&vfp_notifier_block);
792         vfp_pm_init();
793
794         /*
795          * We detected VFP, and the support code is
796          * in place; report VFP support to userspace.
797          */
798         elf_hwcap |= HWCAP_VFP;
799
800         pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
801                 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
802                 VFP_arch,
803                 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
804                 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
805                 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
806
807         return 0;
808 }
809
810 core_initcall(vfp_init);