Merge tag 'irq-core-2020-12-23' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / arch / arm / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/smp.c
4  *
5  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6  */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 #include <linux/kernel_stat.h>
30
31 #include <linux/atomic.h>
32 #include <asm/bugs.h>
33 #include <asm/smp.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpu.h>
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38 #include <asm/idmap.h>
39 #include <asm/topology.h>
40 #include <asm/mmu_context.h>
41 #include <asm/procinfo.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53
54 /*
55  * as from 2.5, kernels no longer have an init_tasks structure
56  * so we need some other way of telling a new secondary core
57  * where to place its SVC stack
58  */
59 struct secondary_data secondary_data;
60
61 enum ipi_msg_type {
62         IPI_WAKEUP,
63         IPI_TIMER,
64         IPI_RESCHEDULE,
65         IPI_CALL_FUNC,
66         IPI_CPU_STOP,
67         IPI_IRQ_WORK,
68         IPI_COMPLETION,
69         NR_IPI,
70         /*
71          * CPU_BACKTRACE is special and not included in NR_IPI
72          * or tracable with trace_ipi_*
73          */
74         IPI_CPU_BACKTRACE = NR_IPI,
75         /*
76          * SGI8-15 can be reserved by secure firmware, and thus may
77          * not be usable by the kernel. Please keep the above limited
78          * to at most 8 entries.
79          */
80         MAX_IPI
81 };
82
83 static int ipi_irq_base __read_mostly;
84 static int nr_ipi __read_mostly = NR_IPI;
85 static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly;
86
87 static void ipi_setup(int cpu);
88
89 static DECLARE_COMPLETION(cpu_running);
90
91 static struct smp_operations smp_ops __ro_after_init;
92
93 void __init smp_set_ops(const struct smp_operations *ops)
94 {
95         if (ops)
96                 smp_ops = *ops;
97 };
98
99 static unsigned long get_arch_pgd(pgd_t *pgd)
100 {
101 #ifdef CONFIG_ARM_LPAE
102         return __phys_to_pfn(virt_to_phys(pgd));
103 #else
104         return virt_to_phys(pgd);
105 #endif
106 }
107
108 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
109 static int secondary_biglittle_prepare(unsigned int cpu)
110 {
111         if (!cpu_vtable[cpu])
112                 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
113
114         return cpu_vtable[cpu] ? 0 : -ENOMEM;
115 }
116
117 static void secondary_biglittle_init(void)
118 {
119         init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
120 }
121 #else
122 static int secondary_biglittle_prepare(unsigned int cpu)
123 {
124         return 0;
125 }
126
127 static void secondary_biglittle_init(void)
128 {
129 }
130 #endif
131
132 int __cpu_up(unsigned int cpu, struct task_struct *idle)
133 {
134         int ret;
135
136         if (!smp_ops.smp_boot_secondary)
137                 return -ENOSYS;
138
139         ret = secondary_biglittle_prepare(cpu);
140         if (ret)
141                 return ret;
142
143         /*
144          * We need to tell the secondary core where to find
145          * its stack and the page tables.
146          */
147         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
148 #ifdef CONFIG_ARM_MPU
149         secondary_data.mpu_rgn_info = &mpu_rgn_info;
150 #endif
151
152 #ifdef CONFIG_MMU
153         secondary_data.pgdir = virt_to_phys(idmap_pgd);
154         secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
155 #endif
156         sync_cache_w(&secondary_data);
157
158         /*
159          * Now bring the CPU into our world.
160          */
161         ret = smp_ops.smp_boot_secondary(cpu, idle);
162         if (ret == 0) {
163                 /*
164                  * CPU was successfully started, wait for it
165                  * to come online or time out.
166                  */
167                 wait_for_completion_timeout(&cpu_running,
168                                                  msecs_to_jiffies(1000));
169
170                 if (!cpu_online(cpu)) {
171                         pr_crit("CPU%u: failed to come online\n", cpu);
172                         ret = -EIO;
173                 }
174         } else {
175                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
176         }
177
178
179         memset(&secondary_data, 0, sizeof(secondary_data));
180         return ret;
181 }
182
183 /* platform specific SMP operations */
184 void __init smp_init_cpus(void)
185 {
186         if (smp_ops.smp_init_cpus)
187                 smp_ops.smp_init_cpus();
188 }
189
190 int platform_can_secondary_boot(void)
191 {
192         return !!smp_ops.smp_boot_secondary;
193 }
194
195 int platform_can_cpu_hotplug(void)
196 {
197 #ifdef CONFIG_HOTPLUG_CPU
198         if (smp_ops.cpu_kill)
199                 return 1;
200 #endif
201
202         return 0;
203 }
204
205 #ifdef CONFIG_HOTPLUG_CPU
206 static int platform_cpu_kill(unsigned int cpu)
207 {
208         if (smp_ops.cpu_kill)
209                 return smp_ops.cpu_kill(cpu);
210         return 1;
211 }
212
213 static int platform_cpu_disable(unsigned int cpu)
214 {
215         if (smp_ops.cpu_disable)
216                 return smp_ops.cpu_disable(cpu);
217
218         return 0;
219 }
220
221 int platform_can_hotplug_cpu(unsigned int cpu)
222 {
223         /* cpu_die must be specified to support hotplug */
224         if (!smp_ops.cpu_die)
225                 return 0;
226
227         if (smp_ops.cpu_can_disable)
228                 return smp_ops.cpu_can_disable(cpu);
229
230         /*
231          * By default, allow disabling all CPUs except the first one,
232          * since this is special on a lot of platforms, e.g. because
233          * of clock tick interrupts.
234          */
235         return cpu != 0;
236 }
237
238 static void ipi_teardown(int cpu)
239 {
240         int i;
241
242         if (WARN_ON_ONCE(!ipi_irq_base))
243                 return;
244
245         for (i = 0; i < nr_ipi; i++)
246                 disable_percpu_irq(ipi_irq_base + i);
247 }
248
249 /*
250  * __cpu_disable runs on the processor to be shutdown.
251  */
252 int __cpu_disable(void)
253 {
254         unsigned int cpu = smp_processor_id();
255         int ret;
256
257         ret = platform_cpu_disable(cpu);
258         if (ret)
259                 return ret;
260
261 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
262         remove_cpu_topology(cpu);
263 #endif
264
265         /*
266          * Take this CPU offline.  Once we clear this, we can't return,
267          * and we must not schedule until we're ready to give up the cpu.
268          */
269         set_cpu_online(cpu, false);
270         ipi_teardown(cpu);
271
272         /*
273          * OK - migrate IRQs away from this CPU
274          */
275         irq_migrate_all_off_this_cpu();
276
277         /*
278          * Flush user cache and TLB mappings, and then remove this CPU
279          * from the vm mask set of all processes.
280          *
281          * Caches are flushed to the Level of Unification Inner Shareable
282          * to write-back dirty lines to unified caches shared by all CPUs.
283          */
284         flush_cache_louis();
285         local_flush_tlb_all();
286
287         return 0;
288 }
289
290 /*
291  * called on the thread which is asking for a CPU to be shutdown -
292  * waits until shutdown has completed, or it is timed out.
293  */
294 void __cpu_die(unsigned int cpu)
295 {
296         if (!cpu_wait_death(cpu, 5)) {
297                 pr_err("CPU%u: cpu didn't die\n", cpu);
298                 return;
299         }
300         pr_debug("CPU%u: shutdown\n", cpu);
301
302         clear_tasks_mm_cpumask(cpu);
303         /*
304          * platform_cpu_kill() is generally expected to do the powering off
305          * and/or cutting of clocks to the dying CPU.  Optionally, this may
306          * be done by the CPU which is dying in preference to supporting
307          * this call, but that means there is _no_ synchronisation between
308          * the requesting CPU and the dying CPU actually losing power.
309          */
310         if (!platform_cpu_kill(cpu))
311                 pr_err("CPU%u: unable to kill\n", cpu);
312 }
313
314 /*
315  * Called from the idle thread for the CPU which has been shutdown.
316  *
317  * Note that we disable IRQs here, but do not re-enable them
318  * before returning to the caller. This is also the behaviour
319  * of the other hotplug-cpu capable cores, so presumably coming
320  * out of idle fixes this.
321  */
322 void arch_cpu_idle_dead(void)
323 {
324         unsigned int cpu = smp_processor_id();
325
326         idle_task_exit();
327
328         local_irq_disable();
329
330         /*
331          * Flush the data out of the L1 cache for this CPU.  This must be
332          * before the completion to ensure that data is safely written out
333          * before platform_cpu_kill() gets called - which may disable
334          * *this* CPU and power down its cache.
335          */
336         flush_cache_louis();
337
338         /*
339          * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
340          * this returns, power and/or clocks can be removed at any point
341          * from this CPU and its cache by platform_cpu_kill().
342          */
343         (void)cpu_report_death();
344
345         /*
346          * Ensure that the cache lines associated with that completion are
347          * written out.  This covers the case where _this_ CPU is doing the
348          * powering down, to ensure that the completion is visible to the
349          * CPU waiting for this one.
350          */
351         flush_cache_louis();
352
353         /*
354          * The actual CPU shutdown procedure is at least platform (if not
355          * CPU) specific.  This may remove power, or it may simply spin.
356          *
357          * Platforms are generally expected *NOT* to return from this call,
358          * although there are some which do because they have no way to
359          * power down the CPU.  These platforms are the _only_ reason we
360          * have a return path which uses the fragment of assembly below.
361          *
362          * The return path should not be used for platforms which can
363          * power off the CPU.
364          */
365         if (smp_ops.cpu_die)
366                 smp_ops.cpu_die(cpu);
367
368         pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
369                 cpu);
370
371         /*
372          * Do not return to the idle loop - jump back to the secondary
373          * cpu initialisation.  There's some initialisation which needs
374          * to be repeated to undo the effects of taking the CPU offline.
375          */
376         __asm__("mov    sp, %0\n"
377         "       mov     fp, #0\n"
378         "       b       secondary_start_kernel"
379                 :
380                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
381 }
382 #endif /* CONFIG_HOTPLUG_CPU */
383
384 /*
385  * Called by both boot and secondaries to move global data into
386  * per-processor storage.
387  */
388 static void smp_store_cpu_info(unsigned int cpuid)
389 {
390         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
391
392         cpu_info->loops_per_jiffy = loops_per_jiffy;
393         cpu_info->cpuid = read_cpuid_id();
394
395         store_cpu_topology(cpuid);
396         check_cpu_icache_size(cpuid);
397 }
398
399 /*
400  * This is the secondary CPU boot entry.  We're using this CPUs
401  * idle thread stack, but a set of temporary page tables.
402  */
403 asmlinkage void secondary_start_kernel(void)
404 {
405         struct mm_struct *mm = &init_mm;
406         unsigned int cpu;
407
408         secondary_biglittle_init();
409
410         /*
411          * The identity mapping is uncached (strongly ordered), so
412          * switch away from it before attempting any exclusive accesses.
413          */
414         cpu_switch_mm(mm->pgd, mm);
415         local_flush_bp_all();
416         enter_lazy_tlb(mm, current);
417         local_flush_tlb_all();
418
419         /*
420          * All kernel threads share the same mm context; grab a
421          * reference and switch to it.
422          */
423         cpu = smp_processor_id();
424         mmgrab(mm);
425         current->active_mm = mm;
426         cpumask_set_cpu(cpu, mm_cpumask(mm));
427
428         cpu_init();
429
430 #ifndef CONFIG_MMU
431         setup_vectors_base();
432 #endif
433         pr_debug("CPU%u: Booted secondary processor\n", cpu);
434
435         preempt_disable();
436         trace_hardirqs_off();
437
438         /*
439          * Give the platform a chance to do its own initialisation.
440          */
441         if (smp_ops.smp_secondary_init)
442                 smp_ops.smp_secondary_init(cpu);
443
444         notify_cpu_starting(cpu);
445
446         ipi_setup(cpu);
447
448         calibrate_delay();
449
450         smp_store_cpu_info(cpu);
451
452         /*
453          * OK, now it's safe to let the boot CPU continue.  Wait for
454          * the CPU migration code to notice that the CPU is online
455          * before we continue - which happens after __cpu_up returns.
456          */
457         set_cpu_online(cpu, true);
458
459         check_other_bugs();
460
461         complete(&cpu_running);
462
463         local_irq_enable();
464         local_fiq_enable();
465         local_abt_enable();
466
467         /*
468          * OK, it's off to the idle thread for us
469          */
470         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
471 }
472
473 void __init smp_cpus_done(unsigned int max_cpus)
474 {
475         int cpu;
476         unsigned long bogosum = 0;
477
478         for_each_online_cpu(cpu)
479                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
480
481         printk(KERN_INFO "SMP: Total of %d processors activated "
482                "(%lu.%02lu BogoMIPS).\n",
483                num_online_cpus(),
484                bogosum / (500000/HZ),
485                (bogosum / (5000/HZ)) % 100);
486
487         hyp_mode_check();
488 }
489
490 void __init smp_prepare_boot_cpu(void)
491 {
492         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
493 }
494
495 void __init smp_prepare_cpus(unsigned int max_cpus)
496 {
497         unsigned int ncores = num_possible_cpus();
498
499         init_cpu_topology();
500
501         smp_store_cpu_info(smp_processor_id());
502
503         /*
504          * are we trying to boot more cores than exist?
505          */
506         if (max_cpus > ncores)
507                 max_cpus = ncores;
508         if (ncores > 1 && max_cpus) {
509                 /*
510                  * Initialise the present map, which describes the set of CPUs
511                  * actually populated at the present time. A platform should
512                  * re-initialize the map in the platforms smp_prepare_cpus()
513                  * if present != possible (e.g. physical hotplug).
514                  */
515                 init_cpu_present(cpu_possible_mask);
516
517                 /*
518                  * Initialise the SCU if there are more than one CPU
519                  * and let them know where to start.
520                  */
521                 if (smp_ops.smp_prepare_cpus)
522                         smp_ops.smp_prepare_cpus(max_cpus);
523         }
524 }
525
526 static const char *ipi_types[NR_IPI] __tracepoint_string = {
527         [IPI_WAKEUP]            = "CPU wakeup interrupts",
528         [IPI_TIMER]             = "Timer broadcast interrupts",
529         [IPI_RESCHEDULE]        = "Rescheduling interrupts",
530         [IPI_CALL_FUNC]         = "Function call interrupts",
531         [IPI_CPU_STOP]          = "CPU stop interrupts",
532         [IPI_IRQ_WORK]          = "IRQ work interrupts",
533         [IPI_COMPLETION]        = "completion interrupts",
534 };
535
536 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
537
538 void show_ipi_list(struct seq_file *p, int prec)
539 {
540         unsigned int cpu, i;
541
542         for (i = 0; i < NR_IPI; i++) {
543                 unsigned int irq;
544
545                 if (!ipi_desc[i])
546                         continue;
547
548                 irq = irq_desc_get_irq(ipi_desc[i]);
549                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
550
551                 for_each_online_cpu(cpu)
552                         seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
553
554                 seq_printf(p, " %s\n", ipi_types[i]);
555         }
556 }
557
558 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
559 {
560         smp_cross_call(mask, IPI_CALL_FUNC);
561 }
562
563 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
564 {
565         smp_cross_call(mask, IPI_WAKEUP);
566 }
567
568 void arch_send_call_function_single_ipi(int cpu)
569 {
570         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
571 }
572
573 #ifdef CONFIG_IRQ_WORK
574 void arch_irq_work_raise(void)
575 {
576         if (arch_irq_work_has_interrupt())
577                 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
578 }
579 #endif
580
581 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
582 void tick_broadcast(const struct cpumask *mask)
583 {
584         smp_cross_call(mask, IPI_TIMER);
585 }
586 #endif
587
588 static DEFINE_RAW_SPINLOCK(stop_lock);
589
590 /*
591  * ipi_cpu_stop - handle IPI from smp_send_stop()
592  */
593 static void ipi_cpu_stop(unsigned int cpu)
594 {
595         if (system_state <= SYSTEM_RUNNING) {
596                 raw_spin_lock(&stop_lock);
597                 pr_crit("CPU%u: stopping\n", cpu);
598                 dump_stack();
599                 raw_spin_unlock(&stop_lock);
600         }
601
602         set_cpu_online(cpu, false);
603
604         local_fiq_disable();
605         local_irq_disable();
606
607         while (1) {
608                 cpu_relax();
609                 wfe();
610         }
611 }
612
613 static DEFINE_PER_CPU(struct completion *, cpu_completion);
614
615 int register_ipi_completion(struct completion *completion, int cpu)
616 {
617         per_cpu(cpu_completion, cpu) = completion;
618         return IPI_COMPLETION;
619 }
620
621 static void ipi_complete(unsigned int cpu)
622 {
623         complete(per_cpu(cpu_completion, cpu));
624 }
625
626 /*
627  * Main handler for inter-processor interrupts
628  */
629 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
630 {
631         handle_IPI(ipinr, regs);
632 }
633
634 static void do_handle_IPI(int ipinr)
635 {
636         unsigned int cpu = smp_processor_id();
637
638         if ((unsigned)ipinr < NR_IPI)
639                 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
640
641         switch (ipinr) {
642         case IPI_WAKEUP:
643                 break;
644
645 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
646         case IPI_TIMER:
647                 tick_receive_broadcast();
648                 break;
649 #endif
650
651         case IPI_RESCHEDULE:
652                 scheduler_ipi();
653                 break;
654
655         case IPI_CALL_FUNC:
656                 generic_smp_call_function_interrupt();
657                 break;
658
659         case IPI_CPU_STOP:
660                 ipi_cpu_stop(cpu);
661                 break;
662
663 #ifdef CONFIG_IRQ_WORK
664         case IPI_IRQ_WORK:
665                 irq_work_run();
666                 break;
667 #endif
668
669         case IPI_COMPLETION:
670                 ipi_complete(cpu);
671                 break;
672
673         case IPI_CPU_BACKTRACE:
674                 printk_nmi_enter();
675                 nmi_cpu_backtrace(get_irq_regs());
676                 printk_nmi_exit();
677                 break;
678
679         default:
680                 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
681                         cpu, ipinr);
682                 break;
683         }
684
685         if ((unsigned)ipinr < NR_IPI)
686                 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
687 }
688
689 /* Legacy version, should go away once all irqchips have been converted */
690 void handle_IPI(int ipinr, struct pt_regs *regs)
691 {
692         struct pt_regs *old_regs = set_irq_regs(regs);
693
694         irq_enter();
695         do_handle_IPI(ipinr);
696         irq_exit();
697
698         set_irq_regs(old_regs);
699 }
700
701 static irqreturn_t ipi_handler(int irq, void *data)
702 {
703         do_handle_IPI(irq - ipi_irq_base);
704         return IRQ_HANDLED;
705 }
706
707 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
708 {
709         trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
710         __ipi_send_mask(ipi_desc[ipinr], target);
711 }
712
713 static void ipi_setup(int cpu)
714 {
715         int i;
716
717         if (WARN_ON_ONCE(!ipi_irq_base))
718                 return;
719
720         for (i = 0; i < nr_ipi; i++)
721                 enable_percpu_irq(ipi_irq_base + i, 0);
722 }
723
724 void __init set_smp_ipi_range(int ipi_base, int n)
725 {
726         int i;
727
728         WARN_ON(n < MAX_IPI);
729         nr_ipi = min(n, MAX_IPI);
730
731         for (i = 0; i < nr_ipi; i++) {
732                 int err;
733
734                 err = request_percpu_irq(ipi_base + i, ipi_handler,
735                                          "IPI", &irq_stat);
736                 WARN_ON(err);
737
738                 ipi_desc[i] = irq_to_desc(ipi_base + i);
739                 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
740         }
741
742         ipi_irq_base = ipi_base;
743
744         /* Setup the boot CPU immediately */
745         ipi_setup(smp_processor_id());
746 }
747
748 void smp_send_reschedule(int cpu)
749 {
750         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
751 }
752
753 void smp_send_stop(void)
754 {
755         unsigned long timeout;
756         struct cpumask mask;
757
758         cpumask_copy(&mask, cpu_online_mask);
759         cpumask_clear_cpu(smp_processor_id(), &mask);
760         if (!cpumask_empty(&mask))
761                 smp_cross_call(&mask, IPI_CPU_STOP);
762
763         /* Wait up to one second for other CPUs to stop */
764         timeout = USEC_PER_SEC;
765         while (num_online_cpus() > 1 && timeout--)
766                 udelay(1);
767
768         if (num_online_cpus() > 1)
769                 pr_warn("SMP: failed to stop secondary CPUs\n");
770 }
771
772 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
773  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
774  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
775  * kdump fails. So split out the panic_smp_self_stop() and add
776  * set_cpu_online(smp_processor_id(), false).
777  */
778 void panic_smp_self_stop(void)
779 {
780         pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
781                  smp_processor_id());
782         set_cpu_online(smp_processor_id(), false);
783         while (1)
784                 cpu_relax();
785 }
786
787 /*
788  * not supported here
789  */
790 int setup_profiling_timer(unsigned int multiplier)
791 {
792         return -EINVAL;
793 }
794
795 #ifdef CONFIG_CPU_FREQ
796
797 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
798 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
799 static unsigned long global_l_p_j_ref;
800 static unsigned long global_l_p_j_ref_freq;
801
802 static int cpufreq_callback(struct notifier_block *nb,
803                                         unsigned long val, void *data)
804 {
805         struct cpufreq_freqs *freq = data;
806         struct cpumask *cpus = freq->policy->cpus;
807         int cpu, first = cpumask_first(cpus);
808         unsigned int lpj;
809
810         if (freq->flags & CPUFREQ_CONST_LOOPS)
811                 return NOTIFY_OK;
812
813         if (!per_cpu(l_p_j_ref, first)) {
814                 for_each_cpu(cpu, cpus) {
815                         per_cpu(l_p_j_ref, cpu) =
816                                 per_cpu(cpu_data, cpu).loops_per_jiffy;
817                         per_cpu(l_p_j_ref_freq, cpu) = freq->old;
818                 }
819
820                 if (!global_l_p_j_ref) {
821                         global_l_p_j_ref = loops_per_jiffy;
822                         global_l_p_j_ref_freq = freq->old;
823                 }
824         }
825
826         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
827             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
828                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
829                                                 global_l_p_j_ref_freq,
830                                                 freq->new);
831
832                 lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
833                                     per_cpu(l_p_j_ref_freq, first), freq->new);
834                 for_each_cpu(cpu, cpus)
835                         per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
836         }
837         return NOTIFY_OK;
838 }
839
840 static struct notifier_block cpufreq_notifier = {
841         .notifier_call  = cpufreq_callback,
842 };
843
844 static int __init register_cpufreq_notifier(void)
845 {
846         return cpufreq_register_notifier(&cpufreq_notifier,
847                                                 CPUFREQ_TRANSITION_NOTIFIER);
848 }
849 core_initcall(register_cpufreq_notifier);
850
851 #endif
852
853 static void raise_nmi(cpumask_t *mask)
854 {
855         __ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
856 }
857
858 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
859 {
860         nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
861 }