Merge tag 'drm-misc-next-2021-07-16' of git://anongit.freedesktop.org/drm/drm-misc...
[linux-2.6-microblaze.git] / Documentation / virt / kvm / hypercalls.rst
1 .. SPDX-License-Identifier: GPL-2.0
2
3 ===================
4 Linux KVM Hypercall
5 ===================
6
7 X86:
8  KVM Hypercalls have a three-byte sequence of either the vmcall or the vmmcall
9  instruction. The hypervisor can replace it with instructions that are
10  guaranteed to be supported.
11
12  Up to four arguments may be passed in rbx, rcx, rdx, and rsi respectively.
13  The hypercall number should be placed in rax and the return value will be
14  placed in rax.  No other registers will be clobbered unless explicitly stated
15  by the particular hypercall.
16
17 S390:
18   R2-R7 are used for parameters 1-6. In addition, R1 is used for hypercall
19   number. The return value is written to R2.
20
21   S390 uses diagnose instruction as hypercall (0x500) along with hypercall
22   number in R1.
23
24   For further information on the S390 diagnose call as supported by KVM,
25   refer to Documentation/virt/kvm/s390-diag.rst.
26
27 PowerPC:
28   It uses R3-R10 and hypercall number in R11. R4-R11 are used as output registers.
29   Return value is placed in R3.
30
31   KVM hypercalls uses 4 byte opcode, that are patched with 'hypercall-instructions'
32   property inside the device tree's /hypervisor node.
33   For more information refer to Documentation/virt/kvm/ppc-pv.rst
34
35 MIPS:
36   KVM hypercalls use the HYPCALL instruction with code 0 and the hypercall
37   number in $2 (v0). Up to four arguments may be placed in $4-$7 (a0-a3) and
38   the return value is placed in $2 (v0).
39
40 KVM Hypercalls Documentation
41 ============================
42
43 The template for each hypercall is:
44 1. Hypercall name.
45 2. Architecture(s)
46 3. Status (deprecated, obsolete, active)
47 4. Purpose
48
49 1. KVM_HC_VAPIC_POLL_IRQ
50 ------------------------
51
52 :Architecture: x86
53 :Status: active
54 :Purpose: Trigger guest exit so that the host can check for pending
55           interrupts on reentry.
56
57 2. KVM_HC_MMU_OP
58 ----------------
59
60 :Architecture: x86
61 :Status: deprecated.
62 :Purpose: Support MMU operations such as writing to PTE,
63           flushing TLB, release PT.
64
65 3. KVM_HC_FEATURES
66 ------------------
67
68 :Architecture: PPC
69 :Status: active
70 :Purpose: Expose hypercall availability to the guest. On x86 platforms, cpuid
71           used to enumerate which hypercalls are available. On PPC, either
72           device tree based lookup ( which is also what EPAPR dictates)
73           OR KVM specific enumeration mechanism (which is this hypercall)
74           can be used.
75
76 4. KVM_HC_PPC_MAP_MAGIC_PAGE
77 ----------------------------
78
79 :Architecture: PPC
80 :Status: active
81 :Purpose: To enable communication between the hypervisor and guest there is a
82           shared page that contains parts of supervisor visible register state.
83           The guest can map this shared page to access its supervisor register
84           through memory using this hypercall.
85
86 5. KVM_HC_KICK_CPU
87 ------------------
88
89 :Architecture: x86
90 :Status: active
91 :Purpose: Hypercall used to wakeup a vcpu from HLT state
92 :Usage example:
93   A vcpu of a paravirtualized guest that is busywaiting in guest
94   kernel mode for an event to occur (ex: a spinlock to become available) can
95   execute HLT instruction once it has busy-waited for more than a threshold
96   time-interval. Execution of HLT instruction would cause the hypervisor to put
97   the vcpu to sleep until occurrence of an appropriate event. Another vcpu of the
98   same guest can wakeup the sleeping vcpu by issuing KVM_HC_KICK_CPU hypercall,
99   specifying APIC ID (a1) of the vcpu to be woken up. An additional argument (a0)
100   is used in the hypercall for future use.
101
102
103 6. KVM_HC_CLOCK_PAIRING
104 -----------------------
105 :Architecture: x86
106 :Status: active
107 :Purpose: Hypercall used to synchronize host and guest clocks.
108
109 Usage:
110
111 a0: guest physical address where host copies
112 "struct kvm_clock_offset" structure.
113
114 a1: clock_type, ATM only KVM_CLOCK_PAIRING_WALLCLOCK (0)
115 is supported (corresponding to the host's CLOCK_REALTIME clock).
116
117        ::
118
119                 struct kvm_clock_pairing {
120                         __s64 sec;
121                         __s64 nsec;
122                         __u64 tsc;
123                         __u32 flags;
124                         __u32 pad[9];
125                 };
126
127        Where:
128                * sec: seconds from clock_type clock.
129                * nsec: nanoseconds from clock_type clock.
130                * tsc: guest TSC value used to calculate sec/nsec pair
131                * flags: flags, unused (0) at the moment.
132
133 The hypercall lets a guest compute a precise timestamp across
134 host and guest.  The guest can use the returned TSC value to
135 compute the CLOCK_REALTIME for its clock, at the same instant.
136
137 Returns KVM_EOPNOTSUPP if the host does not use TSC clocksource,
138 or if clock type is different than KVM_CLOCK_PAIRING_WALLCLOCK.
139
140 6. KVM_HC_SEND_IPI
141 ------------------
142
143 :Architecture: x86
144 :Status: active
145 :Purpose: Send IPIs to multiple vCPUs.
146
147 - a0: lower part of the bitmap of destination APIC IDs
148 - a1: higher part of the bitmap of destination APIC IDs
149 - a2: the lowest APIC ID in bitmap
150 - a3: APIC ICR
151
152 The hypercall lets a guest send multicast IPIs, with at most 128
153 128 destinations per hypercall in 64-bit mode and 64 vCPUs per
154 hypercall in 32-bit mode.  The destinations are represented by a
155 bitmap contained in the first two arguments (a0 and a1). Bit 0 of
156 a0 corresponds to the APIC ID in the third argument (a2), bit 1
157 corresponds to the APIC ID a2+1, and so on.
158
159 Returns the number of CPUs to which the IPIs were delivered successfully.
160
161 7. KVM_HC_SCHED_YIELD
162 ---------------------
163
164 :Architecture: x86
165 :Status: active
166 :Purpose: Hypercall used to yield if the IPI target vCPU is preempted
167
168 a0: destination APIC ID
169
170 :Usage example: When sending a call-function IPI-many to vCPUs, yield if
171                 any of the IPI target vCPUs was preempted.
172
173 8. KVM_HC_MAP_GPA_RANGE
174 -------------------------
175 :Architecture: x86
176 :Status: active
177 :Purpose: Request KVM to map a GPA range with the specified attributes.
178
179 a0: the guest physical address of the start page
180 a1: the number of (4kb) pages (must be contiguous in GPA space)
181 a2: attributes
182
183     Where 'attributes' :
184         * bits  3:0 - preferred page size encoding 0 = 4kb, 1 = 2mb, 2 = 1gb, etc...
185         * bit     4 - plaintext = 0, encrypted = 1
186         * bits 63:5 - reserved (must be zero)
187
188 **Implementation note**: this hypercall is implemented in userspace via
189 the KVM_CAP_EXIT_HYPERCALL capability. Userspace must enable that capability
190 before advertising KVM_FEATURE_HC_MAP_GPA_RANGE in the guest CPUID.  In
191 addition, if the guest supports KVM_FEATURE_MIGRATION_CONTROL, userspace
192 must also set up an MSR filter to process writes to MSR_KVM_MIGRATION_CONTROL.