Merge remote-tracking branch 'spi/for-5.9' into spi-linus
[linux-2.6-microblaze.git] / arch / arm / kernel / ptrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/ptrace.c
4  *
5  *  By Ross Biro 1/23/92
6  * edited by Linus Torvalds
7  * ARM modifications Copyright (C) 2000 Russell King
8  */
9 #include <linux/kernel.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/mm.h>
13 #include <linux/elf.h>
14 #include <linux/smp.h>
15 #include <linux/ptrace.h>
16 #include <linux/user.h>
17 #include <linux/security.h>
18 #include <linux/init.h>
19 #include <linux/signal.h>
20 #include <linux/uaccess.h>
21 #include <linux/perf_event.h>
22 #include <linux/hw_breakpoint.h>
23 #include <linux/regset.h>
24 #include <linux/audit.h>
25 #include <linux/tracehook.h>
26 #include <linux/unistd.h>
27
28 #include <asm/traps.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/syscalls.h>
32
33 #define REG_PC  15
34 #define REG_PSR 16
35 /*
36  * does not yet catch signals sent when the child dies.
37  * in exit.c or in signal.c.
38  */
39
40 #if 0
41 /*
42  * Breakpoint SWI instruction: SWI &9F0001
43  */
44 #define BREAKINST_ARM   0xef9f0001
45 #define BREAKINST_THUMB 0xdf00          /* fill this in later */
46 #else
47 /*
48  * New breakpoints - use an undefined instruction.  The ARM architecture
49  * reference manual guarantees that the following instruction space
50  * will produce an undefined instruction exception on all CPUs:
51  *
52  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
53  *  Thumb: 1101 1110 xxxx xxxx
54  */
55 #define BREAKINST_ARM   0xe7f001f0
56 #define BREAKINST_THUMB 0xde01
57 #endif
58
59 struct pt_regs_offset {
60         const char *name;
61         int offset;
62 };
63
64 #define REG_OFFSET_NAME(r) \
65         {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
66 #define REG_OFFSET_END {.name = NULL, .offset = 0}
67
68 static const struct pt_regs_offset regoffset_table[] = {
69         REG_OFFSET_NAME(r0),
70         REG_OFFSET_NAME(r1),
71         REG_OFFSET_NAME(r2),
72         REG_OFFSET_NAME(r3),
73         REG_OFFSET_NAME(r4),
74         REG_OFFSET_NAME(r5),
75         REG_OFFSET_NAME(r6),
76         REG_OFFSET_NAME(r7),
77         REG_OFFSET_NAME(r8),
78         REG_OFFSET_NAME(r9),
79         REG_OFFSET_NAME(r10),
80         REG_OFFSET_NAME(fp),
81         REG_OFFSET_NAME(ip),
82         REG_OFFSET_NAME(sp),
83         REG_OFFSET_NAME(lr),
84         REG_OFFSET_NAME(pc),
85         REG_OFFSET_NAME(cpsr),
86         REG_OFFSET_NAME(ORIG_r0),
87         REG_OFFSET_END,
88 };
89
90 /**
91  * regs_query_register_offset() - query register offset from its name
92  * @name:       the name of a register
93  *
94  * regs_query_register_offset() returns the offset of a register in struct
95  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
96  */
97 int regs_query_register_offset(const char *name)
98 {
99         const struct pt_regs_offset *roff;
100         for (roff = regoffset_table; roff->name != NULL; roff++)
101                 if (!strcmp(roff->name, name))
102                         return roff->offset;
103         return -EINVAL;
104 }
105
106 /**
107  * regs_query_register_name() - query register name from its offset
108  * @offset:     the offset of a register in struct pt_regs.
109  *
110  * regs_query_register_name() returns the name of a register from its
111  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
112  */
113 const char *regs_query_register_name(unsigned int offset)
114 {
115         const struct pt_regs_offset *roff;
116         for (roff = regoffset_table; roff->name != NULL; roff++)
117                 if (roff->offset == offset)
118                         return roff->name;
119         return NULL;
120 }
121
122 /**
123  * regs_within_kernel_stack() - check the address in the stack
124  * @regs:      pt_regs which contains kernel stack pointer.
125  * @addr:      address which is checked.
126  *
127  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
128  * If @addr is within the kernel stack, it returns true. If not, returns false.
129  */
130 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
131 {
132         return ((addr & ~(THREAD_SIZE - 1))  ==
133                 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
134 }
135
136 /**
137  * regs_get_kernel_stack_nth() - get Nth entry of the stack
138  * @regs:       pt_regs which contains kernel stack pointer.
139  * @n:          stack entry number.
140  *
141  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
142  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
143  * this returns 0.
144  */
145 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
146 {
147         unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
148         addr += n;
149         if (regs_within_kernel_stack(regs, (unsigned long)addr))
150                 return *addr;
151         else
152                 return 0;
153 }
154
155 /*
156  * this routine will get a word off of the processes privileged stack.
157  * the offset is how far from the base addr as stored in the THREAD.
158  * this routine assumes that all the privileged stacks are in our
159  * data space.
160  */
161 static inline long get_user_reg(struct task_struct *task, int offset)
162 {
163         return task_pt_regs(task)->uregs[offset];
164 }
165
166 /*
167  * this routine will put a word on the processes privileged stack.
168  * the offset is how far from the base addr as stored in the THREAD.
169  * this routine assumes that all the privileged stacks are in our
170  * data space.
171  */
172 static inline int
173 put_user_reg(struct task_struct *task, int offset, long data)
174 {
175         struct pt_regs newregs, *regs = task_pt_regs(task);
176         int ret = -EINVAL;
177
178         newregs = *regs;
179         newregs.uregs[offset] = data;
180
181         if (valid_user_regs(&newregs)) {
182                 regs->uregs[offset] = data;
183                 ret = 0;
184         }
185
186         return ret;
187 }
188
189 /*
190  * Called by kernel/ptrace.c when detaching..
191  */
192 void ptrace_disable(struct task_struct *child)
193 {
194         /* Nothing to do. */
195 }
196
197 /*
198  * Handle hitting a breakpoint.
199  */
200 void ptrace_break(struct pt_regs *regs)
201 {
202         force_sig_fault(SIGTRAP, TRAP_BRKPT,
203                         (void __user *)instruction_pointer(regs));
204 }
205
206 static int break_trap(struct pt_regs *regs, unsigned int instr)
207 {
208         ptrace_break(regs);
209         return 0;
210 }
211
212 static struct undef_hook arm_break_hook = {
213         .instr_mask     = 0x0fffffff,
214         .instr_val      = 0x07f001f0,
215         .cpsr_mask      = PSR_T_BIT,
216         .cpsr_val       = 0,
217         .fn             = break_trap,
218 };
219
220 static struct undef_hook thumb_break_hook = {
221         .instr_mask     = 0xffffffff,
222         .instr_val      = 0x0000de01,
223         .cpsr_mask      = PSR_T_BIT,
224         .cpsr_val       = PSR_T_BIT,
225         .fn             = break_trap,
226 };
227
228 static struct undef_hook thumb2_break_hook = {
229         .instr_mask     = 0xffffffff,
230         .instr_val      = 0xf7f0a000,
231         .cpsr_mask      = PSR_T_BIT,
232         .cpsr_val       = PSR_T_BIT,
233         .fn             = break_trap,
234 };
235
236 static int __init ptrace_break_init(void)
237 {
238         register_undef_hook(&arm_break_hook);
239         register_undef_hook(&thumb_break_hook);
240         register_undef_hook(&thumb2_break_hook);
241         return 0;
242 }
243
244 core_initcall(ptrace_break_init);
245
246 /*
247  * Read the word at offset "off" into the "struct user".  We
248  * actually access the pt_regs stored on the kernel stack.
249  */
250 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
251                             unsigned long __user *ret)
252 {
253         unsigned long tmp;
254
255         if (off & 3)
256                 return -EIO;
257
258         tmp = 0;
259         if (off == PT_TEXT_ADDR)
260                 tmp = tsk->mm->start_code;
261         else if (off == PT_DATA_ADDR)
262                 tmp = tsk->mm->start_data;
263         else if (off == PT_TEXT_END_ADDR)
264                 tmp = tsk->mm->end_code;
265         else if (off < sizeof(struct pt_regs))
266                 tmp = get_user_reg(tsk, off >> 2);
267         else if (off >= sizeof(struct user))
268                 return -EIO;
269
270         return put_user(tmp, ret);
271 }
272
273 /*
274  * Write the word at offset "off" into "struct user".  We
275  * actually access the pt_regs stored on the kernel stack.
276  */
277 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
278                              unsigned long val)
279 {
280         if (off & 3 || off >= sizeof(struct user))
281                 return -EIO;
282
283         if (off >= sizeof(struct pt_regs))
284                 return 0;
285
286         return put_user_reg(tsk, off >> 2, val);
287 }
288
289 #ifdef CONFIG_IWMMXT
290
291 /*
292  * Get the child iWMMXt state.
293  */
294 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
295 {
296         struct thread_info *thread = task_thread_info(tsk);
297
298         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
299                 return -ENODATA;
300         iwmmxt_task_disable(thread);  /* force it to ram */
301         return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
302                 ? -EFAULT : 0;
303 }
304
305 /*
306  * Set the child iWMMXt state.
307  */
308 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
309 {
310         struct thread_info *thread = task_thread_info(tsk);
311
312         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
313                 return -EACCES;
314         iwmmxt_task_release(thread);  /* force a reload */
315         return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
316                 ? -EFAULT : 0;
317 }
318
319 #endif
320
321 #ifdef CONFIG_CRUNCH
322 /*
323  * Get the child Crunch state.
324  */
325 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
326 {
327         struct thread_info *thread = task_thread_info(tsk);
328
329         crunch_task_disable(thread);  /* force it to ram */
330         return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
331                 ? -EFAULT : 0;
332 }
333
334 /*
335  * Set the child Crunch state.
336  */
337 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
338 {
339         struct thread_info *thread = task_thread_info(tsk);
340
341         crunch_task_release(thread);  /* force a reload */
342         return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
343                 ? -EFAULT : 0;
344 }
345 #endif
346
347 #ifdef CONFIG_HAVE_HW_BREAKPOINT
348 /*
349  * Convert a virtual register number into an index for a thread_info
350  * breakpoint array. Breakpoints are identified using positive numbers
351  * whilst watchpoints are negative. The registers are laid out as pairs
352  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
353  * Register 0 is reserved for describing resource information.
354  */
355 static int ptrace_hbp_num_to_idx(long num)
356 {
357         if (num < 0)
358                 num = (ARM_MAX_BRP << 1) - num;
359         return (num - 1) >> 1;
360 }
361
362 /*
363  * Returns the virtual register number for the address of the
364  * breakpoint at index idx.
365  */
366 static long ptrace_hbp_idx_to_num(int idx)
367 {
368         long mid = ARM_MAX_BRP << 1;
369         long num = (idx << 1) + 1;
370         return num > mid ? mid - num : num;
371 }
372
373 /*
374  * Handle hitting a HW-breakpoint.
375  */
376 static void ptrace_hbptriggered(struct perf_event *bp,
377                                      struct perf_sample_data *data,
378                                      struct pt_regs *regs)
379 {
380         struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
381         long num;
382         int i;
383
384         for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
385                 if (current->thread.debug.hbp[i] == bp)
386                         break;
387
388         num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
389
390         force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger));
391 }
392
393 /*
394  * Set ptrace breakpoint pointers to zero for this task.
395  * This is required in order to prevent child processes from unregistering
396  * breakpoints held by their parent.
397  */
398 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
399 {
400         memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
401 }
402
403 /*
404  * Unregister breakpoints from this task and reset the pointers in
405  * the thread_struct.
406  */
407 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
408 {
409         int i;
410         struct thread_struct *t = &tsk->thread;
411
412         for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
413                 if (t->debug.hbp[i]) {
414                         unregister_hw_breakpoint(t->debug.hbp[i]);
415                         t->debug.hbp[i] = NULL;
416                 }
417         }
418 }
419
420 static u32 ptrace_get_hbp_resource_info(void)
421 {
422         u8 num_brps, num_wrps, debug_arch, wp_len;
423         u32 reg = 0;
424
425         num_brps        = hw_breakpoint_slots(TYPE_INST);
426         num_wrps        = hw_breakpoint_slots(TYPE_DATA);
427         debug_arch      = arch_get_debug_arch();
428         wp_len          = arch_get_max_wp_len();
429
430         reg             |= debug_arch;
431         reg             <<= 8;
432         reg             |= wp_len;
433         reg             <<= 8;
434         reg             |= num_wrps;
435         reg             <<= 8;
436         reg             |= num_brps;
437
438         return reg;
439 }
440
441 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
442 {
443         struct perf_event_attr attr;
444
445         ptrace_breakpoint_init(&attr);
446
447         /* Initialise fields to sane defaults. */
448         attr.bp_addr    = 0;
449         attr.bp_len     = HW_BREAKPOINT_LEN_4;
450         attr.bp_type    = type;
451         attr.disabled   = 1;
452
453         return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
454                                            tsk);
455 }
456
457 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
458                              unsigned long  __user *data)
459 {
460         u32 reg;
461         int idx, ret = 0;
462         struct perf_event *bp;
463         struct arch_hw_breakpoint_ctrl arch_ctrl;
464
465         if (num == 0) {
466                 reg = ptrace_get_hbp_resource_info();
467         } else {
468                 idx = ptrace_hbp_num_to_idx(num);
469                 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
470                         ret = -EINVAL;
471                         goto out;
472                 }
473
474                 bp = tsk->thread.debug.hbp[idx];
475                 if (!bp) {
476                         reg = 0;
477                         goto put;
478                 }
479
480                 arch_ctrl = counter_arch_bp(bp)->ctrl;
481
482                 /*
483                  * Fix up the len because we may have adjusted it
484                  * to compensate for an unaligned address.
485                  */
486                 while (!(arch_ctrl.len & 0x1))
487                         arch_ctrl.len >>= 1;
488
489                 if (num & 0x1)
490                         reg = bp->attr.bp_addr;
491                 else
492                         reg = encode_ctrl_reg(arch_ctrl);
493         }
494
495 put:
496         if (put_user(reg, data))
497                 ret = -EFAULT;
498
499 out:
500         return ret;
501 }
502
503 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
504                              unsigned long __user *data)
505 {
506         int idx, gen_len, gen_type, implied_type, ret = 0;
507         u32 user_val;
508         struct perf_event *bp;
509         struct arch_hw_breakpoint_ctrl ctrl;
510         struct perf_event_attr attr;
511
512         if (num == 0)
513                 goto out;
514         else if (num < 0)
515                 implied_type = HW_BREAKPOINT_RW;
516         else
517                 implied_type = HW_BREAKPOINT_X;
518
519         idx = ptrace_hbp_num_to_idx(num);
520         if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
521                 ret = -EINVAL;
522                 goto out;
523         }
524
525         if (get_user(user_val, data)) {
526                 ret = -EFAULT;
527                 goto out;
528         }
529
530         bp = tsk->thread.debug.hbp[idx];
531         if (!bp) {
532                 bp = ptrace_hbp_create(tsk, implied_type);
533                 if (IS_ERR(bp)) {
534                         ret = PTR_ERR(bp);
535                         goto out;
536                 }
537                 tsk->thread.debug.hbp[idx] = bp;
538         }
539
540         attr = bp->attr;
541
542         if (num & 0x1) {
543                 /* Address */
544                 attr.bp_addr    = user_val;
545         } else {
546                 /* Control */
547                 decode_ctrl_reg(user_val, &ctrl);
548                 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
549                 if (ret)
550                         goto out;
551
552                 if ((gen_type & implied_type) != gen_type) {
553                         ret = -EINVAL;
554                         goto out;
555                 }
556
557                 attr.bp_len     = gen_len;
558                 attr.bp_type    = gen_type;
559                 attr.disabled   = !ctrl.enabled;
560         }
561
562         ret = modify_user_hw_breakpoint(bp, &attr);
563 out:
564         return ret;
565 }
566 #endif
567
568 /* regset get/set implementations */
569
570 static int gpr_get(struct task_struct *target,
571                    const struct user_regset *regset,
572                    struct membuf to)
573 {
574         return membuf_write(&to, task_pt_regs(target), sizeof(struct pt_regs));
575 }
576
577 static int gpr_set(struct task_struct *target,
578                    const struct user_regset *regset,
579                    unsigned int pos, unsigned int count,
580                    const void *kbuf, const void __user *ubuf)
581 {
582         int ret;
583         struct pt_regs newregs = *task_pt_regs(target);
584
585         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
586                                  &newregs,
587                                  0, sizeof(newregs));
588         if (ret)
589                 return ret;
590
591         if (!valid_user_regs(&newregs))
592                 return -EINVAL;
593
594         *task_pt_regs(target) = newregs;
595         return 0;
596 }
597
598 static int fpa_get(struct task_struct *target,
599                    const struct user_regset *regset,
600                    struct membuf to)
601 {
602         return membuf_write(&to, &task_thread_info(target)->fpstate,
603                                  sizeof(struct user_fp));
604 }
605
606 static int fpa_set(struct task_struct *target,
607                    const struct user_regset *regset,
608                    unsigned int pos, unsigned int count,
609                    const void *kbuf, const void __user *ubuf)
610 {
611         struct thread_info *thread = task_thread_info(target);
612
613         thread->used_cp[1] = thread->used_cp[2] = 1;
614
615         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
616                 &thread->fpstate,
617                 0, sizeof(struct user_fp));
618 }
619
620 #ifdef CONFIG_VFP
621 /*
622  * VFP register get/set implementations.
623  *
624  * With respect to the kernel, struct user_fp is divided into three chunks:
625  * 16 or 32 real VFP registers (d0-d15 or d0-31)
626  *      These are transferred to/from the real registers in the task's
627  *      vfp_hard_struct.  The number of registers depends on the kernel
628  *      configuration.
629  *
630  * 16 or 0 fake VFP registers (d16-d31 or empty)
631  *      i.e., the user_vfp structure has space for 32 registers even if
632  *      the kernel doesn't have them all.
633  *
634  *      vfp_get() reads this chunk as zero where applicable
635  *      vfp_set() ignores this chunk
636  *
637  * 1 word for the FPSCR
638  */
639 static int vfp_get(struct task_struct *target,
640                    const struct user_regset *regset,
641                    struct membuf to)
642 {
643         struct thread_info *thread = task_thread_info(target);
644         struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
645         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
646
647         vfp_sync_hwstate(thread);
648
649         membuf_write(&to, vfp->fpregs, sizeof(vfp->fpregs));
650         membuf_zero(&to, user_fpscr_offset - sizeof(vfp->fpregs));
651         return membuf_store(&to, vfp->fpscr);
652 }
653
654 /*
655  * For vfp_set() a read-modify-write is done on the VFP registers,
656  * in order to avoid writing back a half-modified set of registers on
657  * failure.
658  */
659 static int vfp_set(struct task_struct *target,
660                           const struct user_regset *regset,
661                           unsigned int pos, unsigned int count,
662                           const void *kbuf, const void __user *ubuf)
663 {
664         int ret;
665         struct thread_info *thread = task_thread_info(target);
666         struct vfp_hard_struct new_vfp;
667         const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
668         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
669
670         vfp_sync_hwstate(thread);
671         new_vfp = thread->vfpstate.hard;
672
673         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
674                                   &new_vfp.fpregs,
675                                   user_fpregs_offset,
676                                   user_fpregs_offset + sizeof(new_vfp.fpregs));
677         if (ret)
678                 return ret;
679
680         ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
681                                 user_fpregs_offset + sizeof(new_vfp.fpregs),
682                                 user_fpscr_offset);
683         if (ret)
684                 return ret;
685
686         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
687                                  &new_vfp.fpscr,
688                                  user_fpscr_offset,
689                                  user_fpscr_offset + sizeof(new_vfp.fpscr));
690         if (ret)
691                 return ret;
692
693         thread->vfpstate.hard = new_vfp;
694         vfp_flush_hwstate(thread);
695
696         return 0;
697 }
698 #endif /* CONFIG_VFP */
699
700 enum arm_regset {
701         REGSET_GPR,
702         REGSET_FPR,
703 #ifdef CONFIG_VFP
704         REGSET_VFP,
705 #endif
706 };
707
708 static const struct user_regset arm_regsets[] = {
709         [REGSET_GPR] = {
710                 .core_note_type = NT_PRSTATUS,
711                 .n = ELF_NGREG,
712                 .size = sizeof(u32),
713                 .align = sizeof(u32),
714                 .regset_get = gpr_get,
715                 .set = gpr_set
716         },
717         [REGSET_FPR] = {
718                 /*
719                  * For the FPA regs in fpstate, the real fields are a mixture
720                  * of sizes, so pretend that the registers are word-sized:
721                  */
722                 .core_note_type = NT_PRFPREG,
723                 .n = sizeof(struct user_fp) / sizeof(u32),
724                 .size = sizeof(u32),
725                 .align = sizeof(u32),
726                 .regset_get = fpa_get,
727                 .set = fpa_set
728         },
729 #ifdef CONFIG_VFP
730         [REGSET_VFP] = {
731                 /*
732                  * Pretend that the VFP regs are word-sized, since the FPSCR is
733                  * a single word dangling at the end of struct user_vfp:
734                  */
735                 .core_note_type = NT_ARM_VFP,
736                 .n = ARM_VFPREGS_SIZE / sizeof(u32),
737                 .size = sizeof(u32),
738                 .align = sizeof(u32),
739                 .regset_get = vfp_get,
740                 .set = vfp_set
741         },
742 #endif /* CONFIG_VFP */
743 };
744
745 static const struct user_regset_view user_arm_view = {
746         .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
747         .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
748 };
749
750 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
751 {
752         return &user_arm_view;
753 }
754
755 long arch_ptrace(struct task_struct *child, long request,
756                  unsigned long addr, unsigned long data)
757 {
758         int ret;
759         unsigned long __user *datap = (unsigned long __user *) data;
760
761         switch (request) {
762                 case PTRACE_PEEKUSR:
763                         ret = ptrace_read_user(child, addr, datap);
764                         break;
765
766                 case PTRACE_POKEUSR:
767                         ret = ptrace_write_user(child, addr, data);
768                         break;
769
770                 case PTRACE_GETREGS:
771                         ret = copy_regset_to_user(child,
772                                                   &user_arm_view, REGSET_GPR,
773                                                   0, sizeof(struct pt_regs),
774                                                   datap);
775                         break;
776
777                 case PTRACE_SETREGS:
778                         ret = copy_regset_from_user(child,
779                                                     &user_arm_view, REGSET_GPR,
780                                                     0, sizeof(struct pt_regs),
781                                                     datap);
782                         break;
783
784                 case PTRACE_GETFPREGS:
785                         ret = copy_regset_to_user(child,
786                                                   &user_arm_view, REGSET_FPR,
787                                                   0, sizeof(union fp_state),
788                                                   datap);
789                         break;
790
791                 case PTRACE_SETFPREGS:
792                         ret = copy_regset_from_user(child,
793                                                     &user_arm_view, REGSET_FPR,
794                                                     0, sizeof(union fp_state),
795                                                     datap);
796                         break;
797
798 #ifdef CONFIG_IWMMXT
799                 case PTRACE_GETWMMXREGS:
800                         ret = ptrace_getwmmxregs(child, datap);
801                         break;
802
803                 case PTRACE_SETWMMXREGS:
804                         ret = ptrace_setwmmxregs(child, datap);
805                         break;
806 #endif
807
808                 case PTRACE_GET_THREAD_AREA:
809                         ret = put_user(task_thread_info(child)->tp_value[0],
810                                        datap);
811                         break;
812
813                 case PTRACE_SET_SYSCALL:
814                         task_thread_info(child)->syscall = data;
815                         ret = 0;
816                         break;
817
818 #ifdef CONFIG_CRUNCH
819                 case PTRACE_GETCRUNCHREGS:
820                         ret = ptrace_getcrunchregs(child, datap);
821                         break;
822
823                 case PTRACE_SETCRUNCHREGS:
824                         ret = ptrace_setcrunchregs(child, datap);
825                         break;
826 #endif
827
828 #ifdef CONFIG_VFP
829                 case PTRACE_GETVFPREGS:
830                         ret = copy_regset_to_user(child,
831                                                   &user_arm_view, REGSET_VFP,
832                                                   0, ARM_VFPREGS_SIZE,
833                                                   datap);
834                         break;
835
836                 case PTRACE_SETVFPREGS:
837                         ret = copy_regset_from_user(child,
838                                                     &user_arm_view, REGSET_VFP,
839                                                     0, ARM_VFPREGS_SIZE,
840                                                     datap);
841                         break;
842 #endif
843
844 #ifdef CONFIG_HAVE_HW_BREAKPOINT
845                 case PTRACE_GETHBPREGS:
846                         ret = ptrace_gethbpregs(child, addr,
847                                                 (unsigned long __user *)data);
848                         break;
849                 case PTRACE_SETHBPREGS:
850                         ret = ptrace_sethbpregs(child, addr,
851                                                 (unsigned long __user *)data);
852                         break;
853 #endif
854
855                 default:
856                         ret = ptrace_request(child, request, addr, data);
857                         break;
858         }
859
860         return ret;
861 }
862
863 enum ptrace_syscall_dir {
864         PTRACE_SYSCALL_ENTER = 0,
865         PTRACE_SYSCALL_EXIT,
866 };
867
868 static void tracehook_report_syscall(struct pt_regs *regs,
869                                     enum ptrace_syscall_dir dir)
870 {
871         unsigned long ip;
872
873         /*
874          * IP is used to denote syscall entry/exit:
875          * IP = 0 -> entry, =1 -> exit
876          */
877         ip = regs->ARM_ip;
878         regs->ARM_ip = dir;
879
880         if (dir == PTRACE_SYSCALL_EXIT)
881                 tracehook_report_syscall_exit(regs, 0);
882         else if (tracehook_report_syscall_entry(regs))
883                 current_thread_info()->syscall = -1;
884
885         regs->ARM_ip = ip;
886 }
887
888 asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
889 {
890         current_thread_info()->syscall = scno;
891
892         if (test_thread_flag(TIF_SYSCALL_TRACE))
893                 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
894
895         /* Do seccomp after ptrace; syscall may have changed. */
896 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
897         if (secure_computing() == -1)
898                 return -1;
899 #else
900         /* XXX: remove this once OABI gets fixed */
901         secure_computing_strict(current_thread_info()->syscall);
902 #endif
903
904         /* Tracer or seccomp may have changed syscall. */
905         scno = current_thread_info()->syscall;
906
907         if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
908                 trace_sys_enter(regs, scno);
909
910         audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
911                             regs->ARM_r3);
912
913         return scno;
914 }
915
916 asmlinkage void syscall_trace_exit(struct pt_regs *regs)
917 {
918         /*
919          * Audit the syscall before anything else, as a debugger may
920          * come in and change the current registers.
921          */
922         audit_syscall_exit(regs);
923
924         /*
925          * Note that we haven't updated the ->syscall field for the
926          * current thread. This isn't a problem because it will have
927          * been set on syscall entry and there hasn't been an opportunity
928          * for a PTRACE_SET_SYSCALL since then.
929          */
930         if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
931                 trace_sys_exit(regs, regs_return_value(regs));
932
933         if (test_thread_flag(TIF_SYSCALL_TRACE))
934                 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
935 }