ARC: mm: move mmu/cache externs out to setup.h
[linux-2.6-microblaze.git] / arch / arc / kernel / disasm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * several functions that help interpret ARC instructions
4  * used for unaligned accesses, kprobes and kgdb
5  *
6  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
7  */
8
9 #include <linux/types.h>
10 #include <linux/kprobes.h>
11 #include <linux/slab.h>
12 #include <linux/uaccess.h>
13 #include <asm/disasm.h>
14
15 #if defined(CONFIG_KGDB) || defined(CONFIG_ARC_EMUL_UNALIGNED) || \
16         defined(CONFIG_KPROBES)
17
18 /* disasm_instr: Analyses instruction at addr, stores
19  * findings in *state
20  */
21 void __kprobes disasm_instr(unsigned long addr, struct disasm_state *state,
22         int userspace, struct pt_regs *regs, struct callee_regs *cregs)
23 {
24         int fieldA = 0;
25         int fieldC = 0, fieldCisReg = 0;
26         uint16_t word1 = 0, word0 = 0;
27         int subopcode, is_linked, op_format;
28         uint16_t *ins_ptr;
29         uint16_t ins_buf[4];
30         int bytes_not_copied = 0;
31
32         memset(state, 0, sizeof(struct disasm_state));
33
34         /* This fetches the upper part of the 32 bit instruction
35          * in both the cases of Little Endian or Big Endian configurations. */
36         if (userspace) {
37                 bytes_not_copied = copy_from_user(ins_buf,
38                                                 (const void __user *) addr, 8);
39                 if (bytes_not_copied > 6)
40                         goto fault;
41                 ins_ptr = ins_buf;
42         } else {
43                 ins_ptr = (uint16_t *) addr;
44         }
45
46         word1 = *((uint16_t *)addr);
47
48         state->major_opcode = (word1 >> 11) & 0x1F;
49
50         /* Check if the instruction is 32 bit or 16 bit instruction */
51         if (state->major_opcode < 0x0B) {
52                 if (bytes_not_copied > 4)
53                         goto fault;
54                 state->instr_len = 4;
55                 word0 = *((uint16_t *)(addr+2));
56                 state->words[0] = (word1 << 16) | word0;
57         } else {
58                 state->instr_len = 2;
59                 state->words[0] = word1;
60         }
61
62         /* Read the second word in case of limm */
63         word1 = *((uint16_t *)(addr + state->instr_len));
64         word0 = *((uint16_t *)(addr + state->instr_len + 2));
65         state->words[1] = (word1 << 16) | word0;
66
67         switch (state->major_opcode) {
68         case op_Bcc:
69                 state->is_branch = 1;
70
71                 /* unconditional branch s25, conditional branch s21 */
72                 fieldA = (IS_BIT(state->words[0], 16)) ?
73                         FIELD_s25(state->words[0]) :
74                         FIELD_s21(state->words[0]);
75
76                 state->delay_slot = IS_BIT(state->words[0], 5);
77                 state->target = fieldA + (addr & ~0x3);
78                 state->flow = direct_jump;
79                 break;
80
81         case op_BLcc:
82                 if (IS_BIT(state->words[0], 16)) {
83                         /* Branch and Link*/
84                         /* unconditional branch s25, conditional branch s21 */
85                         fieldA = (IS_BIT(state->words[0], 17)) ?
86                                 (FIELD_s25(state->words[0]) & ~0x3) :
87                                 FIELD_s21(state->words[0]);
88
89                         state->flow = direct_call;
90                 } else {
91                         /*Branch On Compare */
92                         fieldA = FIELD_s9(state->words[0]) & ~0x3;
93                         state->flow = direct_jump;
94                 }
95
96                 state->delay_slot = IS_BIT(state->words[0], 5);
97                 state->target = fieldA + (addr & ~0x3);
98                 state->is_branch = 1;
99                 break;
100
101         case op_LD:  /* LD<zz> a,[b,s9] */
102                 state->write = 0;
103                 state->di = BITS(state->words[0], 11, 11);
104                 if (state->di)
105                         break;
106                 state->x = BITS(state->words[0], 6, 6);
107                 state->zz = BITS(state->words[0], 7, 8);
108                 state->aa = BITS(state->words[0], 9, 10);
109                 state->wb_reg = FIELD_B(state->words[0]);
110                 if (state->wb_reg == REG_LIMM) {
111                         state->instr_len += 4;
112                         state->aa = 0;
113                         state->src1 = state->words[1];
114                 } else {
115                         state->src1 = get_reg(state->wb_reg, regs, cregs);
116                 }
117                 state->src2 = FIELD_s9(state->words[0]);
118                 state->dest = FIELD_A(state->words[0]);
119                 state->pref = (state->dest == REG_LIMM);
120                 break;
121
122         case op_ST:
123                 state->write = 1;
124                 state->di = BITS(state->words[0], 5, 5);
125                 if (state->di)
126                         break;
127                 state->aa = BITS(state->words[0], 3, 4);
128                 state->zz = BITS(state->words[0], 1, 2);
129                 state->src1 = FIELD_C(state->words[0]);
130                 if (state->src1 == REG_LIMM) {
131                         state->instr_len += 4;
132                         state->src1 = state->words[1];
133                 } else {
134                         state->src1 = get_reg(state->src1, regs, cregs);
135                 }
136                 state->wb_reg = FIELD_B(state->words[0]);
137                 if (state->wb_reg == REG_LIMM) {
138                         state->aa = 0;
139                         state->instr_len += 4;
140                         state->src2 = state->words[1];
141                 } else {
142                         state->src2 = get_reg(state->wb_reg, regs, cregs);
143                 }
144                 state->src3 = FIELD_s9(state->words[0]);
145                 break;
146
147         case op_MAJOR_4:
148                 subopcode = MINOR_OPCODE(state->words[0]);
149                 switch (subopcode) {
150                 case 32:        /* Jcc */
151                 case 33:        /* Jcc.D */
152                 case 34:        /* JLcc */
153                 case 35:        /* JLcc.D */
154                         is_linked = 0;
155
156                         if (subopcode == 33 || subopcode == 35)
157                                 state->delay_slot = 1;
158
159                         if (subopcode == 34 || subopcode == 35)
160                                 is_linked = 1;
161
162                         fieldCisReg = 0;
163                         op_format = BITS(state->words[0], 22, 23);
164                         if (op_format == 0 || ((op_format == 3) &&
165                                 (!IS_BIT(state->words[0], 5)))) {
166                                 fieldC = FIELD_C(state->words[0]);
167
168                                 if (fieldC == REG_LIMM) {
169                                         fieldC = state->words[1];
170                                         state->instr_len += 4;
171                                 } else {
172                                         fieldCisReg = 1;
173                                 }
174                         } else if (op_format == 1 || ((op_format == 3)
175                                 && (IS_BIT(state->words[0], 5)))) {
176                                 fieldC = FIELD_C(state->words[0]);
177                         } else  {
178                                 /* op_format == 2 */
179                                 fieldC = FIELD_s12(state->words[0]);
180                         }
181
182                         if (!fieldCisReg) {
183                                 state->target = fieldC;
184                                 state->flow = is_linked ?
185                                         direct_call : direct_jump;
186                         } else {
187                                 state->target = get_reg(fieldC, regs, cregs);
188                                 state->flow = is_linked ?
189                                         indirect_call : indirect_jump;
190                         }
191                         state->is_branch = 1;
192                         break;
193
194                 case 40:        /* LPcc */
195                         if (BITS(state->words[0], 22, 23) == 3) {
196                                 /* Conditional LPcc u7 */
197                                 fieldC = FIELD_C(state->words[0]);
198
199                                 fieldC = fieldC << 1;
200                                 fieldC += (addr & ~0x03);
201                                 state->is_branch = 1;
202                                 state->flow = direct_jump;
203                                 state->target = fieldC;
204                         }
205                         /* For Unconditional lp, next pc is the fall through
206                          * which is updated */
207                         break;
208
209                 case 48 ... 55: /* LD a,[b,c] */
210                         state->di = BITS(state->words[0], 15, 15);
211                         if (state->di)
212                                 break;
213                         state->x = BITS(state->words[0], 16, 16);
214                         state->zz = BITS(state->words[0], 17, 18);
215                         state->aa = BITS(state->words[0], 22, 23);
216                         state->wb_reg = FIELD_B(state->words[0]);
217                         if (state->wb_reg == REG_LIMM) {
218                                 state->instr_len += 4;
219                                 state->src1 = state->words[1];
220                         } else {
221                                 state->src1 = get_reg(state->wb_reg, regs,
222                                                 cregs);
223                         }
224                         state->src2 = FIELD_C(state->words[0]);
225                         if (state->src2 == REG_LIMM) {
226                                 state->instr_len += 4;
227                                 state->src2 = state->words[1];
228                         } else {
229                                 state->src2 = get_reg(state->src2, regs,
230                                         cregs);
231                         }
232                         state->dest = FIELD_A(state->words[0]);
233                         if (state->dest == REG_LIMM)
234                                 state->pref = 1;
235                         break;
236
237                 case 10:        /* MOV */
238                         /* still need to check for limm to extract instr len */
239                         /* MOV is special case because it only takes 2 args */
240                         switch (BITS(state->words[0], 22, 23)) {
241                         case 0: /* OP a,b,c */
242                                 if (FIELD_C(state->words[0]) == REG_LIMM)
243                                         state->instr_len += 4;
244                                 break;
245                         case 1: /* OP a,b,u6 */
246                                 break;
247                         case 2: /* OP b,b,s12 */
248                                 break;
249                         case 3: /* OP.cc b,b,c/u6 */
250                                 if ((!IS_BIT(state->words[0], 5)) &&
251                                     (FIELD_C(state->words[0]) == REG_LIMM))
252                                         state->instr_len += 4;
253                                 break;
254                         }
255                         break;
256
257
258                 default:
259                         /* Not a Load, Jump or Loop instruction */
260                         /* still need to check for limm to extract instr len */
261                         switch (BITS(state->words[0], 22, 23)) {
262                         case 0: /* OP a,b,c */
263                                 if ((FIELD_B(state->words[0]) == REG_LIMM) ||
264                                     (FIELD_C(state->words[0]) == REG_LIMM))
265                                         state->instr_len += 4;
266                                 break;
267                         case 1: /* OP a,b,u6 */
268                                 break;
269                         case 2: /* OP b,b,s12 */
270                                 break;
271                         case 3: /* OP.cc b,b,c/u6 */
272                                 if ((!IS_BIT(state->words[0], 5)) &&
273                                    ((FIELD_B(state->words[0]) == REG_LIMM) ||
274                                     (FIELD_C(state->words[0]) == REG_LIMM)))
275                                         state->instr_len += 4;
276                                 break;
277                         }
278                         break;
279                 }
280                 break;
281
282         /* 16 Bit Instructions */
283         case op_LD_ADD: /* LD_S|LDB_S|LDW_S a,[b,c] */
284                 state->zz = BITS(state->words[0], 3, 4);
285                 state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
286                 state->src2 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
287                 state->dest = FIELD_S_A(state->words[0]);
288                 break;
289
290         case op_ADD_MOV_CMP:
291                 /* check for limm, ignore mov_s h,b (== mov_s 0,b) */
292                 if ((BITS(state->words[0], 3, 4) < 3) &&
293                     (FIELD_S_H(state->words[0]) == REG_LIMM))
294                         state->instr_len += 4;
295                 break;
296
297         case op_S:
298                 subopcode = BITS(state->words[0], 5, 7);
299                 switch (subopcode) {
300                 case 0: /* j_s */
301                 case 1: /* j_s.d */
302                 case 2: /* jl_s */
303                 case 3: /* jl_s.d */
304                         state->target = get_reg(FIELD_S_B(state->words[0]),
305                                                 regs, cregs);
306                         state->delay_slot = subopcode & 1;
307                         state->flow = (subopcode >= 2) ?
308                                 direct_call : indirect_jump;
309                         break;
310                 case 7:
311                         switch (BITS(state->words[0], 8, 10)) {
312                         case 4: /* jeq_s [blink] */
313                         case 5: /* jne_s [blink] */
314                         case 6: /* j_s [blink] */
315                         case 7: /* j_s.d [blink] */
316                                 state->delay_slot = (subopcode == 7);
317                                 state->flow = indirect_jump;
318                                 state->target = get_reg(31, regs, cregs);
319                         default:
320                                 break;
321                         }
322                 default:
323                         break;
324                 }
325                 break;
326
327         case op_LD_S:   /* LD_S c, [b, u7] */
328                 state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
329                 state->src2 = FIELD_S_u7(state->words[0]);
330                 state->dest = FIELD_S_C(state->words[0]);
331                 break;
332
333         case op_LDB_S:
334         case op_STB_S:
335                 /* no further handling required as byte accesses should not
336                  * cause an unaligned access exception */
337                 state->zz = 1;
338                 break;
339
340         case op_LDWX_S: /* LDWX_S c, [b, u6] */
341                 state->x = 1;
342                 fallthrough;
343
344         case op_LDW_S:  /* LDW_S c, [b, u6] */
345                 state->zz = 2;
346                 state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
347                 state->src2 = FIELD_S_u6(state->words[0]);
348                 state->dest = FIELD_S_C(state->words[0]);
349                 break;
350
351         case op_ST_S:   /* ST_S c, [b, u7] */
352                 state->write = 1;
353                 state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
354                 state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
355                 state->src3 = FIELD_S_u7(state->words[0]);
356                 break;
357
358         case op_STW_S:  /* STW_S c,[b,u6] */
359                 state->write = 1;
360                 state->zz = 2;
361                 state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
362                 state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
363                 state->src3 = FIELD_S_u6(state->words[0]);
364                 break;
365
366         case op_SP:     /* LD_S|LDB_S b,[sp,u7], ST_S|STB_S b,[sp,u7] */
367                 /* note: we are ignoring possibility of:
368                  * ADD_S, SUB_S, PUSH_S, POP_S as these should not
369                  * cause unaliged exception anyway */
370                 state->write = BITS(state->words[0], 6, 6);
371                 state->zz = BITS(state->words[0], 5, 5);
372                 if (state->zz)
373                         break;  /* byte accesses should not come here */
374                 if (!state->write) {
375                         state->src1 = get_reg(28, regs, cregs);
376                         state->src2 = FIELD_S_u7(state->words[0]);
377                         state->dest = FIELD_S_B(state->words[0]);
378                 } else {
379                         state->src1 = get_reg(FIELD_S_B(state->words[0]), regs,
380                                         cregs);
381                         state->src2 = get_reg(28, regs, cregs);
382                         state->src3 = FIELD_S_u7(state->words[0]);
383                 }
384                 break;
385
386         case op_GP:     /* LD_S|LDB_S|LDW_S r0,[gp,s11/s9/s10] */
387                 /* note: ADD_S r0, gp, s11 is ignored */
388                 state->zz = BITS(state->words[0], 9, 10);
389                 state->src1 = get_reg(26, regs, cregs);
390                 state->src2 = state->zz ? FIELD_S_s10(state->words[0]) :
391                         FIELD_S_s11(state->words[0]);
392                 state->dest = 0;
393                 break;
394
395         case op_Pcl:    /* LD_S b,[pcl,u10] */
396                 state->src1 = regs->ret & ~3;
397                 state->src2 = FIELD_S_u10(state->words[0]);
398                 state->dest = FIELD_S_B(state->words[0]);
399                 break;
400
401         case op_BR_S:
402                 state->target = FIELD_S_s8(state->words[0]) + (addr & ~0x03);
403                 state->flow = direct_jump;
404                 state->is_branch = 1;
405                 break;
406
407         case op_B_S:
408                 fieldA = (BITS(state->words[0], 9, 10) == 3) ?
409                         FIELD_S_s7(state->words[0]) :
410                         FIELD_S_s10(state->words[0]);
411                 state->target = fieldA + (addr & ~0x03);
412                 state->flow = direct_jump;
413                 state->is_branch = 1;
414                 break;
415
416         case op_BL_S:
417                 state->target = FIELD_S_s13(state->words[0]) + (addr & ~0x03);
418                 state->flow = direct_call;
419                 state->is_branch = 1;
420                 break;
421
422         default:
423                 break;
424         }
425
426         if (bytes_not_copied <= (8 - state->instr_len))
427                 return;
428
429 fault:  state->fault = 1;
430 }
431
432 long __kprobes get_reg(int reg, struct pt_regs *regs,
433                        struct callee_regs *cregs)
434 {
435         long *p;
436
437         if (reg <= 12) {
438                 p = &regs->r0;
439                 return p[-reg];
440         }
441
442         if (cregs && (reg <= 25)) {
443                 p = &cregs->r13;
444                 return p[13-reg];
445         }
446
447         if (reg == 26)
448                 return regs->r26;
449         if (reg == 27)
450                 return regs->fp;
451         if (reg == 28)
452                 return regs->sp;
453         if (reg == 31)
454                 return regs->blink;
455
456         return 0;
457 }
458
459 void __kprobes set_reg(int reg, long val, struct pt_regs *regs,
460                 struct callee_regs *cregs)
461 {
462         long *p;
463
464         switch (reg) {
465         case 0 ... 12:
466                 p = &regs->r0;
467                 p[-reg] = val;
468                 break;
469         case 13 ... 25:
470                 if (cregs) {
471                         p = &cregs->r13;
472                         p[13-reg] = val;
473                 }
474                 break;
475         case 26:
476                 regs->r26 = val;
477                 break;
478         case 27:
479                 regs->fp = val;
480                 break;
481         case 28:
482                 regs->sp = val;
483                 break;
484         case 31:
485                 regs->blink = val;
486                 break;
487         default:
488                 break;
489         }
490 }
491
492 /*
493  * Disassembles the insn at @pc and sets @next_pc to next PC (which could be
494  * @pc +2/4/6 (ARCompact ISA allows free intermixing of 16/32 bit insns).
495  *
496  * If @pc is a branch
497  *      -@tgt_if_br is set to branch target.
498  *      -If branch has delay slot, @next_pc updated with actual next PC.
499  */
500 int __kprobes disasm_next_pc(unsigned long pc, struct pt_regs *regs,
501                              struct callee_regs *cregs,
502                              unsigned long *next_pc, unsigned long *tgt_if_br)
503 {
504         struct disasm_state instr;
505
506         memset(&instr, 0, sizeof(struct disasm_state));
507         disasm_instr(pc, &instr, 0, regs, cregs);
508
509         *next_pc = pc + instr.instr_len;
510
511         /* Instruction with possible two targets branch, jump and loop */
512         if (instr.is_branch)
513                 *tgt_if_br = instr.target;
514
515         /* For the instructions with delay slots, the fall through is the
516          * instruction following the instruction in delay slot.
517          */
518          if (instr.delay_slot) {
519                 struct disasm_state instr_d;
520
521                 disasm_instr(*next_pc, &instr_d, 0, regs, cregs);
522
523                 *next_pc += instr_d.instr_len;
524          }
525
526          /* Zero Overhead Loop - end of the loop */
527         if (!(regs->status32 & STATUS32_L) && (*next_pc == regs->lp_end)
528                 && (regs->lp_count > 1)) {
529                 *next_pc = regs->lp_start;
530         }
531
532         return instr.is_branch;
533 }
534
535 #endif /* CONFIG_KGDB || CONFIG_ARC_EMUL_UNALIGNED || CONFIG_KPROBES */